WorldWideScience

Sample records for surface water productivity

  1. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  2. Input dynamics of pesticide transformation products into surface water

    Science.gov (United States)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples

  3. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy.

  4. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.

    Science.gov (United States)

    Emtiazi, Farahnaz; Schwartz, Thomas; Marten, Silke Mareike; Krolla-Sidenstein, Peter; Obst, Ursula

    2004-03-01

    Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.

  5. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  6. Impacts of climate change on surface water quality in relation to drinking water production.

    Science.gov (United States)

    Delpla, I; Jung, A-V; Baures, E; Clement, M; Thomas, O

    2009-11-01

    Besides climate change impacts on water availability and hydrological risks, the consequences on water quality is just beginning to be studied. This review aims at proposing a synthesis of the most recent existing interdisciplinary literature on the topic. After a short presentation about the role of the main factors (warming and consequences of extreme events) explaining climate change effects on water quality, the focus will be on two main points. First, the impacts on water quality of resources (rivers and lakes) modifying parameters values (physico-chemical parameters, micropollutants and biological parameters) are considered. Then, the expected impacts on drinking water production and quality of supplied water are discussed. The main conclusion which can be drawn is that a degradation trend of drinking water quality in the context of climate change leads to an increase of at risk situations related to potential health impact.

  7. Surface Water and Flood Extent Mapping, Monitoring, and Modeling Products and Services for the SERVIR Regions

    Science.gov (United States)

    Anderson, Eric

    2016-01-01

    SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.

  8. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland.

    Science.gov (United States)

    Barchanska, Hanna; Sajdak, Marcin; Szczypka, Kornelia; Swientek, Angelika; Tworek, Martyna; Kurek, Magdalena

    2017-01-01

    The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.

  9. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method using the solid phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS) to analyse atrazine and its degradation products at levels of low nanograms per liter in water has been developed. The environmental water samples were filtered and then extracted by SPE with a new sulfonation of poly(divinylbenzene-co-N- vinylpyrrolidone) sorbents MCX. HPLC/APCIMS was used for the analysis of atrazine and its degradation products, desethylatrazine (DEA), deisopropylatrazine (DIA), didealkylatrazine (DEDIA), and hydroxyatrazine (HYA). The detection limits ranged from 10-50 ng/L in water samples. Samples were collected from deep wells and a reservoir near a plant that produced atrazine. Atrazine concentration levels in most surface samples were above the limit of the China Surface Water Regulation (3 mg/L). In ground water, the levels of degradation product were more than 0.1 mg/L and 5-10 times greater than those of atrazine. The highest DEA concentration in the groundwater sample taken at the 130 m depth was 7.2 ug/L.

  10. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  11. The U.S. Geological Survey Dynamic Surface Water Extent product evaluation strategy

    Science.gov (United States)

    Jones, John

    2016-04-01

    The USGS has developed a Dynamic Surface Water Extent (DSWE) landsat science product to meet broad scientific and resource management needs. Product usability is a primary goal for this effort. Rigorous measurement and reporting of product uncertainty as well as the evaluation and refinement of product utility are necessary to achieve this goal. To appropriately balance information provided against cost of implementation, a multi-tiered strategy is employed to evaluate and document DSWE uncertainty and utility for potential users. To refine the product from a user's perspective, foster unbiased product assessment, and stretch development resources as far as possible, the final tier of evaluation is performed collaboratively. Evaluation study areas and time frames are selected to provide the greatest challenges to DSWE performance and to provide coincident, independent sources of inundation information, respectively. While DSWE is currently based on Landsat alone, data from passive and active sensing systems from numerous airborne (to include unmanned airborne systems) and satellite-based platforms are processed using automated and manual approaches to yield polygon and point based validation data. In situ data on inundation and water stage collected at key U.S. study areas are also used both to understand DSWE weaknesses and facilitate DSWE use in science and resource management. The effectiveness of this approach is illustrated through case studies drawn from DSWE prototype product evaluation for hydrologic modeling and flood inundation mapping.

  12. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    Science.gov (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Remote sensing for oil products on water surface via fluorescence induced by UV filaments

    Science.gov (United States)

    Sunchugasheva, E. S.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Geints, Yu. E.; Zemlyanov, A. A.

    2016-10-01

    Remote monitoring of water pollution, namely thin films of oil or oil products on water surface, can be carried out by laser fluorimetry. The pollutants fluorescence during its interaction with ultrashort UV laser pulses was experimentally studied in this paper. The laser pulses power was considered in a wide range of values including the filamentation regime. We compared fluorescence stimulated by femtosecond UV laser pulses with two central wavelengths (248 and 372 nm) for detection of crude oil and the following oil products: oil VM-5, oil 5W-40 and solvent WhiteSpirit. It was shown that shorter UV wavelengths are more suitable for fluorescence excitation. The spatial resolution of the fluorescence localization was no worse than 30 cm. We discuss techniques of high intensity emission delivery to the remote target as post-filamentation channels and multifilamentation beam propagation regime as well experimentally and numerically.

  14. Virulence determinants and production of extracellular enzymes in Enterococcus spp. from surface water sources.

    Science.gov (United States)

    Molale, Lesego Gertrude; Bezuidenhout, Cornelius Carlos

    2016-01-01

    Virulence factors in Enterococcus may be indicative of potential pathogenicity. The aim of this study was to determine the relationship between the presence of clinically relevant virulence genes, in Enterococcus spp. from environmental water, and their in vitro expression. One hundred and twenty-four Enterococcus isolates (seven species), from five surface water systems in the North West Province, South Africa, were screened for the presence of asa1, cylA, esp, gelE and hyl using polymerase chain reaction. The expression of cylA, hyl and gelE was determined by phenotypic assessments. Sixty-five percent of the isolates were positive for one virulence gene and 13% for two or more. Most frequently detected genes were gelE (32%) and cylA (28%). Enterococcal surface protein was absent in all isolates screened. The presence of virulence genes was correlated with their extracellular enzyme production. The results show that a large percentage of these environmental Enterococcus spp. possess virulence factors that could be expressed in vitro. This is a cause for concern and could have implications for individuals using this water for recreational and cultural purposes. Further investigation is required into the sources of these potential pathogenic Enterococcus isolates and measures to minimize their presence in water sources.

  15. Investigation of 10 herbicides in surface waters of a horticultural production catchment in southeastern Australia.

    Science.gov (United States)

    Allinson, Graeme; Bui, AnhDuyen; Zhang, Pei; Rose, Gavin; Wightwick, Adam M; Allinson, Mayumi; Pettigrove, Vincent

    2014-10-01

    Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 μg/L) and sediment (260 μg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.

  16. Synthesis of primary production in the Arctic Ocean: I. Surface waters, 1954-2007

    Science.gov (United States)

    Matrai, P. A.; Olson, E.; Suttles, S.; Hill, V.; Codispoti, L. A.; Light, B.; Steele, M.

    2013-03-01

    The spatial and seasonal magnitude and variability of primary production in the Arctic Ocean (AO) is quantified with a pan-arctic approach. We synthesize estimates of primary production (PP), focusing on surface waters (0-5 m), using complementary methods that emphasize different spatial and temporal scales. These methods include (1) in situ observations of 14C uptake mostly and possibly some O2 production reported in units of carbon (in situ PP), (2) remotely sensed primary production (sat-PP), and (3) an empirical algorithm giving net PP as a function of in situ chlorophyll a (in situ Chl-PP). The work presented herein examines historical data for PP collected in surface waters only, as they form the majority of the values of a larger ensemble of PP data collected over >50 years (ARCSS-PP) by many national and international efforts. This extended set of surface and vertically-resolved data will provide pan-Arctic validation of remotely sensed chlorophyll a and PP, an extremely valuable tool in this environment which is so difficult to sample. To this day, PP data in the AO are scarce and have uneven temporal and spatial coverage which, when added to the AO’s regional heterogeneity, its strong seasonal changes, and limited access, have made and continue to make obtaining a comprehensive picture of PP in the AO difficult. Daily surface in situ PP averaged 70 and 21 mg C m-3 d-1 for spring and summer, respectively, for the ca. 50 year period across the AO. Average daily estimates of in situ PP in surface waters on a pan-Arctic basis were several fold higher with respect to remotely sensed PP (sat-PP) and in situ chlorophyll-derived PP (Chl-PP) in the spring period, likely due to differences in data availability and coverage. Summer daily averages for surface in situ PP and sat-PP were similar and twice as high as in situ Chl-PP. Differences among annual estimates of surface in situ PP, in situ Chl-PP and sat-PP across the Arctic Ocean are presented and discussed

  17. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    Science.gov (United States)

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  18. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    Science.gov (United States)

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  19. Indirect photochemistry in sunlit surface waters: photoinduced production of reactive transient species.

    Science.gov (United States)

    Vione, Davide; Minella, Marco; Maurino, Valter; Minero, Claudio

    2014-08-18

    This paper gives an overview of the main reactive transient species that are produced in surface waters by sunlight illumination of photoactive molecules (photosensitizers), such as nitrate, nitrite, and chromophoric dissolved organic matter (CDOM). The main transients (˙OH, CO3(-˙) , (1)O2, and CDOM triplet states) are involved in the indirect phototransformation of a very wide range of persistent organic pollutants in surface waters.

  20. Modelling surface runoff and water productivity in small dryland watersheds with water-harvesting interventions, an application from Jordan

    Science.gov (United States)

    Bruggeman, A.; Akroush, S.; Mudabber, M.; Ziadat, F.; Oweis, T.

    2009-04-01

    Vast areas of the rangelands (badia) of West Asia and North Africa are severely degraded due to over-grazing, cutting of shrubs and ploughing. Because of the scarce vegetation cover and the often dense soil surface crust, a large part of the limited rainfall runs off to wadis or evaporates back to the atmosphere with little local benefit. To develop and evaluate techniques for rehabilitation of the degraded lands an integrated research project was implemented with two communities in the badia of Jordan. The average annual rainfall in the research area is approximately 150 mm/yr. The project tested different micro-catchment water-harvesting techniques (earthen dikes planted with fodder shrubs) to capture the runoff and improve plant survival and growth in the watersheds. To estimate the long-term benefits of these water-harvesting systems and to assist with watershed-level planning and design a model is needed. However, current models can not capture the spatially variable runoff and water-harvesting processes in these environments. The objective of the research was to develop a model for estimating the runoff and biomass production of small badia watersheds with and without water-harvesting interventions. The basic spatial unit of the model is a square grid cell. Each cell is assigned to a specific land use unit, based on the characteristics of the soil and surface that affect the runoff, infiltration, and biomass production potential of the land. The model computes infiltration and runoff for each cell from daily rainfall with a curvilinear equation, based on data from plot studies. The runoff is routed using a 10-m digital elevation model and can infiltrate in downstream cells. The water infiltrated in each cell is summed for the August-September hydrologic year; and the annual biomass production is computed based on the water productivity potential of the cell. The model was applied to a 119-ha watershed, where 11 ha of micro-catchments were implemented, using a

  1. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    Science.gov (United States)

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  2. Surface water sanitation and biomass production in a large constructed wetland in the Netherlands

    NARCIS (Netherlands)

    Meerburg, B.G.; Vereijken, P.H.; Visser, de W.; Verhagen, A.; Korevaar, H.; Querner, E.P.; Blaeij, de A.T.; Werf, van der A.K.

    2010-01-01

    In Western-Europe, agricultural practices have contributed to environmental problems such as eutrophication of surface and ground water, flooding, drought and desiccation of surrounding natural habitats. Solutions that reduce the impact of these problems are urgently needed. Common reed (Phragmites

  3. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  4. Guidance proposal for using available DegT50 values for estimation of degradation rates of plant protection products in Dutch surface water and sediment

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Adriaanse, P.I.; Horst, ter M.M.S.; Tiktak, A.; Linden, van der A.M.A.

    2014-01-01

    The degradation rate of plant protection products and their transformation products in surface water and sediment may influence their concentrations in Dutch surface water. Therefore the estimation of these rates may be an important part of the assessment of the exposure of aquatic organisms. We

  5. Determination of optimal parameters of purification water surface from oil and oil products by sorbent on the basis of worn automobile tires

    OpenAIRE

    YUSUBOV FAXRADDIN VALI; SHIXALIYEV КARAM SEYFI; ABDULLAYEVA МAYA YADIGAR

    2016-01-01

    The article describes an identification of optimal parameters for surface water purification from oil and oil products by sorbent based on worn automotive tires. In thus Optimal parameters for water surface purification from oil and oil products by sorbent have been found out on the basis of constructed regression model of the process.

  6. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  7. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington

    Science.gov (United States)

    Dougherty, Jennifer A.; Swarzenski, Peter W.; Dinicola, Richard S.; Reinhard, Martin

    2010-01-01

    Organic contaminants, such as pharmaceuticals and personal care products (PPCPs), pose a risk to water quality and the health of ecosystems. This study was designed to determine if a coastal community lacking point sources, such as waste water treatment plant effluent, could release PPCPs, herbicides, and plasticizers at detectable levels to their surface water and groundwater. Research was conducted in Liberty Bay, an embayment within Puget Sound, where 70% of the population (∼10,000) uses septic systems. Sampling included collection of groundwater and surface water with grab samples and the use of polar organic chemical integrative samplers (POCIS). We analyzed for a broad spectrum of 25 commonly used compounds, including PPCPs, herbicides, and a flame retardant. Twelve contaminants were detected at least once; only N,N-diethyl-meta-toluamide, caffeine, and mecoprop, a herbicide not attributed to septic systems, were detected in more than one grab sample. The use of POCIS was essential because contaminants were present at very low levels (nanograms), which is common for PPCPs in general, but particularly so in such a small community. The use of POCIS allowed the detection of five compounds that were not present in grab samples. Data suggest that the community is contaminating local water with PPCPs; this effect is likely to increase as the population and product usage increase. The results presented here are a first step toward assessing the transport of herbicides and PPCPs into this coastal system.

  8. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    NIIGiM situated at a left bank of Volga River of Saratov Region of Russia (N51.384650°, E46.055890°). The digital elevation model of soil surface has been created, as well as monitoring of spatial water storage with EM 38 device and of a biomass were carried out. Layers of corresponding spatial data have been created and analyzed. The carried out analysis of spatial regresses has shown presence of links between productivity of a biomass of a alfalfa, water storage and topography. The obtained results shows the significance to include spatial characteristics of the topography and water storage to the irrigation models, as well as adaptation of sprinkler technology to allow differentiate the volume and rate of the applied water within the field. Special attention should be done to quantify relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity.

  9. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  10. Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation.

    Science.gov (United States)

    Baena-Nogueras, Rosa María; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2017-07-15

    Poor removal of many pharmaceuticals and personal care products (PPCPs) in sewage treatment leads to their discharge into the receiving waters, where they may cause negative effects. Their elimination from the water column depends of several processes, including photochemical and biological degradation. We have focused this research on comparing the degradation kinetics of a wide number (n=33) of frequently detected PPCPs considering different types of water, pH and solar irradiation. For those compounds that were susceptible of photodegradation, their rates (k) varied from 0.02 to 30.48h(-1) at pH7, with the lowest values for antihypertensive and psychiatric drugs (t1/2>1000h). Modification of the pH turned into faster disappearance of most of the PPCPs (e.g., k=0.072 and 0.066h(-1) for atenolol and carbamazepine at pH4, respectively). On the other hand, biodegradation was enhanced by marine bacteria in many cases, for example for mefenamic acid, caffeine and triclosan (k=0.019, 0.01 and 0.04h(-1), respectively), and was faster for anionic surfactants. Comparing photodegradation and biodegradation processes, hydrochlorothiazide and diclofenac, both not biodegradable, were eliminated exclusively by irradiation (t1/2=0.15-0.43h and t1/2=0.14-0.17h, respectively). Salicylic acid and phenylbutazone were efficiently photo (t1/2<3h) and biodegraded (t1/2=116-158h), whereas some compounds such as ibuprofen, carbamazepine and atenolol had low degradation rates by any of the processes tested (t1/2=23-2310h), making then susceptible to persist in the aquatic media. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Screening municipal wastewater effluent and surface water used for drinking water production for the presence of ampicillin and vancomycin resistant enterococci.

    Science.gov (United States)

    Taučer-Kapteijn, Maja; Hoogenboezem, Wim; Heiliegers, Laura; de Bolster, Danny; Medema, Gertjan

    2016-07-01

    The emergence of clinical enterococcal isolates that are resistant to both ampicillin and vancomycin is a cause of great concern, as therapeutic alternatives for the treatment of infections caused by such organisms are becoming limited. Aquatic environments could play a role in the dissemination of antibiotic resistant enterococci. This study investigated the presence of ampicillin and vancomycin resistant enterococci in the treated effluent of six wastewater treatment plants (WWTPs) and in surface water used as a source for drinking water production in the Netherlands. Membrane filtration in combination with selective media with ampicillin or vancomycin was applied to determine the presence of ampicillin resistant Enterococcus (ARE) and vancomycin resistant Enterococcus (VRE) species. Ampicillin resistant Enterococcus faecium (minimal inhibitory concentration (MIC) >16μg/mL; n=1033) was observed in all studied WWTP effluents. In surface water used for drinking water production (intake locations), no ARE or VRE were observed. At both types of location, intrinsic vancomycin resistant Pediococcus spp., Leuconostoc spp. and Lactobacillus spp. were isolated with the vancomycin medium. The ampicillin resistant E. faecium (AREfm) isolates (n=113) did not contain the vanA or vanB gene, but MIC testing for vancomycin showed intermediate vancomycin resistance (2-8μgmL(-1)) to occur in these AREfm strains. This study documents the discharge of ampicillin resistant E. faecium strains with intermediate vancomycin resistance by the WWTPs into the surface water, but no presence of these strains downstream at intake locations for drinking water production. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  13. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.

    Science.gov (United States)

    Krupnik, Timothy J; Schulthess, Urs; Ahmed, Zia Uddin; McDonald, Andrew J

    2017-01-01

    Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double cropping has had a significant and positive influence on regional agricultural productivity. But in the risk-prone and food insecure lower Eastern Indo-Gangetic Plains (EIGP), cropping is less intensive. During the dryer winter months, arable land is frequently fallowed or devoted to lower yielding rainfed legumes. Seeing opportunity to boost cereals production, particularly for rice, donors and land use policy makers have consequently reprioritized agricultural development investments in this impoverished region. Tapping groundwater for irrigation and intensified double cropping, however, is unlikely to be economically viable or environmentally sound in the EIGP. Constraints include saline shallow water tables and the prohibitively high installation and energetic extraction costs from deeper freshwater aquifers. The network of largely underutilized rivers and natural canals in the EIGP could conversely be tapped to provide less energetically and economically costly surface water irrigation (SWI). This approach is now championed by the Government of Bangladesh, which has requested USD 500 million from donors to implement land and water use policies to facilitate SWI and double cropping. Precise geospatial assessment of where freshwater flows are most prominent, or where viable fallow or low production intensity cropland is most common, however remains lacking. In response, we used remotely sensed data to identify agricultural land, detect the temporal availability of freshwater in rivers and canals, and assess crop production intensity over a three-year study period in a 33,750

  14. The effects of nutrient additions on particulate and dissolved primary production in surface waters of three Mediterranean eddies

    Science.gov (United States)

    Lagaria, A.; Psarra, S.; Lefèvre, D.; van Wambeke, F.; Courties, C.; Pujo-Pay, M.; Oriol, L.; Tanaka, T.; Christaki, U.

    2010-12-01

    The effects of additions of nitrogen (+N), phosphorus (+P), alone and in combination, were assessed during three microcosm experiments performed with surface waters of three anticyclonic eddies, located in the Western, Central and Eastern Mediterranean. We examined the effects of nutrient additions on rates of dissolved and particulate primary production and on metabolic rates of the osmotrophic community (phytoplankton and heterotrophic prokaryotes). The experiments were performed in June/July 2008 during the BOUM (Biogeochemistry from the Oligotrophic to the Ultra-oligotrophic Mediterranean) cruise. In all three experiments, particulate primary production was significantly stimulated by the additions of nitrogen (+N, +NP) while no effect was observed with the addition of phosphorus alone. Percent extracellular release (PER) showed an inverse relation with total primary production (PPtotal), displaying the lowest values (4-8%) in the +NP treatment. Among the three treatments, the +NP had the strongest effect on the community metabolic rates leading to positive net community production values (NCP>0). These changes of NCP were mainly due to enhanced gross community production (GCP) rather than lower respiration rates (CR). In +NP treatments autotrophic production (whether expressed as GCP or PPtotal) was high enough to fulfil the carbon requirements of the heterotrophic prokaryotes, with phytoplankton and heterotrophic prokaryote production positively correlated. Addition of nitrogen alone (+N) had a smaller effect on community production, resulting in metabolically balanced systems (NCP≍0). Finally, heterotrophic conditions persisted in the +P treatment at the central and eastern stations, and gross production was not sufficient to supply bacterial carbon demand, evidence of a decoupling of phytoplankton production and consumption by heterotrophic prokaryotes.

  15. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  16. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Plant Protection Products and their Residues (PPR

    2013-07-01

    Full Text Available EFSA’s Panel on Plant Protection Products and their Residues (PPR was tasked to revise the Guidance Document (GD on Aquatic Ecotoxicology under Council Directive 91/414/EEC (SANCO/3268/2001 rev.4 (final, 17 October 2002. This Guidance of the PPR Panel is the first of three requested deliverables within this mandate. It has its focus on tiered acute and chronic effect assessment schemes with detailed guidance on tier 1 and higher tier effect assessments for aquatic organisms in edge-of-field surface waters and on proposals regarding how to link effects to exposure estimates. The exposure assessment methodology was not reviewed and it is assumed that the current FOCUS surface water exposure assessment methodology will continue to be used for exposure assessment at EU level. The current GD is intended to be used for authorisation of active substances at EU level as well as for plant protection products at Member State level. The effect assessment schemes in this GD allow for the derivation of regulatory acceptable concentrations (RACs on the basis of two options: (1 the ecological threshold option (ETO, accepting negligible population effects only, and (2 the ecological recovery option (ERO, accepting some population-level effects if ecological recovery takes place within an acceptable time period. In the tiered effect assessment schemes, in principle, all tiers (1, 2 and 3 are able to address the ETO, while the model ecosystem approach (tier 3, under certain conditions, is able to also address the ERO. The GD provides the scientific background for the risk assessment to aquatic organisms in edge-of-field surface waters and is structured to give detailed guidance on all assessment steps. An executive summary joining all parts of the guidance and decision schemes in a concise way is provided and is intended to help applicants and regulatory authorities in day-to-day use.

  17. Integrated Environmental Quality Assessments of Surface Water around Obajana Cement Production Area

    Directory of Open Access Journals (Sweden)

    E.G. Ameh

    2014-04-01

    Full Text Available Due to industrialization, there is enormous amount of heavy metals been released from anthropogenic sources into the environment. Heavy metals are considered as one of the main sources of environmental pollution since they have significant effect on the ecological quality and water in particular. These pollutants are hazardous to consumers of water that have significant quantity of these heavy metals. The population most exposed to cement polluted water includes workers in cement factories, families of workers living in Staff houses of factories like in Obajana and other neighborhood habitations. The Obajana cement factory consists of cement kilns/coolers with clinkers. The kilns are equipped with pre-heaters and Electro-Static Precipitators (ESP. The facility has raw mills, crushing operations, cement mills that are potential source of pollutants into the water bodies. Storage silos, conveyors, vehicular travel, and other unquantified fugitive source of water contamination exist in the factory. Monitoring the contamination of water with respect to heavy metals is of interest due to their influence on humans, animals and to some extent plants. A good approach to estimate how much of the water is impacted is by using the heavy metal pollution index and metal index for metal concentrations above the control points in water bodies around Obajana cement.

  18. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  19. Biotransformation of pharmaceuticals in surface water and during waste water treatment: identification and occurrence of transformation products

    NARCIS (Netherlands)

    Boix, C.; Ibáñez, M.; Sancho, J.V.; Parsons, J.R.; de Voogt, P.; Hernández, F.

    2016-01-01

    Venlafaxine, gemfibrozil, ibuprofen, irbesartan and ofloxacin are highly-consumed pharmaceuticals that show considerable removal efficiencies (between 40 and 98%) in wastewater treatment plants (WWTPs). Consequently, they are expected to generate transformation products (TPs) during wastewater

  20. Distribution and production of reactive mercury and dissolved gaseous mercury in surface waters and water/air mercury flux in reservoirs on Wujiang River, Southwest China

    Science.gov (United States)

    Fu, Xuewu; Feng, Xinbin; Guo, Yanna; Meng, Bo; Yin, Runsheng; Yao, Heng

    2013-05-01

    Transformation and distribution of mercury (Hg) species play an important role in the biogeochemical cycling of mercury in aquatic systems. Measurements of water/air exchange fluxes of Hg, reactive mercury (RHg), and dissolved gaseous mercury (DGM) concentrations were conducted at 14 sites in five reservoirs on the Wujiang River, Guizhou, Southwest China. Clear spatial and temporal variations in Hg fluxes, RHg, and DGM concentrations were observed in the study area. Hg fluxes and RHg concentrations exhibited a consistent diurnal variation in the study area, with maximum fluxes and concentrations during daytime. A typical diurnal trend of DGM with elevated concentration at night was observed in a eutrophic reservoir with elevated bacteria abundance, suggesting a bacteria-induced production of DGM in this reservoir. For other reservoirs, a combination of sunlight-stimulated production and loss via photo-induced oxidation and evaporation regulated the diurnal trends of DGM. Seasonal variations with elevated Hg fluxes and RHg concentrations in warm season were noticeable in the study area, which highlighted the combined effect of interrelationships between Hg species in water and environmental parameters. Hg fluxes exhibited much more significant correlations with RHg and THg concentrations and air temperature compared to DGM concentrations and solar radiation. The measured fluxes were significantly higher than those simulated using the water/air thin film Hg0 gradient model. Aside from the potential limitations of dynamic flux chamber method, this may also suggest the thin film gas exchange model is not capable of predicting water/air Hg flux under low wind speed conditions. Additionally, it is speculated that DGM concentrations might vary significantly in surface waters with depth, and measurements of DGM at a depth of 2-4 cm below the water surface probably underestimated the DGM concentration that should be taken into account in simulations of water/air flux using

  1. Incidence and interactions of heavy metals and pharmaceutical products in surface waters of a Mediterranean coastal wetland.

    Science.gov (United States)

    Andreu, Vicente; Pascual, Juan Antonio; Gimeno, Eugenia; Picó, Yolanda

    2013-04-01

    Heavy metals have been during decades a result of the human fingerprint on the ecosystems, mainly in waters, soils or vegetation, being considered as a major s threat also on human health. However, the increasing in human population shows other aspect, such as the so called "emerging contaminants". They constitute an increasing group of compounds that includes, among others, personal care products, drugs of abuse and pharmaceuticals. These contaminants have become, in recent years, of great concern for researchers and, even, for the population. Among these substances, the presence of pharmaceuticals in the ecosystems compartments has becoming an increasing problem for environmental sustainability, and also for human health, with consequences very scarcely known. They reach the nature from waste waters treatment plants, industrial waste effluents, uncontrolled landfills, etc. affecting particularly the fauna in its different levels. Some pharmaceuticals have shown toxicity not only to bacteria, algae and invertebrates but also to fish, mollusks, etc. This work is focused on the study of the presence of 17 relevant pharmaceuticals and 7 heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) in surface waters of the irrigation channels and the lagoon of the Pego-Oliva Marsh Natural Park (Valencian Community, Spain), which is characterized by a long history of human pressures, such as marsh transformation for agricultural uses, urbanization, etc. In this area, 34 sampling zones were selected, covering the main land uses. The interactions and possible relationships between both groups of contaminants were studied, together with the influences of the source of water samples, land uses and their spatial distribution. All water samples appeared contaminated with at least with two compounds. Ibuprofen and codeine were the compounds more frequently detected in concentrations between detection limit and a maximum of 59 ng/L and 63 ng/L respectively. Regarding the studied metals, Zn

  2. Measurement of water column primary production using photosynthesis-irradiance relations for surface phytoplankton, the vertical chlorophyll profile, and underwater light intensity

    Science.gov (United States)

    Demidov, A. B.; Gagarin, V. I.; Mosharov, S. A.

    2016-09-01

    A method has been developed to measure water column integrated primary production (PPint) in the water column using photosynthesis-irradiance relations for surface phytoplankton, the vertical profile of chlorophyll a concentration, and the underwater light intensity. Good correlation has been found for the results calculated with this method and light dependences in situ. The advantages of this method are the independence of PPint calculation from CTD profiling and water sampling, and thus optimization (reduction) of the station working time.

  3. Identification of ozonation by-products of 4- and 5-methyl-1H-benzotriazole during the treatment of surface water to drinking water.

    Science.gov (United States)

    Müller, Alexander; Weiss, Stefan C; Beisswenger, Judith; Leukhardt, H Georg; Schulz, Wolfgang; Seitz, Wolfram; Ruck, Wolfgang K L; Weber, Walter H

    2012-03-01

    During the treatment of surface water to drinking water, ozonation is often used for disinfection and to remove organic trace substances, whereby oxidation by-products can be formed. Here we use the example of tolyltriazole to describe an approach for identifying relevant oxidation by-products in the laboratory and subsequently detecting them in an industrial-scale process. The identification process involves ozonation experiments with pure substances at laboratory level (concentration range mg L(-1)). The reaction solutions from different ozone contact times were analyzed by high performance liquid chromatography - quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) in full scan mode. Various approaches were used to detect the oxidation by-products: (i) target searches of postulated oxidation by-products, (ii) comparisons of chromatograms (e.g., UV/VIS) of the different samples, and (iii) color-coded abundance time courses (kinetic) of all detected compounds were illustrated in a kind of a heat map. MS/MS, H/D exchange, and derivatization experiments were used for structure elucidation for the detected by-product. Due to the low contaminant concentrations (ng L(-1)-range) of contaminants in the untreated water, the conversion of results from laboratory experiments to an industrial-scale required the use of HPLC-MS/MS with sample enrichment (e.g., solid phase extraction.) In cases where reference substances were not available or oxidation by-products without clear structures were detected, reaction solutions from laboratory experiments were used to optimize the analytical method to detect ng L(-1) in the samples of the industrial processes. We exemplarily demonstrated the effectiveness of the methodology with the industrial chemicals 4- and 5-methyl-1H-benzotriazole (4- and 5-MBT) as an example. Moreover, not only did we identify several oxidation by-products in the laboratory experiments tentatively, but also detected three of the eleven reaction

  4. Characterizing 13 Years of Surface Water Variability from MODIS-based Near Real-Time Flood Mapping Products in the Indus River, Tonle Sap Lake, and Lake Chad.

    Science.gov (United States)

    Slayback, D. A.; Brakenridge, G. R.; Policelli, F. S.

    2015-12-01

    Driven by an increase in extreme weather events in a warming world, flooding appears to be increasing in many regions. Since 2012, we have been using the twice-daily near-global observations of the two MODIS instruments to operate a near real-time flood mapping capability. Primarily intended to support disaster response efforts, our system generates daily near-global maps of flood water extent, at 250 m resolution. Although cloud cover is a challenge, the twice-daily coverage from the Terra and Aqua satellites helps to capture most major events. We use the MOD44W product (the "MODIS 250-m land-water mask") to differentiate "normal" water from flood water. Products from the system are freely available, and used by disaster response agencies and academic and industry researchers. An open question, however, is: how "normal" are recently observed floods? Destructive and — as reported by the press — record floods seem to be occurring more and more frequently. With the MODIS archive going back to 1999 (Terra satellite) and 2002 (Aqua satellite), we now have more than a decade of twice-daily near-global observations to begin answering this question. Although the 13 years of available twice-daily data (2002-2015) are not sufficient to fully characterize surface water normals (e.g., 100-year floods), we can start examining recent trends in surface water extent and flood frequency. To do so, we have back-processed our surface water product through mid-2002 (Aqua launch) for a few regions, and have used this to evaluate the variability in surface water extent and flood frequency. These results will eventually feed back into an improved characterization of flood water in our near real-time flood product. Here we will present results on trends in surface water extent and flood frequency for a few regions, including the Indus in Pakistan, the Tonle Sap lake in Cambodia, and lake Chad in Africa.

  5. From Soil to Surface Water: a Meta-Analysis of Catchment-Scale Organic Matter Production and Transport

    Science.gov (United States)

    Gabor, R. S.; Brooks, P. D.; Perdrial, J. N.

    2015-12-01

    Organic matter plays a fundamental role in the ecology and biogeochemistry of many ecosystems, from soils to headwater streams to oceans. In most catchments, the terrestrial environment is the dominant source of organic matter for the aquatic system, and thus DOM represents a fundamental linkage between soil and surface water. With trends of increasing DOC concentrations observed in many areas of the world, there is growing interest in identifying which factors drive DOM concentration and chemistry. Studies of systems ranging from tropical rainforests to boreal landscapes have identified many catchment characteristics that co-vary with DOM concentration and chemistry. These include climate elements such as solar radiation and precipitation patterns, chemical measurements such as sulfate or chloride concentration, and land use impacts such as percent agriculture. The question of which catchment characteristics actually control DOM can be broken down into two parts: which factors control the production of mobile DOM and what drives DOM transport from the terrestrial to the aquatic system. Here we review studies covering a range of ecosystems, scales, and measurement techniques, to categorize the major state factors that drive catchment controls of aquatic organic matter. Specifically, we identify three major transport vectors that vary both in their timing of DOM transport to surface water and the propensity for DOM originating from terrestrial source areas to be modified during transport. We use this three vector conceptual model of transport to group catchments and identify reproducible signatures of DOM export with varying levels of disturbance. By developing a generalized conceptual model of catchment-scale controls on aquatic organic matter, we can predict how dissolved organic matter will respond to environmental change. This knowledge can then help guide best management practices.

  6. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  7. Improving the Accuracy of the Water Surface Cover Type in the 30 m FROM-GLC Product

    Directory of Open Access Journals (Sweden)

    Luyan Ji

    2015-10-01

    Full Text Available The finer resolution observation and monitoring of the global land cover (FROM-GLC product makes it the first 30 m resolution global land cover product from which one can extract a global water mask. However, two major types of misclassification exist with this product due to spectral similarity and spectral mixing. Mountain and cloud shadows are often incorrectly classified as water since they both have very low reflectance, while more water pixels at the boundaries of water bodies tend to be misclassified as land. In this paper, we aim to improve the accuracy of the 30 m FROM-GLC water mask by addressing those two types of errors. For the first, we adopt an object-based method by computing the topographical feature, spectral feature, and geometrical relation with cloud for every water object in the FROM-GLC water mask, and set specific rules to determine whether a water object is misclassified. For the second, we perform a local spectral unmixing using a two-endmember linear mixing model for each pixel falling in the water-land boundary zone that is 8-neighborhood connected to water-land boundary pixels. Those pixels with big enough water fractions are determined as water. The procedure is automatic. Experimental results show that the total area of inland water has been decreased by 15.83% in the new global water mask compared with the FROM-GLC water mask. Specifically, more than 30% of the FROM-GLC water objects have been relabeled as shadows, and nearly 8% of land pixels in the water-land boundary zone have been relabeled as water, whereas, on the contrary, fewer than 2% of water pixels in the same zone have been relabeled as land. As a result, both the user’s accuracy and Kappa coefficient of the new water mask (UA = 88.39%, Kappa = 0.87 have been substantially increased compared with those of the FROM-GLC product (UA = 81.97%, Kappa = 0.81.

  8. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    Science.gov (United States)

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  9. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells.

    Science.gov (United States)

    Li, Chien-Hung; Li, Min-Chih; Liu, Si-Ping; Jamison, Andrew C; Lee, Dahye; Lee, T Randall; Lee, Tai-Chou

    2016-04-13

    Gold-silver nanoshells (GS-NSs) having a tunable surface plasmon resonance (SPR) were employed to facilitate charge separation of photoexcited carriers in the photocalytic production of hydrogen from water. Zinc indium sulfide (ZnIn2S4; ZIS), a visible-light-active photocatalyst, where the band gap varies with the [Zn]/[In] ratio, was used as a model ZIS system (E(g) = 2.25 eV) to investigate the mechanisms of plasmonic enhancement associated with the nanoshells. Three types of GS-NS cores with intense absorptions centered roughly at 500, 700, and 900 nm were used as seeds for preparing GS-NS@ZIS core-shell structures via a microwave-assisted hydrothermal reaction, yielding core-shell particles with composite diameters of ∼200 nm. Notably, an interlayer of dielectric silica (SiO2) between the GS-NSs and the ZIS photocatalyst provided another parameter to enhance the production of hydrogen and to distinguish the charge-transfer mechanisms. In particular, the direct transfer of hot electrons from the GS-NSs to the ZIS photocatalyst was blocked by this layer. Of the 10 particle samples examined in this study, the greatest hydrogen gas evolution rate was observed for GS-NSs having a SiO2 interlayer thickness of ∼17 nm and an SPR absorption centered at ∼700 nm, yielding a rate 2.6 times higher than that of the ZIS without GS-NSs. The apparent quantum efficiencies for these core-shell particles were recorded and compared to the absorption spectra. Analyses of the charge-transfer mechanisms were evaluated and are discussed based on the experimental findings.

  10. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    Science.gov (United States)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  11. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia

    OpenAIRE

    Portolés Nicolau, Tania; Hernández Hernández, Félix; Díaz San Pedro, Ramón; Ibáñez Martínez, María; Bustos López, Martha Cristina; Botero Coy, Ana María; Fuentes, C. L.; Peñuela, Gustavo

    2012-01-01

    The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spe...

  12. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.

    Science.gov (United States)

    Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A

    2015-09-01

    Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. Copyright © 2015. Published by Elsevier Ltd.

  13. Optimization of a Modified QuEChERS Method for Multiresidue Analysis of Pharmaceuticals and Personal Care Products in Sewage and Surface Water by LC-MS/MS.

    Science.gov (United States)

    Kachhawaha, Akanksha S; Nagarnaik, Pranav M; Jadhav, Manjusha; Pudale, Anjali; Labhasetwar, Pawan K; Banerjee, Kaushik

    2017-05-01

    A quick, sensitive multiresidue method was developed for the analysis of 19 multiclass pharmaceuticals and personal care products (PPCPs) in surface water and sewage water. The proposed modified QuEChERS method involved the extraction of water samples (10 mL) with acetonitrile (10 mL) after the addition of 1% acetic acid, 4 g magnesium sulfate, and 0.2 g ammonium acetate, and was validated in distilled water, surface water, and sewage water with respect to linearity, LOD and LOQ, precision, and accuracy. The LOD and LOQ varied within the ranges of 0.001-0.167 and 0.002-0.25 ng/mL, respectively. Recoveries of the target compounds ranged from 73 to 125%, with precision RSD values <27%. The method provided a precise estimation of PPCPs in field samples, and acetaminophen, atenolol, metformin, sulfamethoxazole, carbamazepine, methylparaben, and triclosan were detected in concentrations ranging from 0.10 to 1.40 and 0.10 to 3.4 ng/mL in surface water and sewage water, respectively. This is an innovative application of the QuEChERS approach for estimation of PPCPs from aqueous matrixes. The method provides significantly higher output (preparation of 25-30 samples a day) compared to conventional SPE-based methods (<10 samples a day).

  14. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  15. Emulsified Water Products

    Directory of Open Access Journals (Sweden)

    Elif Tuğçe AKSUN

    2016-12-01

    Full Text Available Seafood is very important depending on having high protein rate and easily digestibility by human, for supply to an important part of animal protein needed. Determining the quality of emulsion-type products, emulsion stability, viscosity and gel strength properties are very important. In the production of products specified in this property emulsion; the main protein ratio and properties of raw material used while you; emulsion pH, temperature, ionic violence, mixing speed, type of fat and additives that are used as well. Previous studies show that particularly of products resulting from water emulsified chicken and goat meat emulsified product obtained from a high capacity of emulsified and compared to cattle and sheep meat is close to specifications, preparation of emulsified type products may be appropriate for the use of fish meat. Another quality parameter in the emulsified meat products, viscosity depends on the amount of meat used in direct proportion with the texture. Fish meat animals in connective tissue connective tissue in meat other butchers to rate ratio is quite low. In this respect, the fish meat produced using emulsified products viscosity according to products prepared using other meat products is quite low. Fish meat produced using emulsified fish sausage products based on surimi, sausage and fish pate fish varieties classed emulsion type products. In this review the different types of seafood using emulsified meat product.

  16. Water Filtration Products

    Science.gov (United States)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  17. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  18. Sustaining dry surfaces under water

    Science.gov (United States)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  19. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  20. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  1. Determination of trace levels of herbicides and their degradation products in surface and ground waters by gas chromatography/ion-trap mass spectrometry

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    A rapid, specific and highly sensitive method is described for the determination of several commonly used herbicides and their degradation products in surface and ground waters by using gas chromatography/ion-trap mass spectrometry. The compounds included atrazine, and its degradation products desethylatrazine and desisopropylatrazine; Simazine; Cyanazine; Metolachlor; and alachlor and its degradation products, 2-chloro-2', 6'-diethylacetanilide, 2-hydroxy-2', 6'-diethylacetanilide and 2,6-diethylaniline. The method was applied to surface-water samples collected from 16 different stations along the lower Mississippi River and its major tributaries, and ground-water samples beneath a cornfield in central Nebraska. Average recovery of a surrogate herbicide, terbuthylazine, was greater than 99%. Recoveries of the compounds of interest from river water spiked at environmental levels are also presented. Full-scan mass spectra of these compounds were obtained on 1 ng or less of analyte. Data were collected in the full-scan acquisition mode. Quantitation was based on a single characteristic ion for each compound. The detection limit was 60 pg with a signal-to-noise ratio of greater than 10:1.

  2. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source

    Institute of Scientific and Technical Information of China (English)

    Yukun Hou; Wenhai Chu; Meng Ma

    2012-01-01

    This work investigated the formation of carbonaceous and nitrogenous disinfection by-preducts (C-DBPs,N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes,i.e.,coagulation,sedimentation,and filtration were employed.Twenty DBPs,including four trihalomethanes,nine haloacetic acids,seven N-DBPs (dichloroacetamide,trichloroacetamide,dichloroacetonitrile,trich loroacetonitrile,bromochloroacetonitrile,dibromoacetonitrile and trichloronitromethane),and eight volatile chlorinated compounds (dichlomethane (DCM),1,2-dichloroethane,tetrachloroethylene,chlorobenzene,1,2-dichlorobenzene,1,4-dichlorobenzene,1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs.The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs.20 μg/L MCL).The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP,probably because more precursors (e.g.,dissolved organic carbon,dissolved organic nitrogen) were present in the water source of the SWTP.

  3. Enhancing co-production of H2 and syngas via water splitting and POM on surface-modified oxygen permeable membranes

    KAUST Repository

    Wu, Xiao-Yu

    2016-09-26

    In this article, we report a detailed study on co-production of H2 and syngas on La0.9Ca0.1FeO3−δ (LCF-91) membranes via water splitting and partial oxidation of methane, respectively. A permeation model shows that the surface reaction on the sweep side is the rate limiting step for this process on a 0.9 mm-thick dense membrane at 990°C. Hence, sweep side surface modifications such as adding a porous layer and nickel catalysts were applied; the hydrogen production rate from water thermolysis is enhanced by two orders of magnitude to 0.37 μmol/cm2•s compared with the results on the unmodified membrane. At the sweep side exit, syngas (H2/CO = 2) is produced and negligible solid carbon is found. Yet near the membrane surface on the sweep side, methane can decompose into solid carbon and hydrogen at the surface, or it may be oxidized into CO and CO2, depending on the oxygen permeation flux.

  4. Widespread Occurrence of Glyphosate and its Degradation Product (AMPA) in U.S. Soils, Surface Water, Groundwater, and Precipitation, 2001-2009

    Science.gov (United States)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  5. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  6. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  7. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  8. Removal of selected endocrine disrupting chemicals and personal care products in surface waters and secondary wastewater by ozonation.

    Science.gov (United States)

    Tay, Kheng Soo; Rahman, Noorsaadah Abd; Abas, Mhd Radzi Bin

    2011-08-01

    This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).

  9. Ultra-trace-level determination of polar pesticides and their transformation products in surface and estuarine water samples using column liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Steen, R J; Hogenboom, A C; Leonards, P E; Peerboom, R A; Cofino, W P; Brinkman, U A

    1999-10-01

    A method is developed for the determination of polar pesticides and their transformation products [atrazine, deethylatrazine, deisopropylatrazine, hydroxyatrazine, diuron, 3,4-dichlorophenylmethylurea, 3,4-dichlorophenylurea (DPU), monuron, bentazone, anthranil-isopropylamide, chloridazon, metolachlor] in surface, estuarine and sea water samples at the low ng/l level. Solid-phase extraction is combined off-line with column liquid chromatography-electrospray ionization tandem mass spectrometric detection (LC-ESI-MS-MS). The applicability of two solid-phase materials, i.e., LiChrolut EN cartridges and graphitized carbon black extraction disks, is evaluated. The influence of the organic solvent used in gradient LC, as well as the amount of co-extracted humic material on the ESI process is studied. The eluotropic strength of the organic solvent was found to have a distinct effect on the sensitivity of ESI-MS if coupled with LC gradient separations. Methanol gave much better results than acetonitrile and phenylurea compounds are more susceptible to solvent changes than triazines. Co-extracted humic material causes signal suppression in ESI-MS-MS detection. The degree of suppression depends upon the sample pH and the nature of the samples, i.e., surface or estuarine water. Detection limits in LC-ESI-MS-MS ranged from 0.2 to 2 ng/l, with the exception of DPU (8 ng/l). The applicability of the procedure was demonstrated by analyzing surface and estuarine water.

  10. Optimising conventional treatment of domestic waste water: quality, required surface area, solid waste minimisation and biogas production for medium and small-scale applications

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-09-01

    Full Text Available .kashan.co.za] Optimising conventional treatment of domestic waste water: quality, required surface area, solid waste minimisation and biogas production for medium and small-scale applications S SZEWCZUK, SP ROUX, M LINDEQUE, J GERMANIS CSIR, PO Box 395, Pretoria, 0001...) and the methane-rich gas yield is used for heating the Ad reactor itself. Increased efficiency due to technological progress can increase the gas yield, reduce the reactor dependency on biogas for heating and allow more efficient use of the biogas...

  11. Surface Production of Ions

    Science.gov (United States)

    1992-05-26

    Hill, New York 1938) p. 60-64. 21. S. Dushman, Scientific Foundations of Vacuum Technique, Second Edition (John Wiley & Sons, New York, 1962) p. 91...hydrogen atom (or H + ion) from a metal surface is of funda- Liouville equation, whose solution involves the coupling ma- ’ Jonh . mental interest both from a...Appi. Phys. 50 (4), April 1979 IsB Chapman Glow Discharge Processes John Wiley and Sons New York, 1980 pp 114-115. -H. L. Cui, J. Vac. Sci. Tech. A 9

  12. Seasonal-to-Interannual Variability in Antarctic Sea-Ice Dynamics, and Its Impact on Surface Fluxes and Water Mass Production

    Science.gov (United States)

    Drinkwater, Mark R.

    1999-01-01

    Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of

  13. The simulation of gas production from oceanic gas hydrate reservoir by the combination of ocean surface warm water flooding with depressurization

    Institute of Scientific and Technical Information of China (English)

    Hao Yang; Yu-Hu Bai; Qing-Ping Li

    2012-01-01

    A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal,salt and depressurization on gas hydrate dissociation.The method has the advantage of high efficiency,low cost and enhanced safety.Based on the proposed conceptual method,the physical and mathematical models are established,in which the effects of the flow of multiphase fluid,the kinetic process of hydrate dissociation,the endothermic process of hydrate dissociation,ice-water phase equilibrium,salt inhibition,dispersion,convection and conduction on the hydrate dissociation and gas and water production are considered.The gas and water rates,formation pressure for the combination method are compared with that of the single depressurization,which is referred to the method in which only depressurization is used.The results show that the combination method can remedy the deficiency of individual producing methods.It has the advantage of longer stable period of high gas rate than the single depressurization.It can also reduce the geologic hazard caused by the formation deformation due to the maintaining of the formation pressure by injected ocean warm water.

  14. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  15. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  16. Water, energy, and farm production

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, C.A.; Seely, H.S.; Willis, D.B.; Anderson, D.M.

    1996-04-01

    Electric utility rate deregulation can have disproportionate impacts on water-intensive crops, which have historically relied upon pressurized irrigation technologies and surface water resources. Based on a case study of agricultural growers in southern California, the paper models the impacts of utility rates considered in the Western Area Power Administration`s Sierra Nevada Customer Service Region. The study was performed as part of the 2004 Power Marketing Program Draft Environmental Impact Statement. The empirical results reflect linear-programming estimates of the income transfers from growers to energy providers based on county-wide coverage of 13 junior and senior irrigation districts and short-run production possibilities of 11 irrigated crops. Transfers of income from growers to energy suppliers occur through their losses in producer surplus.

  17. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  18. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  19. Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes).

    Science.gov (United States)

    Archana, G; Dhodapkar, Rita; Kumar, Anupama

    2017-08-10

    This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L(-1) in the surface water bodies, 12-373 μg L(-1) in the influent and 11-233 μg L(-1) in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be organism.

  20. Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Oba, T.; Chodankar, A; Kuramoto, T.; Yamamoto, M.; Minagawa, M.

    indicates, however, diminished water column denitrification in spite of increased productivity. The distinct decoupling of denitrification from productivity during the LGM can be explained by vigorous ventilation of the thermocline as a result...

  1. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology.

    Science.gov (United States)

    Karpagam, Rathinasamy; Raj, Kalimuthu Jawahar; Ashokkumar, Balasubramaniem; Varalakshmi, Perumal

    2015-01-01

    Two fresh water microalgae, Coelastrella sp. M-60 and Micractinium sp. M-13 were investigated in this study for their potential of biodiesel production. For increasing biomass and lipid production, these microalgae were subjected to nutrient starvation (nitrogen, phosphorous, iron), salinity stress and nutrient supplementation with sugarcane industry effluent, citric acid, glucose and vitamin B12. The lipid productivity obtained from the isolates Coelastrella sp. M-60 (13.9 ± 0.4 mg/L/day) and Micractinium sp. M-13 (11.1 ± 0.2 mg/L/day) was maximum in salinity stress. The media supplemented with all the four nutrients yielded higher lipid productivity than the control. The response surface methodology (RSM) was employed to evaluate the effect of sugarcane industry effluent and citric acid on growth and lipid yield. Fatty acid profile of Coelastrella sp. M-60 and Micractinium sp. M-13 were composed of C-14, C-16:0, C-18:0, C-18:1 and C-18:2 and their fuel properties were also in accordance with international standards.

  2. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  3. Application of ICP-OES for Evaluating Energy Extraction and Production Wastewater Discharge Impacts on Surface Waters in Western Pennsylvania

    Science.gov (United States)

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) w...

  4. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data.

    Science.gov (United States)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P; Fenner, Kathrin

    2011-04-01

    Transformation products (TPs) of chemicals released to soil, for example, pesticides, are regularly detected in surface and groundwater with some TPs even dominating observed pesticide levels. Given the large number of TPs potentially formed in the environment, straightforward prioritization methods based on available data and simple, evaluative models are required to identify TPs with a high aquatic exposure potential. While different such methods exist, none of them has so far been systematically evaluated against field data. Using a dynamic multimedia, multispecies model for TP prioritization, we compared the predicted relative surface water exposure potential of pesticides and their TPs with experimental data for 16 pesticides and 46 TPs measured in a small river draining a Swiss agricultural catchment. Twenty TPs were determined quantitatively using solid-phase extraction liquid chromatography mass spectrometry (SPE-LC-MS/MS), whereas the remaining 26 TPs could only be detected qualitatively because of the lack of analytical reference standards. Accordingly, the two sets of TPs were used for quantitative and qualitative model evaluation, respectively. Quantitative comparison of predicted with measured surface water exposure ratios for 20 pairs of TPs and parent pesticides indicated agreement within a factor of 10, except for chloridazon-desphenyl and chloridazon-methyl-desphenyl. The latter two TPs were found to be present in elevated concentrations during baseflow conditions and in groundwater samples across Switzerland, pointing toward high concentrations in exfiltrating groundwater. A simple leaching relationship was shown to qualitatively agree with the observed baseflow concentrations and to thus be useful in identifying TPs for which the simple prioritization model might underestimate actual surface water concentrations. Application of the model to the 26 qualitatively analyzed TPs showed that most of those TPs categorized as exhibiting a high aquatic

  6. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  7. Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which make...

  8. Production of heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.

    2017-06-06

    Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.

  9. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia.

    Science.gov (United States)

    Hernández, F; Portolés, T; Ibáñez, M; Bustos-López, M C; Díaz, R; Botero-Coy, A M; Fuentes, C L; Peñuela, G

    2012-11-15

    The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spectrometry (TOF MS) hyphenated to liquid chromatography (LC) and gas chromatography (GC). Several pesticides were detected and unequivocally identified, such as the herbicides atrazine, diuron or clomazone. Some of their main metabolites and/or transformation products (TPs) like deethylatrazine (DEA), deisopropylatrazine (DIA) and 3,4-dichloroaniline were also identified in the samples. Among fungicides, carbendazim, azoxystrobin, propiconazole and epoxiconazole were the most frequently detected. Insecticides such as thiacloprid, or p,p'-DDT metabolites (p,p'-DDD and p,p'-DDE) were also found. Thanks to the accurate-mass full-spectrum acquisition in TOF MS it was feasible to widen the number of compounds to be investigated to other families of contaminants. This allowed the detection of emerging contaminants, such as the antioxidant 3,5-di-tertbutyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), or the solar filter benzophenone, among others.

  10. Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa

    Science.gov (United States)

    Du Preez, L.H.; Jansen Van Rensburg, P.J.; Jooste, A.M.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G.; Solomon, K.R.

    2005-01-01

    The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 ??g/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 ??g/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 ??g/L in the NCGA sites and from 1.04 to 4.1 ??g/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were ??? 1 ??g/L throughout the season, while DEA concentrations were mostly 2 ??g/L in some locations. Concentrations of DACT were highly variable (LOD to 8 ??g/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may

  11. Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in northern China.

    Directory of Open Access Journals (Sweden)

    Xuelian Zhang

    Full Text Available This study investigated the occurrence of 12 veterinary antibiotics (VAs and the susceptibility of Escherichia coli (E. coli in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L(-1. The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.

  12. Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in northern China.

    Science.gov (United States)

    Zhang, Xuelian; Li, Yanxia; Liu, Bei; Wang, Jing; Feng, Chenghong; Gao, Min; Wang, Lina

    2014-01-01

    This study investigated the occurrence of 12 veterinary antibiotics (VAs) and the susceptibility of Escherichia coli (E. coli) in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L(-1). The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.

  13. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  14. Design of a surface-based factory for the production of life support and technology support products. Phase 2: Integrated water system for a space colony

    Science.gov (United States)

    1989-01-01

    Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.

  15. Water Purification Product

    Science.gov (United States)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  16. Reclaimed Water Use in Biofuel Production

    Directory of Open Access Journals (Sweden)

    María del Pino Palacios-Diaz

    2015-09-01

    Full Text Available Jatropha curcas L., a toxic species that does not interfere with the food chain, produces biodiesel of better environmental quality than mineral oils. However, in order to cultivate it sustainably, it is necessary to optimize the limited resources used, mainly water and soil. Therefore, in arid areas, it is necessary to cultivate under intensive conditions, irrigate with reclaimed water and cut production costs. To optimize water consumption, partial root-zone drying (PRD, which keeps a part of the root system dry, was used. This water management strategy, employed successfully in other oil crops, yielded less fruit per bunch, but more fruit bunches per plant. This fact will probably allow to establish higher planting density and, consequently, higher productivity per surface unit. This is one of the few available options for improving profitability as production per tree is stable (1.25 kg seed plant−1 year−1 for the most productive trees, with excellent climate and soil, and no limitations water use. A high percentage of fruit lying on the ground (24% and non-uniform timing in fruit production (except some specimens greatly hinder its mechanization. Although this crop’s environmental and socio-economic benefits are not taken into account, it is very difficult, with only the calculated water consumption (15.5 m3 water per L of oil or 5.6 m3 water per L of oil according to our best estimations, to consider it a profitable option.

  17. Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

    2009-01-01

    This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

  18. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  19. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Conclusions GloWPa-Crypto is the first global model that can be used to analyse dynamics in surface water pathogen concentrations worldwide. Global human Cryptosporidium emissions are estimated at 1 x 10^17 oocysts/ year for the year 2010.We estimated future emissions for SSP1 and SSP3. Preliminary results show that for SSP1human emissions are approximately halved by 2050. The SSP3 human emissions are 1.5 times higher than the 2010 emissions due to increased population growth and urbanisation. Livestock Cryptosporidium emissions are expected to increase under both SSP1 and SSP3, as meat consumption continues to rise. We conclude that population growth, urbanization, changes in sanitation systems and treatment, and changes in livestock consumption and production systems are important processes that determine future Cryptosporidium emissions to surface water. References Hofstra N, Bouwman A F, Beusen A H W and Medema G J 2013 Exploring global Cryptosporidium emissions to surface water Sci. Total Environ. 442 10-9 Kiulia N M, Hofstra N, Vermeulen L C, Obara M A, Medema G J and Rose J B 2015 Global occurrence and emission of rotaviruses to surface waters Pathogens 4 229-55 Vermeulen L C, De Kraker J, Hofstra N, Kroeze C and Medema G J 2015 Modelling the impact of sanitation, population and urbanization estimates on human emissions of Cryptosporidium to surface waters - a case study for Bangladesh and India Environ. Res. Lett. 10

  20. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water.

    Science.gov (United States)

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%.

  1. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP for the Production of Wood Fiber Insulation Boards Using Industrial Process Water.

    Directory of Open Access Journals (Sweden)

    Mark Schubert

    Full Text Available Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water. The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin. The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA, the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%.

  2. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  3. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  4. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    Science.gov (United States)

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists.

  5. Use of the Maximum Cumulative Ratio As an Approach for Prioritizing Aquatic Coexposure to Plant Protection Products: A Case Study of a Large Surface Water Monitoring Database.

    Science.gov (United States)

    Vallotton, Nathalie; Price, Paul S

    2016-05-17

    This paper uses the maximum cumulative ratio (MCR) as part of a tiered approach to evaluate and prioritize the risk of acute ecological effects from combined exposures to the plant protection products (PPPs) measured in 3 099 surface water samples taken from across the United States. Assessments of the reported mixtures performed on a substance-by-substance approach and using a Tier One cumulative assessment based on the lowest acute ecotoxicity benchmark gave the same findings for 92.3% of the mixtures. These mixtures either did not indicate a potential risk for acute effects or included one or more individual PPPs that had concentrations in excess of their benchmarks. A Tier Two assessment using a trophic level approach was applied to evaluate the remaining 7.7% of the mixtures. This assessment reduced the number of mixtures of concern by eliminating the combination of endpoint from multiple trophic levels, identified invertebrates and nonvascular plants as the most susceptible nontarget organisms, and indicated that a only a very limited number of PPPs drove the potential concerns. The combination of the measures of cumulative risk and the MCR enabled the identification of a small subset of mixtures where a potential risk would be missed in substance-by-substance assessments.

  6. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  7. Rocky Mountain Arsenal surface water management plan : water year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2005 (October 1, 2004 to September 30, 2005) is an assessment of the nonpotable water demands at the Rocky...

  8. Rocky Mountain Arsenal surface water management plan : water year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2006 (October 1, 2005 to September 30, 2006) is an assessment of the nonpotable water demands at the Rocky...

  9. Surface water discharges from onshore stripper wells.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  10. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    2013-06-05

    Jun 5, 2013 ... The majority of South African inland surface water sources are compromised due to a ... minimising residual coagulant, minimising sludge production .... included as being indicative of the worst effects of indirect reuse.

  11. Euxinia and primary production in Upper Cretaceous eastern equatorial Atlantic surface waters fostered orbital-driven formation of marine black shales in the Deep Ivory Basin, ODP Site 959

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Wagner, T.; Hofmann, P.; Beckmann, B.

    2004-01-01

    Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales Thomas Wagner Department of Geosciences, University of Bremen, Bremen, Germany Jaap S. Sinninghe Damst¨¦ Department of Marine Biogeochemistr

  12. Genotoxicity testing of samples generated during UV/H2O2 treatment of surface water for the production of drinking water using the Ames test in vitro and the Comet assay and the SCE test in vivo

    NARCIS (Netherlands)

    Penders, E.J.M.; Martijn, A.J.; Spenkelink, A.; Alink, G.M.; Rietjens, I.; Hoogenboezem, W.

    2012-01-01

    UV/H2O2 treatment can be part of the process converting surface water to drinking water, but would pose a potential problem when resulting in genotoxicity. This study investigates the genotoxicity of samples collected from the water treatment plant Andijk, applying UV/H2O2 treatment with an electric

  13. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  14. Bioinspired Surface Treatments for Improved Decontamination: Commercial Products

    Science.gov (United States)

    2017-07-28

    surface. The safety data sheet for the product declares the content to be petroleum lubricating oils (C15 to C30) and ethylene glycol methyl ether...damage leading to restoration of the finish. The safety data sheet lists carnauba wax and ethylene glycol as components. This product was selected... products increased wetting angles for water and ethylene glycol with an associated reduction in geometric surface energy. The coatings did not yield

  15. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  16. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  17. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  18. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  19. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  20. Global consumptive water use for crop production: The importance of green water and virtual water

    Science.gov (United States)

    Liu, Junguo; Zehnder, Alexander J. B.; Yang, Hong

    2009-05-01

    Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a-1 for the period 1998-2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

  1. Simulated water productivity in Gansu Province, China

    Science.gov (United States)

    Zhan, Jinyan; Sun, Zhongxiao; Wang, Zhan; Chen, Jiancheng; Li, Zhaohua

    Economic value of water and economic analysis of water use management in Gansu Province of China have attracted widespread public attention. With the socioeconomic development, research on water resources has become more important than before. In this study, we define "water productivity" as the changes of economic production outputs of sectoral activities in every cubic meter of water input, which is also the technical coefficient of water resource use in each sector. According to Computable General Equilibrium (CGE) framework, based on the Input-Output Table 2007 and water resources bulletin of Gansu Province, we introduced the water into the ORANI-G (A Generic Single-Country Computable General Equilibrium model) model through the nested constant elasticity of substitution (CES) production function to analyze the changes of economic productions caused by water supply changes. We then examined water productivity in different sectors. Empirical results showed that current water productivity is underestimated. Agricultural water productivity is lower than that of the secondary and tertiary industries, even although agricultural water use is the largest part of water use in Gansu Province, and therefore improving agricultural water productivity can greatly mitigate the water shortage. Simulation results indicate that industrial transformation and development of water-saving industries will also mitigate water scarcity. Moreover, sensitivity analysis shows that the empirical results are robust under different scenarios. The results also show that higher constant elasticity of substitution rate (CES) between water and other production factors will contribute to sustainable development.

  2. Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.).

    Science.gov (United States)

    Rosseler, Olivier; Sleiman, Mohamad; Montesinos, V Nahuel; Shavorskiy, Andrey; Keller, Valerie; Keller, Nicolas; Litter, Marta I; Bluhm, Hendrik; Salmeron, Miquel; Destaillats, Hugo

    2013-02-07

    Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3(-), adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3(-) conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3(-) in the vicinity of coadsorbed K(+) cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

  3. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  4. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...

  5. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  6. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    Science.gov (United States)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  7. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    Science.gov (United States)

    Mayer, Alex; Mubako, Stanley; Ruddell, Benjamin L.

    2016-06-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  8. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  9. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  10. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  11. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  12. Surface processing using water cluster ion beams

    Science.gov (United States)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  13. Surface processing using water cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H., E-mail: gtakaoka@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-07-15

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO{sub 2}, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  14. Exit Creek Water Surface Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from a longitudinal profile of water surface surveyed June 23-24, 2013 at Exit Creek, a stream draining Exit Glacier in Kenai...

  15. US Forest Service Surface Drinking Water Importance

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting watershed indexes to help identify areas of interest for protecting surface drinking water quality. The dataset depicted in this...

  16. Total Nitrogen in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALNFuture is reported in kilograms/hectare/year. More information about these resources, including...

  17. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  18. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  19. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L(-1). Two pilot-scale ozonation reactors (4-5 m(3) h(-1)), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O3/H2O2. The effects of selected operational parameters, such as ozone dose (0.5-3 mg L(-1)) and H2O2 dose (O3:H2O2 = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L(-1)), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants kO3>10(4) M(-1) s(-1) for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L(-1). Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H2O2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr(-) with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially to reach a

  20. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  1. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  2. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  3. Persistence of F-Specific RNA Coliphages in Surface Waters from a Produce Production Region along the Central Coast of California.

    Science.gov (United States)

    Ravva, Subbarao V; Sarreal, Chester Z

    2016-01-01

    F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and necessitates the evaluation of the survival of prototype and environmental isolates of FRNA representing all four genogroups in surface waters from the central coast of California. Water temperature played a significant role in persistence-all prototype and environmental strains survived significantly longer at 10 °C compared to 25 °C. Similarly, the availability of host bacterium was found to be critical in FRNA survival. In the absence of E. coli F(amp), all prototypes of FRNA disappeared rapidly with a D-value (days for one log reduction) of water samples incubated at 25 °C; the longest surviving prototype was SP. However, in the presence of the host, the order of persistence at 25 °C was QB>MS2>SP>GA and at 10 °C it was QB = MS2>GA>SP. Significant differences in survival were observed between prototypes and environmental isolates of FRNA. While most environmental isolates disappeared rapidly at 25 °C and in the absence of the host, members of genogroups GIII and GI persisted longer with the host compared to members of GII and GIV. Consequentially, FRNA based source tracking methods can be used to detect phages from recent fecal contamination along with those that persist longer in the environment as a result of cooler temperatures and increased host presence.

  4. Development of aquatic biomonitoring models for surface waters used for drinking water supply

    NARCIS (Netherlands)

    Penders, E.J.M.

    2011-01-01

    Given the need for continued quality control of surface waters used for the production of drinking water by state-of-the-art bioassays and biological early warning systems, the objective of the present thesis was to validate and improve some of the bioassays and biological early warning systems used

  5. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  6. Recent Trends in Water Use and Production for California Oil Production.

    Science.gov (United States)

    Tiedeman, Kate; Yeh, Sonia; Scanlon, Bridget R; Teter, Jacob; Mishra, Gouri Shankar

    2016-07-19

    Recent droughts and concerns about water use for petroleum extraction renew the need to inventory water use for oil production. We quantified water volumes used and produced by conventional oil production and hydraulic fracturing (HF) in California. Despite a 25% decrease in conventional oil production from 1999 to 2012, total water use increased by 30% though much of that increase was derived from reuse of produced water. Produced water volumes increased by 50%, with increasing amounts disposed in unlined evaporation ponds or released to surface water. Overall freshwater use (constituting 1.2% of the state's nonagricultural water consumption) increased by 46% during this period due to increased freshwater-intensive tertiary oil production. HF has been practiced in California for more than 30 years, accounting for 1% of total oil production in 2012 from mostly directional and vertical wells. Water use intensity for HF wells in California averaged at 3.5 vol water/vol oil production in 2012 and 2.4 vol/vol in 2013, higher than the range from literature estimates and net water use intensity of conventional production (1.2 vol/vol in 2012). Increasing water use and disposal for oil production have important implications for water management and have potentially adverse health, environmental, and ecological impacts.

  7. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  8. Monitoring of endocrine disrupting chemicals in surface water

    CSIR Research Space (South Africa)

    Govender, S

    2008-06-01

    Full Text Available the surface. The chelated Pluronic-DMDDO ligand can be used for affinity purification of histidine tagged proteins. A regeneration formulation based on anionic SDS detergent desorbed pluronic modified polymeric membranes and the possibility of re... ingredients, household products and industrial chemicals. Surface waters are the main sink of said EDCs. Accurate EDC detection is usually via time consuming and costly ex situ LC-MS and GC-MS analysis. An important class of biosensors include those...

  9. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  10. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  11. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  12. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  13. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  14. Petroleum pollutant degradation by surface water microorganisms.

    Science.gov (United States)

    Antić, Malisa P; Jovancićević, Branimir S; Ilić, Mila; Vrvić, Miroslav M; Schwarzbauer, Jan

    2006-09-01

    It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Microorganisms were analyzed in a surface water sample from a canal (Pancevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum--filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic

  15. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  16. Solving Excess Water Production Problems in Productive Formation

    Directory of Open Access Journals (Sweden)

    Kozyrev Ilya

    2016-01-01

    Full Text Available One of the important developments of the Russian Federation national economy is a petroleum resource. Water shut off techniques are used in the oilfields to avoid the massive water production. We describe a technology for solving excess water production problems focusing on the new gel-based fluid which can be effectively applied for water shutoff. We study the effect of the gel-based fluid solution experimentally to show the feasibility of its treatment the in the near wellbore region to solve the excess water production problem.

  17. The production process for water penetrated brick

    Institute of Scientific and Technical Information of China (English)

    SunGuofeng

    2005-01-01

    Waste penetrated brick, which is a green building material with good water penetration, high strength, lower firing temperature, lower production cost, good appearance and good structure, can holding ground water lever. This article analysis the production process and related factor for water penetrated brick:proper particle size distribution, proper shaping method, proper press and proper firing can ensure to produce good quality water penetrated brick.

  18. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.

    Science.gov (United States)

    Zhu, Tang; Cai, Chao; Guo, Jing; Wang, Rong; Zhao, Ning; Xu, Jian

    2017-03-22

    Polypropylene (PP), including isotactic PP (i-PP) and atactic PP (a-PP) with distinct tacticity, is one of the most widely used general plastics. Herein, ultra water repellent PP coatings with tunable adhesion to water were prepared via a simple casting method. The pure i-PP coating shows a hierarchical morphology with micro/nanobinary structures, exhibiting a water contact angle (CA) larger than 150° and a sliding angle less than 5° (for 5 μL water droplet). In contrast, the pure a-PP coating has a less rough morphology with a water contact angle of about 130°, and the water droplets stick on the coating at any tilted angles. For the composite i-PP/a-PP coatings, however, ultra water repellency with CA > 150° but water adhesion tailorable from slippery to sticky can be realized, depending on the contents of a-PP and i-PP. The different wetting behaviors are due to the various microstructures of the composite coatings resulting from the distinct crystallization ability of a-PP and i-PP. Furthermore, the existence of a-PP in the composite coatings enhances the mechanical properties compared to the i-PP coating. The proposed method is feasible to modify various substrates and potential applications in no-loss liquid transportation, slippery surfaces, and patterned superhydrophobic surfaces are demonstrated.

  19. Water-wise Rice Production

    NARCIS (Netherlands)

    Bouman, B.A.M.; Hengsdijk, H.; Hardy, B.; Bindraban, P.S.; Tuong, T.P.; Ladha, J.K.

    2002-01-01

    Rice is a profligate user of water. It takes 3,000–5,000 liters to produce 1 kilogram of rice, which is about 2 to 3 times more than to produce 1 kilogram of other cereals such as wheat or maize. Until recently, this amount of water has been taken for granted. Now, however, the water crisis

  20. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    OpenAIRE

    Mark Schubert; Pascal Ruedin; Chiara Civardi; Michael Richter; André Hach; Herbert Christen

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected...

  1. Infiltration of pesticides in surface water into nearby drinking water supply wells

    Science.gov (United States)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  2. Occurrence of illicit drugs in surface waters in China.

    Science.gov (United States)

    Li, Kaiyang; Du, Peng; Xu, Zeqiong; Gao, Tingting; Li, Xiqing

    2016-06-01

    Illicit drugs have been recognized as a group of emerging contaminants. In this work, occurrence of common illicit drugs and their metabolites in Chinese surface waters was examined by collecting samples from 49 lakes and 4 major rivers across the country. Among the drugs examined, methamphetamine and ketamine were detected with highest frequencies and concentration levels, consistent with the fact that these are primary drugs of abuse in China. Detection frequencies and concentrations of other drugs were much lower than in European lakes and rivers reported in the literature. In most Chinese surface waters methamphetamine and ketamine were detected at concentrations of several ng L(-1) or less, but in some southern lakes and rivers, these two drugs were detected at much higher concentrations (up to several tens ng L(-1)). Greater occurrence of methamphetamine and ketamine in southern surface waters was attributed to greater abuse and more clandestine production of the two drugs in southern China.

  3. Water Productivity under Drought Conditions Estimated Using SEEA-Water

    Directory of Open Access Journals (Sweden)

    María M. Borrego-Marín

    2016-04-01

    Full Text Available This paper analyzes the impact of droughts on agricultural water productivity in the period 2004–2012 in the Guadalquivir River Basin using the System of Environmental-Economic Accounting for Water (SEEA-Water. Relevant events in this period include two meteorological droughts (2005 and 2012, the implementation of the Drought Management Plan by the basin's water authority (2006, 2007 and 2008, and the effects of irrigated area modernization (water-saving investment. Results show that SEEA-Water can be used to study the productivity of water and the economic impact of the different droughts. Furthermore, the results reflect the fact that irrigated agriculture (which makes up 65% of the gross value added, or GVA, of the total primary sector has considerably higher water productivity than rain-fed agriculture. Additionally, this paper separately examines blue water productivity and total water productivity within irrigated agriculture, finding an average productivity of 1.33 EUR/m3 and 0.48 EUR/m3, respectively.

  4. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  5. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  6. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  7. Water adsorption and dissociation on BeO (001) and (100) surfaces

    CERN Document Server

    Gómez, M A; Kress, J D; Pratt, L R; Gomez, Maria A.; Kress, Joel D.; Pratt, Lawrence R.

    2007-01-01

    Plateaus in water adsorption isotherms on hydroxylated BeO surfaces suggest significant differences between the hydroxylated (100) and (001) surface structures and reactivities. Density functional theory structures and energies clarify these differences. Using relaxed surface energies, a Wulff construction yields a prism crystal shape exposing long (100) sides and much smaller (001) faces. This is consistent with the BeO prisms observed when beryllium metal is oxidized. A water oxygen atom binds to a single surface beryllium ion in the preferred adsorption geometry on either surface. The water oxygen/beryllium bonding is stronger on the surface with greater beryllium atom exposure, namely the less-stable (001) surface. Water/beryllium coordination facilitates water dissociation. On the (001) surface, the dissociation products are a hydroxide bridging two beryllium ions and a metal coordinated hydride with some surface charge depletion. On the (100) surface, water dissociates into a hydroxide ligating a Be ato...

  8. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  9. Evaluation of ESTARFM based algorithm for generating land surface temperature products by fusing ASTER and MODIS data during the HiWATER-MUSOEXE

    Science.gov (United States)

    Land surface temperature (LST) is an important parameter that is highly responsive to surface energy fluxes and has become valuable to many disciplines. However, it is difficult to acquire satellite LSTs with both high spatial and temporal resolutions due to tradeoffs between them. Thus, various alg...

  10. Water Footprint of crop productions: A review.

    Science.gov (United States)

    Lovarelli, Daniela; Bacenetti, Jacopo; Fiala, Marco

    2016-04-01

    Water Footprint is an indicator recently developed with the goal of quantifying the virtual content of water in products and/or services. It can also be used to identify the worldwide virtual water trade. Water Footprint is composed of three parts (green, blue and grey waters) that make the assessment complete in accordance with the Water Footprint Network and with the recent ISO14046. The importance of Water Footprint is linked to the need of taking consciousness about water content in products and services and of the achievable changes in productions, diets and market trades. In this study, a literature review has been completed on Water Footprint of agricultural productions. In particular, the focus was paid on crops for the production of food and bioenergy. From the review, the development of the Water Footprint concept emerged: in early studies the main goal was to assess products' water trade on a global scale, while in the subsequent years, the goal was the rigorous quantification of the three components for specific crops and in specific geographical areas. In the most recent assessments, similarities about the methodology and the employed tools emerged. For 96 scientific articles on Water Footprint indicator of agricultural productions, this literature review reports the main results and analyses weaknesses and strengths. Seventy-eight percent of studies aimed to quantify Water Footprint, while the remaining 22% analysed methodology, uncertainty, future trends and comparisons with other footprints. It emerged that most studies that quantified Water Footprint concerned cereals (33%), among which maize and wheat were the most investigated crops. In 46% of studies all the three components were assessed, while in 18% no indication about the subdivision was given; in the remaining 37%, only blue or green and blue components were quantified.

  11. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  12. Comparison of microbial communities in Lake Tahoe surface sample with Tonga Trench water column samples using High Pressure Liquid Chromatography - Electrospray Ionization - Mass Spectroscopy (HPLC - ESI - MS) and Global Natural Products Social Molecular Network (GNPS)

    Science.gov (United States)

    Belmonte, M. A.

    2015-12-01

    Intact polar lipids (IPLs) are lipids composed of a head group, a glycerol, and a fatty acid chain that make up the lipid bilayer of cell membranes in living cells; and the varying head groups can be indicative of the type of microbes present in the environment (Van Mooy 2010). So by distinguishing and identifying the IPL distribution in an environment one can make inferences about the microbial communities in the said environment. In this study, we used High Pressure Liquid Chromatography-Electrospray Ionization- Mass Spectroscopy (HPLC-ESI-MS) and Global Natural Products Social Molecular Networking (GNPS) to compare the IPL distributions of two oligotrophic environments: surface waters of Lake Tahoe in the Sierra Nevada Mountains, and the water column of the Tonga Trench in the South Pacific. We hypothesized that the similar nutrient dynamics of the two oligotrophic environments would result in similar eukaryotic and prokaryotic communities, which would be reflected in the IPL composition of suspended particulate organic matter (POM). For simplicity we focused on the classes of IPLs most commonly observed in the marine environment: phosphotidylglycerol (PG), phosphotidylethanolamine (PE), diacylglyceryl-trimethyl-homoserine (DGTS), diacylglyceryl-hydroxymethyl-trimethylalanine (DGTA), sulfoquinovosyldiacylglycerol (SQDG), monoglycosyldiacylglycerol (MGDG) and diglycosyldiacylglycerol (DGDG). Our results showed that all of the marine IPLs of interest were present in Lake Tahoe which confirms that there are many of the same microbial communities in the fresh waters of Lake Tahoe and the salt waters Tonga Trench.

  13. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  14. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  15. Uncertainty in surface water flood risk modelling

    Science.gov (United States)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs

  16. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; Sequeira,César A. C.; José L. Figueiredo

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  17. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  18. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  19. Gaseous hydrogen production by water dissociation method

    Energy Technology Data Exchange (ETDEWEB)

    Lipovetsky, V.

    2003-04-01

    Gaseous hydrogen production is based on employment of the water dissociation process, intensified by action of a high water temperature and increase of the minus electric field, as a factor for water dissociation instead of electric current used in electrolysis. The water dissociation method makes it possible to produce concurrently both gaseous hydrogen and electric power in the operating reactor. The main power type used is thermal. (Author)

  20. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  1. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    Science.gov (United States)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  2. Male-specific coliphages for source tracking fecal contamination in surface waters and prevalence of Shiga-toxigenic Escherichia coli in a major produce production region of the Central Coast of California.

    Science.gov (United States)

    Ravva, Subbarao V; Sarreal, Chester Z; Cooley, Michael B

    2015-07-01

    To provide data for traditional trace-back studies from fork to farm, it is necessary to determine the environmental sources for Shiga-toxigenic Escherichia coli. We developed SYBR green based reverse-transcriptase PCR methods to determine the prevalence of F+ RNA coliphages (FRNA) as indicators of fecal contamination. Male-specific coliphages, determined using a single-agar overlay method, were prevalent in all surface waters sampled for 8 months. F+ DNA coliphages (FDNA) were predominant compared to FRNA in water samples from majority of sampling locations. Most (90%) of the FRNA were sourced to humans and originated from human-impacted sites. Members of genogroup III represented 77% of FRNA originated from human sources. Furthermore, 93% of FRNA sourced to animals were also detected in water samples from human-impacted sites. Eighty percent of all FRNA were isolated during the winter months indicating seasonality in prevalence. In contrast, FDNA were more prevalent during summer months. E. coli O157:H7 and Shiga-toxigenic E. coli were detected in water samples from locations predominantly influenced by agriculture. Owing to their scarcity, their numbers could not be correlated with the prevalence of FRNA or FDNA in water samples. Both coliform bacteria and generic E. coli from agricultural or human-impacted sites were similar in numbers and thus could not be used to determine the sources of fecal contamination. Data on the prevalence of male-specific coliphages may be invaluable for predicting the sources of fecal contamination and aid in developing methods to prevent enteric pathogen contamination from likely sources during produce production.

  3. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  4. Results of Analyses of the Fungicide Chlorothalonil, Its Degradation Products, and Other Selected Pesticides at 22 Surface-Water Sites in Five Southern States, 2003-04

    Science.gov (United States)

    2006-01-01

    tetrachlorobenzene) is a broad spectrum, non-systemic fungicide used as a preven- tative treatment to control foliar diseases of vegetable, field, and...surface soil following foliar application to peanuts: Environmental Science & Technology, v. 35, p. 2634–2639. Rouchaud, Jean, Roucourt, Pascal...tetrachloroisophthalonitrile (TPN) in soil: Biology Fertilizer Soils, v. 3, p. 205–209. Scott, G.I., Fulton, M.H., Wirth, E.F., Chandler, G.T., Key, P.B

  5. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  6. Improving Water Use in Fodder Production

    Directory of Open Access Journals (Sweden)

    Vanessa Mendoza-Grimón

    2015-05-01

    Full Text Available Water deficit in semi-arid regions limits the future of the livestock sector. Also, its high price represents a percentage of the total cost of forage production. Non-conventional water resources applied by subsurface drip irrigation (SDI, in which the safe use lies in the management and not on the level of water treatment, would enhance the ruminant production sustainability. To obtain the optimal benefit, the transformation of water per kilogram of dry matter produced must have a high grade of effectiveness. Under this premise, a maralfalfa crop (Penissetum sp, hybridum has been established with an SDI system and reclaimed water. Forage yield is analyzed with respect to a 40% irrigation reduction. This study shows that, with the use of these good irrigation management practices, it is possible to harvest an annual production of 90 to 72 t·ha−1 in the warmer regions of the Canary Islands. This implies water consumption between 13,200 and 8100 m3·ha−1. A water consumption of 21,000 m3·ha−1 per year for the same production, at a ratio of 230 L·t−1, can be estimated for the rest of the Canary Islands coastal regions. The use of the water management described in this paper can be profitable in the Canary Islands for fodder production.

  7. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  8. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  9. Linking global water demand and supply using remote sensing products

    Science.gov (United States)

    Poortinga, A.; Thanh Ha, L.; Phuong Vu, N.; Saah, D. S.; Cutter, P. G.; Troy, A.; Ganz, D.

    2016-12-01

    Due to increasing pressures on water resources and changing population dynamics, there is a need to monitor regional water resource availability in a spatially and temporally explicit manner. However, for many parts of the world, there is insufficient data to quantify stream flow in river basins or potential ground water infiltration rates. Often water resource managers use sophistic hydrology models that require complex data sets to generate estimations, but the results of these efforts lack confidence due to the absence of accurate input data or validation methods. Global open access remote sensing derived data products offer exciting new opportunities to study spatial-temporal water dynamics in a way directly relevant to managers. We present the results of an elegant pixel-based water balance formulation to partition rainfall into evapotranspiration, surface water runoff and potential ground water. The method provides a rapid, accurate, and cost-effective solution to mapping water resource availability in basins with no gauges or monitoring infrastructure. The presented method provides important new insights into the spatial and temporal water supply and demand dynamics. The preliminary result of an application of the model build for the Mekong region will be presented, where quantitative water supply estimations are linked with demand patterns. It will be demonstrated that global freely available remote sensing products can be used to produce significant and operational results for water resource managers. We demonstrate that space based technologies and their applications play a key role to optimize the planning, implementation, and monitoring of projects.

  10. UV radiation and primary production in the Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Krishnakumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    obtained between pp and the above parameters in the Antarctic sub-surface waters determined at discrete depths of 10, 20, 30 and 40 m. However, when the primary productivity values were normalised for PAR, a more negative effect was noticed at the Antarctic...

  11. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  12. Water harvesting for improved water productivity in dry environments of the Mediterranean region case study

    DEFF Research Database (Denmark)

    Yazar, A.; Kuzucu, M.; Çelik, I.

    2014-01-01

    (negarim) under a typical arid environment in Turkey as a case study. In the negarim case study, we analysed rainfall, runoff, catchment area, soil water storage and crop evapotranspiration. The microcatchment area (36 m2) included five surface treatment methods (natural, plastic cover, stone cover, hay......Low rainfall, water scarcity and land degradation severely intimidate the production capacities of the rangelands in the arid environments. Water harvesting focuses on improving the productive use of rainwater on the local scale (field to subcatchment scale) before the runoff water leaves...... the geographical unit in question. The aim is to mitigate the effects of temporal water shortages to cover both domestic and agricultural needs. This paper provides a review on water harvesting techniques focusing on microcatchment methods, and information on performance of a small-basin water harvesting system...

  13. REMOVAL OF FISSION PRODUCTS FROM WATER

    Science.gov (United States)

    Rosinski, J.

    1961-12-19

    A process is given for precipitating fission products from a body of water having a pH of above 6.5. Calcium permanganate and ferrous sulfate are added in a molar ratio of l: 3, whereby a mixed precipitate of manganese dioxide, ferric hydroxide and calcium sulfate is formed; the precipitate carries the fisston products and settles to the bottom of the body of water. (AEC)

  14. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  15. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  16. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  17. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  18. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  19. Time-dependent integrity during storage of natural surface water samples for the trace analysis of pharmaceutical products, feminizing hormones and pesticides

    Directory of Open Access Journals (Sweden)

    Prévost Michèle

    2010-04-01

    Full Text Available Abstract Monitoring and analysis of trace contaminants such as pharmaceuticals and pesticides require the preservation of the samples before they can be quantified using the appropriate analytical methods. Our objective is to determine the sample shelf life to insure proper quantification of ultratrace contaminants. To this end, we tested the stability of a variety of pharmaceutical products including caffeine, natural steroids, and selected pesticides under refrigerated storage conditions. The analysis was performed using multi-residue methods using an on-line solid-phase extraction combined with liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS in the selected reaction monitoring mode. After 21 days of storage, no significant difference in the recoveries was observed compared to day 0 for pharmaceutical products, while for pesticides, significant losses occurred for DIA and simazine after 10 days (14% and 17% reduction respectively and a statistically significant decrease in the recovery was noted for cyanazine (78% disappearance. However, the estrogen and progestogen steroids were unstable during storage. The disappearance rates obtained after 21 days of storage vary from 63 to 72% for the feminizing hormones. Overall, pharmaceuticals and pesticides seem to be stable for refrigerated storage for up to about 10 days (except cyanazine and steroidal hormones can be quite sensitive to degradation and should not be stored for more than a few days.

  20. Measuring in-stream productivity: the potential of continuous chlorophyll and dissolved oxygen monitoring for assessing the ecological status of surface waters.

    Science.gov (United States)

    Jarvie, H P; Love, A J; Williams, R J; Neal, C

    2003-01-01

    Continuous (hourly) measurements of dissolved oxygen and chlorophyll (determined by fluorimetry) were made for an inter-linked lowland river and canal system. The dissolved oxygen data were used to estimate daily rates of re-aeration, photosynthesis and respiration, using a process-based analytical technique (the Delta method). In-situ fluorimeter measurements of chlorophyll were ground-truthed on a fortnightly basis using laboratory methanol extraction of chlorophyll and spectrophotometric analysis. Water samples were also analysed for algal species on a fortnightly basis. The river and canal exhibited very similar rates of photosynthesis and respiration during the summer of 2001, despite much higher chlorophyll concentrations and total algal counts, indicating that benthic algae and/or aquatic macrophytes may be making an important contribution to photosynthesis rates in the river. Suspended algal populations in the canal are dominated by planktonic species, whereas the river has a higher proportion of species which are predominantly benthic in habitat. The river exhibited higher rates of respiration, reflecting a higher organic loading from external (e.g. sewage effluent) sources.

  1. Nitrate reducing activity pervades surface waters during upwelling.

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Halarnekar, R.; Malik, A.; Vijayan, V.; Varik, S.; RituKumari; Jineesh V.K.; Gauns, M.U.; Nair, S.; LokaBharathi, P.A.

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence...

  2. Quantifying the Water Footprint of Manufactured Products: A Case Study of Pitcher Water Filters

    Directory of Open Access Journals (Sweden)

    Ashley Barker

    2012-01-01

    Full Text Available Fresh water is a finite resource that is critically needed bysociety for a variety of purposes. The demand for freshwater will grow as the world population and global livingstandard increase, and fresh water shortages will becomemore commonplace. This will put significant stress onsociety. It has been argued that fresh water may becomethe next oil, and efforts have to be made to better manageits fresh water consumption by agricultural and domesticusers. Industry also uses large amounts. Surprisingly, onlyrecently is serious attention being directed toward waterrelatedissues. This effort to quantify the water footprint ofa manufactured product represents one of the first initiativesto characterize the role of water in a discrete good.This study employed a life cycle assessment methodologyto determine the water footprint of a pitcher water filter.This particular product was selected because many waterintensivematerials and processes are needed to produceits major components: for example, agricultural processesused to produce activated carbon and petrochemicalprocesses used to produce the polypropylene casing. Inaddition, a large amount of water is consumed during theproduct’s use phase. Water data was obtained from theEcoinvent 2.1 database and categorized as either beingassociated with blue or green water.The blue water footprint (surface water consumption forthe pitcher water filter was 76 gallons per filter: 10 gallonsconsumed for materials extraction, 15 gallons for themanufacturing stage, and 50 gallons during the use phase.The green water footprint (precipitation was associatedwith the cultivation of the coconut tree; activated carbonis obtained from the coconut shells. The green waterfootprint was calculated to be 164 gallons per filter.The overall water footprint was 240 gallons per filter;the filter footprint is heavily dominated by green water(68% rather than blue water (32%. Future studies mayinvestigate how the production and

  3. Wettability and water uptake of holm oak leaf surfaces

    OpenAIRE

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper l...

  4. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  5. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  6. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  7. USE OF ELECTROLYZED WATER IN ANIMAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Dana Jirotková

    2012-10-01

    Full Text Available The paper deals with the possibility to use the properties of electrolyzed water to disinfect breeding halls and to water animals. The aim of the research was to find out whether elektrolyzed water used for desinfication of breedings hall and watering of animals influences selected indicators of the meat quality. Electrolyzed water is produced in a patent-protected device Envirolyte that produces biocide solution using potable water with added NaCl. The technology of production guarantees the product is entirely ecological, biologically fully degradable, non-toxic that can replace traditional chemical agents. Possibilities of disinfection using this solution have been verified directly in stables at the interval of 20, 40, 60 min. after application. Staphylococci and streptococci and enterococci were inactive always after 60 minutes of effect. There was significant decrease in the number of total number of microorganisms. Further, the solution of electrolyzed water was used to water poultry; and the affect on some of the properties of poultry meat, changes in pH, colour and loss of water (dripping in particular, was observed. Testing was carried out under working conditions in two breeding halls at a time and the technology of electrolyzed water to disinfect premises and to water chickens was used in one of the halls. When the chickens were slaughter mature, the poultry was slaughtered at the standard slaughterhouse and samples (127 pieces were taken in order to measure pH, colour and loss of water (dripping. The values of pH, colour and loss of water (dripping ascertained, processed by the T-test did not confirm the hypothesis of the assumed possible differences in occurrence of critical values of these indicators in both groups observed.

  8. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  9. Water for animal products: a blind spot in water policy

    Science.gov (United States)

    Hoekstra, Arjen Y.

    2014-09-01

    We know from land, energy and climate studies that the livestock sector plays a substantial role in deforestation, biodiversity loss and climate change. More recently it has become clear that livestock also significantly contributes to humanity’s water footprint, water pollution and water scarcity. Jalava et al (Environ. Res. Lett. 9 074016) show that considerable water savings can be achieved by reducing the fraction of animal products in our diet. The findings are in line with a few earlier studies on water use in relation to diets. As yet, this insight has not been taken forward in national water policies, which focus on ‘sustainable production’ rather than ‘sustainable consumption’. Most studies and practical efforts focus on increasing water-use efficiency in crop production (more crop per drop) and feed conversion efficiency in the livestock sector (more meat with less feed). Water-use efficiency in the food system as a whole (more nutritional value per drop) remains a blind spot.

  10. Recovery from acidification in European surface waters

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2001-01-01

    Full Text Available Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56 showed significant (p ≤0.05 decreasing trends in pollution-derived sulphate. Only two sites showed a significant increase. Nitrate, on the other hand, had a much weaker and more varied pattern, with no significant trend at 35 of 56 sites, decreases at some sites in Scandinavia and Central Europe, and increases at some sites in Italy and the UK. The general reduction in surface water acid anion concentrations has led to increases in acid neutralising capacity (significant at 27 of 56 sites but has also been offset in part by decreases in base cations, particularly calcium (significant at 26 of 56 sites, indicating that much of the improvement in runoff quality to date has been the result of decreasing ionic strength. Increases in acid neutralising capacity have been accompanied by increases in pH and decreases in aluminium, although fewer trends were significant (pH 19 of 56, aluminium 13 of 53. Increases in pH appear to have been limited in some areas by rising concentrations of organic acids. Within a general trend towards recovery, some inter-regional variation is evident, with recovery strongest in the Czech Republic and Slovakia, moderate in Scandinavia and the United Kingdom, and apparently weakest in Germany. Keywords: acidification, recovery, European trends, sulphate, nitrate, acid neutralising capacity

  11. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Michele L. Etter

    2010-02-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI–tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy ace- tic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2- methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI- with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 µm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the deg- radation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L-1 and method detection limits (MDL with strict criteria requiring

  12. Target studies for surface muon production

    Science.gov (United States)

    Berg, F.; Desorgher, L.; Fuchs, A.; Hajdas, W.; Hodge, Z.; Kettle, P.-R.; Knecht, A.; Lüscher, R.; Papa, A.; Rutar, G.; Wohlmuther, M.

    2016-02-01

    Meson factories are powerful drivers of diverse physics programs. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90°. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30% and 60% over the standard "box-like" target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizing novel target materials such as, e.g., boron carbide.

  13. Target Studies for Surface Muon Production

    CERN Document Server

    Berg, F; Fuchs, A; Hajdas, W; Hodge, Z; Kettle, P -R; Knecht, A; Lüscher, R; Papa, A; Rutar, G; Wohlmuther, M

    2015-01-01

    Meson factories are powerful drivers of diverse physics programmes. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90{\\deg}. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30 - 60% over the standard "box-like" target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizin...

  14. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  15. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  16. Water saving through international trade of agricultural products

    NARCIS (Netherlands)

    Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.

    2006-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water product

  17. Salts and radiation products on the surface of Europa

    CERN Document Server

    Brown, M E

    2013-01-01

    The surface of Europa could contain the compositional imprint of a underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W.M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution ~40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemisphere and spatially correlated with the presence of radiation products like sulfuric acid and SO2. On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO4, detection on the trailing side with other ...

  18. Laser forming of structures of zinc oxide on a surface of products from copper alloys

    Science.gov (United States)

    Abramov, D. V.; Gorudko, T. N.; Koblov, A. N.; Nogtev, D. S.; Novikova, O. A.

    Laser formation of a protective zinc oxide layer on a surface of products from copper alloys is present. This layer is formed with using of carbon nanotubes. Destructions of the basic material are avoided or minimized at laser nanostructuring of product surfaces. Such laser processing can be made repeatedly. Offered covering have self-clearing and water-repellent properties.

  19. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  20. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and q

  1. The production rate of cosmogenic deuterium at the Moon's surface

    Science.gov (United States)

    Füri, Evelyn; Deloule, Etienne; Trappitsch, Reto

    2017-09-01

    The hydrogen (D/H) isotope ratio is a key tracer for the source of planetary water. However, secondary processes such as solar wind implantation and cosmic ray induced spallation reactions have modified the primordial D/H signature of 'water' in all rocks and soils recovered on the Moon. Here, we re-evaluate the production rate of cosmogenic deuterium (D) at the Moon's surface through ion microprobe analyses of hydrogen isotopes in olivines from eight Apollo 12 and 15 mare basalts. These in situ measurements are complemented by CO2 laser extraction-static mass spectrometry analyses of cosmogenic noble gas nuclides (3He, 21Ne, 38Ar). Cosmic ray exposure (CRE) ages of the mare basalts, derived from their cosmogenic 21Ne content, range from 60 to 422 Ma. These CRE ages are 35% higher, on average, than the published values for the same samples. The amount of D detected in the olivines increases linearly with increasing CRE ages, consistent with a production rate of (2.17 ± 0.11) ×10-12 mol(g rock)-1 Ma-1. This value is more than twice as high as previous estimates for the production of D by galactic cosmic rays, indicating that for water-poor lunar samples, i.e., samples with water concentrations ≤50 ppm, corrected D/H ratios have been severely overestimated.

  2. The last gasp: controlling water production in wells

    Energy Technology Data Exchange (ETDEWEB)

    Lea, N.

    2002-03-01

    Produced water in oil and gas wells is highly undesirable. As it grows it saps productivity until wells finally shut-in. This article discusses a number of methods that have been tried over time with varying degrees of success and failure to control water influx into wells with operating and completion techniques. Water blocking chemicals that form downhole rubber-like barriers, sealing the water-producing zone from the oil and gas producing zones have had some recent successes, but performance has not always lived up to the salesman's claims. More success has been achieved with the downhole oil/water separation technology developed during the late 1990s by C{sub F}ER Technologies, which has since been licensed to Baker Hughes and Schlumberger. This technology essentially captures the hydrocarbon fluids into two streams -- one stream is clean water, which is then reinjected downhole, and the second oil-rich stream is brought to the surface where a hydrocyclone uses centrifugal forces to separate the oil from the water. Among the water blocking chemical technologies UNOCAL's gel placement technique has had some success. Once the produced water's origin is determined from production data, a liquid gel is injected downhole followed by nitrogen gas which helps position the gel within the wellbore while it hardens. Ideally, the produced water will enter the wellbore beneath the hardened gel while the oil or gas is above the gel plug. Aqueolic Canada's 'Direxit' is a newer water blocking chemical with a viscosity of one to three centipoise, resulting in low injection pressure. To eliminate problems with swelling clays Direxit can be also mixed with potassium chloride. Aqueolic has also filed notice of testing 'Bloxit' a water-blocking polymer with a density less than water, thus having the ability to float above a water producing zone.

  3. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    Science.gov (United States)

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  4. Drugs of abuse and tranquilizers in Dutch surface waters, drinking water and wastewater: Results of screening monitoring 2009

    NARCIS (Netherlands)

    van der Aa, N.G.F.M.; Dijkman, E.; Bijlsma, L.; Emke, E.; van de Ven, B.M.; van Nuijs, A.L.N.; de Voogt, P.

    2011-01-01

    In the surface waters of the rivers Rhine and Meuse, twelve drugs that are listed in the Dutch Opium act were detected at low concentrations. They are from the groups amphetamines, tranquilizers (barbiturates and benzodiazepines) opiates and cocaine. During drinking water production, most compounds

  5. Water savings of redistributing global crop production

    Science.gov (United States)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  6. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  7. Water constraints on future food production

    NARCIS (Netherlands)

    Biemans, H.

    2012-01-01

    To meet the food demand of a growing global population, agricultural production will have to more than double in this century. Agricultural land expansion combined with yield increases will therefore be required. This thesis investigates whether enough water resources will be available to sustain

  8. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  9. Adsorbed water on iron surface by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F.W.; Campos, T.M.B.; Cividanes, L.S., E-mail: flaviano@ita.br; Simonetti, E.A.N.; Thim, G.P.

    2016-01-30

    Graphical abstract: - Highlights: • We developed a new force field to describe the Fe–H{sub 2}O interaction. • We developed a new force field to describe the flexible water model at low temperature. • We analyze the orientation of water along the iron surface. • We calculate the vibrational spectra of water near the iron surface. • We found a complex relationship between water orientation and the atomic vibrational spectra at different sites of adsorption along the iron surface. - Abstract: The adsorption of H{sub 2}O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron–water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  10. Improving agricultural water productivity: Between optimism and caution

    NARCIS (Netherlands)

    Molden, D.J.; Oweis, T.; Steduto, P.; Bindraban, P.S.; Hanjra, A.; Kijne, J.

    2010-01-01

    In its broadest sense, water productivity (WP) is the net return for a unit of water used. Improvement of water productivity aims at producing more food, income, better livelihoods and ecosystem services with less water. There is considerable scope for improving water productivity of crop, livestock

  11. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  12. Floating Vegetated Mats For Improving Surface Water Quality

    Science.gov (United States)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  13. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  14. Water losses during technical snow production

    Science.gov (United States)

    Grünewald, Thomas; Wolfsperger, Fabian

    2017-04-01

    These days, the production of technical snow can be seen as a prerequisite for winter tourism. Huge amounts of water are used for technical snow production by ski resorts, especially in the beginning of the winter season. The aim is to guarantee an appropriate amount of snow to reliably provide optimal ski runs until the date of season opening in early December. Technical snow is generated by pumping pressurized water through the nozzles of a snow machine and dispersing the resulting spray of small water droplets which freeze during their travel to the ground. Cooling and freezing of the droplets can only happen if energy is emitted to the air mass surrounding the droplets. This heat transfer is happening through convective cooling and though evaporation and sublimation of water droplets and ice particles. This means that also mass is lost from the droplets and added in form of vapor to the air. It is important to note that not all water that is pumped through the snow machine is converted to snow distributed on the ground. Significant amounts of water are lost due to wind drift, sublimation and evaporation while droplets are traveling through the air or to draining of water which is not fully frozen when arriving at the ground. Studies addressing this question are sparse and the quantity of the water losses is still unclear. In order to assess this question in more detail, we obtained several systematic field observations at a test site near Davos, Switzerland. About a dozen of snow making tests had been performed during the last winter seasons. We compare the amount of water measured at the intake of the snow machine with the amount of snow accumulating at the ground during a night of snow production. The snow mass was calculated from highly detailed repeated terrestrial laser scanning measurements in combination with manually gathered snow densities. In addition a meteorological station had been set up in the vicinity observing all relevant meteorological

  15. Validation of Geoland2 small water bodies product: methodological overview

    Science.gov (United States)

    Schlaffer, S.; Kidd, R. A.; Haas, E. M.; Wagner, W.

    2012-04-01

    Remote sensing products covering the dynamics of small water bodies are important for diverse applications such as hydrology, monitoring of endangered wetlands and natural resources management. The goal of this study is to provide a scientific validation of the BioPar Water Bodies demonstration product derived from SPOT-VEGETATION data within the framework of the EU-funded project GMES-Geoland2. The demonstration product covers Africa during a time span of 1.5 years with a spatial resolution of 1 km and a temporal resolution of 10 days. A description of the product and the underlying algorithms is given in this paper. The validation effort described here is in agreement with level 1 of the validation methodology proposed by the CEOS (Committee on Earth Observation Satellites) Working Group on Calibration and Validation. In order to provide an independent dataset for validation, time series from the Advanced Synthetic Aperture Radar (ASAR) onboard ESA's ENVISAT are processed and analysed. Radar data offer a data source which is fundamentally different from the optical data acquired by SPOT-VEGETATION. Time series acquired by ASAR in Wide Swath (WS) mode with a resolution of 150 m have been successfully used to estimate flood extent in boreal and arctic regions. Water bodies cause incoming microwave radiation to be reflected away from the sensor so that they show up as dark areas in the resulting imagery. In a first step, a synthesis map is produced showing water bodies which persisted at least during half of the validation period. The ability of the BioPar product to detect these water bodies is then tested on a number of sites scattered throughout Sub-Saharan Africa. The original approach for water bodies detection with ASAR, a simple thresholding, proved insufficient due to the sparse coverage of ASAR WS data at low latitudes and the occurrence of very dry soil surfaces in semi-arid climates which can be confused with water bodies when using such a simple

  16. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  17. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    Directory of Open Access Journals (Sweden)

    Y. Wada

    2013-02-01

    Full Text Available To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979–2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  18. Structure and reactivity of water at biomaterial surfaces.

    Science.gov (United States)

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  19. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  20. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  1. Section 11: Surface Water Pathway - Likelihood of Release

    Science.gov (United States)

    Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w

  2. A review of heterogeneous photocatalysis for water and surface disinfection.

    Science.gov (United States)

    Byrne, John Anthony; Dunlop, Patrick Stuart Morris; Hamilton, Jeremy William John; Fernández-Ibáñez, Pilar; Polo-López, Inmaculada; Sharma, Preetam Kumar; Vennard, Ashlene Sarah Margaret

    2015-03-30

    Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give "self-disinfecting" surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  3. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  4. Biofilm development on metal surfaces in tropical marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Bhosle, N.B.

    environments. However, little is known about biofilm bacteria developed on metal surfaces, especially immersed in tropical marine waters. Similarly, not much is known about the nature of organic matter deposited on the surfaces over the period of immersion...

  5. The glass-liquid transition of water on hydrophobic surfaces.

    Science.gov (United States)

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  6. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  7. Coalbed Methane Production System Simulation and Deliverability Forecasting: Coupled Surface Network/Wellbore/Reservoir Calculation

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2017-01-01

    Full Text Available As an unconventional energy, coalbed methane (CBM mainly exists in coal bed with adsorption, whose productivity is different from conventional gas reservoir. This paper explains the wellbore pressure drop, surface pipeline network simulation, and reservoir calculation model of CBM. A coupled surface/wellbore/reservoir calculation architecture was presented, to coordinate the gas production in each calculation period until the balance of surface/wellbore/reservoir. This coupled calculation method was applied to a CBM field for predicting production. The daily gas production increased year by year at the first time and then decreased gradually after several years, while the daily water production was reduced all the time with the successive decline of the formation pressure. The production of gas and water in each well is almost the same when the structure is a star. When system structure is a dendritic surface system, the daily gas production ranked highest at the well which is the nearest to the surface system collection point and lowest at the well which is the farthest to the surface system collection point. This coupled calculation method could be used to predict the water production, gas production, and formation pressure of a CBM field during a period of time.

  8. Hydrogen yields from water on the surface of plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Howard E., E-mail: howard.e.sims@nnl.co.uk [National Nuclear Laboratory, Harwell Science Park, Didcot, Oxon OX11 0QT (United Kingdom); Webb, Kevin J.; Brown, Jamie [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom); Morris, Darrell [Nuclear Decommissioning Authority, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HU (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom)

    2013-06-15

    Highlights: ► Hydrogen evolution due to water radiolysis on samples of Sellafield PuO{sub 2}. ► Sharp increase in hydrogen evolution above 75% relative humidity. ► Hydrogen evolution due to radiolytic rather than thermal reaction. ► Analysis of trends from literature data. -- Abstract: The long term storage of separated plutonium dioxide (PuO{sub 2}) in sealed canisters requires an understanding of the processes occurring within the cans. This includes potential mechanisms that lead to can pressurisation, including the radiolysis of adsorbed water forming hydrogen. New measurements of H{sub 2} production rates from three sources of PuO{sub 2} show low rates at low water monolayer coverage but a sharp increase between 75% and 95% relative humidity. This behaviour being quite different to that reported for CeO{sub 2} and UO{sub 2}, which, therefore, cannot be considered as suitable analogues for PuO{sub 2}/H{sub 2}O radiation chemistry. It is concluded that surface recombination reactions are likely to be important in the radiation chemistry and that the H{sub 2} production arises from a radiolytic process and not a thermal reaction, at least in these experiments.

  9. Conjunctive Surface Water and Groundwater Management under Climate Change

    Directory of Open Access Journals (Sweden)

    Xiaodong eZhang

    2015-09-01

    Full Text Available Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnerabilities of water supply systems and mitigate the water supply stress in responding to climate change. Some critical challenges and perspectives are discussed to help decision/policy makers develop more effective management and adaptation strategies for conjunctive water resources use in facing climate change under complex uncertainties.

  10. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  11. Region 9 Surface Water Intakes (SDWIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPAâ??s Safe Drinking Water Information System (SDWIS) databases store information about drinking water. The federal version (SDWIS/FED) stores the information EPA...

  12. Methylmercury production in the marine water column

    Science.gov (United States)

    Topping, G.; Davies, I. M.

    1981-03-01

    Although the biosynthesis of methylmercury in sediments is well established1, this is not necessarily the exclusive natural source of methylmercury entering the marine food chain, particularly commercial fish and shellfish species for human consumption. An examination of mercury levels in freshwater fish2, collected from a lake with a history of industrial mercury contamination, suggested that levels in fish are controlled in part by mercury in suspension and it followed that methylation should occur in the water column. Although methylmercury is present in seawater in coastal areas receiving discharges of waste containing either inorganic mercury3 or methylmercury4 there is no evidence that methylmercury is actually formed in the water column. We now present data which demonstrate that inorganic mercury can be methylated in the water column and we compare this production with that known to occur in marine sediments.

  13. COMMUNITY PARTICIPATION IN SURFACE WATER HARVESTING ...

    African Journals Online (AJOL)

    USER

    2014-11-25

    Nov 25, 2014 ... There is seasonal water scarcity in Marigat Division and the water demand has been ... with improved storage and rainwater harvesting methods. Such water can be ..... in the planning process and decision making and this ... The organizations support the community ... systems for domestic uses in urban.

  14. Ethanol production from hot-water sugar maple wood extract hydrolyzate: fermentation media optimization for Escherichia coli FBWHR

    National Research Council Canada - National Science Library

    Yang Wang; Chenhui Liang; Shijie Liu

    2015-01-01

    .... Response surface methodology was employed to investigate the effect of fermentation media on the ethanol production from concentrated hot-water sugar maple hemicellulosic wood extract hydrolyzate...

  15. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  16. Adsorption mechanism of water molecule on goethite (010) surface

    Science.gov (United States)

    Xiu, Fangyuan; Zhou, Long; Xia, Shuwei; Yu, Liangmin

    2016-12-01

    Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projector- augment wave (PAW) method. The mechanism of the interaction between goethite surface and H2O was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between H2O and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.

  17. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  18. Study of the Productivity and Surface Quality of Hybrid EDM

    Science.gov (United States)

    Wankhade, Sandeepkumar Haribhau; Sharma, Sunil Bansilal

    2016-01-01

    The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.

  19. Interactions of Woody Biofuel Feedstock Production Systems with Water Resources: Considerations for Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Trettin, Carl C. [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States); Amatya, Devendra [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States); Coleman, Mark [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States)

    2008-04-15

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Finally, given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive.

  20. Evaluation of the relation between groundwater pollution and the pollutant load on surface waters

    NARCIS (Netherlands)

    Groenendijk, P.; Roest, C.W.J.

    1996-01-01

    The importance of the relation between groundwater and surface water is demonstrated by the impact of water quality standards on permissible nitrogen losses at farm level. The effects of the intended fertilization reduction measures on agricultural production justify a thorough examination of the

  1. Occurrence of glucocorticogenic activity in various surface waters in The Netherlands

    NARCIS (Netherlands)

    Schriks, M.; van der Linden, S.C.; Stoks, P.G.M.; van der Burg, B.; Puijker, L.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attentio

  2. Surface disorder production during plasma immersion implantation

    NARCIS (Netherlands)

    Lohner, T.; Khanh, N.Q.; Petrik, P.; Biro, L.P.; Fried, M.; Pinter, I.; Lehnert, W.; Frey, L.; Ryssel, H.; Wentink, D.J.; Gyulai, J.

    1998-01-01

    Comparative investigations were performed using high-depth-resolution Rutherford backscattering (RBS) combined with channeling, spectroellipsometry (SE) and atomic force microscopy (AFM) to analyze surface disorder and surface roughness formed during plasma immersion implantation of silicon (100) su

  3. Simulation of water cluster assembly on a graphite surface.

    Science.gov (United States)

    Lin, C S; Zhang, R Q; Lee, S T; Elstner, M; Frauenheim, Th; Wan, L J

    2005-07-28

    The assembly of small water clusters (H2O)n, n = 1-6, on a graphite surface is studied using a density functional tight-binding method complemented with an empirical van der Waals force correction, with confirmation using second-order Møller-Plesset perturbation theory. It is shown that the optimized geometry of the water hexamer may change its original structure to an isoenergy one when interacting with a graphite surface in some specific orientation, while the smaller water cluster will maintain its cyclic or linear configurations (for the water dimer). The binding energy of water clusters interacting with graphite is dependent on the number of water molecules that form hydrogen bonds, but is independent of the water cluster size. These physically adsorbed water clusters show little change in their IR peak position and leave an almost perfect graphite surface.

  4. Surface Curvature-Induced Directional Movement of Water Droplets

    CERN Document Server

    Lv, Cunjing; Yin, Yajun; Zheng, Quanshui

    2010-01-01

    Here we report a surface curvature-induced directional movement phenomenon, based on molecular dynamics simulations, that a nanoscale water droplet at the outer surface of a graphene cone always spontaneously moves toward the larger end of the cone, and at the inner surface toward the smaller end. The analysis on the van der Waals interaction potential between a single water molecule and a curved graphene surface reveals that the curvature with its gradient does generate the driving force resulting in the above directional motion. Furthermore, we found that the direction of the above movement is independent of the wettability, namely is regardless of either hydrophobic or hydrophilic of the surface. However, the latter surface is in general leading to higher motion speed than the former. The above results provide a basis for a better understanding of many reported observations, and helping design of curved surfaces with desired directional surface water transportation.

  5. Hydrogen production by the decomposition of water

    Science.gov (United States)

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  6. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  7. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  8. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  9. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2014-07-29

    term goals were to 1. exploit measurements of breaking wave noise and photographic images of whitecaps to infer bubble cloud populations at the sea ...surface reverberation in wind-driven seas , an additional objective has been to study the role of sub-surface bubbles on the attenuation and scattering of...acoustic signals, including determining methods for quantifying bubble populations with video footage of the sea surface and developing models of

  10. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  11. Comparison of fipronil sources in North Carolina surface water ...

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in

  12. Surface water quality assessment by environmetric methods.

    Science.gov (United States)

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  13. Incomplete water securitization in coupled hydro-human production sytems

    Science.gov (United States)

    van den Boom, B.; Pande, S.

    2012-04-01

    Due to the dynamics, the externalities and the contingencies involved in managing local water resource for production, the water allocation at basin-level is a subtle balance between laws of nature (gravity; flux) and laws of economics (price; productivity). We study this balance by looking at inter-temporal basin-level water resource allocations in which subbasins enjoy a certain degree of autonomy. Each subbasin is represented as an economic agent i, following a gravity ordering with i=1 representing the most upstream area and i=I the downstream boundary. The water allocation is modeled as a decentralized equilibrium in a coupled conceptual hydro-human production system. Agents i=1,2,...,I in the basin produce a composite good according to a technology that requires water as a main input and that is specific to the subbasin. Agent i manages her use Xi and her storage Si, conceptualizing surface and subsurface water, of water with the purpose of maximizing the utility derived from consumption Ci of the composite good, where Ci is a scalar and Xi and Si are vectors which are composed of one element for each time period and for each contingency. A natural way to consume the good would be to absorb the own production. Yet, the agent may have two more option, namely, she might get a social transfer from other agents or she could use an income from trading water securities with her contiguous neighbors. To study these options, we compare water allocations (Ci, Xi, Si) all i=1,2,...,I for three different settings. We look at allocations without water securitization (water autarky equilibrium EA) first. Next, we describe the imaginary case of full securitization (contingent water markets equilibrium ECM) and, in between, we study limited securitization (incomplete water security equilibrium EWS). We show that allocations under contingent water markets ECM are efficient in the sense that, for the prevailing production technologies, no other allocation exists that is at

  14. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be

  15. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  16. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  17. Production and measurement of superpolished surfaces

    Science.gov (United States)

    van Wingerden, Johannes; Frankena, Hans J.; van der Zwan, Bertram A.

    1992-05-01

    The influence of polishing time on the roughness of ultrasmooth bowl-feed-polished surfaces is studied. A large improvement of the surface quality is obtained within the first 10 min, but increasing the polishing time from 10 to 60 min did not yield a significant difference. A Linnik interference microscope, adapted for phase-shifting interferometry, was used for roughness measurements. Preliminary measurements have been performed with a setup determining the scattered intensity within a small solid angle. This relatively simple setup, which is also suitable for uncoated glass surfaces, clearly showed the improvement of surface quality by bowl-feed polishing.

  18. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  19. Groundwater/Surface-Water Interaction in the Context of South African Water Policy

    Science.gov (United States)

    Levy, J.; Xu, Y.

    2010-12-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. South Africa’s 1998 National Water Act (NWA) recognized water as a basic human right and its importance for ecological sustainability. Ecological integrity of water resources was considered an important component in redressing past social inequities, eliminating poverty, and encouraging economic development. Under the NWA, groundwater-use licenses are granted only after setting aside the groundwater Reserve, the amount of water needed to supply basic human needs and preserve a minimum degree of ecological integrity. One challenge to successful implementation of the NWA, therefore, is the accurate quantification of groundwater contributions to aquatic ecosystems. This is especially true considering that so many of South Africa’s aquifers are in highly heterogeneous and anisotropic fractured-rock settings. The most common approach taken in South Africa is estimation of average annual flux rates at the regional scale of quaternary catchments with baseflow separation techniques and then applying a water-budget approach, subtracting the groundwater discharge rate from the recharge rate. The water-balance approach might be a good first step, but it ignores spatial and temporal variability, potentially missing the local impacts associated with placement of production boreholes. Identification of discrete areas of groundwater discharge could be achieved with stable-isotopic and geochemical analyses and vegetative mapping. Groundwater-flow modeling should be used where possible as it holistically incorporates available data and can predict impacts of groundwater extraction and development based on the relative positions of boreholes and surface-water bodies. Sustainable development entails recognition of the trade-offs between preservation and development. There will always be scientific uncertainty associated with estimation and

  20. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    Science.gov (United States)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  1. Biomass and water: a critical review of the water footprint concept as sustainability criterion for biomass production

    Science.gov (United States)

    Zessner, M.; Thaler, S.; Bertrán de Lis, F.; Kaltenbrunner, W.; Kreuzinger, N.

    2012-04-01

    Agricultural production is the most water consuming economic sector worldwide. Together with fertile soil the availability of fresh water is the most restricting factor for biomass production in many areas around the globe. Additionally, agriculture significantly contributes to water pollution by nutrient losses and pesticide emissions. Therefore assessment of impacts on water is one of the essential aspects in the evaluation of the sustainability of concepts considering biomass as raw material. The water footprint concept combines all different types of water uses into one indicator. The total water footprint of biomass production consist of the green water footprint, which is the amount of rainwater evapotranspirated for growth, the blue water, which is the amount of ground and surface water used for irrigation, and the grey water, which quantifies the fresh water amount needed for assimilation of pollutions loads emitted into the water system from areas used for biomass production. The water footprint concept has significantly raised the public awareness of fresh water as resource with restricted availability. Water footprints for different products are commonly known and compared to each other. Despite the release of these general water footprint values a standardized method of water footprint accounting is still in work and differences in the basic assumptions for the calculation together with few methodological shortcomings may lead to significant differences in the results. Problems in this respect will be presented in this contribution and suggestions to improve standardization will be given. In contrast to the carbon footprint the water footprint has a strong regional component, because long distance water transport is far out of any economical possibility. That means even though the world's total biomass productivity is restricted by the joint availability of fertile soil and fresh water. There are tremendous regional differences to which extent water

  2. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    Science.gov (United States)

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  3. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  4. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  5. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  6. SURFACE WATER QUALITY IN ADDIS ABABA, ETHIOPIA

    African Journals Online (AJOL)

    environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants ... Oxygen Demand (COD), Biological Oxygen Demand (BOD) and Dissolved ... appropriate waste water purifying plants. ..... University of Turku, Finland. 2.

  7. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.

    Science.gov (United States)

    Zhang, Xinbin; Zhao, Jie; Zhu, Qing; Chen, Ning; Zhang, Mingwen; Pan, Qinmin

    2011-07-01

    Walking on the water surface is a dream of humans, but it is exactly the way of life for some aquatic insects. In this study, a bionic aquatic microrobot capable of walking on the water surface like a water strider was reported. The novel water strider-like robot consisted of ten superhydrophobic supporting legs, two miniature dc motors, and two actuating legs. The microrobot could not only stand effortlessly but also walk and turn freely on the water surface, exhibiting an interesting motion characteristic. A numerical model describing the interface between the partially submerged leg and the air-water surface was established to fully understand the mechanism for the large supporting force of the leg. It was revealed that the radius and water contact angle of the legs significantly affect the supporting force. Because of its high speed, agility, low cost, and easy fabrication, this microrobot might have a potential application in water quality surveillance, water pollution monitoring, and so on.

  8. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.;

    2013-01-01

    At low coverage of water on Cu(110), substrate-mediated electrostatics lead to zigzagging chains along [001] as observed with STM [T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, “Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy” Phys. Rev. Lett. 96, 036105...... (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  9. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    Science.gov (United States)

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and

  10. Measurements of water surface snow lines in classical protoplanetary disks

    CERN Document Server

    Blevins, Sandra M; Banzatti, Andrea; Zhang, Ke; Najita, Joan R; Carr, John S; Salyk, Colette; Blake, Geoffrey A

    2015-01-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1-100 AU using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model comprising of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of $\\sim 3-11$ AU, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abu...

  11. Water production models for Comet Bradfield (1979 l)

    Science.gov (United States)

    Weaver, H. A.; Feldman, P. D.; Festou, M. C.

    1981-01-01

    The IUE observations of Comet Bradfield (1979 l) made 10 January 1980 to 3 March 1980 permit a detailed study of water production for this comet. Brightness measurements are presented for all three water dissociation products, H, O, and OH, and comparisons are made with model predictions. The heliocentric variation of the water production rate was derived.

  12. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  13. Survival of Phytophthora infestans in Surface Water.

    Science.gov (United States)

    Porter, Lyndon D; Johnson, Dennis A

    2004-04-01

    ABSTRACT Coverless petri dishes with water suspensions of sporangia and zoospores of Phytophthora infestans were embedded in sandy soil in eastern Washington in July and October 2001 and July 2002 to quantify longevity of spores in water under natural conditions. Effects of solar radiation intensity, presence of soil in petri dishes (15 g per dish), and a 2-h chill period on survival of isolates of clonal lineages US-8 and US-11 were investigated. Spores in water suspensions survived 0 to 16 days under nonshaded conditions and 2 to 20 days under shaded conditions. Mean spore survival significantly increased from 1.7 to 5.8 days when soil was added to the water. Maximum survival time of spores in water without soil exposed to direct sunlight was 2 to 3 days in July and 6 to 8 days in October. Mean duration of survival did not differ significantly between chilled and nonchilled sporangia, but significantly fewer chilled spores survived for extended periods than that of nonchilled spores. Spores of US-11 and US-8 isolates did not differ in mean duration of survival, but significantly greater numbers of sporangia of US-8 survived than did sporangia of US-11 in one of three trials.

  14. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  15. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Surface complexation at calcium mineral-water interfaces

    OpenAIRE

    Wu, Liuming

    1994-01-01

    Surface reactions occurring at solid-water interfaces in calcium mineral-ligands systems have been studied. Both hydrous apatite and fluorite surfaces show clear amphoteric properties. An ion exchange process between lattice ions of F- on fluorite and OH- ions in bulk solution is discovered. The surface adsorption of Alizarin Red S and sodium oleate are determined. Surface chemical reaction models are established based on acidbase potentiometric titrations, solubility, adsorption and zeta-pot...

  17. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  18. Tractor beam on the water surface

    CERN Document Server

    Punzmann, Horst; Xia, Hua; Falkovich, Gregory; Shats, Michael

    2014-01-01

    Can one send a wave to bring an object from a distance? The general idea is inspired by the recent success in moving micro particles using light and the development of a tractor beam concept. For fluid surfaces, however, the only known paradigm is the Stokes drift model, where linear planar waves push particles in the direction of the wave propagation. Here we show how to fetch a macroscopic floater from a large distance by sending a surface wave towards it. We develop a new method of remote manipulation of floaters by forming inward and outward surface jets, stationary vortices, and other complex surface flows using nonlinear waves generated by a vertically oscillating plunger. The flows can be engineered by changing the geometry and the power of a wave maker, and the flow dissipation. The new method is robust and works both for long gravity and for short capillary waves. We use a novel method of visualising 3D particle trajectories on the surface. This letter introduces a new conceptual framework for unders...

  19. Experimental Observation of Dark Solitons on Water Surface

    Science.gov (United States)

    2016-06-13

    vertical walls are made of transparent sections of glass supported by the metal frame. The water level of the free surface is measured with seven resistive...Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...observation of dark solitons on the water surface. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation

  20. Solar radiation influence on the decomposition process of diclofenac in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Peter [UFZ, Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brueckstrasse 3a, D-39114 Magdeburg (Germany)]. E-mail: peter.bartels@ufz.de; Tuempling, Wolf von [UFZ, Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brueckstrasse 3a, D-39114 Magdeburg (Germany)]. E-mail: wolf.vontuempling@ufz.de

    2007-03-01

    Diclofenac can be detected in surface water of many rivers with human impacts worldwide. The observed decrease of the diclofenac concentration in waters and the formation of its photochemical transformation products under the impact of natural irradiation during one to 16 days are explained in this article. In semi-natural laboratory tests and in a field experiment it could be shown, that sunlight stimulates the decomposition of diclofenac in surface waters. During one day intensive solar radiation in middle European summer diclofenac decomposes in the surface layer of the water (0 to 5 cm) up to 83%, determined in laboratory exposition experiments. After two weeks in a field experiment, the diclofenac was not detectable anymore in the water surface layer (limit of quantification: 5 ng/L). At a water depth of 50 cm, within two weeks 96% of the initial concentration was degraded, while in 100 cm depth 2/3 of the initial diclofenac concentration remained. With the decomposition, stable and meta-stable photolysis products were formed and observed by UV detection. Beyond that the chemical structure of these products were determined. Three transformation products, that were not described in the literature so far, were identified and quantified with GC-MS.

  1. Drainage-water travel times as a key factor for surface water contamination

    OpenAIRE

    Groenendijk, P.; Eertwegh, van den, A.J.M.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unrealistic to treat the saturated and unsaturated zones and the discharge to surface waters separately. Point models describe vertical water flow in the saturated zone and possibly lateral flow by defini...

  2. Quality of surface water in Missouri, water year 2012

    Science.gov (United States)

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  3. Quality of surface water in Missouri, water year 2013

    Science.gov (United States)

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  4. ASSESSMENT OF SURFACE WATER QUALITY IN AN ARSENIC CONTAMINATED VILLAGE

    Directory of Open Access Journals (Sweden)

    Kumud C. Saikia

    2012-01-01

    Full Text Available Arsenic contamination of ground water has occurred in various parts of the world, becoming a menace in the Ganga-Meghna-Brahmaputra basin (West Bengal and Assam in India and Bangladesh. Recently arsenic has been detected in Cachar and Karimganj districts of barak valley, Assam, bordering Bangladesh. In this area coli form contamination comprises the major constraint towards utilization of its otherwise ample surface water resources. The local water management exploited ground water sources using a centralized piped water delivery scheme without taking into account the geologically arsenic-prone nature of the sediments and aquifers in this area. Thus surface water was the suggestive alternative for drinking water in this area. The present study investigated surface water quality and availability in a village of Karimganj district, Assam, India contaminated with arsenic for identifying the potential problems of surface water quality maintenance so that with effective management safe drinking water could be provided. The study revealed that the area was rich in freshwater ecosystems which had all physico-chemical variables such as water temperature, pH, DO, total alkalinity, free CO2, heavy metals like lead, chromium and cadmium within WHO standards. In contrast, coli form bacteria count was found far beyond permissible limit in all the sources. Around 60% people of the village preferred ground water for drinking and only 6% were aware of arsenic related problems. The problem of bacterial contamination could be controlled by implementing some ameliorative measures so that people can safely use surface water. Inhabitants of the two districts should be given proper education regarding arsenic contamination and associated health risk. Effluents should be treated to acceptable levels and standards before discharging them into natural streams.

  5. Screening for contaminants of emerging concern in Northern Colorado Plateau Network waters: 2015 surface-water data

    Science.gov (United States)

    Weissinger, R; Battaglin, William A.; Bradley, Paul M.

    2016-01-01

    In 2015, as part of an on-going screening program for contaminants of emerging concern (CECs) in conjunction with the Environmental Protection Agency (EPA) Region 8, surface waters at 18 locations in or near seven national park units within the Northern Colorado Plateau Network (NCPN) were sampled for pesticides and pesticide degradation products, pharmaceuticals and personal care products, hormones, organic-wastewater-indictor chemicals, and nutrients. Most sites were sampled in spring (May or June) and fall (September).

  6. The ICESat-2 Inland Water Height Data Product: Evaluation of Water Profiles Using High Altitude Photon Counting Lidar

    Science.gov (United States)

    Jasinski, M. F.; Stoll, J.; Cook, W. B.; Arp, C. D.; Birkett, C. M.; Brunt, K. M.; Harding, D. J.; Jones, B. M.; Markus, T.; Neumann, T.

    2015-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2), scheduled to launch in 2017, is a low energy, high repetition rate, short pulse width, 532 nm lidar. Although primarily designed for icecap and sea ice monitoring, ATLAS also will record dense observations over Pan-Arctic inland water bodies throughout its designed three year life span. These measurements will offer improved understanding of the linkages between climate variability and Arctic hydrology including closure of the Pan-Arctic water balance. An ICESat-2 Inland Water Body Height Data Product is being developed consisting of along-track water surface height, slope, and roughness for each ATLAS strong beam, and also aspect and slope between adjacent beams. The data product will be computed for all global inland water bodies that are traversed by ICESat-2 during clear to moderately clear atmospheric conditions. While the domain of the ATL13 data product is global, the focus is on high-latitude terrestrial regions where the convergence of the ICESat-2 orbits will provide spatially dense observations. Water bodies will be identified primarily through the use of an "Inland Water Body Shape Mask". In preparation for the mission, the Multiple Beam Altimeter Lidar Experimental Lidar (MABEL), was built and flown during numerous high altitude experiments, observing a wide range of water targets. The current analysis examines several MABEL inland and near coastal coastal targets during 2012 to 2015, focusing on along track surface water height, light penetration into water under a range of atmospheric and water conditions. Sites include several Alaska lakes, the Chesapeake Bay, and the near shore Atlantic coast. Results indicate very good capability for retrieving along track surface water height and standard deviation and penetration depth. Overall, the MABEL data and subsequent analyses have demonstrated the feasibility of the ATL13 algorithm for

  7. Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge

    Science.gov (United States)

    Shang, Kefeng; Li, Jie; Wang, Xiaojing; Yao, Dan; Lu, Na; Jiang, Nan; Wu, Yan

    2016-01-01

    Pulsed electric discharge over water surface/in water has been used to generate reactive species for decomposing the organic compounds in water, and hydrogen peroxide (H2O2) is one of the strong reactive species which can be decomposed into another stronger oxidative species, hydroxyl radical. The production efficacy of H2O2 by a gas phase pulsed discharge over water surface and an underwater bubbling pulsed discharge was evaluated through diagnosis of H2O2 by a chemical probe method. The experimental results show that the yield and the production rate of H2O2 increased with the input energy regardless of the electric discharge patterns, and the underwater bubbling pulsed discharge was more advantageous for H2O2 production considering both the yield and the production rate of H2O2. Results also indicate that the electric discharge patterns also influenced the water solution properties including the conductivity, the pH value and the water temperature.

  8. Water saving through international trade of agricultural products

    Directory of Open Access Journals (Sweden)

    A. K. Chapagain

    2006-01-01

    Full Text Available Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  9. Water saving through international trade of agricultural products

    Directory of Open Access Journals (Sweden)

    A. K. Chapagain

    2005-11-01

    Full Text Available Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  10. Quality of surface water in Missouri, water year 2014

    Science.gov (United States)

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  11. Quality of surface water in Missouri, water year 2010

    Science.gov (United States)

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  12. Quality of surface water in Missouri, water year 2009

    Science.gov (United States)

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  13. Quality of surface water in Missouri, water year 2011

    Science.gov (United States)

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  14. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  15. Role of water in polymer surface modification using organosilanes

    Science.gov (United States)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  16. SWFSC FED Mid Water Trawl Juvenile Rockfish Survey, Surface Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC FED Mid Water Trawl Juvenile Rockfish Survey: Station Information and Surface Data. Surveys have been conducted along the central California coast in May/June...

  17. Second Inflection Point of the Surface Tension of Water

    Science.gov (United States)

    Kalova, Jana; Mares, Radim

    2012-06-01

    The theme of a second inflection point of the temperature dependence of the surface tension of water remains a subject of controversy. Using data above 273 K, it is difficult to get a proof of existence of the second inflection point, because of experimental uncertainties. Data for the surface tension of supercooled water and results of a molecular dynamics study were included into the exploration of existence of an inflection point. A new term was included into the IAPWS equation to describe the surface tension in the supercooled water region. The new equation describes the surface tension values of ordinary water between 228 K and 647 K and leads to the inflection point value at a temperature of about 1.5 °C.

  18. SINGULAR INTEGRALS ALONG SURFACES ON PRODUCT DOMAINS

    Institute of Scientific and Technical Information of China (English)

    Hussain Al-Qassem

    2004-01-01

    In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p <∞) for such singular integral operators as well as for their corresponding maximal truncated singular integrals if the singular kernels are allowed to be in certain block spaces.

  19. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2012-09-30

    compare the results with experiment. This work will be used to help interpret field data of bistatic scattering from sea ice cover and calibrate...approximate analytical and numerical acoustic models used to compute bistatic scattering. The clouds of bubbles entrained at the sea surface by breaking...ABSTRACT SAR 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified

  20. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  1. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.;

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  2. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  3. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers...... and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations...

  4. Simulation method for determining biodegradation in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Schoeberl, P.; Guhl, W. [Henkel KGaA, Duesseldorf (Germany). Hauptabteilung Oekologie; Scholz, N. [OXENO GmbH, Marl (Germany); Taeger, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-07-01

    OECD guidelines and EU directives on the biological testing of chemicals contain no methods able to simulate biodegradation in surface waters. The surface water simulation method presented in this paper is suitable for closing this gap. The species in the autochthonous biocoenosis used in the method form part of the food web in natural surface waters. The microbial degradation activity measured by the half-life is comparable with that in surface waters. The degrees of degradation measured in this surface water simulation method can be applied to natural surface waters. (orig.) [Deutsch] Die OECD- und EU-Richtlinien zur biologischen Pruefung von Chemikalien enthalten kein Verfahren, mit dem der biologische Abbau in Fliessgewaessern simuliert werden kann. Das in dieser Arbeit vorgestellte Fliessgewaesser-Simulationsmodell ist geeignet, diese Luecke zu schliessen. Die Arten der autochthonen Biocoenose des Modells sind Glieder im Nahrungsnetz natuerlicher Fliessgewaesser. Die an der Halbwertszeit gemessene mikrobielle Abbauaktivitaet ist mit derjenigen in Fliessgewaessern vergleichbar. Die im Fliessgewaesser-Simulationsmodell gemessenen Abbaugrade sind auf natuerliche Fliessgewaesser uebertragbar. (orig.)

  5. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  6. Water-clay surface interaction: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, O., E-mail: sobolev38@gmail.com [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France); Favre Buivin, F. [HES-SO Fribourg, Bd de Perolles 80-CP 32, CH-1705 Fribourg (Switzerland); Kemner, E.; Russina, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Glienicker Strasse 100, D-14109 Berlin (Germany); Beuneu, B. [Laboratoire Leon Brillouin, C.E. Saclay, 91191 Gif sur Yvette (France); Cuello, G.J. [Institut Laue Langevin and Ikerbasque, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France); Charlet, L. [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France)

    2010-08-23

    Graphical abstract: Interaction between water molecules and internal clay surfaces was studied by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} was used to reduce hydration of interlayer cations. - Abstract: The aim of this study was to investigate interaction between water molecules and internal clay surfaces by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} (NC{sub 4}H{sub 12}), was used to saturate the interlayer space of nontronite NAu-1 in order to reduce hydration of interlayer cations that could hinder the effects related to the clay-water interactions. The water content was low in order to reduce hydrogen bonding between water molecules. It was found that water molecules form strong hydrogen bonds with surface oxygen atoms of nontronite. The diffusion activation energy value E{sub a} = 29 {+-} 3 kJ/mol was obtained for water molecules hydrating the clay surface. These results confirm the assumption that surfaces of smectite clays with tetrahedral substitutions are hydrophilic.

  7. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  8. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies

    Science.gov (United States)

    Ucar, Ikrime O.; Erbil, H. Yildirim

    2012-10-01

    This study investigates the effect of surface roughness, wettability, water contact angle hysteresis (CAH) and wetting hysteresis (WH) of polymeric substrates to the water drop condensation rate. We used five polyolefin coatings whose surface free energies were in a close range of 30-37 mJ/m2 but having different surface roughness and CAH. The formation of water breath figures was monitored at a temperature just below the dew point. The initial number of the condensed droplets per unit area (N0) and droplet surface coverage were determined during the early stage of drop condensation where the droplet coalescence was negligible. It was found that the mean drop diameter of condensed droplets on these polymer surfaces grow according to a power law with exponent 1/3 of time, similar to the previous reports given in the literature. It was determined that surface roughness and corresponding CAH and WH properties of polymers have important effects on the number of nucleation sites and growth rate of the condensed water droplets. N0 values and the surface coverage increased with the increase in surface roughness, CAH and WH of the polymer surfaces. The total condensed water drop volume also increased with the increase in surface roughness in accordance with the increase of the number of nucleated droplets.

  9. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expe

  10. National water footprint accounts: the green, blue and grey water footprint of production and consumption

    OpenAIRE

    M. M. Mekonnen; A. Y. Hoekstra

    2011-01-01

    This study quantifies and maps the water footprints of nations from both a production and consumption perspective and estimates international virtual water flows and national and global water savings as a result of trade. The entire estimate includes a breakdown of water footprints, virtual water flows and water savings into their green, blue and grey components.

  11. Production of Electrolysis-Purity Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Removal of impurities from water has been studied extensively by NASA in the context of water recovery from wastewater. However, the Water Recovery System and Urine...

  12. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  13. Assessment of heavy metal river Ingulets surface water pollution

    OpenAIRE

    Trokhymenko, Ganna G.; Tsyhanyuk, Nina V.

    2017-01-01

    The low efficiency of implemented targeted programs to reduce the anthropogenic impact on hydroecosystem and overcoming its negative consequences demand a search for the optimal evidence reasonable decisions to improve the quality of Ingul river water basin for different economic sectors of water resources and the required number and suitable quality. Methodical bases of such research must be based on a detailed and comprehensive study of the hydrochemical regime and surface water quality. Th...

  14. Proton production, neutralisation and reduction in a floating water bridge

    Science.gov (United States)

    Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Wiltsche, Helmar; Stanulewicz, Natalia; Lankmayr, Ernst; Woisetschläger, Jakob; Fuchs, Elmar C.

    2015-10-01

    This work reports on proton production, transport, reduction and neutralization in floating aqueous bridges under the application of a high dc voltage (‘floating water bridge’). Recently possible mechanisms for proton transfer through the bridge were suggested. In this work we visualize and describe the production of protons in the anolyte and their neutralization in the catholyte. Apart from that, protons are reduced to hydrogen due to electrolysis. Microbubbles are detached instantly, due to the electrohydrodynamic flow at the electrode surface. No larger, visible bubbles are formed and the system degasses through the bridge due to its higher local temperature. A detailed analysis of trace elements originating from beaker material, anode or the atmosphere is presented, showing that their influence on the overall conduction compared to the contribution of protons is negligible. Finally, an electrochemical rationale of high voltage electrolysis of low ionic strength solutions is presented.

  15. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    Science.gov (United States)

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (XDMSO), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing XDMSO(≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  17. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  18. Consumptive water use in the production of ethanonl and petroleum gasoline.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

    2009-01-30

    The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

  19. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    Science.gov (United States)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  20. Surface Effects of Satellite Material Outgassing Products

    Science.gov (United States)

    1989-06-01

    I 8c ADDRF.SS (C//y, Ste~e, and ZlPCode) Air Force Systems Command Arnold Air Force Base, TN 37389-5000 I eor ,;~m~ed OMB N(k 0704-0r88 lb... CO2 is easily identified by the very sharp absorption band located at 2,340 cm -1 (4.3 "m). In cases where there is strong absorption by CO2 , the...film thicknesses of 0.12, 1.00, and 5.24 "m. Water and CO2 were the only major outgassed species observed. Although no total mass loss (TML

  1. Water quality under intensive banana production and extensive pastureland in tropical Mexico

    NARCIS (Netherlands)

    Arya, D.R.; Geissen, V.; Ponce-Mendoza, A.; Ramos-Reyes, R.; Becker, M.

    2012-01-01

    The effects of intensive banana production with high mineral-fertilizer application and of extensive pastures were compared regarding water quality in a lowland region of SE Mexico. We monitored NO, NO, and PO43– concentrations in groundwater (80 m depth), subsurface water (5 m depth), and surface

  2. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  3. Water quality under intensive banana production and extensive pastureland in tropical Mexico

    NARCIS (Netherlands)

    Arya, D.R.; Geissen, V.; Ponce-Mendoza, A.; Ramos-Reyes, R.; Becker, M.

    2012-01-01

    The effects of intensive banana production with high mineral-fertilizer application and of extensive pastures were compared regarding water quality in a lowland region of SE Mexico. We monitored NO, NO, and PO43– concentrations in groundwater (80 m depth), subsurface water (5 m depth), and surface w

  4. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  5. Metropolitan Spokane Region Water Resources Study. Appendix A. Surface Water

    Science.gov (United States)

    1976-01-01

    the river as surface supply. This second area lies mostly north of the Spokane River extending up the val- ley known as Rathdrum Prairie and includes...4 10. 2-29 I .~ -A- IvA -4 -4 IS I rp4r 1-4 - 4NCs 4~ 10. 2- 3o * r~tar gg~wr 4 . fAPPENDIX I en00 -4 - r., 0 CM- WMC q ~~0 0r0 4. .44 . VFog 4102A3

  6. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  7. Catwell and Sherdaps for deep-water production fields

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.P.; Rey, R. [Cameron, 34 - Beziers (France)

    2000-07-01

    The names Catwell and SherDaps are derived from: - Catenary Well - Subsea Horizontal Extended Reach Drilling And Production System. Both systems use the technique of being able to drill a well in deep-water either through a platform catenary carrier pipe or a catenary drilling riser. They also offer, in addition, significant advantages when drilling into shallow reservoirs and the ability to enhance production using platform artificial lift systems or easily serviceable pumps either in the well or at the mud-line. Catwell is a platform system with surface wellheads/trees whereas SherDaps uses a group of subsea wellheads/trees/BOP's that are accessible from one permanent catenary drilling riser. Both systems allow drilling/completing and future well intervention from a central location that otherwise would have required several drilling centres (i.e. platforms or subsea) if the conventional approach was followed. It is envisaged that well targets close to a platform will use well conductors possibly with mud-line wellheads, then Catwell to reach the medium range well targets and SherDaps for long range wells. It is considered that this arrangement would allow a single surface drilling/ production centre to have access to well targets giving a foot print range of up to a 20 km diameter. The total Capex savings on a Deep-water Field Development could be in the region of $200 m on a $1 billion development. Opex will be lower with the ability from the drilling center to quickly access any problem well and rectify any faults, minimising lost production. (authors)

  8. Surface Production of Negative Hydrogen Ions.

    Science.gov (United States)

    2014-09-26

    V_ _" MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Uncl assified ISa . DECL ASSI FICATION...x 10 Ions/cm2 A After 132 min. of sputtering CS + Dosige =1.3 x .118Ions/cm2 After 230 min. of sputtering CS + Dosage =2.4 x 101 Ions/cm2 Figure 14...approximately 1019 ions/an. 34 Figure ]I. SEM Picture of a sputtered No surface magnified 500 times. The target was sputtered with a Cs+ dosage of 3.6 x 101

  9. Power productivity of the ground surface

    Directory of Open Access Journals (Sweden)

    Gutu A.I.

    2008-12-01

    Full Text Available Here there is presented an attempt to estimate the efficiency degree when working with soil surface through the different methods of valorization incident solar radiation. Such technical methods are being analyzed as (solar collectors, photovoltaic cells, solar thermal power plants, power cultures field (bushes, wheat, sunflower, maize, rape, sorghum as well as microalgae crops. Here is the description of advantages and disadvantages for each group in part out of these three. The technical methods are up to date from the efficiency utilization view-point of industrial area. Microalgae crops are similar to technical methods from this point of view.

  10. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  11. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  12. Water productivity analysis of irrigated crops in Sirsa district, India

    NARCIS (Netherlands)

    Singh, R.; Dam, van J.C.; Feddes, R.A.

    2006-01-01

    Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat¿rice and three for

  13. Surface Treatment of Building Materials with Water Repellent Agents

    OpenAIRE

    Wittman, F.H.; Siemes, T.A.J.M.; Verhoef, L.G.W.

    1995-01-01

    Water repellent agents have been applied to proteet building materials and structural elements for thousands ofyears. Initially, natural products, such as oils and fats were used exclusively. More recently, synthetic organic compounds are being developed for special applications.

  14. Inundation Mapping Tidal Surface - Mean Higher High Water

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a derived product of the NOAA VDatum tool and they extend the tool's Mean Higher High Water (MHHW) tidal datum conversion inland beyond its original...

  15. Surface Water Resources Response to Climate Changes in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in ...

  16. A Liquefier for Mars Surface Propellant Production

    Science.gov (United States)

    Salerno, Lou J.; Helvensteijn, B. P. M.; Kittel, P.; Arnold, James O. (Technical Monitor)

    1999-01-01

    NASA's planned Mars exploration missions will require that cryogenic propellants be manufactured on the surface. The present scenario calls for oxygen and methane gases to he produced using the carbon dioxide atmosphere plus seed hydrogen brought from Earth. Gases will require liquefaction for both storage on the Martian surface and for use in the ascent vehicle. The planned liquefaction rates range from 12.6 g/hr of oxygen for the 2003 robotic mission to 2500 g/hr for the later human missions. This paper presents the results of a nitrogen liquefaction demonstration using a commercially available cryocooler. The experiment was set up to liquefy nitrogen gas instead of oxygen to limit laboratory safety concerns. A nitrogen gas condensor, attached to the cooler's cold tip, was sized to liquefy up to 42 gN2/hr at the intended storage pressure (0.2 MPa). The experiment was conducted inside an atmospheric, air-filled, refrigerated chamber simulating the average Martian daytime temperature (240 K). In this demonstration a liquefaction rate of 9.1 gN2/hr was realized, which is equivalent to 13 gO2/hr.

  17. Study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity.

    Science.gov (United States)

    Fang, Yuming; Duranceau, Steven J

    2013-08-15

    To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1) and particle back diffusion term (k2) was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.

  18. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    Science.gov (United States)

    Fang, Yuming; Duranceau, Steven J.

    2013-01-01

    To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1) and particle back diffusion term (k2) was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion. PMID:24956946

  19. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    Directory of Open Access Journals (Sweden)

    Steven J. Duranceau

    2013-08-01

    Full Text Available To evaluate the significance of reverse osmosis (RO and nanofiltration (NF surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1 and particle back diffusion term (k2 was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.

  20. [A virtual water analysis for agricultural production and food security].

    Science.gov (United States)

    Ke, Bing; Liu, Wen-hua; Duan, Guang-ming; Yan, Yan; Deng, Hong-bing; Zhao, Jing-zhu

    2004-03-01

    Water resource demand is increasing with the population growth and economic development. Water resource problem for agriculture and food security have become one of the global focal points because of water resource scarcity. The concept of virtual water is useful to analyze and impair this problem. In this paper, virtual water implication was described, and international study progress about it was briefly reviewed. Furthermore, China's agricultural water scarcity and food security were analyzed. According to the grain import prediction and agricultural production conditions of China, the virtual water equivalents of China in 2010 and 2020 were evaluated, which were 88 x 10(9) m3 in 2010 and 95 x 10(9) m3 in 2020. With the function of virtual water to agricultural water stress, virtual water strategy was suggested to relieve agricultural production pressure from water resource and meet growing food demand as well as to promote water resource sustainability in China.

  1. Impact of nutritional strategies on water productivity indicators for pigs

    Directory of Open Access Journals (Sweden)

    Julio Cesar Pascale Palhares

    2013-12-01

    Full Text Available The productivity of water is a poorly considered indicator in animal agriculture. This is because water is a resource still believed by persons in the production network to be abundant and of good quality. The aim of this study was to evaluate the impact of nutritional strategies in water productivity indicators for growing and slaughtering pigs. Five strategies were evaluated: control diet (T1, with a reduction in the level of crude protein (T2, phytase (T3, organic minerals (T4 and the three nutritional strategies combined (T5. The water productivity indicator is defined as the quantity of product by water used. The following indicators were calculated: total weight (kg L-1, cold carcass (kg L-1 lean carcass (L kg-1, and nutrition (kcal L-1. T5 showed the best productivities for each liter of water used. The total weight productivity in this treatment was 3.0 kg L-1, while in T1 was 2.5 kg L-1. T3 had the lowest productivities. The nutritional water productivities were 2,512, 2,763, 2,657, 2,814, and 3,039 kcal L-1, respectively for T1, T2, T3, T4, and T5. Nutritional strategies reduce the use of drinking water and therefore improve water productivities. The best productivities were observed when combining the strategies.

  2. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  3. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  4. Practical Significance of Basin Water Market Construction on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of introducing the concept of water market and the water market research in cluding both domestic market and foreign market,the system design features of water market are analyzed.The features include the prior distribution of agricultural water right,the close construction of market structure,reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage.The practical significances of basin water market construction on Chinese agricultural production are revealed,which clover safeguarding the safety of agricultural water;effectively alleviating agricultural drought;saving the agricultural production water and improving the quality of agricultural products.

  5. Water Use and Treatment in Container-Grown Specialty Crop Production: A Review.

    Science.gov (United States)

    Majsztrik, John C; Fernandez, R Thomas; Fisher, Paul R; Hitchcock, Daniel R; Lea-Cox, John; Owen, James S; Oki, Lorence R; White, Sarah A

    2017-01-01

    While governments and individuals strive to maintain the availability of high-quality water resources, many factors can "change the landscape" of water availability and quality, including drought, climate change, saltwater intrusion, aquifer depletion, population increases, and policy changes. Specialty crop producers, including nursery and greenhouse container operations, rely heavily on available high-quality water from surface and groundwater sources for crop production. Ideally, these growers should focus on increasing water application efficiency through proper construction and maintenance of irrigation systems, and timing of irrigation to minimize water and sediment runoff, which serve as the transport mechanism for agrichemical inputs and pathogens. Rainfall and irrigation runoff from specialty crop operations can contribute to impairment of groundwater and surface water resources both on-farm and into the surrounding environment. This review focuses on multiple facets of water use, reuse, and runoff in nursery and greenhouse production including current and future regulations, typical water contaminants in production runoff and available remediation technologies, and minimizing water loss and runoff (both on-site and off-site). Water filtration and treatment for the removal of sediment, pathogens, and agrichemicals are discussed, highlighting not only existing understanding but also knowledge gaps. Container-grown crop producers can either adopt research-based best management practices proactively to minimize the economic and environmental risk of limited access to high-quality water, be required to change by external factors such as regulations and fines, or adapt production practices over time as a result of changing climate conditions.

  6. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  7. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  8. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment.

  9. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    Science.gov (United States)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  10. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  11. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  12. Agricultural water requirements for commercial production of cranberries

    Science.gov (United States)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  13. Water and nitrogen use efficiencies in citrus production

    NARCIS (Netherlands)

    Qin, Wei; Assinck, F.B.T.; Heinen, Marius; Oenema, Oene

    2016-01-01

    Water and nitrogen (N) are two key limiting factors for citrus production. Reported effects of water and N inputs on citrus yield, water use efficiency (WUE) and N use efficiency (NUE) vary greatly, mainly due to differences in cultivars, tree age, climate, soil types, and water and N input level

  14. Geostationary Surface and Insolation Products (GSIP), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Surface and Insolation Products (GSIP) Version 3 contains upwelling and downwelling shortwave (0.2-4.0 um) and visible (0.4-0.7 um) radiative...

  15. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  16. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  17. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  18. Water for animal products: a blind spot in water policy

    NARCIS (Netherlands)

    Hoekstra, Arjen Y.

    2014-01-01

    We know from land, energy and climate studies that the livestock sector plays a substantial role in deforestation, biodiversity loss and climate change. More recently it has become clear that livestock also significantly contributes to humanity’s water footprint, water pollution and water scarcity.

  19. Flint Water Crisis Taking High Toll on Health, Productivity

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160307.html Flint Water Crisis Taking High Toll on Health, Productivity Michigan city ... MONDAY, Aug. 8, 2016 (HealthDay News) -- The water crisis in Flint, Mich., has cost $395 million in ...

  20. BOARD-INVITED REVIEW: Quantifying water use in ruminant production.

    Science.gov (United States)

    Legesse, G; Ominski, K H; Beauchemin, K A; Pfister, S; Martel, M; McGeough, E J; Hoekstra, A Y; Kroebel, R; Cordeiro, M R C; McAllister, T A

    2017-05-01

    The depletion of water resources, in terms of both quantity and quality, has become a major concern both locally and globally. Ruminants, in particular, are under increased public scrutiny due to their relatively high water use per unit of meat or milk produced. Estimating the water footprint of livestock production is a relatively new field of research for which methods are still evolving. This review describes the approaches used to quantify water use in ruminant production systems as well as the methodological and conceptual issues associated with each approach. Water use estimates for the main products from ruminant production systems are also presented, along with possible management strategies to reduce water use. In the past, quantifying water withdrawal in ruminant production focused on the water demand for drinking or operational purposes. Recently, the recognition of water as a scarce resource has led to the development of several methodologies including water footprint assessment, life cycle assessment, and livestock water productivity to assess water use and its environmental impacts. These methods differ with respect to their target outcome (efficiency or environmental impacts), geographic focus (local or global), description of water sources (green, blue, and gray), handling of water quality concerns, the interpretation of environmental impacts, and the metric by which results are communicated (volumetric units or impact equivalents). Ruminant production is a complex activity where animals are often reared at different sites using a range of resources over their lifetime. Additional water use occurs during slaughter, product processing, and packaging. Estimating water use at the various stages of meat and milk production and communicating those estimates will help producers and other stakeholders identify hotspots and implement strategies to improve water use efficiency. Improvements in ruminant productivity (i.e., BW and milk production) and

  1. Water footprints of cities - indicators for sustainable consumption and production

    Science.gov (United States)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2014-01-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  2. Fate and Ecotoxicology of Veterinary Macrolide and Sulfonamide Antibiotics in Surface Water

    Science.gov (United States)

    Antibiotics are carried from manured lands and production sites in runoff to surface waters. Our objectives were to assess the environmental fate and ecotoxicology of two macrolide antibiotics (tylosin and erythromycin) and sulfamethazine. Experiments were designed to simulate Midwestern farm pond c...

  3. A Mechanism for Near-Surface Water Ice on Mars

    Science.gov (United States)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  4. Stability of Fluorosurfactant Adsorption on Mineral Surface for Water Removal in Tight Gas Reservoirs

    OpenAIRE

    Lijun You; Wanchun Zhang; Yili Kang; Zhangxin Chen; Xuefen Liu

    2015-01-01

    Long-term effectiveness of rock wettability alteration for water removal during gas production from tight reservoir depends on the surfactant adsorption on the pore surface of a reservoir. This paper selected typical cationic fluorosurfactant FW-134 as an example and took advantage of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM) to investigate its adsorption stability on the rock mineral surface under the oscillation...

  5. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  6. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J. K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  7. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  8. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  9. Alfalfa production using saline drainage water

    Science.gov (United States)

    A three year study investigated the use of saline (alfalfa in the presence of shallow saline groundwater. The irrigation treatments included; irrigating twice between cuttings with non-saline water, 2) irrigating with moderately saline water...

  10. Studying surface water balance in Kurdistan province using GIS

    Directory of Open Access Journals (Sweden)

    Nader Fallah

    2016-06-01

    Full Text Available The study of water exchange in a region or area, which emphasizes the principle of conservation of matter in the water cycle, is called balance. Investigating their balance is the basis for managing the rivers’ water management, the results of which refer to the change rate in surface water supply and can efficiently be used in decision making and optimal use of water resources. The present study was carried out in order to investigate the surface water balance in Kurdistan province using GIS. In so doing, digital topographic maps, soil map of the area, and meteorological data retrieved from the regional stations were used to prepare layers of precipitation, evaporation and infiltration of rainwater into the soil. Discharge-arearegion comparative method was employed to measure the amount of runoff and base flow for each sub-basin in raster form saved per unit area which was subsequently overlapped based on balance equation, and the balance of the region was displayed in a graphical mode. The results indicated that more surface water is wasted in the southeast and central area of the province.

  11. National water footprint accounts: the green, blue and grey water footprint of production and consumption

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies and maps the water footprints of nations from both a production and consumption perspective and estimates international virtual water flows and national and global water savings as a result of trade. The entire estimate includes a breakdown of water footprints, virtual water

  12. National water footprint accounts: the green, blue and grey water footprint of production and consumption

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies and maps the water footprints of nations from both a production and consumption perspective and estimates international virtual water flows and national and global water savings as a result of trade. The entire estimate includes a breakdown of water footprints, virtual water fl

  13. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    Science.gov (United States)

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of coagulant/flocculant dosage and pH to water recovery of black liquor wastewater in bioethanol production from oil palm empty fruit bunch using response surface methodology

    Science.gov (United States)

    Burhani, Dian; Winarni, Anissa; Sari, Ajeng Arum

    2017-01-01

    Coagulation and flocculation process was used to treat black liquor wastewater from alkali pretreatment of bioethanol production from oil palm empty fruit bunch. The optimization and the effect of pH, coagulant and flocculant dosage against decolorization, TSS reduction, final pH and sludge volume were investigated using Response Surface Methodology (RSM). Six combination were used, however, no combination gave good result to all four responses. Decolorization percentage of 99.69% was obtained by the combination of PAC and anionic polyacrylamide. The combination of alum and anionic polyacrylamide gave 91.12% TSS reduction. Final pH of 7.3 was resulted also from the combination of PAC and anionic polyacrylamide While, 50 ml sludge volume was generated from the combination of PAC and anionic polyacrylamide. From RSM with Central Composite Design (CCD) analysis, strong interaction between coagulant dosage and pH revealed to be the significant factor for black liquor wastewater treatment.

  15. Spatial development of the wind-driven water surface flow

    Science.gov (United States)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  16. Influence of building resolution on surface water inundation outputs

    Science.gov (United States)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  17. Bacterial productivity in the Prydz Bay and its adjacent waters,Antarctic

    Institute of Scientific and Technical Information of China (English)

    邱雨生; 黄奕普; 陈敏; 刘广山

    2004-01-01

    Bacterial productivity was measured using 3H-thymidine methods in the Prydz Bay and its adjacent waters in the Southern Ocean during the 16th National Antarctic Research Expedition of China (CHINARE). The results showed that bacteted for the Ross Sea. The mean ratio of bacterial productivity to primary productivity in our study areas was 41%. The general characteristics in the vertical profiles showed a subsurface maximum at most of the stations, which was also consistent with those observed in the other sea areas in the Southern Ocean. The spatial distribution of bacterial productivity and dissolved organic carbon in the surface waters showed that their variations were inversely correlative. The relationship among bacterial productivity, primary productivity and dissolved organic carbon suggested that bacterial productivity in the Prydz Bay and its adjacent water was influenced mostly by phytoplankton activities and the hydrologic conditions.

  18. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  19. Return of naturally sourced Pb to Atlantic surface waters

    Science.gov (United States)

    Bridgestock, Luke; van de Flierdt, Tina; Rehkämper, Mark; Paul, Maxence; Middag, Rob; Milne, Angela; Lohan, Maeve C.; Baker, Alex R.; Chance, Rosie; Khondoker, Roulin; Strekopytov, Stanislav; Humphreys-Williams, Emma; Achterberg, Eric P.; Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; de Baar, Hein J. W.

    2016-09-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

  20. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  1. Wavefront modulation of water surface wave by a metasurface

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 程营; 王敬时; 刘晓峻

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.

  2. GOES Surface and Insolation Products (GSIP), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 2 of the GOES Surface and Insolation Products (GSIP) is a high spatial resolution (1/8 x 1/8 degrees) solar radiation product estimated from the GOES-East...

  3. Differentials of the 2nd kind on a product surface

    Directory of Open Access Journals (Sweden)

    J. C. Wilson

    1979-01-01

    Full Text Available This paper deals with the problems of representing an arbitrary double differential of the second kind, defined on a surface which is the topological product of two curves, in terms of the products of simple differentials of the second kind on the two curves. The curves are assumed to be non-singular and irreducible in a complex projective 2-space.

  4. Conceptual modelling approach of mechanical products based on functional surface

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A modelling framework based on functional surface is presented to support conceptual design of mechanical products. The framework organizes product information in an abstract and multilevel manner. It consists of two mapping processes: function decomposition process and form reconstitution process. The steady mapping relationship from function to form (function-functional surface-form) is realized by taking functional surface as the middle layer. It farthest reduces the possibilities of combinatorial explosion that can occur during function decomposition and form reconstitution. Finally, CAD tools are developed and an auto-bender machine is applied to demonstrate the proposed approach.

  5. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    Science.gov (United States)

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

  6. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  7. Zirconium fluoride glass - Surface crystals formed by reaction with water

    Science.gov (United States)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  8. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  9. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  10. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more......Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface...

  11. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  12. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  13. Hydrodynamic boundary condition of water on hydrophobic surfaces.

    Science.gov (United States)

    Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian

    2013-05-01

    By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.

  14. Influence of surface roughness and porosity of inclusion in water droplet on heat transfer enhancement

    Directory of Open Access Journals (Sweden)

    Borisova Anastasia G.

    2016-01-01

    Full Text Available Using high-speed camera, the experiments were performed to research evaporation of 10 μl water droplets containing 2 mm solid inclusions in the shape of cube, when heated (up to 850 K in combustion products of technical ethanol. Adding solid inclusions in water droplets allowed considerably decreasing (by 70% their evaporation times. Also, the artificial irregularities (roughness and porosity at the surfaces of solid inclusions were manufactured to increase heat transfer area. Such approach enabled to decrease evaporation times of heterogeneous liquid droplets in high-temperature gases by 40% (when comparing inclusions with artificial irregularities and smooth surface.

  15. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  16. Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production.

    Science.gov (United States)

    Abdol Hamid, Hashim R; Kassim, Walid M S; El Hishir, Abdulah; El-Jawashi, Salem A S

    2008-10-01

    Produced water is water trapped in underground formations that is brought to the surface along with oil or gas production. Oilfield impacted soil is the most common environmental problem associated with oil production. The produced water associated with oil-production contaminates the soil and causes the outright death of plants, and the subsequent erosion of topsoil. Also, impacted soil serves to contaminate surface waters and shallow aquifers. This paper is intended to provide an approach for full characterization of contaminated soil by produced water, by means of analysis of both the produced water and the impacted soil using several recommended analytical techniques and then identify and assay the main constituents that cause contamination of the soil. Gialo-59 oilfield (29N, 21E), Libya, has been chosen as the case study of this work. The field has a long history of petroleum production since 1959, where about 300,000 bbl of produced water be discharged into open pit. Test samples of contaminated soil were collected from one of the disposal pits. Samples of produced water were collected from different points throughout the oil production process, and the analyses were carried out at the labs of Libyan Petroleum Institute, Tripoli, Libya. The results are compared with the local environmental limiting constituents in order to prepare for a plan of soil remediation. The results showed that the main constituents (pollutants) that impact the soil are salts and hydrocarbon compounds. Accordingly; an action of soil remediation has been proposed to remove the salts and degradation of hydrocarbons.

  17. Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany

    Directory of Open Access Journals (Sweden)

    Denise Peth

    2017-02-01

    Full Text Available The German wine sector has encountered new challenges in water management recently. To manage water resources responsibly, it is necessary to understand the relationship between the input of water and the output of wine, in terms of quantity and quality. The objectives of this study are to examine water use at the farm scale at three German wineries in Rhenish Hesse, and to develop and apply, for the first time, a quality-based indicator. Water use is analyzed in terms of wine production and wine-making over three years. After the spatial and temporal boundaries of the wineries and the water flows are defined, the farm water productivity indicator is calculated to assess water use at the winery scale. Farm water productivity is calculated using the AgroHyd Farmmodel modeling software. Average productivity on a quantity basis is 3.91 L wine per m3 of water. Productivity on a quality basis is 329.24 Oechsle per m3 of water. Water input from transpiration for wine production accounts for 99.4%–99.7% of total water input in the wineries, and, because irrigation is not used, precipitation is the sole source of transpired water. Future studies should use both quality-based and mass-based indicators of productivity.

  18. Water footprints of cities - indicators for sustainable consumption and production

    Science.gov (United States)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2013-02-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We have further developed the existing water footprint methodology by globally resolving virtual water flows and import and source regions at 5 arc minutes spatial resolution, and by assessing local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2% and 0.5%, respectively, roughly equal to local drinking water abstractions of these cities. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  19. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  20. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  1. Distribution of tritium in precipitation and surface water in California

    Science.gov (United States)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  2. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  3. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    1999-02-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane.

  4. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  5. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    Science.gov (United States)

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  6. Field kites: Crop-water production functions and the timing of water application for supplementary irrigation

    Science.gov (United States)

    Smilovic, M.; Gleeson, T.; Adamowski, J. F.

    2015-12-01

    Agricultural production is directly related to water management and water supply. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the facility to manage both the timing and amount of irrigation water may result in higher yields. The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield. Previous efforts have attempted to describe and formalize the crop-water production function as a single-variable function of seasonal water use. However, these representations do not account for the effects of temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution of soil moisture. This over-simplification renders the function inappropriate for recommendations related to irrigation scheduling, water management, economically optimal irrigation, water and agricultural productivity, and assessing the role of full and supplementary irrigation. We propose field kites, a novel representation of the crop-water production function that explicitly acknowledges crop yield variability as a function of both seasonal water use and associated temporal distributions of water use. Field kites are a tool that explicitly considers the farmers' capacity to manage their water resources, to more appropriately evaluate the optimal depth of irrigation water under water-limiting conditions. The field kite for winter wheat is presented both generally and cultivar- and climate-specific for Western Canada. The field kites are constructed using AquaCrop and previously validated cultivar-specific variables. Field kites provide the tools for water authorities and policy makers to evaluate agricultural production as it relates to farm water management, and to determine appropriate policies related to developing and supporting the necessary irrigation infrastructure to increase water productivity.

  7. Regional water footprints of potential biofuel production in China.

    Science.gov (United States)

    Xie, Xiaomin; Zhang, Tingting; Wang, Liming; Huang, Zhen

    2017-01-01

    Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. However, rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water footprints (WF) of biofuels derived from several potential non-edible feedstocks including cassava, sweet sorghum, and Jatropha curcas in China. Different water footprint types including blue water, green water, and grey water are considered in this study. Based on the estimated WF, water deprivation impact and water stress degree on local water environment are further analyzed for different regions in China. On the basis of the feedstock resource availability, sweet sorghum, cassava, and Jatropha curcas seeds are considered as the likely feedstocks for biofuel production in China. The water footprint results show that the feedstock growth is the most water footprint intensive process, while the biofuel conversion and transportation contribute little to total water footprints. Water footprints vary significantly by region with climate and soil variations. The life-cycle water footprints of cassava ethanol, sweet sorghum ethanol, and Jatropha curcas seeds biodiesel were estimated to be 73.9-222.2, 115.9-210.4, and 64.7-182.3 L of water per MJ of biofuel, respectively. Grey water footprint dominates the life-cycle water footprint for each type of the biofuels. Development of biofuels without careful water resource management will exert significant impacts on local water resources. The water resource impacts vary significantly among regions. For example, based on blue and grey water consumption, Gansu province in China will suffer much higher water stress than other regions do due to limited available water resources and large amount of fertilizer use in that province. In term of blue water, Shandong province is shown with the most severe water stress issue

  8. Land and Water requirements for meat production in China

    NARCIS (Netherlands)

    Zheng, Wanli

    2010-01-01

    China will face a challenge for meat production with its available land and water. The production of meat requires substantial amounts of livestock feed, which in turn require vast amounts of land and water to produce it. As China has continued to develop

  9. Analysis of process water use in poultry meat production

    Science.gov (United States)

    Poultry processing facilities use large quantities of water for chiller unit operations. The chiller is critical for temperature reduction to inhibit microbial growth and preserve product quality and safety. Process water quality can also influence product safety when bacteria present on poultry sk...

  10. Water footprint benchmarks for crop production: A first global assessment

    NARCIS (Netherlands)

    Mekonnen, M.M.; Hoekstra, A.Y.

    2014-01-01

    In the coming few decades, global freshwater demand will increase to meet the growing demand for food, fibre and biofuel crops. Raising water productivity in agriculture, that is reducing the water footprint (WF) per unit of production, will contribute to reducing the pressure on the limited global

  11. Horticultural production in greenhouses: efficient use of water

    NARCIS (Netherlands)

    Stanghellini, C.

    2014-01-01

    The central thesis of this paper is that greenhouse production of vegetables is the most water-efficient food production system and thus can contribute to meeting the challenge of feeding a better diet to an increasing world population, without increasing the need for irrigation water. The various

  12. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  13. Soil Moisture and Vegetation Controls on Surface Energy Balance Using the Maximum Entropy Production Model of Evapotranspiration

    Science.gov (United States)

    Wang, J.; Parolari, A.; Huang, S. Y.

    2014-12-01

    The objective of this study is to formulate and test plant water stress parameterizations for the recently proposed maximum entropy production (MEP) model of evapotranspiration (ET) over vegetated surfaces. . The MEP model of ET is a parsimonious alternative to existing land surface parameterizations of surface energy fluxes from net radiation, temperature, humidity, and a small number of parameters. The MEP model was previously tested for vegetated surfaces under well-watered and dry, dormant conditions, when the surface energy balance is relatively insensitive to plant physiological activity. Under water stressed conditions, however, the plant water stress response strongly affects the surface energy balance. This effect occurs through plant physiological adjustments that reduce ET to maintain leaf turgor pressure as soil moisture is depleted during drought. To improve MEP model of ET predictions under water stress conditions, the model was modified to incorporate this plant-mediated feedback between soil moisture and ET. We compare MEP model predictions to observations under a range of field conditions, including bare soil, grassland, and forest. The results indicate a water stress function that combines the soil water potential in the surface soil layer with the atmospheric humidity successfully reproduces observed ET decreases during drought. In addition to its utility as a modeling tool, the calibrated water stress functions also provide a means to infer ecosystem influence on the land surface state. Challenges associated with sampling model input data (i.e., net radiation, surface temperature, and surface humidity) are also discussed.

  14. Occurrence of glucocorticogenic activity in various surface waters in The Netherlands.

    Science.gov (United States)

    Schriks, Merijn; van der Linden, Sander C; Stoks, Peter G M; van der Burg, Bart; Puijker, Leo; de Voogt, Pim; Heringa, Minne B

    2013-09-01

    Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attention and several large monitoring campaigns have been carried out to assess estrogenic contamination in the aquatic environment. The introduction of novel in vitro bioassays enables researchers to study if - and to what extent - water bodies are under the impact of less-studied (synthetic) hormone active compounds. The aim of the present study was to carry out an assessment on the presence and extent of glucocorticogenic activity in Dutch surface waters that serve as sources for drinking water production. The results show glucocorticogenic activity in the range ofLOD - 2.4ng dexamethasone equivalentsL(-1) (dex EQs) in four out of eight surface waters. An exploratory time-series study to obtain a more complete picture of the yearly average of fluctuating glucocorticogenic activities at two sample locations demonstrated glucocorticogenic activities ranging betweenLOD - 2.7ng dex EQsL(-1). Although immediate human health effects are unlikely, the environmental presence of glucocorticogenic compounds in the ngL(-1) range compels further environmental research and assessment.

  15. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  16. Determining the required accuracy of LST products for estimating surface energy fluxes

    Science.gov (United States)

    Pinheiro, A. C.; Reichle, R.; Sujay, K.; Arsenault, K.; Privette, J. L.; Yu, Y.

    2006-12-01

    Land Surface Temperature (LST) is an important parameter to assess the energy state of a surface. Synoptic satellite observations of LST must be used when attempting to estimate fluxes over large spatial scales. Due to the close coupling between LST, root level water availability, and mass and energy fluxes at the surface, LST is particularly useful over agricultural areas to help determine crop water demands and facilitate water management decisions (e.g., irrigation). Further, LST can be assimilated into land surface models to help improve estimates of latent and sensible heat fluxes. However, the accuracy of LST products and its impact on surface flux estimation is not well known. In this study, we quantify the uncertainty limits in LST products for accurately estimating latent heat fluxes over agricultural fields in the Rio Grande River basin of central New Mexico. We use the Community Land Model (CLM) within the Land Information Systems (LIS), and adopt an Ensemble Kalman Filter approach to assimilate the LST fields into the model. We evaluate the LST and assimilation performance against field measurements of evapotranspiration collected at two eddy-covariance towers in semi-arid cropland areas. Our results will help clarify sensor and LST product requirements for future remote sensing systems.

  17. Thin Water and Ice Films at Mineral Surfaces

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  18. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  19. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  20. Surface water and groundwater interaction on a hill island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    – the hill islands – is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field...

  1. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  2. Observation of water condensate on hydrophobic micro textured surfaces

    Science.gov (United States)

    Kim, Ki Wook; Do, Sang Cheol; Ko, Jong Soo; Jeong, Ji Hwan

    2013-07-01

    We visually observed that a dropwise condensation occurred initially and later changed into a filmwise condensation on hydrophobic textured surface at atmosphere pressure condition. It was observed that the condensate nucleated on the pillar side walls of the micro structure and the bottom wall adhered to the walls and would not be lifted to form a spherical water droplet using environmental scanning electron microscope.

  3. Zearalenone occurrence in surface waters in central Illinois, USA

    Science.gov (United States)

    Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops, such as corn and wheat. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development of a meth...

  4. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  5. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  6. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include t

  7. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results sh

  8. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  9. An Experimental Study of Planing Surfaces Operating in Shallow Water

    Science.gov (United States)

    1976-09-01

    D C APPROVED FOR PUBLIC RELEASE; (7 DISTRIBUTION UNLIMITED 22 1918 PT CLAIME Ar-Th -L’A THI S DOUETI 7E QUALITLY . AVAIILABIJaTECP FURNSR DTO DTIC...Aerodynamic tares were determined by towing the model just above the water surface at various trims and speeds. Only the drag was greatly affected by air

  10. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    Science.gov (United States)

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  11. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  12. Improving Water Sustainability and Food Security through Increased Crop Water Productivity in Malawi

    OpenAIRE

    Luxon Nhamo; Tafadzwanashe Mabhaudhi; Manuel Magombeyi

    2016-01-01

    Agriculture accounts for most of the renewable freshwater resource withdrawals in Malawi, yet food insecurity and water scarcity remain as major challenges. Despite Malawi’s vast water resources, climate change, coupled with increasing population and urbanisation are contributing to increasing water scarcity. Improving crop water productivity has been identified as a possible solution to water and food insecurity, by producing more food with less water, that is, to produce “more crop per drop...

  13. ELECTROLYTIC-PLASMA TREATMENT OF INNER SURFACE OF TUBULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Yu. G. Alekseev

    2016-01-01

    Full Text Available While manufacturing a number of important tubular products stringent requirements have been imposed on quality of their inner surfaces. The well-known methods for inner surface treatment of pipes include sandblasting, chemical cleaning with acid reagents (oxalic, formic, sulfamic, orthophosphoric acids and electrochemical polishing. Disadvantages of the chemical method are cleaning-up irregularities, high metal removal, limited number of reagent application, complicated selection of reagent chemical composition and concentration, complicated and environmentally harmful recycling of waste chemicals, high cost of reagents. Low productivity at a high cost, as well as hazardous impact on personnel due to high dispersion of abrasive dust are considered as disadvantages of sandblasting. Electrochemical polishing is characterized by the following disadvantages: low processing productivity because supply of high currents is rather difficult due to electrolyte scattering capacity away from the main electrode action zone, limited length of the cavity to be treated due to heating of flexible current leads at operating current densities, application of expensive aggressive electrolytes and high costs of their recycling. A new method for polishing and cleaning of inner surfaces of tubular products based on electrolyte-plasma treatment has been developed. In comparison with the existing methods the proposed methods ensures quality processing with high intensity while applying non-toxic, environmentally friendly and cheap electrolytes. The paper presents results of investigations on technological specific features of electrolyte-plasma treatment for inner surfaces of tubular products: influence of slotted nozzle width, electrolyte flow and rate on stability of gas-vapor blanket, current density and productivity. Results of the research have made it possible to determine modes that provide stability and high productivity in the process of electrolyte

  14. Index of surface-water stations in Texas, January 1988

    Science.gov (United States)

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1988-01-01

    As of January 1, 1988, the surface-water data-collection network in Texas included 368 continuous streamflow, 12 continuous or daily reservoir-content, 38 gage height, 15 crest-stage partia 1-record, 4 periodic discharge through range, 32 floodhydrocjraph partial-record, 9 flood-profile partial-record, 36 low-flow partial-record 45 daily chemical-quality, 19 continuous-recording water-quality, 83 periodic biological, 19 lake surveys, 160 periodic organic and (or) nutrient, 3 periodic insecticide, 33 periodic pesticide, 20 automatic sampler, 137 periodic minor elements, 125 periodic chemical-quality, 74 periodic physica1-organic, 24 continuous-recording three- or four-parameter water-quality, 34 periodic sediment, 21 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemicalquality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations.

  15. Natural attenuation of organic contaminants at the interface between groundwater and surface water

    Energy Technology Data Exchange (ETDEWEB)

    Middeldorp, P.; Staps, S.; Rijnaarts, H. [TNO-MEP Environment, Energy and Process Innovation, Apeldoorn (Netherlands); Roelofsen, F.; Valstar, J. [TNO-NITG, Apeldoorn (Netherlands); Smits, J. [WL/Delf Hydraulics (Netherlands)

    2003-07-01

    There are strong indications that the interface between groundwater and surface water plays an important role in the natural degradation of organic contaminants (NA-interface). This is especially the case for mobile contaminants that are relatively persistent in an anaerobic (subsurface) environment, and are mineralised relatively easy under more oxidized environmental conditions (e.g. benzene, chlorobenzene, vinyl chloride, the light aliphatic fraction of mineral oil, etc.). These compounds are often also present as degradation products of natural or stimulated in situ biodegradation processes. Previous investigations have indicated indirectly that NA-interface processes contribute to a reduction of contaminant flux into surface water systems. Until now, no straightforward assessment and quantification of NA-interface has been performed. Moreover, limit values for allowable influx of contamination from a site into a surface water system do not exist. This prevents a possible beneficial use of NA-interface processes as a part of a cost-effective and integrated soil and water quality management. This project aims to gain more understanding of the occurrence of NA-interface processes, to quantify their contribution to emission reduction towards the surface water system and, in case of substantial contribution, to promote application of NA-interface as a part of a cost-effective integrated environmental management of contaminated sites and surrounding water bodies. The project's starting point is that the surface water is regarded as an object of risk and not as a reactor. Thus, effective degradation in the interface does not move environmental problems to surface water systems, but eliminates contaminants by natural occurring processes, thus protecting the aquatic ecosystem. (orig.)

  16. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  17. Water consumption in the production of ethanol and petroleum gasoline.

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  18. Surface Water Data at Los Alamos National Laboratory 2000 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A.Shaull; M.R.Alexander; R.P.Reynolds; R.P.Romero; E.T.Riebsomer; C.T.McLean

    2001-06-02

    The principal investigators collected and computed surface water discharge data from 23 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs, two that flow into Canon del Valle and one that flows into Water Canyon.

  19. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  20. Surface Water Data at Los Alamos National Laboratory: 1999 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    2000-04-01

    The principal investigators collected and computed surface water discharge data from 22 stream-gaging stations that cover most of Los Alamos National Laboratory with one at Bandelier National Monument. Also included are discharge data from three springs that flow into Canon de Valle and nine partial-record storm water stations.

  1. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  2. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  3. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  4. Surface water data at Los Alamos National Laboratory: 2009 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  5. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    Science.gov (United States)

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  6. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...

  7. Water Vapor Products from Differential-InSAR with Auxiliary Calibration Data: Accuracy and Statistics

    Science.gov (United States)

    Gong, W.; Meyer, F. J.; Webley, P.

    2014-12-01

    Although water vapor disturbance has been long term recognized as the major error source in differential Interferometric Synthetic Aperture Radar (d-InSAR) techniques for the ground deformation monitoring and topography reconstruction, it provides opportunities to extract the atmospheric water-vapor information from satellite SAR imageries that can be further used to support studies on earth energy budget, climate, the hydrological cycle, and meteorological forecasting, etc. The water vapor contribution in interferometric phases is normally referred as the atmospheric delay dominated by water vapor rather than condensed water (e.g. cloud). D-InSAR can produce maps of the column water vapor amounts (equivalent to integrated water vapor (IWV) or Precipitable Water Vapor (PWV) in other literatures) that are important parameters quantitatively describe the total amount of water vapor overlying a point on the earth surface. Similar products have been operationally produced in multi-spectrum remote sensing, e.g. Moderate-resolution Imaging Spectroradiometer (MODIS) with a spatial resolution in 500 m to 1km; Whereas, the PWV products derived by d-InSAR have remarkably high spatial resolution that can capture fine scale of water vapor variations in space as small as tens of meters or even less. In recent years, some efforts have been made to derive the water vapor products from interferogram and analyze the corresponding products quality, such as studies comparing integrated water vapor derived from interferometric phases to other measurements (e.g. MERIS, MODIS, GNSS), studies on deriving absolute water vapor products from d-InSAR, and studies on integrating d-InSAR water vapor products in meteorological numerical forecast. In this study, considering these limitation factors and based on previous studies, we discuss the accuracy and statistics of the water vapor products from satellite SAR, including (1) Accuracy of the differential water vapor products; (2) Sources of

  8. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  9. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Directory of Open Access Journals (Sweden)

    Nima Shahkaramipour

    2017-03-01

    Full Text Available Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol, polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.

  10. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  11. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay.

  12. Improving Water Sustainability and Food Security through Increased Crop Water Productivity in Malawi

    Directory of Open Access Journals (Sweden)

    Luxon Nhamo

    2016-09-01

    Full Text Available Agriculture accounts for most of the renewable freshwater resource withdrawals in Malawi, yet food insecurity and water scarcity remain as major challenges. Despite Malawi’s vast water resources, climate change, coupled with increasing population and urbanisation are contributing to increasing water scarcity. Improving crop water productivity has been identified as a possible solution to water and food insecurity, by producing more food with less water, that is, to produce “more crop per drop”. This study evaluated crop water productivity from 2000 to 2013 by assessing crop evapotranspiration, crop production and agricultural gross domestic product (Ag GDP contribution for Malawi. Improvements in crop water productivity were evidenced through improved crop production and productivity. These improvements were supported by increased irrigated area, along with improved agronomic practices. Crop water productivity increased by 33% overall from 2000 to 2013, resulting in an increase in maize production from 1.2 million metric tons to 3.6 million metric tons, translating to an average food surplus of 1.1 million metric tons. These developments have contributed to sustainable improved food and nutrition security in Malawi, which also avails more water for ecosystem functions and other competing economic sectors.

  13. Drainage-water travel times as a key factor for surface water contamination

    NARCIS (Netherlands)

    Groenendijk, P.; Eertwegh, van den G.A.P.H.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unreali

  14. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  15. Surface water data at Los Alamos National Laboratory: 1995 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barks, R. [ed.; Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.

    1996-08-01

    The principle investigators collected and computed surface water discharge data from 15 stream-gaging stations that cover most of Los Alamos National Laboratory. The United States Department of Interior Geological Survey, Water Resources Division, operates two of the stations under a subcontract; these are identified in the station manuscripts. Included in this report are data from one seepage run conducted in Los Alamos Canyon during the 1995 water year.

  16. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  17. How water meets a hydrophobic surface: Reluctantly and with flucuations

    Science.gov (United States)

    Poynor Torigoe, Adele Nichole

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low density region forms near the surface. This depleted region would have implications in such diverse areas as colloidal self-assembly, and the boundary conditions of fluid flow. However, the literature still remains divided as to whether or not such a depleted region exists. To investigate the existence of this layer, we have employed three surface-sensitive techniques, time-resolved phase-modulated ellipsometry, surface plasmon resonance, and X-ray reflectivity. Both ellipsometry and X-ray reflectivity provide strong evidence for the low-density layer and illuminate unexpected temporal behavior. Using all three techniques, we found surprising fluctuations at the interface with a non-Gaussian distribution and a single characteristic time on the order of tenths of seconds. This information supports the idea that the boundary fluctuates with something akin to capillary waves. We have also investigated the dependence of the static and dynamic properties of the hydrophobic/water interface on variables such as temperature, contact angle, pH, dissolved gasses, and sample quality, among others, in a hope to discover the root of the controversy in the literature. We found that the depletion layer is highly dependent on temperature, contact angle and sample quality. This dependence might explain some of the discrepancies in the literature as different groups often use hydrophobic surfaces with different properties.

  18. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Mughini-Gras, Lapo; Penny, Christian; Ragimbeau, Catherine; Schets, Franciska M; Blaak, Hetty; Duim, Birgitta; Wagenaar, Jaap A; de Boer, Albert; Cauchie, Henry-Michel; Mossong, Joel; van Pelt, Wilfrid

    2016-09-15

    Campylobacter is the most common causative agent of human bacterial gastroenteritis and is frequently found in surface water, where it indicates recent contamination with animal faeces, sewage effluent, and agricultural run-off. The contribution of different animal reservoirs to surface water contamination with Campylobacter is largely unknown. In the Netherlands, the massive poultry culling to control the 2003 avian influenza epidemic coincided with a 44-50% reduction in human campylobacteriosis cases in the culling areas, suggesting substantial environment-mediated spread of poultry-borne Campylobacter. We inferred the origin of surface water Campylobacter jejuni and Campylobacter coli strains in Luxembourg and the Netherlands, as defined by multilocus sequence typing, by comparison to strains from poultry, pigs, ruminants, and wild birds, using the asymmetric island model for source attribution. Most Luxembourgish water strains were attributed to wild birds (61.0%), followed by poultry (18.8%), ruminants (15.9%), and pigs (4.3%); whereas the Dutch water strains were mainly attributed to poultry (51.7%), wild birds (37.3%), ruminants (9.8%), and pigs (1.2%). Attributions varied over seasons and surface water types, and geographical variation in the relative contribution of poultry correlated with the magnitude of poultry production at either the national or provincial level, suggesting that environmental dissemination of Campylobacter from poultry farms and slaughterhouses can be substantial in poultry-rich regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China.

    Science.gov (United States)

    Li, Ting; Wang, Nanping; Li, Shijun

    2015-11-01

    A radon survey in surface water and drinking water was conducted using a portable degassing system associated with an ionisation chamber AlphaGUARD (PQ2000) for understanding levels of dissolved radon ((222)Rn) concentration in different types of water sources and risk assessment of radon in drinking water in Shenzhen City (SC) with a population of 10 628 900 in 2013, Guangdong Province of China. The measurements show that arithmetic means ± standard deviations of radon ((222)Rn) concentration are 52.05 ± 6.64, 0.29 ± 0.26, 0.15 ± 0.23 and 0.37 ± 0.42 kBq m(-3) in spring water, surface water, large and small public water supplies, respectively. Only radon concentrations of two water samples collected in mountainous areas are more than 11.10 kBq m(-3), exceeding the limit of radon concentration in drinking water stipulated by the national standard of China (GB5749-2006). The annual effective doses due to radon in drinking water were also calculated. The investigation suggests that there are no risks caused by radon in the drinking water in SC.

  20. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    Science.gov (United States)

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  1. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    Energy Technology Data Exchange (ETDEWEB)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  2. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    Science.gov (United States)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    SummaryA reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations at shallow depths and close to streams.

  3. Produced water challenges : influence of production chemicals on flocculation

    OpenAIRE

    Zangaeva, Elmara

    2010-01-01

    Produced water is the largest volume waste from offshore oil and gas exploration and production processes. Water in varying quantities is always produced along with oil, and has to be separated from the oil. The quantity of “produced water” generally increases substantially with the age of the oil field. Produced water handling tactic depends on the composition of produced water, location, quantity and the availability of resources. This thesis describes practical, economical, technologica...

  4. Solid olive waste in environmental cleanup: oil recovery and carbon production for water purification.

    Science.gov (United States)

    El-Hamouz, Amer; Hilal, Hikmat S; Nassar, Nashaat; Mardawi, Zahi

    2007-07-01

    A potentially-economic three-fold strategy, to use solid olive wastes in water purification, is presented. Firstly, oil remaining in solid waste (higher than 5% of waste) was recovered by the Soxhlet extraction technique, which can be useful for the soap industry. Secondly, the remaining solid was processed to yield relatively high-surface area active carbon (AC). Thirdly, the resulting carbon was employed to reversibly adsorb chromate ions from water, aiming to establish a water purification process with reusable AC. The technique used here enabled oil recovery together with the production of a clean solid, suitable for making AC. This process also has the advantage of low production cost.

  5. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and surface water resources. Riparian zones may play an important role in the attenuation of contaminant concentrations when contaminant plumes flow from groundwater to surface water...... because of the occurrence of redox gradients, strongly reductive conditions and high biological activity. In order to meet the expectations of the EU Water Framework Directive, an evaluation of the impact of such plumes on surface water is needed. The aim of this work is to develop a groundwater transport...... number of geochemical processes, allows the simulation of soil geochemical transformations when microbial by-products are released to surface water, and the consideration of non-linear feedbacks on bacterial growth and pollutant transformations. Sensitivity analysis is performed through Monte Carlo...

  6. Biophysical and economic water productivity of dual-purpose cattle farming.

    Science.gov (United States)

    Sraïri, M T; Benjelloun, R; Karrou, M; Ates, S; Kuper, M

    2016-02-01

    This study analyzes key factors influencing water productivity in cattle rearing, particularly in contexts characterized by water scarcity. This was done through year-round monitoring of on-farm practices within five smallholder farms located in the Saïss area (northern Morocco). The on-farm monitoring protocol consisted of characterizing: (i) volumes of water used for fodder production and distinguished by source (rainfall, surface irrigation and groundwater), (ii) virtual water contained in off-farm feed resources, (iii) total forage biomass production, (iv) dietary rations fed to lactating cows and their calves and (v) milk output and live weight gain. Findings reveal a mean water footprint of 1.62±0.81 and 8.44±1.09 m3/kg of milk and of live weight gain, respectively. Groundwater represented only 13.1% and 2.2% of the total water used to get milk and live weight gain, respectively, while rainfall represented 53.0% and 48.1% of the total water for milk and live weight gain, respectively. The remaining water volumes used came from surface irrigation water (7.4% for milk and 4.0% for live weight gain) and from virtual water (26.5% for milk and 44.7% for live weight gain). The results also revealed a relatively small gross margin per m3 of water used by the herd, not exceeding an average value of US $ 0.05, when considering both milk and live weight. Given the large variability in farm performances, which affect water productivity in cattle rearing throughout the production process, we highlight the potential for introducing a series of interventions that are aimed at saving water, while concurrently improving efficiency in milk production and live weight gain. These interventions should target the chain of production functions that are implemented throughout the process of water productivity in cattle rearing. Moreover, these interventions are of particular importance given our findings that livestock production depends largely upon rainfall, rather than

  7. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  8. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  9. Water for wood products versus nature, food or feed

    Science.gov (United States)

    Schyns, Joep; Booij, Martijn; Hoekstra, Arjen

    2017-04-01

    Forests play a central interlinked role in the 2030 Agenda on Sustainable Development. The Agenda aims at an increased share of renewable energy in the global energy mix (target 7.2) and restoration and sustainable management of forests (targets 6.6, 15.1 & 15.2). Forests also play a key role in the hydrological cycle accounting for the largest water flux from land to atmosphere. However, we do not know which part of this is used for the production of wood products such as lumber, pulp and paper, firewood or biofuel. SDG target 6.4 calls for increased water-use efficiency across all sectors and requires understanding the competing demands for water and the potential conflicts between wood production and other purposes like food (SDG 2). To reach the SDGs we need to understand the interlinkages between the SDGs and know how much water is used in the forestry sector. We provide the first estimate of global water use in the forestry sector, using the water footprint (WF) as indicator and distinguishing between consumption of green water (precipitation) and blue water (groundwater through capillary rise). We estimate forest evaporation at a high spatial resolution level and attribute total water consumption to the various forest products, including ecosystem services. Global water consumption for wood production increased by 34% over 50 years to 290x109 m3/y in 2001-2010. Wood has a higher economic water productivity (EWP, US/m3) than common food or feed crops like wheat, maize and sugar beet, and bio-ethanol from wood has a small WF per unit of energy compared to first-generation bio-ethanol from these three crops. Counterintuitively, extensive wood production has a smaller WF and hence a higher EWP than intensive wood production. The reason is that extensively exploited forests host relatively more value next to wood production in the form of other ecosystem services. Recycling of wood products could effectively reduce the WF of the forestry sector, thereby leaving

  10. Photoelectrochemical hydrogen production from biomass derivatives and water.

    Science.gov (United States)

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  11. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie

    2013-01-01

    The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking...... and metolachlor increased the toxicity compared to the parent compounds while an equal toxicity was found for photolysis products of acetochlor. This suggests that toxic photodegradation products are generated from chloroacetamides under UV-treatment. An important perspective of this finding...... is that the photolysis products are at least as toxic as the parent compounds....

  12. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2016-10-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  13. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  14. Spectroscopic measurements of the surface waters for evaluating the fresh-water transport to marine environments in the Southern Baltic

    Science.gov (United States)

    Drozdowska, Violetta; Markuszewski, Piotr; Kowalczyk, Jakub; Makuch, Przemysław; Pakszyc, Paulina; Strzałkowska, Agata; Piskozub, Jacek; Petelski, Tomasz; Zieliński, Tymon; Gutowska, Dorota

    2014-05-01

    To asses concentration and spatial distribution of surface-active molecules (surfactants) the spectrophotometric and spectrofluorometric measurements of water samples taken from a surface film and a depth 0.5 m were carried out during three cruises of r/v Oceania in Springs' 2010-2011 and Autumn' 2012. Measurements were conducted along the transects from the river outlets to the open waters of the Southern Baltic Sea. Surfactants consist of polar molecules of marine dissolved organic matter and are chemically not entirely classified. However, fractions of dissolved organic matter having chromophores or fluorophores (CDOM or FDOM) are recognized through their specific absorption and fluorescence spectra. The sea surface is a layer of transition between the atmosphere and the sea, where there is a variety of biological, physical and chemical processes which contribute to the accumulation and exchange of surfactants, the chemical species concentrated in the surface layer (surface active agents). The main source of marine surfactants are remains of phytoplankton and its degradation products, created by bacterial activity, and as a result of condensation of molecules of low molecular weight to form of surface-active macromolecules. The presence of surfactants in the surface layers can significantly affect the access of solar energy into the sea as well as the air-sea interaction processes. The main objective of the research was to investigate the luminescent properties of surfactants, sampled in different regions of the Southern Baltic, and to find the differences between a surface film and a subsurface layer (of 50 cm). The next aim was to combine the differences in optical properties with the different dynamics for various river outlets. The results of spectrophotometric studies show the differences in the intensity of spectral bands, particularly between coastal (estuaries) and the open sea zones. Also, analysis of the spectra shows differences between areas of the

  15. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  16. Ionization dynamics of water dimer on ice surface

    Science.gov (United States)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  17. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  18. The Global Land Surface Satellite (GLASS Remote Sensing Data Processing System and Products

    Directory of Open Access Journals (Sweden)

    Gongqi Zhou

    2013-05-01

    Full Text Available Using remotely sensed satellite products is the most efficient way to monitor global land, water, and forest resource changes, which are believed to be the main factors for understanding global climate change and its impacts. A reliable remotely sensed product should be retrieved quantitatively through models or statistical methods. However, producing global products requires a complex computing system and massive volumes of multi-sensor and multi-temporal remotely sensed data. This manuscript describes the ground Global LAnd Surface Satellite (GLASS product generation system that can be used to generate long-sequence time series of global land surface data products based on various remotely sensed data. To ensure stabilization and efficiency in running the system, we used the methods of task management, parallelization, and multi I/O channels. An array of GLASS remote sensing products related to global land surface parameters are currently being produced and distributed by the Center for Global Change Data Processing and Analysis at Beijing Normal University in Beijing, China. These products include Leaf Area Index (LAI, land surface albedo, and broadband emissivity (BBE from the years 1981 to 2010, downward shortwave radiation (DSR and photosynthetically active radiation (PAR from the years 2008 to 2010.

  19. Emerging contaminants in surface waters in China—a short review

    Science.gov (United States)

    Yang, Guang; Fan, Maohong; Zhang, Guangming

    2014-07-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L-1 to μg L-1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched.

  20. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.