WorldWideScience

Sample records for surface water kinetics

  1. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  2. Analyzing the Molecular Kinetics of Water Spreading on Hydrophobic Surfaces via Molecular Dynamics Simulation.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2017-09-07

    In this paper, we report molecular kinetic analyses of water spreading on hydrophobic surfaces via molecular dynamics simulation. The hydrophobic surfaces are composed of amorphous polytetrafluoroethylene (PTFE) with a static contact angle of ~112.4° for water. On the basis of the molecular kinetic theory (MKT), the influences of both viscous damping and solid-liquid retarding were analyzed in evaluating contact line friction, which characterizes the frictional force on the contact line. The unit displacement length on PTFE was estimated to be ~0.621 nm and is ~4 times as long as the bond length of C-C backbone. The static friction coefficient was found to be ~[Formula: see text] Pa·s, which is on the same order of magnitude as the dynamic viscosity of water, and increases with the droplet size. A nondimensional number defined by the ratio of the standard deviation of wetting velocity to the characteristic wetting velocity was put forward to signify the strength of the inherent contact line fluctuation and unveil the mechanism of enhanced energy dissipation in nanoscale, whereas such effect would become insignificant in macroscale. Moreover, regarding a liquid droplet on hydrophobic or superhydrophobic surfaces, an approximate solution to the base radius development was derived by an asymptotic expansion approach.

  3. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  4. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  5. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Comber, Mike

    2017-01-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby...... potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation...... method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng...

  6. Surface kinetic temperature mapping using satellite spectral data in ...

    African Journals Online (AJOL)

    The result revealed that despite the limited topographic differences of the rift lakes and their proximity, the surface kinetic temperature difference is high, mainly due to groundwater and surface water fluxes. From thermal signature analysis two hot springs below the lake bed of Ziway were discovered. The various hot springs ...

  7. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters.

    Science.gov (United States)

    Bodrato, Marco; Vione, Davide

    2014-04-01

    The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.

  8. Water reactivity with mixed oxide (U,Pu)O2 surfaces

    International Nuclear Information System (INIS)

    Gaillard, Jeremy

    2013-01-01

    The interaction of water with actinides oxide surfaces remains poorly understood. The adsorption of water on PuO 2 surface and (U,Pu)O 2 surface leads to hydrogen generation through radiolysis but also surface evolution. The study of water interaction with mixed oxide (U,Pu)O 2 and PuO 2 surfaces requires the implementation of non intrusive techniques. The study of the hydration of CeO 2 surface is used to study the effectiveness of different techniques. The results show that the water adsorption leads to the surface evolution through the formation of a hydroxide superficial layer. The reactivity of water on the surface depends on the calcination temperature of the oxide precursor. The thermal treatment of hydrated surfaces can regenerate the surface. The study on CeO 2 hydration emphasizes the relevancies of these techniques in studying the hydration of surfaces. The hydrogen generation through water radiolysis is studied with an experimental methodology based on constant relative humidity in the radiolysis cell. The hydrogen accumulation is linear for the first hours and then tends to a steady state content. A mechanism of hydrogen consumption is proposed to explain the existence of the steady state of hydrogen content. This mechanism enables to explain also the evolution of the oxide surface during hydrogen generation experiments as shown by the evolution of hydrogen accumulation kinetics. The accumulation kinetics depends on the dose rate, specific surface area and the relative humidity but also on the oxide aging. The plutonium percentage appears to be a crucial parameter in hydrogen accumulation kinetics. (author) [fr

  9. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    Science.gov (United States)

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in

  11. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    Science.gov (United States)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  12. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment.

    Science.gov (United States)

    Liu, Chao; Qiang, Zhimin; Adams, Craig; Tian, Fang; Zhang, Tao

    2009-08-01

    The degradation kinetics and mechanism of dichlorvos by permanganate during drinking water treatment were investigated. The reaction of dichlorvos with permanganate was of second-order overall with negligible pH dependence and an activation energy of 29.5 kJ x mol(-1). At pH 7.0 and 25 degrees C, the rate constant was 25.2+/-0.4M(-1)s(-1). Dichlorvos was first degraded to trimethyl phosphate (TMP) and dimethyl phosphate (DMP) simultaneously which approximately accounted for or=95% with respect to phosphorus mass, respectively. Further oxidation of DMP generated a final byproduct, monomethyl phosphate (MMP). MMP was for the first time identified as a major byproduct in chemical oxidation of dichlorvos. The kinetic model based on degradation mechanism and determined reaction rate constants allowed us to predict the evolution of dichlorvos and its byproduct concentrations during permanganate pre-oxidation process at water treatment plants. These results suggest that even though the dichlorvos concentration in surface water complies with the surface water quality standards of China (50 microg L(-1)), its concentration after conventional water treatment will most probably exceed the drinking water quality standards (1 microg L(-1)). Moreover, luminescent bacteria test shows that the acute toxicity of dichlorvos solution evidently increased after permanganate oxidation.

  13. Modeling of radiocesium transport kinetics in system water-aquatic plants

    International Nuclear Information System (INIS)

    Svadlenkova, M.

    1988-01-01

    Compartment models were used to describe the kinetics of the transport of radionuclides in the system water-biomass of aquatic plants. Briefly described are linear models and models with time variable parameters. The model was tested using data from a locality in the environs of the Bohunice nuclear power plant. Cladophora glomerata algae were the monitored plants, 137 Cs the monitored radionuclide. The models may be used when aquatic plants serve as bioindicators of the radioactive contamination of surface waters, for monitoring the transport of radionuclides in food chains. (M.D.). 10 refs

  14. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  15. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  16. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  17. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.

  18. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  19. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  20. Study of kinetics of reaction of lithium deuteride powder with O2, CO2 and water vapor

    International Nuclear Information System (INIS)

    Li Gan; Lu Guangda; Jing Wenyong; Qin Cheng

    2004-01-01

    The kinetics of reaction of lithium deuteride powder with O 2 , CO 2 and water vapor is studied. The experimental results show that lithium deuteride reacts with O 2 and CO 2 at very small reaction rate but with water vapor at comparatively larger rate at room temperature (≅28 degree C). The reaction process with water vapor could be described using the unreacted shrinking core model. The second-order kinetics is appropriate for the chemical reaction on the surface of lithium deuteride and reaction rate constant is 0.281 kPa -1 ·min -1

  1. Redox Kinetics and Nonstoichiometry of Ce0.5Zr0.5O2−δ for Water Splitting and Hydrogen Production

    KAUST Repository

    Zhao, Zhenlong

    2017-04-25

    Water splitting and chemical fuel production as a promising carbon-neutral energy solution relies critically on an efficient electrochemical process over catalyst surfaces. The fundamentals within the surface redox pathways, including the complex interactions of mobile ions and electrons between the bulk and the surface, along with the role of adsorbates and electrostatic fields remain yet to be understood quantitatively. This work presents a detailed kinetics study and nonstoichiometry characterization of Ce0.5Zr0.5O2−δ (CZO), one of the most recognized catalysts for water splitting. The use of CZO leads to >60% improvement in the kinetic rates as compared with undoped ceria with twice the total yield at 700 °C, resulting from the improved reducibility. The peak H2 production rate is 95 μmol g–1 s–1 at 700 °C, and the total production is 750 μmol g–1. A threshold temperature of 650 °C is required to achieve significant H2 production at fast rates. The redox kinetics is modeled using two-step surface chemistry with bulk-to-surface transport equilibrium. Kinetics and equilibrium parameters are extracted, and the model predictions show good agreement with the measurements. The enthalpy of bulk defect formation for CZO is found to be 262 kJ/mol, >40% lower than that of undoped ceria. As oxygen vacancy is gradually filled up, the surface H2O splitting chemistry undergoes a transition from exothermic to endothermic, with the crossover around δ = 0.04 to 0.05, which constrains the further ion incorporation process. Our kinetics study reveals that the H2O splitting process with CZO is kinetics limited at low temperature and transitions to partial-equilibrium with significantly enhanced backward reaction at high temperature. The charge-transfer step is found to be the rate-limiting step for H2O splitting. The detailed kinetics and nonstoichiometric equilibria should be helpful in guiding the design and optimization of CZO as a catalyst, oxygen storage

  2. Kinetics of marine surfactant adsorption at an air water interface. Baltic Sea studies

    Directory of Open Access Journals (Sweden)

    Stanis³aw J. Pogorzelski

    2001-12-01

    Full Text Available The paper contains the results of studies of natural surface film adsorption kinetics carried out in inland waters and in shallow offshore regions of the Baltic Sea during 2000-01 under calm sea conditions. The novel approach presented here for the adsorption dynamics is based on the mixed kinetic-diffusion model and analyses of the surface pressure-time plots at short (t ->0 and long( t -> ∞ adsorption time intervals. Values of the effective relative diffusion coefficient Deff / D (= 0.008-0.607 and energy barrier for adsorption Ea / RT (= 0.49-7.10 agree well with the data reported for model non-ionic surfactant solutions of pre-cmc concentrations. Wind speed is one of the factors affecting the adsorption barrier via the increased surface pressure of the natural film exposed to wind shear stress (~ U102, and enters the relation Ea / RT = 1.70 U101/3.

  3. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  4. Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study

    Science.gov (United States)

    Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan

    2017-10-01

    Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.

  5. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  6. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  7. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  8. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  9. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    Science.gov (United States)

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  10. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  11. Kinetics of passivation of a nickel-base alloy in high temperature water

    International Nuclear Information System (INIS)

    Machet, A.; Galtayries, A.; Zanna, S.; Marcus, P.; Jolivet, P.; Scott, P.; Foucault, M.; Combrade, P.

    2004-01-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr 2 O 3 ) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr 2 O 3 oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  12. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  13. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  14. Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation.

    Science.gov (United States)

    Andreozzi, Roberto; Caprio, Vincenzo; Marotta, Raffaele; Radovnikovic, Anita

    2003-10-31

    The presence of pharmaceuticals or their active metabolites in surface and ground waters has been recently reported as mainly due to an incomplete removal of these pollutants in sewage treatment plants (STP). Advanced oxidation processes may represent a suitable tool to reduce environmental release of these species by enhancing the global efficiency of reduction of pharmaceuticals in the municipal sewage plant effluents. The present work aims at assessing the kinetics of abatement from aqueous solutions of clofibric acid (a metabolite of the blood lipid regulator clofibrate) which has been found in surface, ground and drinking waters. Ozonation and hydrogen peroxide photolysis are capable of fast removal of this species in aqueous solution, with an almost complete conversion of the organic chlorine content into chloride ions for the investigated reaction conditions. A validation of assessed kinetics at clofibric acid concentrations as low as those found in STP effluents is presented for both systems.

  15. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Transient atomic behavior and surface kinetics of GaN

    International Nuclear Information System (INIS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-01-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  17. Transient atomic behavior and surface kinetics of GaN

    Science.gov (United States)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  18. Second Harmonic Correlation Spectroscopy: Theory and Principles for Determining Surface Binding Kinetics.

    Science.gov (United States)

    Sly, Krystal L; Conboy, John C

    2017-06-01

    A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.

  19. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  20. The reaction kinetics of lithium salt with water vapor

    International Nuclear Information System (INIS)

    Balooch, M.; Dinh, L.N.; Calef, D.F.

    2002-01-01

    The interaction of lithium salt (LiH and/or LiD) with water vapor in the partial pressure range of 10 -5 -2657 Pa has been investigated. The reaction probability of water with LiH cleaved in an ultra high vacuum environment was obtained using the modulated molecular beam technique. This probability was 0.11 and independent of LiH surface temperature, suggesting a negligible activation energy for the reaction in agreement with quantum chemical calculations. The value gradually reduced, however, to 0.007 as the surface concentration of oxygen containing product approached full coverage. As the film grew beyond a monolayer, the phase lag of hydrogen product increased from 0 deg. C to 20 deg. C and the reaction probability reduced further until it approached our detection limit (∼10 -4 ). This phase lag was attributed to a diffusion-limited process in this regime. For micrometer thick hydroxide films grown in high moisture concentration environment on LiD and LiH, the reaction probability reduced to ∼4x10 -7 and was independent of exposure time. In this regime of thick hydroxide films (LiOH and/or LiOD), microcracks generated in the films to release stress provided easier pathways for moisture to reach the interface. A modified microscope, capable of both atomic force microscopy and nanoindentation, was also employed to investigate the surface morphology of hydroxide monohydrate (LiOH · H 2 O and/or LiOD · H 2 O) grown on hydroxide at high water vapor partial pressures and the kinetics of this growth

  1. Neutralization kinetics of charged polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2008-04-15

    In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are normally distorted due to differential charging. Recently, we have developed a controlled surface neutralization technique to study the kinetics of the surface charging. Using this technique and the associated data analysis scheme with an effective charging model, quantitative information from the apparently distorted photoemission data from PTFE surfaces were extracted. The surface charging was controlled by tuning the electron flood current as well as the X-ray intensity. The effective model was found to describe the charging consistently for both the cases. It was shown that the non-linear neutralization response of differential charging around a critical neutralizing electron flux or a critical X-ray emission current was due to percolation of equipotential surface domains. The obtained value of the critical percolation exponent {gamma} close to unity indicates a percolation similar to that of avalanche breakdown or chain reaction.

  2. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  3. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  4. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  5. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  6. Water quality - Evaluation of the aerobic biodegradability of organic compounds at low concentrations. Part 1: Shake-flask batch test with surface water or suface water/sediment suspensions. ISO 14592-1

    DEFF Research Database (Denmark)

    Nyholm, Niels; Pagga, U.

    ISO 14592-1:2002 specifies a test method for evaluating the biodegradability of organic test compounds by aerobic microorganisms in surface waters by means of a shake-flask batch test with suspended biomass. It is applicable to natural surface water, free from coarse particles to simulate a pelagic...... compounds present in lower concentrations (normally below 100 micrograms per litre) than those of natural carbon substrates also present in the system. Under these conditions, the test compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order (non......-growth kinetics). This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using other standardized tests. It is also not applicable to studies on metabolite formation and accumulation which require higher test concentrations....

  7. Cooling-water chlorination: the kinetics of chlorine, bromine, and ammonia in sea water

    International Nuclear Information System (INIS)

    Johnson, J.D.; Inman, G.W. Jr.; Trofe, T.W.

    1982-11-01

    The major inorganic reaction pathways for the chlorination of saline waters were measured by a variety of techniques including: (1) amperometric titration, (2) amperometric membrane covered electrode, (3) uv spectrophotometry, (4) conventional kinetics methods for slow reactions, and (5) stopped-flow kinetics measurements with a microcomputer data acquisition system. The major reactions studied were: (1) the competitive reactions of ammonia and bromide ion with hypochlorous acid, (2) bromide oxidation by hypochlorous acid, (3) monochloramine formation in sea water, (4) monobromamine formation and subsequent disproportionation to form dibromamine, and (5) monochloramine oxidation of bromide to form bromochloramine. Reaction rates were determined in sodium chloride and sea water as a function of reactant concentration, pH, salinity, and ammonia concentration. Rate constants and corresponding rate laws and mechanisms were developed for each reaction

  8. Growth kinetics of metastable (331) nanofacet on Au and Pt(110) surfaces

    International Nuclear Information System (INIS)

    Ndongmouo, U.T.; Houngninou, E.; Hontinfinde, F.

    2006-12-01

    A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (331) nanofacets on Au and Pt(110) surfaces. The results show that under experimental atomic fluxes, the (331) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(001) surface in the kinetic 6-vertex model. (author)

  9. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  10. Kinetics of corrosion products release from nickel-base alloys corroding in primary water conditions. A new modeling of release

    International Nuclear Information System (INIS)

    Carrette, F.; Guinard, L.; Pieraggi, B.

    2002-01-01

    The radioactivity in the primary circuit arises mainly from the activation of corrosion products in the core of pressurised water reactors; corrosion products dissolve from the oxide scales developed on steam generator tubes of alloy 690. The controlling and modelling of this process require a detailed knowledge of the microstructure and chemical composition of oxide scales as well as the kinetics of their corrosion and dissolution. Alloy 690 was studied as tubes and sheets, with three various surface states (as-received, cold-worked, electropolished). Corrosion tests were performed at 325 C and 155 bar in primary water conditions (B/Li - 1000/2 ppm, [H 2 ] 30 cm 3 .kg -1 TPN, [O 2 ] < 5 ppb); test durations ranged between 24 and 2160 hours. Corrosion tests in the TITANE loop provided mainly corrosion and oxidation kinetics, and tests in the BOREAL loop yielded release kinetics. This study revealed asymptotic type kinetics. Characterisation of the oxide scales grown in representative conditions of the primary circuit was performed by several techniques (SEM, TEM, SIMS, XPS, GIXRD). These analyses revealed the essential role of the fine grained cold-worked scale present on as-received and cold-worked materials. This scale controls the corrosion and release phenomena. The kinetic study and the characterisation of the oxide scales contributed to the modelling of the corrosion/release process. A growth/dissolution model was proposed for corrosion product scales grown in non-saturated dynamic fluid. This model provided the temporal evolution of oxide scales and release kinetics for different species (Fe, Ni, Cr). The model was validated for several surface states and several alloys. (authors)

  11. Influence of TiO{sub 2} Surface Properties on Water Pollution Treatment and Photocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Min [Southwest Univ. of Science and Technology, Mianyang (China)

    2013-03-15

    The titania surface showed different characteristics depending on the charge of the dye molecules. Compared with the MB molecules, the negatively charged MO molecules strongly adsorbed on the titania surface. Furthermore, the decomposition kinetics of the dye molecules by the photocatalytic activity also deepened with the charge of the dye molecules. The relation between the UV irradiation time and the molar ratio of the decomposed dye molecules followed the Avrami equation. According to the results of the analysis by using the Avrami equation, the MO molecules were decomposed on the titania particle surface. In contrast, the MB molecules were decomposed in the aqueous solution. The difference in kinetics was related to the interaction of the dye molecules and the titania surface. These preferential adsorption and decomposition characteristics will improve its applications in water pollution treatment.

  12. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    Science.gov (United States)

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  13. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288 C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Andresen, P.L.

    1996-01-01

    The effect of Zn water chemistry additions on the mechanism of intergranular stress corrosion cracking (IGSCC) of Fe-based alloys in water at 288 C was evaluated in terms of the slip-dissolution model. In this model, an increase in the oxide film rupture strain or surface film repassivation kinetics improved resistance to IGSCC. The oxide rupture strain of type 304L (UNS S30403) stainless steel (SS) increased up to a factor of two in deaerated and 200 ppb oxygenated, high-purity water ( 300 h of exposure. Repassivation kinetics experiments showed Zn additions of ∼ 100 ppb increased the repassivation rate of an Fe-12% Cr alloys up to a factor of two in various deaerated water environments at 288 C. Life prediction modeling revealed that the combination of a more ductile oxide film and faster repassivation kinetics resulted in a reduction in the overall crack growth rate (CGR) by at least a factor of four. This factor of improvement was consistent with data from compact tension experiments in similar environments where CGR decreased as the Zn addition increased, with a greater decrease in CGR realized at lower pre-Zn CGR

  14. Experimental Investigation of Adsorption Kinetics: Implications for Diurnals Variations of Martian Atmospheric Water.

    Science.gov (United States)

    Slank, R.; Farris, H. N.; Chevrier, V.

    2017-12-01

    Introduction: Ice at Mars' equatorial regions is unstable at geologically short timescales, due to factors like thermal properties of the regolith and depth [1]. The distribution of ice is governed by thermodynamics and kinetics, which largely depends on diffusive and adsorptive properties of the regolith [2] and are studied through simulation experiments on regolith analogs. Numerical models of water ice stability [3] often require kinetic parameters that are lacking for Mars relevant materials. Previous measurements were limited to clays [4] or did not account for temperature dependence [5]. Method: Measurements of input parameters are performed for different regoliths relevant to observations of the Martian surface: smectite, basalt, JSC-Mars 1, and nanophase ferric oxides [6]. While diffusive properties of some of these materials are well understood [7; 1; 8; 9], we seek to determine adsorption parameters, specifically the temperature dependencies for kinetics. Adsorption kinetic constants are derived from the change in mass of water adsorbed as a function of time on a thin layer ( 1mm thick) of regolith, resulting in minimum diffusion and maximum surface in contact with the atmosphere. The samples are baked for 24 hours at 100°C and then sealed in a desiccators placed in a freezer to cool the sample. All experiments are run in the Aries Mars Simulation Chamber. The chamber is evacuated to less that 1 mbar, filled with dry CO2 gas to atmospheric pressure, and chilled to the determined temperature. Once conditions are stable, the sample is measured and placed in the chamber. The sample is then exposed to a 6 mbar CO2 atmosphere at various temperatures (-12 to 3°C) and humidities (5 to 80%). Experiments are run for 4 to 8 hours, to allow the sample to reach steady state. During this time, mass, pressure, temperature, relative humidity, and water vapor pressure are recorded. References: [1] Beck, P. et al. (2010) JGR 115. [2] Chevrier, V.F. et al. (2008) Icarus

  15. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  16. The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface

    International Nuclear Information System (INIS)

    Ciampi, Simone; Choudhury, Moinul H.; Ahmad, Shahrul Ainliah Binti Alang; Darwish, Nadim; Brun, Anton Le; Gooding, J.Justin

    2015-01-01

    Graphical abstract: The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. ABSTRACT: The impact of the coverage of ferrocene moieties, attached to a silicon electrode modified via hydrosilylation of a dialkyne, on the kinetics of electron transfer between the redox species and the electrode is explored. The coverage of ferrocene is controlled by varying the coupling time between azidomethylferrocene and the distal alkyne of the monolayer via the copper assisted azide-alkyne cycloaddition reaction. All other variables in the surface preparation are maintained identical. What is observed is that the higher the surface coverage of the ferrocene moieties the faster the apparent rates of electron transfer. This surface coverage-dependent kinetic effect is attributed to electrons hopping between ferrocene moieties across the redox film toward hotspots for the electron transfer event. The origin of these hotspots is tentatively suggested to result from minor amounts of oxide on the underlying silicon surface that reduce the barrier for the electron transfer.

  17. A kinetic study of the reaction of water vapor and carbon dioxide on uranium

    International Nuclear Information System (INIS)

    Santon, J.P.

    1964-09-01

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [fr

  18. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lu, Gui; Hu, Han; Sun, Ying; Duan, Yuanyuan

    2013-01-01

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger

  19. A multi water bag model of drift kinetic electron plasma

    International Nuclear Information System (INIS)

    Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Coulette, D.; Besse, N.

    2014-01-01

    A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)]. (authors)

  20. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space

    Science.gov (United States)

    Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.

    2018-02-01

    Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.

  1. Kinetics and mechanism of methane oxidation in supercritical water

    International Nuclear Information System (INIS)

    Rofer, C.K.; Streit, G.E.

    1988-10-01

    This project, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to achieve an understanding of the technology for use in scaling up and applying oxidation in supercritical water as a viable process for treating a variety of Department of Energy Defense Programs (DOE-DP) waste streams. This report presents experimental results for the kinetics of the oxidation of methane and methanol in supercritical water and computer modeling results for the oxidation of carbonmonoxide and methane in supercritical water. The experimental and modeling results obtained to date on these one-carbon model compounds indicate that the mechanism of oxidation in supercritical water can be represented by free-radical reactions with appropriate modifications for high pressure and the high water concentration. If these current trends are sustained, a large body of existing literature data on the kinetics of elementary reactions can be utilized to predict the behavior of other compounds and their mixtures. 7 refs., 4 figs., 3 tabs

  2. NDMA formation kinetics from three pharmaceuticals in four water matrices.

    Science.gov (United States)

    Shen, Ruqiao; Andrews, Susan A

    2011-11-01

    N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption

    International Nuclear Information System (INIS)

    Teo, How Wei Benjamin; Chakraborty, Anutosh; Kayal, Sibnath

    2017-01-01

    Highlights: • Modification of parent MIL-101(Cr) metal organic framework (MOF) employing alkali metal ions (Li + , Na + , K + ). • Surface characteristics of the parent and alkali doped MIL-101(Cr) adsorbents. • Water uptakes are measured for the temperatures ranging from 25 °C to 60 °C under static and dynamic conditions. • Isotherms and kinetics data are fitted with Langmuir analogy models. • The 5% Li-doped MIL-101(Cr) is suitable for adsorption cooling. - Abstract: This article presents the surface characteristics of alkali (Li + , Na + , K + ) doped MIL-101(Cr) metal organic frameworks (MOFs), and the structural properties are evaluated by scanning electron micrography (SEM), X-ray diffraction (XRD), thermo-gravimetric analyser (TGA) and N 2 adsorption analysis. The amount of water uptakes are measured by a gravimetric analyser for the temperatures ranging from 298 K to 333 K and pressures up to the saturated conditions. The experimentally measured isotherms and kinetics data are fitted with the equations developed from the concept of Langmuir analogy. The isosteric heat of adsorption is calculated employing Van’t Hoff equation in the pressure-temperature-uptake co-ordinate systems. The hydrophobic length at low pressure regions is shortened by the addition of alkali dopants. It is observed that the alkali (Na, K and Li) ions on MIL-101(Cr) MOF increase the water uptakes at lower relative pressure region with fast kinetics. We have shown here that the alkali doped MIL-101(Cr) MOFs can be used as potential adsorbents for various low temperature heat transmission applications such as adsorption assisted heat pump, cooling and desalination.

  4. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  5. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  6. Shake-flask test for determination of biodegradation rates of 14C-labelled chemicals at low concentrations in surface water systems

    DEFF Research Database (Denmark)

    Ingerslev, F.; Nyholm, Niels

    2000-01-01

    A simple shake-flask surface water biodegradability die away test with C-14-labeled chemicals added to microgram per liter concentrations (usually 1-100 mu g/L) is described and evaluated. The aim was to provide information on biodegradation behavior and kinetic rates at environmental (low...... regular reinoculation with freshly collected surface water could, however, overcome the problems of false-negative results. (C) 2000 Academic Press....

  7. Kinetics of the water formation in the propene epoxidation over gold-titania catalysts

    NARCIS (Netherlands)

    Nijhuis, T.A.; Weckhuysen, B.M.

    2007-01-01

    The kinetics of the hydrogen oxidation were determined for a number of different gold catalysts supported on titania, silica, and silicalite-1. A dual site Langmuir-Hinshelwood kinetic model was able to describe the reaction well. The kinetic parameters are independent of the support. Water was

  8. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    International Nuclear Information System (INIS)

    Cheng, Feng; He, Xiang; Chen, Zhao-Xu; Huang, Yu-Gai

    2015-01-01

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys

  9. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); He, Xiang [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); Huang, Yu-Gai [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); JiangSu Second Normal University, Nanjing (China)

    2015-11-05

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys.

  10. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    during the HP decomposition. The model assumes that the enzyme decay is controlled by an inactivation stoichiometry related to the HP decomposition. In order to make the model easily applicable, it is furthermore assumed that the COD is a proxy of the active biomass concentration of the water and thereby......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  11. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    Science.gov (United States)

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-07-03

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  12. Kinetic theory of surface waves in plasma jets

    International Nuclear Information System (INIS)

    Shokri, B.

    2002-01-01

    The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied

  13. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  14. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    International Nuclear Information System (INIS)

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  15. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    Science.gov (United States)

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  16. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  17. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  18. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  19. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    Science.gov (United States)

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  20. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    OpenAIRE

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  1. Separation kinetics of an oil-in-water emulsion under enhanced gravity

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The breakup of crude oil emulsions to produce clean oil and water phases is an important task in crude oil processing. We have investigated the demulsification kinetics of a model oil-in-water emulsion in a centrifugal field to mimic the forces acting on emulsion droplets in oil/water separators

  2. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  3. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  4. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  5. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  6. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  7. Influence of processes of structure formation in mixed solvent and anion nature on cadmium ions discharge kinetics from water-dimethylformamide electrolyte

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Bozhenko, L.G.; Kucherenko, S.S.; Fedorova, O.V.

    1986-01-01

    Electrochemical reaction of cadmium ion discharge in water-dimethylformamide (DMF) solutions is studied. The influence of DMF concentration in the presence of different anions (ClO 4 - , F - , I - ) on both reaction kinetics and mechanism is discussed on the basis of structural transformations in the mixed solvent and near the surface electrode processes

  8. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics.

    Science.gov (United States)

    Li, Kai; Zhang, Peng; Ge, Linke; Ren, Honglei; Yu, Chunyan; Chen, Xiaoyang; Zhao, Yuanfeng

    2014-09-01

    Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  10. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  11. Kinetic effects on the propagation of surface waves and their relevance to the heating of the solar corona

    International Nuclear Information System (INIS)

    Kuperus, M.; Heyvaerts, J.

    1980-01-01

    The MHD oscillations of the Alfven type running along surfaces of discontinuity generate motions in the discontinuity region which come rapidly out of phase. It is shown how the mathematical theory of this phase detuning predicts that surface wave should suffer dissipationless damping. Real damping is actually achieved by viscosity or kinetic effects. When detuning has grown to a large enough level, however, oscillations must be described by kinetic theory. Kinetic Alfven waves differ from perfect MHD Alfven waves in that they are able to propagate across the field. A theory of kinetic type oscillations in a finite thickness boundary is described, which predicts that surface waves generate intense kinetic Alfven waves in this boundary. The subsequent dissipation of these waves may be a powerful heating mechanism [fr

  12. Kinetics of steel corrosion in water

    International Nuclear Information System (INIS)

    Vettegren', V.I.; Bashkarev, A.Ya.; Danchukov, K.G.; Morozov, G.I.

    2003-01-01

    Kinetics of corrosion damage accumulation in steels of different composition (Cr-Ni-Mo-Ti, Cr-Ni-Mn-N-V, Cr-Ni-N-Mn-Mo, Cr-Ni-Nb, Cr-Ni-Ti, Cr-Mn-Ni, Mn-Al-Nb-Si, Mn-Cr-Al-Si and Mn-Al-Si) in NaCl solution and in sea water was studied. It is shown that degree of corrosion damage relates to time according to the first order reaction expression. The values of corrosion activation energy and of parameter characterizing protection properties of corrosion film are determined [ru

  13. Kinetic Theory and Simulation of Single-Channel Water Transport

    Science.gov (United States)

    Tajkhorshid, Emad; Zhu, Fangqiang; Schulten, Klaus

    Water translocation between various compartments of a system is a fundamental process in biology of all living cells and in a wide variety of technological problems. The process is of interest in different fields of physiology, physical chemistry, and physics, and many scientists have tried to describe the process through physical models. Owing to advances in computer simulation of molecular processes at an atomic level, water transport has been studied in a variety of molecular systems ranging from biological water channels to artificial nanotubes. While simulations have successfully described various kinetic aspects of water transport, offering a simple, unified model to describe trans-channel translocation of water turned out to be a nontrivial task.

  14. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  15. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  17. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  18. Kinetic Study of Water Contaminants Adsorption by Bamboo Granular Activated and Non-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Opololaoluwa Oladimarun Ijaola

    2013-10-01

    Full Text Available The adsorptive capacity of metal ions from surface water with activated and non-activated carbon derived from bamboo was investigated. The validation of adsorption kinetics of Cl, PO4 and Pb was done by pseudo-first and second order model while adsorption isotherms was proved by Langmuir and Freundlich isotherm model for activated and non- activated bamboo granular carbon. Generally, the amount of metal ions uptake increases with time and activation levels and the pH of bamboo granular carbon increase with activation. Similarly, the pore space of the activated carbon also increases with activation levels. The correlation coefficients (R2 show that the pseudo-second order model gave a better fit to the adsorption process with 0.9918 as the least value and 1.00 as the highest value as compared with the pseudo-first order with 0.813 as the highest value and 0 as the least. The Freundlich isotherm was more favorable when compared with the Langmuir isotherm in determining the adsorptive capacity of bamboo granular activated carbon. The study has shown that chemical activation increases the pore space, surface area and the pH of bamboo granular carbon which ultimately increases the adsorption rate of metal ions in the contaminated surface water.

  19. Lateral interactions and non-equilibrium in surface kinetics

    Science.gov (United States)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  20. Kinetic electron emission from highly oriented pyrolytic graphite surfaces induced by singly charged ions

    CERN Document Server

    Cernusca, S; Winter, H; Aumayr, F; Loerincik, J; Sroubek, Z

    2002-01-01

    We present total electron yields determined by current measurements for normal impact of H sup + , H sub 2 sup + , H sub 3 sup + , C sup + , N sup + and O sup + ions (E<=10 keV) on a clean highly oriented pyrolytic graphite surface. The kinetic energy of the projectiles has been varied from near threshold up to 10 keV. By comparing the results to similar data obtained for a polycrystalline Au surface the role of different target properties for kinetic electron emission can be analysed.

  1. Structure and Dynamics of Water on Aqueous Barium Ion and the {001} Barite Surface

    International Nuclear Information System (INIS)

    Stack, Andrew G.; Rustad, James R.

    2007-01-01

    The structure of water and its dynamics affect a number of fundamental properties of an interface. Yet, these properties are often inaccessible experimentally and computational studies including solvent are comparatively few. Here, we estimate the structure and kinetics of water exchange of aqueous barium ions and barium ions within the {001} barite surface using molecular dynamics and the reactive flux method. For the aqueous ion, the Ba-O distance to water in the first hydration shell was found to be 280 pm with a coordination number of 8.3, and the best estimate of the exchange rate constant is 4.8 x 10 9 s -1 , closely matching experimental estimates. For the barite surface, the first shell water distance was 282 pm, with a coordination number of 0.9 and the best estimate of the rate constant for exchange is 1.7 x 10 10 s -1 , 3.5 times faster than that of the aqueous ion.

  2. Kinetics of final stages of spreading of melts on solid surfaces

    International Nuclear Information System (INIS)

    Khlynov, V.V.; Pastukhov, B.A.; Bokser, Eh.L.

    1978-01-01

    Kinetics of the spreading of Fe, Ni and Co melts over the surface of W-Re alloy (27% Re) was studied at 1580, 1500 and 1540 deg C, respectively. The time variant wetting spot radius and wetting angle were recorded using a modified Langmuir's method. Kinetic equations of the propagation of liquid interfacial layer and of the wetting, satisfactorily describing the obtained experimental data, have been derived. The melts have been found to spread by viscous flow and by migration atoms in small regions adjacent to the wetting perimeter

  3. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    Science.gov (United States)

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  4. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  5. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  6. Kinetics of interaction from low-energy-ion bombardment of surfaces

    International Nuclear Information System (INIS)

    Horton, C.C.

    1988-01-01

    The kinetics of interaction from low energy oxygen ion bombardment of carbon and Teflon surfaces have been investigated. The surfaces were bombarded with 4.5 to 93 eV oxygen ions and emitted species were observed with a mass spectrometer. To obtain the kinetic information, the ion beam was square pulse modulated and reaction products were observed as a function of time. The kinetic information is contained in the response of the emitted species to the pulsed ion beam. Oxygen bombardment of carbon produced CO in three parallel branches with each following an adsorption-desorption process. The fast branch, with a rate constants of 12,000/sec, appeared to be sputter induced an was absent below about 19 eV. The medium and slow branches, with rate constants of 850/sec and 45/sec respectively, has little energy dependence and appeared to be due to chemical sputtering from two sites. The ratio of the fraction of the medium branch to that of the slow was constant at 1:3. The bombardment of Teflon produced CF in two parallel branches, with one following a series process and the other an adsorb-desorb process. The rate constant of the other branch were 22,000/sec and 7,000/sec and the rate constant of the other branch was 90/sec. The total signal fell monotonically with decreasing ion energy with the fraction for each branch holding constant at 71% for the series and 29% for the adsorb-desorb

  7. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  8. Comparison of molecular dynamics and kinetic modeling of gas-surface interactions

    NARCIS (Netherlands)

    Frezzotti, A.; Gaastra - Nedea, S.V.; Markvoort, A.J.; Spijker, P.; Gibelli, L.

    2008-01-01

    The interaction of a dilute monatomic gas with a solid surface is studied byMolecular Dynamics (MD) simulations and by numerical solutions of a recently proposed kinetic model. Following previous investigations, the heat transport between parallel walls and Couette flow have been adopted as test

  9. Reactions of plutonium and uranium with water: Kinetics and potential hazards

    International Nuclear Information System (INIS)

    Haschke, J.M.

    1995-12-01

    The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined

  10. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  11. Palladium mixed-metal surface-modified AB5-type intermetallides enhance hydrogen sorption kinetics

    Directory of Open Access Journals (Sweden)

    Roman V. Denys

    2010-09-01

    Full Text Available Surface engineering approaches were adopted in the preparation of advanced hydrogen sorption materials, based on ‘low-temperature’, AB5-type intermetallides. The approaches investigated included micro-encapsulation with palladium and mixed-metal mantles using electroless plating. The influence of micro-encapsulation on the surface morphology and kinetics of hydrogen charging were investigated. It was found that palladium-nickel (Pd-Ni co-deposition by electroless plating significantly improved the kinetics of hydrogen charging of the AB5-type intermetallides at low hydrogen pressure and temperature, after long-term pre-exposure to air. The improvement in the kinetics of hydrogen charging was credited to a synergistic effect between the palladium and nickel atoms in the catalytic mantle and the formation of an ‘interfacial bridge’ for hydrogen diffusion by the nickel atoms in the deposited layer. The developed surface-modified materials may find application in highly selective hydrogen extraction, purification, and storage from impure hydrogen feeds.

  12. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  13. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  14. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples: kinetic study of the degradation and optimization using response surface methodology.

    Science.gov (United States)

    Mitsika, Elena E; Christophoridis, Christophoros; Fytianos, Konstantinos

    2013-11-01

    The aims of this study were (a) to evaluate the degradation of acetamiprid with the use of Fenton reaction, (b) to investigate the effect of different concentrations of H2O2 and Fe(2+), initial pH and various iron salts, on the degradation of acetamiprid and (c) to apply response surface methodology for the evaluation of degradation kinetics. The kinetic study revealed a two-stage process, described by pseudo- first and second order kinetics. Different H2O2:Fe(2+) molar ratios were examined for their effect on acetamiprid degradation kinetics. The ratio of 3 mg L(-1) Fe(2+): 40 mg L(-1) H2O2 was found to completely remove acetamiprid at less than 10 min. Degradation rate was faster at lower pH, with the optimal value at pH 2.9, while Mohr salt appeared to degrade acetamiprid faster. A central composite design was selected in order to observe the effects of Fe(2+) and H2O2 initial concentration on acetamiprid degradation kinetics. A quadratic model fitted the experimental data, with satisfactory regression and fit. The most significant effect on the degradation of acetamiprid, was induced by ferrous iron concentration followed by H2O2. Optimization, aiming to minimize the applied ferrous concentration and the process time, proposed a ratio of 7.76 mg L(-1) Fe(II): 19.78 mg L(-1) H2O2. DOC is reduced much more slowly and requires more than 6h of processing for 50% degradation. The use to zero valent iron, demonstrated fast kinetic rates with acetamiprid degradation occurring in 10 min and effective DOC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  16. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  17. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Lance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Institute for Computational Sciences (JIBS); Univ. of Tennessee, Knoxville, TN (United States); Chen, Banghao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Li, Meijun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Mann, Amanda K. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Hagaman, Edward W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T1) and spin–spin (T2) relaxation, and DFT calculations. In air, the (100) surface exists as a fully hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D2O does not occur under mild or forcing conditions. Despite large differences in the T1 of surface hydroxyls and physisorbed water, surface hydroxyl T1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na+ remaining in incompletely washed ceria nanocubes

  18. Separation of oily materials in radioactive waste waters by flotation. Flotation kinetics

    International Nuclear Information System (INIS)

    Flores E, R.M.; Ortiz O, H.B.

    2003-01-01

    The rate of separation of oil and total cobalt in the oleaginous residual water previously treated by coagulation/flocculation with a quaternary ammonium amine (25 mgL -1 ) and with modified anionic polyacrylamide (1.5 mgL -1 ) (pH = 7, G 1 = 300 s -1 and G 2 = 30 s -1 ) was determined. The experimental essays to determine the flotation kinetics, its were carried out using as operation and control parameters the air/solids relationship (G/S 0.35), pressure (P =620 kPa) and volume of air-water mixture (V = 37% of V f ), obtained in previous essays, at two different pressure levels and volume of discharged mixture. The kinetic studies of flotation obtained for the flotation system with conventional air dissolved (DAF) its suggest a first order kinetics that it can be represented by the SCC model. At the same time its show that the separation of the present pollutants in the residual water is governed by the removal velocity of the oil. Meanwhile, the concentration of total Co below 1 mgL -1 , on the other hand, the concentration of the 60 Co at the end of the flotation process resulted smaller than 0.008 Bq/ml, as long as the one 54 Mn were not detectable. (Author)

  19. Features of the kinetics of heterogeneous reactions with phase transformations on catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berman, A D; Krylov, O V

    1978-01-01

    This paper presents a review of 41 bibliographic references to experiments on the adsorption of various gases (e.g., carbon monoxide, formic acid, ammonia, and oxygen) on metals (e.g., nickel, molybdenum, and platinum) and oxides covers observations of two-dimensional phases during adsorption; the kinetics of adsorption and catalysis associated with two-dimensional phase transitions; and several approximate models for describing the kinetics of heterogeneous catalysis which account for two-dimensional phase transformations on catalyst surfaces.

  20. The kinetics of formation and transformation of silver atoms on solid surfaces subjected to ionizing irradiation

    International Nuclear Information System (INIS)

    Popovich, G.M.

    1988-01-01

    The paper discusses the results obtained in ESR-assisted studies of the kinetics of formation and transformation of silver atoms generated by γ-irradiation of silver-containing carriers. Three types of dependences have been established: (1) extreme; (2) saturation curves and (3) step-like. All the kinetic curves display, after a definite period of time, stable concentrations of adsorbed silver atoms per unit of the surface at a given temperature. Depending on the temperature of the experiment, the composition and nature of the carrier, the number of adsorbed silver ions, the irradiation dose and conditions of the experiment, a stable concentration of silver atoms at a given temperature may be equal to, higher or lower than the number of silver atoms measured immediately after γ-irradiation at a temperature of liquid nitrogen. A kinetic scheme is proposed to explain the obtained curves. The model suggests that the silver atoms adsorbed on the surface, as well as those formed after γ-irradiation, are bonded to the surface by various energies, which are related to heterogeneity of the carrier surface. (author)

  1. Tapping mode AFM study on the surface dynamics of a single glucose oxidase molecule on a Au(1 1 1) surface in water with implication for a surface-induced unfolding pathway

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Higano, Michi; Nagashima, Seiiichi; Kataoka, Ryoichi

    2004-01-01

    We have investigated a surface-induced unfolding dynamics of a single glucose oxidase (GO) molecule on Au(1 1 1) in air-saturated water, using tapping mode atomic force microscopy (TMAFM). We followed the unfolding process by measuring the maximum height of a well-isolated GO molecule on a terrace near a step-edge of the surface as a function of contact time. We find three linear portions with two intersections in a power-law fit to the selected values of the observed heights. The kinetic TMAFM result implies that there exist at least two distinct dynamic regimes in the unfolding

  2. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  3. Water desorption kinetics of polymer composites with cellulose fibers as filler

    Czech Academy of Sciences Publication Activity Database

    Vacková, Taťana; Kroisová, D.; Špatenka, P.

    2009-01-01

    Roč. 48, č. 1 (2009), s. 68-76 ISSN 0022-2348 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer composites * water desorption kinetics * thermoplastic matrix Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.716, year: 2009

  4. Kinetic energy of ions produced with first-, second-, and multi-shot femtosecond laser ablation on a solid surface

    International Nuclear Information System (INIS)

    Kobayashi, Tohru; Kato, Toshiyuki; Kurata-Nishimura, Mizuki; Matsuo, Yukari; Kawai, Jun; Motobayashi, Tohru; Hayashizaki, Yoshihide

    2007-01-01

    We report that the kinetic energy of samarium (Sm) atom and Sm + ion produced by femtosecond laser ablation of solid samarium is strongly dependent on the number of ablation laser shots in the range from 1 to 10. By ablating the fresh surface (i.e. 1st shot), we find the kinetic energy of both Sm and Sm + ion to be the largest (24 and 250 eV, respectively). Almost 10 times larger kinetic energy of Sm + ion than that of Sm clearly indicates the contribution of Coulomb explosion in the acceleration process. From the second shot, kinetic energies of Sm and Sm + ion are lower than those of the first shot and almost constant (ca. 12 and 80 eV, respectively). This behaviour suggests the change in the nature of the solid surface after femtosecond laser ablation, which can be explained by the amorphization of ablated sample surface reported in recent studies

  5. Effect of surfactant on kinetics of thinning of capillary bridges

    Science.gov (United States)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  6. Thin film growth behaviors on strained fcc(111) surface by kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Doi, Y; Matsunaka, D; Shibutani, Y

    2009-01-01

    We study Ag islands grown on strained Ag(111) surfaces using kinetic Monte Carlo (KMC) simulations. We employed KMC parameters of activation energy and attempt frequency estimated by nudged elastic band (NEB) method and vibration analyses. We investigate influences of surface strain and substrate temperature on film growth. As the biaxial surface strain increases, the island density increases. As temperature increases, the shape of the island changes from dendric to hexagonal and the island density increases.

  7. Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials.

    Science.gov (United States)

    Marbán, Gregorio; Ramírez-Montoya, Luis A; García, Héctor; Menéndez, J Ángel; Arenillas, Ana; Montes-Morán, Miguel A

    2018-02-01

    The adsorption of cytochrome c in water onto organic and carbon xerogels with narrow pore size distributions has been studied by carrying out transient and equilibrium batch adsorption experiments. It was found that equilibrium adsorption exhibits a quasi-Langmuirian behavior (a g coefficient in the Redlich-Peterson isotherms of over 0.95) involving the formation of a monolayer of cyt c with a depth of ∼4nm on the surface of all xerogels for a packing density of the protein inside the pores of 0.29gcm -3 . A load-dependent surface diffusion model (LDSDM) has been developed and numerically solved to fit the experimental kinetic adsorption curves. The results of the LDSDM show better fittings than the standard homogeneous surface diffusion model. The value of the external mass transfer coefficient obtained by numerical optimization confirms that the process is controlled by the intraparticle surface diffusion of cyt c. The surface diffusion coefficients decrease with increasing protein load down to zero for the maximum possible load. The decrease is steeper in the case of the xerogels with the smallest average pore diameter (∼15nm), the limit at which the zero-load diffusion coefficient of cyt c also begins to be negatively affected by interactions with the opposite wall of the pore. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization

    International Nuclear Information System (INIS)

    Dallaston, Michael C; McCue, Scott W

    2013-01-01

    We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularize the ill-posedness arising from the viscous (Saffman–Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilizing the boundary, and kinetic undercooling destabilizing it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or ‘slit’ of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilizes the applicability of complex variable theory to Hele-Shaw flow. (paper)

  9. Kinetics of radiolysis of irradiated ligno celluloses into soluble products in water and rumen liquid

    International Nuclear Information System (INIS)

    Tukenmez, I.; Bakioglu, A.T.; Ersen, M.S.

    1997-01-01

    In order to increase the low bio hydrolysis of ligno celluloses in biotechnological and biological processes where these materials are used as raw materials and ruminant feed, the substrates were pretreated with irradiation to induce radiolytic depolymerisation and then kinetics of their radiolysis into soluble products in water and rumen liquid were analyzed. Wheat straw used as a representative lignocellulose substrate was irradiated at 0-2.5 MGy doses at 20''o''C with an optimum equilibrium humidity of 6.6% in Cs-137 gamma irradiator with a dose rate of 1.8 kGy/h, and soluablefractions in water and in situ rumen liquid were determined gravimetrically. Based on these data, a reaction mechanism was proposed for the radiolysis of ligno celluloses into soluble fractions. From the corresponding reaction rate equations with this mechanism a dose dependent kinetics was derived for the radiolysis of ligno celluloses into water/rumen liquid-soluble products. Defined by this kinetics, the threshold doses for the radiolysis of the substrate into water/rumen liquid-soluble products were respectively found 80.6 kGy and 186.0 kGy, and fractional radiolytic decomposition yields 0.193 MGy''-1''.It was emphasized that developed kinetic models may be used for the process design of irradiation pretreatments to improve the bio hydrolysis of ligno celluloses.(2figs. and 17 refs.)

  10. Kinetics of the hydrogen production reaction in a copper-chlorine water splitting plant

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Naterer, G.F.; Dincer, I.

    2009-01-01

    The exothermic reaction of HCl with particulate Cu occurs during hydrogen production step in the thermochemical copper-chlorine (Cu-Cl) water splitting cycle. In this paper, this chemical reaction is modeled kinetically, and a parametric study is performed to determine the influences of particle size, temperature and molar ratios on the reaction kinetics. It is determined that the residence time of copper particles varies between 10 and 100 s, depending on the operating conditions. The hydrogen conversion at equilibrium varies between 55 and 85%, depending on the reaction temperature. The heat flux at the particle surface, caused by the exothermic enthalpy of reaction, reaches about 3,000 W/m 2 when the particle shrinks to 0.1% from its initial size. A numerical algorithm is developed to solve the moving boundary Stefan problem with a chemical reaction. It predicts the shrinking of copper particles based on the hypothesis that the chemical reaction and heat transfer are decoupled. The model allows for estimation of the temperature of the copper particle, assumed spherical, in the radial direction. The maximum temperature at the interface is higher than the melting point of CuCl by 10-50 o C, depending on the assumed operating conditions. (author)

  11. Comparison of skating kinetics and kinematics on ice and on a synthetic surface.

    Science.gov (United States)

    Stidwill, T J; Pearsall, David; Turcotte, Rene

    2010-03-01

    The recent popularization and technological improvements of synthetic or artificial ice surfaces provide an attractive alternative to real ice in venues where the latter is impractical to install. Potentially, synthetic ice (SI) may be installed in controlled laboratory settings to permit detailed biomechanical analysis of skating manoeuvres. Unknown, however, is the extent to which skating on SI replicates skating on traditional ice (ICE). Hence, the purpose of this study was to compare kinetic and kinematic forward skating parameters between SI and ICE surfaces. With 11 male hockey players, a portable strain gauge system adhered to the outside of the skate blade holder was used to measure skate propulsive force synchronized with electrogoniometers for tracking dynamic knee and ankle movements during forward skating acceleration. In general, the kinetic and kinematic variables investigated in this study showed minimal differences between the two surfaces (P > 0.06), and no individual variable differences were identified between the two surfaces (P > or = 0.1) with the exception of greater knee extension on SI than ICE (15.2 degrees to 11.0 degrees; P skating, and thus offer the potential for valid analogous conditions for in-lab testing and training.

  12. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  13. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems has been developed. The model incorporates the most important chemical reactions that are known to occur when chlorine is added to natural fresh waters. The simultaneous differential equations, which describe the rates of these chemical reactions, are solved numerically to give the composition of the water as a function of time. A listing of the computer program is included, along with a description of the input variables. A worked-out example illustrates the application of the program to an actual cooling system. An appendix contains a compilation of the known equilibrium and kinetic data for many of the chemical reactions that might be encountered in chlorinating natural fresh waters

  14. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  15. Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: A kinetic modeling study

    Science.gov (United States)

    Zhang, Li; Lüttge, Andreas

    2009-11-01

    With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( Zhang and Lüttge, 2008, 2009), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si ( ΦSi-O-Si/ kT) and Al-(O)-Si ( ΦAl-O-Si/ kT). When the ratio of ΦSi-O-Si/ kT to ΦAl-O-Si/ kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive

  16. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Muonium kinetics in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Addison-Jones, B.; Brodovitch, J.C.; Kecman, S.; McKenzie, I.; Percival, P.W

    2003-02-01

    Muonium is long-lived in pure water and has been studied over a very wide range of temperatures and pressures, from 5 deg. C to over 400 deg. C and from 1 to 400 bar. We have determined rate constants for representative reactions of muonium in aqueous solution; equivalent data on H atom kinetics is sparse and stops well short of the maximum temperature and pressure attained in our experiments. The results show remarkable deviations from the predictions of standard reaction theories. In particular, rate constants pass through a maximum with temperature well below the critical point. This seems to be a general phenomenon, since we have observed it for spin-exchange and chemical reactions that are diffusion limited at low temperatures, as well as for activated reactions. We believe that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter. Whatever the reason, the implications are profound for both the efficiency of supercritical water oxidation reactors and for the modelling of radiation chemistry in pressurized water nuclear reactors.

  18. Muonium kinetics in sub- and supercritical water

    International Nuclear Information System (INIS)

    Ghandi, K.; Addison-Jones, B.; Brodovitch, J.C.; Kecman, S.; McKenzie, I.; Percival, P.W.

    2003-01-01

    Muonium is long-lived in pure water and has been studied over a very wide range of temperatures and pressures, from 5 deg. C to over 400 deg. C and from 1 to 400 bar. We have determined rate constants for representative reactions of muonium in aqueous solution; equivalent data on H atom kinetics is sparse and stops well short of the maximum temperature and pressure attained in our experiments. The results show remarkable deviations from the predictions of standard reaction theories. In particular, rate constants pass through a maximum with temperature well below the critical point. This seems to be a general phenomenon, since we have observed it for spin-exchange and chemical reactions that are diffusion limited at low temperatures, as well as for activated reactions. We believe that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter. Whatever the reason, the implications are profound for both the efficiency of supercritical water oxidation reactors and for the modelling of radiation chemistry in pressurized water nuclear reactors

  19. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    Krishna Bhat, D.; Prakash, T.R.; Thimme Gowda, B.; Sherigara, B.S.; Khader, A.M.A.

    1995-01-01

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  20. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  1. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  2. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  3. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  4. Propagation of biochirality: crossovers and nonclassical crystallization kinetics of aspartic acid in water.

    Science.gov (United States)

    Lee, Tu; Lin, Yu Kun; Tsai, Ya Chung; Lee, Hung Lin

    2013-11-01

    All experimental procedures discussed could be treated as a screening tool for probing the existence of molecular association among the chiral molecules and the solvent system. The molecular association phases of a racemic conglomerate solution (CS) and a racemic compound solution (RCS), and the templating effect of aspartic acid solid surface were observed to minimize the chance of redissolving racemic conglomerate and racemic compound aspartic acid in water and reforming an RCS in crossovers experiments. Only 1 %wt% of l-aspartic acid was adequate enough to induce a transformation from a racemic compound aspartic acid to a racemic conglomerate aspartic acid. This would make the propagation of biochirality more feasible and sound. However, tetrapeptide, (l-aspartic acid)4 , failed to induce enantioseparation as templates purely by crystallization. Nonclassical crystallization theory was needed to take into account the existence of a CS. Fundamental parameters of the crystallization kinetics such as the induction time, interfacial energy, Gibbs energetic barrier, nucleation rate, and critical size of stable nuclei of: (i) racemic compound aspartic acid, (ii) racemic compound aspartic acid seeded with 1 %wt% l-aspartic acid, (iii) racemic conglomerate aspartic acid, and (iv) l-aspartic acid were evaluated and compared with different initial supersaturation ratios. Morphological studies of crystals grown from the crystallization kinetics were also carried out. © 2013 Wiley Periodicals, Inc.

  5. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  6. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  7. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  8. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  9. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  10. Kinetics of trace metal removal from tidal water by mangrove sediments under different redox conditions

    International Nuclear Information System (INIS)

    Suzuki, K.N.; Machado, E.C.; Machado, W.; Bellido, A.V.B.; Bellido, L.F.; Osso, J.A.; Lopes, R.T.

    2014-01-01

    The extent in which redox conditions can affect the removal kinetics of 58 Co and 65 Zn from tidal water by mangrove sediments was evaluated in microcosm experiments, simulating a tidal flooding period of 6 h. The average half-removal time (t 1/2 ) of 58 Co from overlaying water was slightly higher (7.3 h) under an N 2 -purged water column than under an aerated water column (5.4 h). A lower difference was found for 65 Zn (1.9 h vs. 1.5 h, respectively). Average removals of 58 Co activities from water were 54.6% (N 2 treatment) and 43.5% (aeration treatment), whereas these values were 88.0% and 92.7% for 65 Zn, respectively. Very contrasting sorption kinetics of different radiotracers occurred, while more oxidising conditions favoured only a slightly higher removal. Average 58 Co and 65 Zn inventories within sediments were 30.4% and 18.8% higher in the aeration treatment, respectively. A stronger particle-reactive behaviour was found for 65 Zn that was less redox-sensitive and more efficiently removed by sediments than 58 Co. - Highlights: ► Radiotracer experiments evidenced the role of mangrove sediments in trapping trace metals. ► Very contrasting removal kinetics from tidal water were observed for 65 Zn and 58 Co. ► Nearly 40%–50% of 58 Co activities and nearly 90% of 65 Zn activities in overlying water were removed. ► 65 Zn showed a stronger particle-reactive behaviour than observed for 58 Co. ► 58 Co was more sensitive to redox conditions in tidal water than observed for 65 Zn

  11. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  12. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  13. Tool for assessment of process importance at the groundwater/surface water interface.

    Science.gov (United States)

    Palakodeti, Ravi C; LeBoeuf, Eugene J; Clarke, James H

    2009-10-01

    The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (P(i)) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.

  14. Isolation and characterization of diuron-degrading bacteria from lotic surface water.

    Science.gov (United States)

    Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques

    2007-11-01

    The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.

  15. KINETICS OF THE PHOTOCATALYTIC DEGRADATION OF SELECTED ORGANIC MICROPOLLUTANTS IN THE WATER ENVIROMENT

    Directory of Open Access Journals (Sweden)

    Edyta Anna Kudlek

    2017-04-01

    Full Text Available The paper presents an assessment of the removal degree of selected polycyclic aromatic hydrocarbons (anthracene, benzo(apyrene, xenoestrogens (octylphenol, pentachlorophenol and pharmaceutical compounds (diclofenac in the process of heterogeneous photocatalysis of their water solutions, which were prepared on the base of deionized water. Titanium dioxide at a dose of 100 mg/dm3 was used as a photocatalyst of the process. The kinetics of the process was determined based on the Langmuir-Hinsherlwood equation, assuming the pseudo-first-order reaction of micropollutants decomposition. Furthermore a toxicological analysis of water samples of test compounds was performed by the use of the Microtox® test. It has been found that the micropollutant concentrations decreased with the increase of process time and their removal degree after 60 minutes exceeds 90%. The analysis of the proces kinetic showed that the oxidation of the compounds occurred with the greatest intensity in the first stage of the process up to 10 min. The preformed toxicological assessment confirmed the incomplete decomposition of pollutants and the generation of by-products, which contribute to the increase of the toxicity of treated water solutions.

  16. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  17. Kinetics of reactions of oxidation of carbon by carbon dioxide and water steam at high temperatures and low pressures

    International Nuclear Information System (INIS)

    Boulangier, Francois

    1956-01-01

    The first objective of this research thesis was to obtain new and reliable experimental results about the reaction kinetics of the oxidation of carbon by carbon dioxide and water steam, and to avoid some disturbing phenomena, for example and more particularly the appearance of electric discharges beyond 1900 K initiated by the filament thermoelectric emission. The author tried to identify the mechanism of the accelerating effect. It appears that previous experiments had been performed only in these disturbed conditions. At the lowest temperatures, the author highlighted the existence of a surface contamination by the desorption products from the apparatus [fr

  18. ETHANOL-WATER ADSORPTION ON COMMERCIAL 3A ZEOLITES: KINETIC AND THERMODYNAMIC DATA

    Directory of Open Access Journals (Sweden)

    M.J. Carmo

    1997-09-01

    Full Text Available Dehydration of ethanol via adsorption using molecular sieves has recently been suggested as a promising alternative to the conventional separation methods for ethanol-water mixtures. 3A zeolites possess selective micropores whereon, due to the small size of their pores, the water molecules are adsorbed while the ethanol molecules are excluded. The scope of this work was, hence, the thermodynamic and kinetic study of ethanol-water adsorption on commercial zeolites of different origins, with the aim to select the best one. For the thermodynamic study, a thermostated bath was used at four different temperatures, where the data obtained by the static method could be correlated by means of a nonlinear isotherm. The kinetic data were obtained in a circulating finite liquid bath cell, where the effect of the temperature and of the mean diameter of the adsorbent particles on the rate of adsorption was studied. The results obtained in this way, expressed through uptake rate curves, showed that the adsorption rates were strongly dependent on the parameters studied. On comparing the adsorption rates among the adsorbents (commercial 3A zeolites, it could be concluded that, under the same operational conditions, exists a pronounced difference among them

  19. A smart surface from natural rubber: the mechanism of entropic control at the surface monitored by contact angle measurement

    Directory of Open Access Journals (Sweden)

    Sureurg Khongtong

    2006-03-01

    Full Text Available Surface oxidation of crosslinked natural rubber provided a hydrophilic substrate (sticky surface that became more hydrophobic (less sticky when equilibrated against hot water. This unusual temperaturedependent surface reconstruction is interpreted as the result of recoiling of entropic unfavorable uncoiled chains induced when rubber surface was oxidized. Subsequent equilibration of these annealed samples against water at room temperature returned their original hydrophilicity. The degree of this surface reconstruction and its kinetics are also dependent on the amounts of crosslinking of the samples.

  20. Water renewal in Montevideo's bay: a two compartments model for tritium kinetics

    International Nuclear Information System (INIS)

    Suarez-Antola, Roberto

    2013-01-01

    During field work about dynamics and renewal of water in Montevideo's Bay, 100 Ci of tritiated water were evenly distributed in the north-east region of the bay, by a continuous injection of a solution, during 5 hours, from a 200 litres tank, using a peristaltic pump. The whole bay was divided in 20 concentration cells, taking into account available bathymetric charts and corrections from field data obtained in situ. Tritium concentrations (activities per unit volume) and other relevant parameters (temperature, electrical conductivity, etc.) were measured in vertical profiles during three weeks, in the mid-point of each cell, first twice a day and the on a daily basis. Remnant total tritium activity was estimated from cells volumes and midpoint cells activity concentrations. Consistency checks were done. A one compartment model was used to estimate a global renewal time of circa 29 hours. However, the details of the measured tritium kinetics, a careful consideration of bathymetric data, water movements in a tidal environment (measured with drogues, fluorescent tracers and current meters), as well as the results of computer fluid dynamics modelling (in depth averaged) suggests that the bay can be meaningfully divided in two main compartments: a North-East and a South-West compartment. The purpose of this paper is threefold: (1) to describe the construction of a two compartments model for water renewal in Montevideo's Bay, (2) to apply experimental data of tritium kinetics to estimate the parameters of the model, and (3) to discuss the validity of the model and its practical applicability. The meaning of the renewal time of each compartment and its relation with the measured tritium kinetics in each cell is discussed. The perturbations in water circulation and renewal produced by civil works already done or the perturbations that could be expected due to civil works to be done, in relation with Montevideo's harbour, is discussed. The tracer model, jointly with other

  1. Dissolution kinetics of volatile organic compound vapors in water : An integrated experimental and computational study

    NARCIS (Netherlands)

    G. Mahmoodlu, Mojtaba; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Hassanizadeh, S. Majid; van Genuchten, Martinus Th

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass

  2. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  3. Kinetics of the high- to low-density amorphous water transition

    International Nuclear Information System (INIS)

    Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

    2003-01-01

    In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

  4. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  5. Scratching the surface of ice: Interfacial phase transitions and their kinetic implications

    Science.gov (United States)

    Limmer, David

    The surface structure of ice maintains a high degree of disorder down to surprisingly low temperatures. This is due to a number of underlying interfacial phase transitions that are associated with incremental changes in broken symmetry relative to the bulk crystal. In this talk I summarize recent work attempting to establish the nature and locations of these different phase transitions as well as how they depend on external conditions and nonequilibrium driving. The implications of this surface disorder is discussed in the context of simple kinetic processes that occur at these interfaces. Recent experimental work on the roughening transition is highlighted.

  6. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  7. Stability of engineered nanomaterials in complex aqueous matrices: Settling behaviour of CeO{sub 2} nanoparticles in natural surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Van Koetsem, Frederik, E-mail: Frederik.VanKoetsem@UGent.be [Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent (Belgium); Verstraete, Simon [Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent (Belgium); Van der Meeren, Paul [Particle and Interfacial Technology Group, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent (Belgium); Du Laing, Gijs, E-mail: Gijs.DuLaing@UGent.be [Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent (Belgium)

    2015-10-15

    The stability of engineered nanoparticles (ENPs) in complex aqueous matrices is a key determinant of their fate and potential toxicity towards the aquatic environment and human health. Metal oxide nanoparticles, such as CeO{sub 2} ENPs, are increasingly being incorporated into a wide range of industrial and commercial applications, which will undoubtedly result in their (unintentional) release into the environment. Hereby, the behaviour and fate of CeO{sub 2} ENPs could potentially serve as model for other nanoparticles that possess similar characteristics. The present study examined the stability and settling of CeO{sub 2} ENPs (7.3±1.4 nm) as well as Ce{sup 3+} ions in 10 distinct natural surface waters during 7 d, under stagnant and isothermal experimental conditions. Natural water samples were collected throughout Flanders (Belgium) and were thoroughly characterized. For the majority of the surface waters, a substantial depletion (>95%) of the initially added CeO{sub 2} ENPs was observed just below the liquid surface of the water samples after 7 d. In all cases, the reduction was considerably higher for CeO{sub 2} ENPs than for Ce{sup 3+} ions (<68%). A first-order kinetics model was able to describe the observed time-dependant removal of both CeO{sub 2} ENPs (R{sup 2}≥0.998) and Ce{sup 3+} ions (R{sup 2}≥0.812) from the water column, at least in case notable sedimentation occurred over time. Solution-pH appeared to be a prime parameter governing nanoparticle colloidal stability. Moreover, the suspended solids (TSS) content also seemed to be an important factor affecting the settling rate and residual fraction of CeO{sub 2} ENPs as well as Ce{sup 3+} ions in natural surface waters. Correlation results also suggest potential association and co-precipitation of CeO{sub 2} ENPs with aluminium- and iron-containing natural colloidal material. The CeO{sub 2} ENPs remained stable in dispersion in surface water characterized by a low pH, ionic strength (IS), and

  8. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  9. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  10. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  11. Zirconium metal-water oxidation kinetics. I. Thermometry

    International Nuclear Information System (INIS)

    Cathcart, J.V.; McElroy, D.L.; Pawel, R.E.; Perkins, R.A.; Williams, R.K.; Yurek, G.J.

    1976-02-01

    A description is given of the thermometry techniques used in the Zirconium Metal--Water Oxidation Kinetics Program. Temperature measurements in the range 900 to 1500 0 C are made in three experimental systems: two oxidation apparatuses and the annealing furnace used in a corollary study of the diffusion of oxygen in β-Zircaloy. Carefully calibrated Pt vs Pt--10 percent Rh thermocouples are employed in all three apparatuses, while a Pt--6 percent Rh vs Pt-- 30 percent Rh thermocouple and an optical pyrometer are used in addition in the annealing furnace. Features of the experimental systems pertaining to thermocouple installation, temperature control, emf measurements, etc. are described, and potential temperature-measurement error sources are discussed in detail. The accuracy of the temperature measurements is analyzed

  12. Adsorption of 1-naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer

    Science.gov (United States)

    So, Juhyok; Pang, Cholho; Dong, Hongxing; Jang, Paeksan; U, Juhyok; Ri, Kumchol; Yun, Cholyong

    2018-05-01

    Surface molecularly imprinting polymer (SMIP) was utilized in the removal of a residual pesticide (carbaryl (CBL)) in water and simulated fruit juice. Being the crosslinking agent, ethylene glycol dimethacrylate (EGDMA) was copolymerized with the monomer, methacrylic acid (MAA) and CBL as the template molecules on the surface of the silica gel particles to produce the SMIP adsorbents. The SMIP adsorbents showed good selectivity and good adsorption capacity for CBL in the competitive adsorptions with two structurally related carbamate pesticides. The effect of the pretreatment solvents on the adsorption capacity of the SMIP adsorbent was investigated with the results of the numerical simulations. The adsorption isotherms and the adsorption kinetics were well described by the Freundlich equilibrium model and the pseudo-second-order kinetic model, respectively. Scatchard plot analysis revealed that there were two classes of binding sites populated in the SMIP adsorbents. In addition, the good selective adsorption of CBL by the SMIP adsorbent in a simulated fruit juice containing vitamin C and fructose indicated the great potential of the SMIP adsorbents to remove residual pesticide in food industry and processing industry for agricultural products.

  13. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  14. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    Science.gov (United States)

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  15. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Andrew R. [Boston College, Chestnut Hill, MA 02467 (United States); Demé, Bruno; Cristiglio, Viviana [Institut Laue–Langevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9 (France); LeDuc, Géraldine [European Synchrotron Radiation Facility (ESRF), CS 40220, F-38043 Grenoble CEDEX 9 (France); Feller, W. Bruce [NOVA Scientific Inc., Sturbridge, MA 01566 (United States); Kirschner, Daniel A., E-mail: kirschnd@bc.edu [Boston College, Chestnut Hill, MA 02467 (United States)

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  16. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  17. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  18. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  19. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    International Nuclear Information System (INIS)

    Myers, J. E.; Jackson, L. M.

    2001-01-01

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work

  20. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    Science.gov (United States)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  1. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.

    Science.gov (United States)

    Baujard-Lamotte, L; Noinville, S; Goubard, F; Marque, P; Pauthe, E

    2008-05-01

    Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.

  2. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  3. Determination of kinetic coefficients for the reduction and removal of uranium from water by the Desulfovibrio desulfuricans bacteria

    International Nuclear Information System (INIS)

    Tucker, M.D.; Barton, L.L.; Thomson, B.M.

    1996-01-01

    Uranium contamination of groundwater and surface water from abandoned uranium mill tailings piles is a serious concern in many areas of the western United States. U(VI) is soluble in water and, as a result, is relatively mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain microorganisms, such as the sulfate-reducing bacteria Desuffiovibrio desulfricans, can mediate the reduction of U(VI) to U(IV) by anaerobic respiration. Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reaction have not been characterized. The purpose of this research was to perform kinetic studies on Desuffiovibrio desulfricans during simultaneous reduction of sulfate and uranium and to determine the mineral phase of uranium after it has been reduced. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. The maximum rate of substrate utilization (k) was determined to be 4.70 days -1 while the half-velocity constant (Ks) was 140 mg CODA. The yield coefficient (Y) was determined to be 0. 17 mg cells/mg COD while the endogenous decay coefficient (kd) was found to be 0.072 days -1 . After reduction, U(IV) precipitated from solution in the uraninite (UO 2 ) phase as predicted by thermodynamics. Uranium removal efficiency as high as 90% was achieved in the chemostat

  4. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    Science.gov (United States)

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  5. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    Science.gov (United States)

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  6. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  7. Mechanisms and energetics of surface reactions at the copper-water interface. A critical literature review with implications for the debate on corrosion of copper in anoxic water

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Adam Johannes; Brinck, Tore [Applied Physical Chemistry, KTH Royal Inst. of Technology, Stockholm (Sweden)

    2012-06-15

    In order to make a critical analysis of the discussion of corrosion of copper in pure anoxic water it is necessary to understand the chemical reactivity at the copper-water interface. Even though the most fundamental issue, i.e. the nature and existence of a hypothetical product that is thermodynamically stable, is still under debate, it is clear that if anoxic corrosion really exists, it must be initiated through oxidative surface reactions at the copper-water interface. This report presents a survey of the peer reviewed literature on the reactivity of copper surfaces in water. Reactions discussed involve molecular adsorption of water, dissociation of the OH-bonds in adsorbed water molecules and hydroxyl groups, the disproportionation/synproportionation equilibrium between hydroxyl groups/hydroxide ions, water molecules and atomic oxygen, the surface diffusion of adsorbed species, and the formation of hydrogen gas (molecular hydrogen). Experimental, as well as theoretical (quantum chemical) studies are reviewed. It is concluded that a limited amount of hydrogen gas (H{sub 2}) should be formed as the result of dissociative water adsorption at certain copper surfaces. Quantitative estimates of the amounts of H2 that could form at the copper-water interface are made. Assuming that the water-cleavage/hydrogen-formation reaction proceeds on an ideal [110] or [100] surface until a hydroxyl monolayer (ML) is reached, the amount of H{sub 2} formed is {approx} 2.4 ng cm{sup -2} copper surface. Based on the literature cited, this is most likely possible, thermodynamically as well as kinetically. Although not proven, it is not unlikely that the reaction can proceed until an oxide ML is formed, which would give 4.8 ng cm{sup -2}. If the formation of an oxide ML is thermodynamically feasible the surface will probably react further, since Cu{sub 2}O(s) is known to activate and cleave the water molecule when it adsorbs at the Cu{sub 2}O(s) surface. Assuming the formation of a

  8. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  9. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  10. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  11. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  12. Kinetic stability of the dysprosium(3) complex with tetraazaporphine in acetic acid-water and acetic acid-methanol mixtures

    International Nuclear Information System (INIS)

    Khelevina, O.G.; Vojnov, A.A.

    1999-01-01

    Water-soluble dysprosium tetraazaporphine with acetylacetonate-ion as extraligand is synthesized for the first time. Its kinetic stability in acetic acid solutions is investigated. It is shown that the complex is dissociated with formation of free tetraazaporphine. Kinetic parameters of dissociation reaction are determined [ru

  13. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  14. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  15. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    Science.gov (United States)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  17. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    Science.gov (United States)

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.

  18. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  19. Theoretical Analysis of the Relative Significance of Thermodynamic and Kinetic Dispersion in the dc and ac Voltammetry of Surface-Confined Molecules

    KAUST Repository

    Morris, Graham P.; Baker, Ruth E.; Gillow, Kathryn; Davis, Jason J.; Gavaghan, David J.; Bond, Alan M.

    2015-01-01

    © 2015 American Chemical Society. Commonly, significant discrepancies are reported in theoretical and experimental comparisons of dc voltammograms derived from a monolayer or close to monolayer coverage of redox-active surface-confined molecules. For example, broader-than-predicted voltammetric wave shapes are attributed to the thermodynamic or kinetic dispersion derived from distributions in reversible potentials (E0) and electrode kinetics (k0), respectively. The recent availability of experimentally estimated distributions of E0 and k0 values derived from the analysis of data for small numbers of surface-confined modified azurin metalloprotein molecules now allows more realistic modeling to be undertaken, assuming the same distributions apply under conditions of high surface coverage relevant to voltammetric experiments. In this work, modeling based on conventional and stochastic kinetic theory is considered, and the computationally far more efficient conventional model is shown to be equivalent to the stochastic one when large numbers of molecules are present. Perhaps unexpectedly, when experimentally determined distributions of E0 and k0 are input into the model, thermodynamic dispersion is found to be unimportant and only kinetic dispersion contributes significantly to the broadening of dc voltammograms. Simulations of ac voltammetric experiments lead to the conclusion that the ac method, particularly when the analysis of kinetically very sensitive higher-order harmonics is undertaken, are far more sensitive to kinetic dispersion than the dc method. ac methods are therefore concluded to provide a potentially superior strategy for addressing the inverse problem of determining the k0 distribution that could give rise to the apparent anomalies in surface-confined voltammetry.

  20. Theoretical Analysis of the Relative Significance of Thermodynamic and Kinetic Dispersion in the dc and ac Voltammetry of Surface-Confined Molecules

    KAUST Repository

    Morris, Graham P.

    2015-05-05

    © 2015 American Chemical Society. Commonly, significant discrepancies are reported in theoretical and experimental comparisons of dc voltammograms derived from a monolayer or close to monolayer coverage of redox-active surface-confined molecules. For example, broader-than-predicted voltammetric wave shapes are attributed to the thermodynamic or kinetic dispersion derived from distributions in reversible potentials (E0) and electrode kinetics (k0), respectively. The recent availability of experimentally estimated distributions of E0 and k0 values derived from the analysis of data for small numbers of surface-confined modified azurin metalloprotein molecules now allows more realistic modeling to be undertaken, assuming the same distributions apply under conditions of high surface coverage relevant to voltammetric experiments. In this work, modeling based on conventional and stochastic kinetic theory is considered, and the computationally far more efficient conventional model is shown to be equivalent to the stochastic one when large numbers of molecules are present. Perhaps unexpectedly, when experimentally determined distributions of E0 and k0 are input into the model, thermodynamic dispersion is found to be unimportant and only kinetic dispersion contributes significantly to the broadening of dc voltammograms. Simulations of ac voltammetric experiments lead to the conclusion that the ac method, particularly when the analysis of kinetically very sensitive higher-order harmonics is undertaken, are far more sensitive to kinetic dispersion than the dc method. ac methods are therefore concluded to provide a potentially superior strategy for addressing the inverse problem of determining the k0 distribution that could give rise to the apparent anomalies in surface-confined voltammetry.

  1. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.

    Science.gov (United States)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin

    2016-09-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City

    Science.gov (United States)

    Padró, Luz T.; Tkacik, Daniel; Lathem, Terry; Hennigan, Chris J.; Sullivan, Amy P.; Weber, Rodney J.; Huey, L. Greg; Nenes, Athanasios

    2010-05-01

    We present hygroscopic and cloud condensation nuclei (CCN) relevant properties of the water-soluble fraction of Mexico City aerosol collected upon filters during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign. Application of κ-Köhler theory to the observed CCN activity gave a fairly constant hygroscopicity parameter (κ = 0.28 ± 0.06) regardless of location and organic fraction. Köhler theory analysis was used to understand this invariance by separating the molar volume and surfactant contributions to the CCN activity. Organics were found to depress surface tension (10-15%) from that of pure water. Daytime samples exhibited lower molar mass (˜200 amu) and surface tension depression than nighttime samples (˜400 amu); this is consistent with fresh hygroscopic secondary organic aerosol (SOA) condensing onto particles during peak photochemical hours, subsequently aging during nighttime periods of high relative humidity. Changes in surface tension partially compensate for shifts in average molar volume to give the constant hygroscopicity observed, which implies the amount (volume fraction) of soluble material in the parent aerosol is the key composition parameter required for CCN predictions. This finding, if applicable elsewhere, may explain why CCN predictions are often found to be insensitive to assumptions of chemical composition and provides a very simple way to parameterize organic hygroscopicity in atmospheric models (i.e., κorg = 0.28ɛWSOC). Special care should be given, however, to surface tension depression from organic surfactants, as its nonlinear dependence with organic fraction may introduce biases in observed (and predicted) hygroscopicity. Finally, threshold droplet growth analysis suggests the water-soluble organics do not affect activation kinetics.

  3. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  4. Water absorption and biodegradation kinetics of highly filled EOC-FS biocomposites

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Platov, Yu. T.; Bobojonova, G. A.; Ramos, C. Chaverri; Popov, A. A.

    2017-12-01

    The paper analyzes the water absorption and biodegradation kinetics in highly filled biocomposites based on ethylene-octene copolymer (EOC) and oil flax straw (FS). It is shown that adding the filler to EOC increases the water absorption from 0 to 22%. The tendency can be explained both by the low interfacial adhesion of EOC to FS and by the hydrophilic nature of the filler. According to biodegradation tests (10 months), the mass of pure EOC remains unchanged, suggesting that it fails to biodegrade in the environment. Increasing the filler content increases the weight loss of the composites and the degree of microbiological contamination (fungi filaments, bacteria) as evidenced by optical microscopy.

  5. Silicon impurity release and surface transformation of TiO2 anatase and rutile nanoparticles in water environments

    International Nuclear Information System (INIS)

    Liu, Xuyang; Chen, Gexin; Erwin, Justin G.; Su, Chunming

    2014-01-01

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO 2 ) nanoparticles (NPs) in water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting effect on TiO 2 NP transformation in aqueous solutions. The release of Si increased from 2 h to 19 d at three pHs with the order: pH 11.2 ≥ pH 2.4 > pH 8.2. The Si release process followed parabolic kinetics which is similar to diffusion controlled dissolution of minerals, and the release magnitude followed the order: 10 × 40 nm rutile > 50 nm anatase > 30 × 40 nm rutile. FTIR data indicated preferential dissolving of less polymerized Si species on NP surface. Surface potential and particle size of TiO 2 NPs remained almost constant during the 42-day monitoring, implying the unaffected stability and transport of these NPs by the incongruent dissolution of impurities. Highlights: • Si impurity may affect the colloid stability, reactivity, and toxicity of TiO 2 NPs. • Si impurity gradually released during 2 h – 19 d following a parabolic curve. • FTIR data indicated less polymerized Si species dissolved from TiO 2 NPs. • Surface potential and size of TiO 2 remained constant during impurity release. • NP production needs to consider ion release and environmental transformation. -- The incongruent dissolution of surface charge determining Si impurity did not significantly affect the surface potential and aggregation status of TiO 2 nanoparticles in aqueous solutions

  6. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.

    Science.gov (United States)

    Jung, Se-Hui; Kong, Deok-Hoon; Park, Seoung-Woo; Kim, Young-Myeong; Ha, Kwon-Soo

    2012-08-21

    Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay. For fabrication of the peptide arrays, substrate peptides of cMMP-3, caspase-3, caspase-9, and calpain-1 were functionalized with TAMRA and cysteine, and were immobilized onto amine-functionalized arrays using a heterobifunctional linker, N-[γ-maleimidobutyloxy]succinimide ester. The proteolytic activities of the four enzymes were quantitatively analyzed by calculating changes induced by enzymatic reactions in the concentrations of peptides bound to array surfaces. In addition, this assay was successfully applied for calculating the Michaelis constant (K(m,surf)) for the four enzymes. Thus, this new assay has a strong potential for use in the quantitative evaluation of proteases, and for drug discovery through kinetics studies including the determination of K(m) and V(max).

  7. Surface kinetic roughening caused by dental erosion: An atomic force microscopy study

    Science.gov (United States)

    Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco

    2008-05-01

    Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.

  8. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  9. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...

  10. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  11. In situ studies of the kinetics of surface topography development during ion irradiation

    International Nuclear Information System (INIS)

    Levinskas, R.; Pranevicius, L.

    1996-01-01

    Studies of the mechanical properties of the materials affected by 25-200 keV H + , He + , Ne + and Ar + ion irradiation in the range of fluences up to 2 · 10 17 cm -2 based on the analysis of acoustic emission signals, kinetics of the surface deformations measured by laser interferometric technique and the variations of the surface acoustic waves propagation velocity are conducted. The acoustic emissions source mechanisms under various ion irradiation conditions are discussed and relative contribution various possible mechanism are indicated. The correlation of experimental results obtained by different methods of analysis is done. (author). 11 refs, 5 figs

  12. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    2017-06-01

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution) went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  13. Estimating surface water concentrations of “down-the-drain” chemicals in China using a global model

    International Nuclear Information System (INIS)

    Whelan, M.J.; Hodges, J.E.N.; Williams, R.J.; Keller, V.D.J.; Price, O.R.; Li, M.

    2012-01-01

    Predictions of surface water exposure to “down-the-drain” chemicals are presented which employ grid-based spatially-referenced data on average monthly runoff, population density, country-specific per capita domestic water and substance use rates and sewage treatment provision. Water and chemical load are routed through the landscape using flow directions derived from digital elevation data, accounting for in-stream chemical losses using simple first order kinetics. Although the spatial and temporal resolution of the model are relatively coarse, the model still has advantages over spatially inexplicit “unit-world” approaches, which apply arbitrary dilution factors, in terms of predicting the location of exposure hotspots and the statistical distribution of concentrations. The latter can be employed in probabilistic risk assessments. Here the model was applied to predict surface water exposure to “down-the-drain” chemicals in China for different levels of sewage treatment provision. Predicted spatial patterns of concentration were consistent with observed water quality classes for China. - Highlights: ► A global-scale model of “down-the-drain” chemical concentrations is presented. ► The model was used to predict spatial patterns of exposure in China. ► Predictions were consistent with observed water quality classes. ► The model can identify hotspots and statistical distributions of concentrations. - A global-scale model was used to predict spatial patterns of “down-the-drain” chemical concentrations in China. Predictions were consistent with observed water quality classes, demonstrating the potential value of the model.

  14. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  15. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  16. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    International Nuclear Information System (INIS)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping

    2016-01-01

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  17. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping, E-mail: gpsheng@ustc.edu.cn

    2016-01-25

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  18. Kinetics of the reaction between H· and superheated water probed with muonium

    International Nuclear Information System (INIS)

    Alcorn, C.; Brodovitch, J.-C.; Ghandi, K.; Kennedy, A.; Percival, P.W.; Smith, M.

    2011-01-01

    Safe operation of a supercritical water cooled reactor requires knowledge of the reaction kinetics of transient species formed by the radiolysis of water in the temperature range 300-650"oC. By using a light isotope of the H·atom, it is possible to study its chemistry in water over this range of temperatures. Arguably, the most important reaction to study is that of the H·atom with the bulk solvent. This reaction could provide an in situ source of H_2 gas, which is added to CANDU reactors to suppress oxidative corrosion. The work described here concerns studies of the reaction of muonium with H_2O and D_2O at temperatures up to 450"oC.

  19. Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water

    International Nuclear Information System (INIS)

    Mezyk, Stephen P.; Mincher, Bruce J.; Cooper, William J.; Kirkham Cole, S.; Fox, Robert V.; Gardinali, Piero R.

    2012-01-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60 Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water, is provided. - Highlights: ► Radical-based mineralization of aqueous halonitromethane disinfection byproducts. ► Constructed kinetic computer model for tri-halogenated halonitromethane removal. ► Model predicted that superoxide reaction is unimportant for halonitromethanes. ► Measured superoxide reaction with chloropicrin was negligibly slow, 4 M −1 s −1 . ► Determined that superoxide reaction with nitrate also insignificant at ∼10 4 M −1 s −1 .

  20. Passivating surface states on water splitting hematite photoanodes with alumina overlayers

    KAUST Repository

    Le Formal, Florian; Té treault, Nicolas; Cornuz, Maurin; Moehl, Thomas; Grä tzel, Michael; Sivula, Kevin

    2011-01-01

    Hematite is a promising material for inexpensive solar energy conversion via water splitting but has been limited by the large overpotential (0.5-0.6 V) that must be applied to afford high water oxidation photocurrent. This has conventionally been addressed by coating it with a catalyst to increase the kinetics of the oxygen evolution reaction. However, surface recombination at trapping states is also thought to be an important factor for the overpotential, and herein we investigate a strategy to passivate trapping states using conformal overlayers applied by atomic layer deposition. While TiO2 overlayers show no beneficial effect, we find that an ultra-thin coating of Al2O3 reduces the overpotential required with state-of-the-art nano-structured photo-anodes by as much as 100 mV and increases the photocurrent by a factor of 3.5 (from 0.24 mA cm-2 to 0.85 mA cm-2) at +1.0 V vs. the reversible hydrogen electrode (RHE) under standard illumination conditions. The subsequent addition of Co2+ ions as a catalyst further decreases the overpotential and leads to a record photocurrent density at 0.9 V vs. RHE (0.42 mA cm-2). A detailed investigation into the effect of the Al2O3 overlayer by electrochemical impedance and photoluminescence spectroscopy reveals a significant change in the surface capacitance and radiative recombination, respectively, which distinguishes the observed overpotential reduction from a catalytic effect and confirms the passivation of surface states. Importantly, this work clearly demonstrates that two distinct loss processes are occurring on the surface of high-performance hematite and suggests a viable route to individually address them. © The Royal Society of Chemistry 2011.

  1. Passivating surface states on water splitting hematite photoanodes with alumina overlayers

    KAUST Repository

    Le Formal, Florian

    2011-01-24

    Hematite is a promising material for inexpensive solar energy conversion via water splitting but has been limited by the large overpotential (0.5-0.6 V) that must be applied to afford high water oxidation photocurrent. This has conventionally been addressed by coating it with a catalyst to increase the kinetics of the oxygen evolution reaction. However, surface recombination at trapping states is also thought to be an important factor for the overpotential, and herein we investigate a strategy to passivate trapping states using conformal overlayers applied by atomic layer deposition. While TiO2 overlayers show no beneficial effect, we find that an ultra-thin coating of Al2O3 reduces the overpotential required with state-of-the-art nano-structured photo-anodes by as much as 100 mV and increases the photocurrent by a factor of 3.5 (from 0.24 mA cm-2 to 0.85 mA cm-2) at +1.0 V vs. the reversible hydrogen electrode (RHE) under standard illumination conditions. The subsequent addition of Co2+ ions as a catalyst further decreases the overpotential and leads to a record photocurrent density at 0.9 V vs. RHE (0.42 mA cm-2). A detailed investigation into the effect of the Al2O3 overlayer by electrochemical impedance and photoluminescence spectroscopy reveals a significant change in the surface capacitance and radiative recombination, respectively, which distinguishes the observed overpotential reduction from a catalytic effect and confirms the passivation of surface states. Importantly, this work clearly demonstrates that two distinct loss processes are occurring on the surface of high-performance hematite and suggests a viable route to individually address them. © The Royal Society of Chemistry 2011.

  2. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  3. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  4. Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes—evaluated with poly(N-isopropylacrylamide)

    Energy Technology Data Exchange (ETDEWEB)

    Emilsson, Gustav [Dept. of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Schoch, Rafael L.; Oertle, Philipp [Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel (Switzerland); Xiong, Kunli [Dept. of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Lim, Roderick Y.H. [Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel (Switzerland); Dahlin, Andreas B., E-mail: adahlin@chalmers.se [Dept. of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-02-28

    Highlights: • Real-time monitoring of thickness and the kinetics of polymerization. • Probing brush height both above and below the lower critical solution temperature. • Quantitative analysis of thermal actuation of poly(N-isopropylacrylamide) brushes. - Abstract: Polymerization from surfaces and the resulting “brushes” have many uses in the development of novel materials and functional interfaces. However, it is difficult to accurately monitor the polymerization rate, which limits the use of polymer brushes in applications where control of thickness is desirable. We present a new methodology based on angular surface plasmon resonance (SPR) which provides real-time measurements of the thickness evolution during atom transfer radical polymerization, using poly(N-isopropylacrylamide) as an example. Our data analysis shows that the growth is linear with a rate of ∼20 nm/min in a water/methanol mixture up to ∼100 nm after which chain termination gradually reduces the growth rate. Further, we introduce an improved method in SPR which makes it possible to determine changes in brush height and refractive index during switching of responsive polymers. The ratio between heights in the coil to globule transition at 32 °C in water was found to be almost 5, independent of the initial absolute height up to ∼200 nm, in agreement with theory. Complementary quartz crystal microbalance and atomic force microscopy data confirm the accuracy of our results. With the methodology presented here the established SPR technique can be used for quantitative characterization of surface-initiated polymerization and responsive polymer brushes.

  5. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  6. Adsorption kinetics of c-Fos and c-Jun to air-water interfaces.

    Science.gov (United States)

    Del Boca, Maximiliano; Nobre, Thatyane Morimoto; Zaniquelli, Maria Elisabete Darbello; Maggio, Bruno; Borioli, Graciela A

    2007-11-01

    The kinetics of adsorption to air-water interfaces of the biomembrane active transcription factors c-Fos, c-Jun and their mixtures is investigated. The adsorption process shows three distinct stages: a lag time, a fast pseudo zero-order stage, and a halting stage. The initial stage determines the course of the process, which is concentration dependent until the end of the fast stage. We show that c-Fos has faster adsorption kinetics than c-Jun over all three stages and that the interaction between both proteins is apparent in the adsorption profiles of the mixtures. Protein molecular reorganization at the interface determines the transition to the final adsorption stage of the pure proteins as well as that of the mixtures.

  7. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  8. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  9. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  10. Thermodynamic stability and kinetic dissolution of perovskite in natural waters

    International Nuclear Information System (INIS)

    Nesbitt, H.W.; Bancroft, G.M.; Fyfe, W.S.; Karkhanis, S.; Melling, P.; Nishijima, A.

    1981-01-01

    Ringwood and coworkers have recently proposed using titanates and zirconates as hosts for nuclear waste in the Synroc B process. Three minerals are used as hosts: perovskite (CaTiO 3 ), Ba-hollandite (BaAl 2 Ti 6 O 16 ), and zirconolite (CaZrTi 2 O 7 ). The Synroc philosophy relies heavily on geological and geochemical observations in selecting stable host minerals. Although it has been recognized that the Synroc minerals are not thermodynamically compatible with siliceous rocks, the minerals are considered to be thermodynamically stable in the presence of water, and it has been reported that these minerals are kinetically stable under high-temperature (up to 900 0 C) hydrothermal conditions. Detailed thermodynamic calculations and leach tests have been performed which demonstrate: first, that perovskite is thermodynamically unstable in all known natural waters; and second, that pervoskite leaches at a significant rate even at 100 0 C. Hydrothermal leach tests have been made on natural and synthetic perovskite and perovskite analogues between 100 0 C and 300 0 C. Weight losses and solution concentrations were monitored. The results reported previously in the literature also show that perovskite is kinetically unstable in the presence of common silicates. Our results show that perovskite may be no more stable than siliceous glasses, such as rhyolite, which have been studied previously. Geologic evidence from common alkaline rocks also indicates that hollandite and zirconolite probably will not survive in common rock matrices

  11. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  12. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  13. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water.

    Science.gov (United States)

    Ma, Xiao; Bibby, Kyle

    2017-09-01

    Fungi are near-ubiquitous in potable water distribution systems, but the disinfection kinetics of commonly identified fungi are poorly studied. In the present study, laboratory scale experiments were conducted to evaluate the inactivation kinetics of Aspergillus fumigatus, Aspergillus versicolor, and Penicillium purpurogenum by free chlorine and monochloramine. The observed inactivation data were then fit to a delayed Chick-Watson model. Based on the model parameter estimation, the Ct values (integrated product of disinfectant concentration C and contact time t over defined time intervals) for 99.9% inactivation of the tested fungal strains ranged from 48.99 mg min/L to 194.7 mg min/L for free chlorine and from 90.33 mg min/L to 531.3 mg min/L for monochloramine. Fungal isolates from a drinking water system (Aspergillus versicolor and Penicillium purpurogenum) were more disinfection resistant than Aspergillus fumigatus type and clinical isolates. The required 99.9% inactivation Ct values for the tested fungal strains are higher than E. coli, a commonly monitored indicator bacteria, and within a similar range for bacteria commonly identified within water distribution systems, such as Mycobacterium spp. and Legionella spp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  15. Diffusion-kinetic theories for LET effects on the radiolysis of water

    International Nuclear Information System (INIS)

    Pimblott, S.M.; LaVerne, J.A.

    1994-01-01

    Diffusion-kinetic methods are used to investigate the effects of incident particle linear energy transfer (LET) on the radiolysis of water and aqueous solutions. Chemically realistic deterministic diffusion-kinetic calculations examining the scavenging capacity dependences of the scavenged yield of e aq - and of OH demonstrate that the scavenged yields are related to the underlying time-dependent kinetics in the absence of the scavenger by a simple Laplace transform relationship. This relationship is also shown to link the effect of an e eq - scavenger on the formation of H 2 with the time dependence of H 2 production in the absence of the scavenger. The simple Laplace relationship does not work well when applied to H 2 O 2 formation in high-LET particle tracks even though such a relationship is valid with low-LET particles. It is found that while the secondary reaction of H 2 O 2 with e aq - can be neglected in low-LET particle radiolysis, it is of considerable significance in the tracks produced by high-LET particles. The increased importance of this reaction with increasing LET is the major reason for the failure of the Laplace relationship for H 2 O 2 . 55 refs., 9 figs., 2 tabs

  16. Kinetics of the reaction between H· and superheated water probed with muonium

    Energy Technology Data Exchange (ETDEWEB)

    Alcorn, C. [Mount Allison Univ., Sackville, NB (Canada); Brodovitch, J.-C. [Simon Fraser Univ., Burnaby, BC (Canada); Ghandi, K.; Kennedy, A. [Mount Allison Univ., Sackville, NB (Canada); Percival, P.W. [Simon Fraser Univ., Burnaby, BC (Canada); TRIUMF, Vancouver, BC (Canada); Smith, M. [Mount Allison Univ., Sackville, NB (Canada)

    2011-07-01

    Safe operation of a supercritical water cooled reactor requires knowledge of the reaction kinetics of transient species formed by the radiolysis of water in the temperature range 300-650{sup o}C. By using a light isotope of the H·atom, it is possible to study its chemistry in water over this range of temperatures. Arguably, the most important reaction to study is that of the H·atom with the bulk solvent. This reaction could provide an in situ source of H{sub 2} gas, which is added to CANDU reactors to suppress oxidative corrosion. The work described here concerns studies of the reaction of muonium with H{sub 2}O and D{sub 2}O at temperatures up to 450{sup o}C.

  17. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    Science.gov (United States)

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  18. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  19. Reaction kinetic model of the surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol on a CuP/Silica suface

    Energy Technology Data Exchange (ETDEWEB)

    Lomnicki, S.; Khachatryan, L.; Dellinger, B. [Louisiana State Univ., Baton Rouge (United States). Dept. of Chemistry

    2004-09-15

    One of the major challenges in developing predictive models of the surface mediated pollutant formation and fuel combustion is the construction of reliable reaction kinetic mechanisms and models. While the homogeneous, gas-phase chemistry of various light fuels such as hydrogen and methane is relatively well-known large uncertainties exist in the reaction paths of surface mediated reaction mechanisms for even these very simple species. To date, no detailed kinetic consideration of the surface mechanisms of formation of complex organics such as PCDD/F have been developed. In addition to the complexity of the mechanism, a major difficulty is the lack of reaction kinetic parameters (pre-exponential factor and activation energy) of surface reactions, Consequently, numerical studies of the surface-mediated formation of PCDD/F have often been incorporated only a few reactions. We report the development of a numerical multiple-step surface model based on experimental data of surface mediated (5% CuO/SiO2) conversion of 2-monochlorphenol (2-MCP) to PCDD/F under pyrolytic or oxidative conditions. A reaction kinetic model of the catalytic conversion of 2-MCP on the copper oxide catalyst under pyrolytic conditions was developed based on a detailed multistep surface reaction mechanism developed in our laboratory. The performance of the chemical model is assessed by comparing the numerical predictions with experimental measurements. SURFACE CHEMKIN (version 3.7.1) software was used for modeling. Our results confirm the validity of previously published mechanism of the reaction and provides new insight concerning the formation of PCDD/F formation in combustion processes. This model successfully explains the high yields of PCDD/F at low temperatures that cannot be explained using a purely gas-phase mode.

  20. Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting.

    Science.gov (United States)

    Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong

    2018-06-06

    NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.

  1. Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2006-05-15

    We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment.

  2. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.

    Science.gov (United States)

    Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L

    2017-08-01

    Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.

  3. Modeling the Release Kinetics of Poorly Water-Soluble Drug Molecules from Liposomal Nanocarriers

    Directory of Open Access Journals (Sweden)

    Stephan Loew

    2011-01-01

    Full Text Available Liposomes are frequently used as pharmaceutical nanocarriers to deliver poorly water-soluble drugs such as temoporfin, cyclosporine A, amphotericin B, and paclitaxel to their target site. Optimal drug delivery depends on understanding the release kinetics of the drug molecules from the host liposomes during the journey to the target site and at the target site. Transfer of drugs in model systems consisting of donor liposomes and acceptor liposomes is known from experimental work to typically exhibit a first-order kinetics with a simple exponential behavior. In some cases, a fast component in the initial transfer is present, in other cases the transfer is sigmoidal. We present and analyze a theoretical model for the transfer that accounts for two physical mechanisms, collisions between liposomes and diffusion of the drug molecules through the aqueous phase. Starting with the detailed distribution of drug molecules among the individual liposomes, we specify the conditions that lead to an apparent first-order kinetic behavior. We also discuss possible implications on the transfer kinetics of (1 high drug loading of donor liposomes, (2 attractive interactions between drug molecules within the liposomes, and (3 slow transfer of drugs between the inner and outer leaflets of the liposomes.

  4. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  6. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  7. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  8. Effect of Ingredient Loading on Surface Migration Kinetics of Additives in Vulcanized Natural Rubber Compounds

    Directory of Open Access Journals (Sweden)

    Bryan B. Pajarito

    2014-12-01

    Full Text Available Surface migration kinetics of chemical additives in vulcanized natural rubber compounds were studied as function of ingredient loading. Rubber sheets were compounded according to a 212-8 fractional factorial design of experiment, where ingredients were treated as factors varied at two levels of loading. Amount of migrated additives in surface of rubber sheets was monitored through time at ambient conditions. The maximum amount and estimated rate of additive migration were determined from weight loss kinetic curves. Attenuated total reflection–Fourier transform infrared (ATR-FTIR spectroscopy and optical microscopy were used to characterize the chemical structure and surface morphology of sheet specimens during additive migration. ANOVA results showed that increased loading of reclaimed rubber, CaCO3, and paraffin wax signif icantly decreased the maximum amount of additive migration; by contrast, increased loading of used oil, asphalt, and mercaptobenzothiazole disulphide (MBTS increased the maximum amount. Increased loading of sulfur, diphenylguanidine (DPG, and paraffin wax significantly decreased the additive migration rate; increased loading of used oil, asphalt, and stearic acid elicited an opposite effect. Comparison of ATRFTIR spectra of migrated and cleaned rubber surfaces showed signif icant variation in intensity of specif ic absorbance bands that are also present in infrared spectra of migrating chemicals. Paraffin wax, used oil, stearic acid, MBTS, asphalt, and zinc stearate were identified to bloom and bleed in the rubber sheets. Optical micrographs of migrated rubber surfaces revealed formation of white precipitates due to blooming and of semi-transparent wet patches due to bleeding.

  9. Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film.

    Science.gov (United States)

    Minkov, I; Ivanova, Tz; Panaiotov, I; Proust, J; Saulnier, P

    2005-09-01

    The state, electrical and dilatational rheological properties of surface films formed at air-water interface from lipid nanocapsules (LNC) with various compositions as well as model monolayers formed by the LNC constituents-Labrafac, Solutol and Lipoid are investigated. These nanocapsules constitute potential drug delivery systems where lypophilic drug will be loaded in their core. The study of the model Labrafac/Solutol (Lab/Sol) mixed monolayers shows behavior close to the ideal. Small negative deviations in the mean molecular areas a and dipole moments mu are observed. All studied monolayers have elastic behavior during the small continuous compressions. The comparison between the properties of surface films formed from LNC with those of the model monolayers confirms the idea developed in the kinetic study that the surface films formed after a rapid disaggregation of the unstable nanocapsule fraction (LNC I) contains mainly Labrafac and Solutol. The Labrafac molar part (xLab) in the formed Lab/Sol mixed layer is established.

  10. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater

    International Nuclear Information System (INIS)

    Salgado, R.; Pereira, V.J.; Carvalho, G.; Soeiro, R.; Gaffney, V.; Almeida, C.; Cardoso, V. Vale; Ferreira, E.; Benoliel, M.J.

    2013-01-01

    Highlights: ► Direct UV photolysis of 3 pharmaceuticals in pure and waste water was investigated. ► Ketoprofen has higher photodegradion kinetics, followed by diclofenac and atenolol. ► MP/UV photodegradation products were identified for the 3 compounds. ► Photodegradation pathways were proposed to explain the obtained products. ► The persistent photoproducts were identified for each compound. -- Abstract: Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis

  11. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal (Portugal); Pereira, V.J. [Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Química e Biológica (ITQB) – Universidade Nova de Lisboa (UNL), Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, 5 Portugal (Portugal); Carvalho, G., E-mail: gs.carvalho@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Soeiro, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Gaffney, V.; Almeida, C. [Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia da Universidade de Lisboa (FFUL), Av. Prof. Gama Pinto, 1600-049 Lisboa (Portugal); Cardoso, V. Vale; Ferreira, E.; Benoliel, M.J. [Empresa Portuguesa das Águas Livres, S.A., Direcção de Controlo de Qualidade da Água, Laboratório Central, Avenida de Berlim, 15, 1800-031 Lisboa (Portugal); and others

    2013-01-15

    Highlights: ► Direct UV photolysis of 3 pharmaceuticals in pure and waste water was investigated. ► Ketoprofen has higher photodegradion kinetics, followed by diclofenac and atenolol. ► MP/UV photodegradation products were identified for the 3 compounds. ► Photodegradation pathways were proposed to explain the obtained products. ► The persistent photoproducts were identified for each compound. -- Abstract: Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis.

  12. Estimation of the nucleation kinetics for the anti-solvent crystallisation of paracetamol in methanol/water solutions

    Science.gov (United States)

    Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.

    2011-08-01

    In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.

  13. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  14. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.

    2018-03-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage

  15. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie; Lane, Charles R.; McManus, Michael L.; Alexander, Laurie C.; Christensen, Jay R.

    2018-01-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic

  16. Wetlands inform how climate extremes influence surface water expansion and contraction

    Directory of Open Access Journals (Sweden)

    M. K. Vanderhoof

    2018-03-01

    Full Text Available Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1 quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR and adjacent Northern Prairie (NP in the United States, and (2 explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015. The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density. To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less

  17. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  18. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  19. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  20. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    Science.gov (United States)

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  1. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  2. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  3. Finite size effects in phase transformation kinetics in thin films and surface layers

    International Nuclear Information System (INIS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-01-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively

  4. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    Science.gov (United States)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the

  5. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  6. Development of a novel once-through flow visualization technique for kinetic study of bulk and surface scaling

    Science.gov (United States)

    Sanni, O.; Bukuaghangin, O.; Huggan, M.; Kapur, N.; Charpentier, T.; Neville, A.

    2017-10-01

    There is a considerable interest to investigate surface crystallization in order to have a full mechanistic understanding of how layers of sparingly soluble salts (scale) build on component surfaces. Despite much recent attention, a suitable methodology to improve on the understanding of the precipitation/deposition systems to enable the construction of an accurate surface deposition kinetic model is still needed. In this work, an experimental flow rig and associated methodology to study mineral scale deposition is developed. The once-through flow rig allows us to follow mineral scale precipitation and surface deposition in situ and in real time. The rig enables us to assess the effects of various parameters such as brine chemistry and scaling indices, temperature, flow rates, and scale inhibitor concentrations on scaling kinetics. Calcium carbonate (CaCO3) scaling at different values of the saturation ratio (SR) is evaluated using image analysis procedures that enable the assessment of surface coverage, nucleation, and growth of the particles with time. The result for turbidity values measured in the flow cell is zero for all the SR considered. The residence time from the mixing point to the sample is shorter than the induction time for bulk precipitation; therefore, there are no crystals in the bulk solution as the flow passes through the sample. The study shows that surface scaling is not always a result of pre-precipitated crystals in the bulk solution. The technique enables both precipitation and surface deposition of scale to be decoupled and for the surface deposition process to be studied in real time and assessed under constant condition.

  7. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  8. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  9. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  10. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  11. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  12. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  13. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  14. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  15. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  16. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  17. Adsorption/desorption kinetics of Na atoms on reconstructed Si (111)-7 x 7 surface

    International Nuclear Information System (INIS)

    Chauhan, Amit Kumar Singh; Govind; Shivaprasad, S.M.

    2010-01-01

    Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 x 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 x 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 o C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 o C, before depleting the Si (111) surface at temperature 720 o C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (-1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 x 7 system can be utilized in fabrication of sensors used in night vision devices.

  18. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  19. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  20. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  1. The Effect of Landing Surface on the Plantar Kinetics of Chinese Paratroopers Using Half-Squat Landing

    Science.gov (United States)

    Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di

    2013-01-01

    The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal

  2. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces

    NARCIS (Netherlands)

    Koontz, AM; Cooper, RA; Boninger, ML; Yang, YS; Impink, BG; van der Woude, LHV

    2005-01-01

    The objective of this study was to conduct a kinetic analysis of manual wheelchair propulsion during start-LIP on select indoor and Outdoor surfaces. Eleven manual wheelchairs were fitted with a SMART(Wheel) and their users were asked to Push on a Course consisting of high- and low-pile carpet,

  3. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  4. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  5. Reducing phosphorus loading of surface water using iron-coated sand

    NARCIS (Netherlands)

    Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F.

    2013-01-01

    Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an

  6. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.

    Science.gov (United States)

    Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M

    2014-08-29

    We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

  7. Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): A comparison with CCl4

    International Nuclear Information System (INIS)

    Faradzhev, N.S.; Perry, C.C.; Kusmierek, D.O.; Fairbrother, D.H.; Madey, T.E.

    2004-01-01

    The kinetics of decomposition and subsequent chemistry of adsorbed CF 2 Cl 2 , activated by low-energy electron irradiation, have been examined and compared with CCl 4 . These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF 2 Cl 2 and CCl 4 dissociation increase in an H 2 O (D 2 O) environment (2-3x), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H 2 O, using 180 eV incident electrons, are measured (using TPD) to be 1.0±0.2x10 -15 cm 2 for CF 2 Cl 2 and 2.5±0.2x10 -15 cm 2 for CCl 4 . RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl - and F - anions in the halocarbon/water films and production of H 3 O + , CO 2 , and intermediate compounds COF 2 (for CF 2 Cl 2 ) and COCl 2 , C 2 Cl 4 (for CCl 4 ) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation

  8. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  9. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    Science.gov (United States)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  10. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  11. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  12. Instability of confined water films between elastic surfaces

    NARCIS (Netherlands)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Friedrich

    2010-01-01

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a

  13. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  14. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  15. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  16. Kinetic behavior of manganese in mangrove ecosystem - Itacuruca, Rio de Janeiro State, Brazil

    International Nuclear Information System (INIS)

    Canesin, Fatima de Paiva; Bellido Junior, Alfredo Victor

    2002-01-01

    The redox cycling of manganese has pronounced effects on the adsorption of trace elements onto oxide surfaces is leaving these unavailable for the biota. Specific constants for the kinetics oxidation reaction of Mn in mangrove ecosystems have been measured. Water samples with different characteristics were collected in a tidal creek in a mangrove forest growth at Itacuruca, RJ. The methodology used to study the kinetics was, incubation of the water, in laboratory, with Mn-54. The oxides precipitates were filtered at constant intervals of time. The Mn-54 decay on the filters and filtrates were counted, for 600 s, in HPGe and associated electronics ORTEC. Ln A x t diagram showed an autocatalytic kinetic behavior. Temperature, pH, O 2 dissolved, salinity, Mn (II) and Mn (IV) were appraised. The rate constant k ' 1 1 varied from 1,0 x 10 -5 to 4,0 x 10 -5 s -1 . The k ' 2 rate constant had a larger variation, according to the other kinetic model that shows more of a heterogeneous affect, or catalysis via bacteria. We found a mean half life for Mn(II) of 12 h for the homogeneous kinetics in the mangrove. Rate constants increased with the pH, temperature, O 2 dissolved, tide height, and decrease with salinity. (author)

  17. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  18. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  19. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Science.gov (United States)

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  20. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces.

    Science.gov (United States)

    Cha, Jihoon; Cui, Mingcan; Jang, Min; Cho, Sang-Hyun; Moon, Deok Hyun; Khim, Jeehyeong

    2011-01-01

    This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO₄³⁻ concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K₂ was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca₃(.)₉₃ Pb₁(.)₀₇ (PO₄)₃ (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.

  1. Transition state kinetics of Hg(II) adsorption at gibbsite-water interface

    International Nuclear Information System (INIS)

    Weerasooriya, Rohan; Tobschall, Heinz J.; Seneviratne, Wasana; Bandara, Atula

    2007-01-01

    Kinetics of adsorption plays a pivotal factor in determining the bio-availability and mobility of Hg(II) in the environment. The kinetics of Hg(II) adsorption on gibbsite was examined as a function of pH, temperature and electrolyte type. Adsorption of Hg(II) was highly non-linear where the rate of Hg(II) retention was rapid initially and was followed by gradual or somewhat slow retention behavior with increasing contact time. The respective rate constants designated as k 1 (S-1: fast step) and k 2 (S-2: slow step). Always k 1 follows the order: k 1 ClO 4 >=k 1 (NO 3 ) 4 >>k 1 Cl . Such a relationship was not observed for the S-2 route. A two-step reaction model with pseudo-first order kinetics successfully described the adsorption rates of Hg(II) on gibbsite. Arrhenius and Erying models determined the thermodynamic parameters at activation states, which correspond to S-1 and S-2 routes. In a given system, always the activation energies showed a decrease with the pH. Gibbs free energy (ΔG numbersign ), enthalpy (ΔH numbersign ), and entropy (ΔS numbersign ) values of activation states were almost similar both in NaClO 4 and NaNO 3 which signal a similar Hg(II) adsorptive mechanism on gibbsite. The configurations of different Hg(II)-surface complexes were elucidated by transmission vibration spectroscopy

  2. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    Science.gov (United States)

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  3. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    Science.gov (United States)

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains

    Science.gov (United States)

    Garrod, Robin

    2015-08-01

    The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.

  5. Behavior of water jet horizontally discharged from a small circular hole set on a circular pipe-surface into air

    International Nuclear Information System (INIS)

    Tsuyuki, Koji; Igarashi, Saburo; Sudo, Seiichi; Yamabe, Masahiro; Kikuchi, Akira; Oba, Risaburo

    2001-01-01

    In order to clarify the behavior of the water jet horizontally discharged from a small circular hole set on a circular pipe surface into air, in this paper, for the first step, we systematically observed the jet aspects, the efflux angle, the discharge coefficient and so on, when the hole diameter d is much smaller than the pipe diameter D. Since the upstream kinetic energy from the hole is somewhat higher than the downstream counterpart, the upstream partial jet with higher efflux angle crashes into the downstream partial jet and drives out the latter into up- and down-side, resulting in a marked pair of vortices, so that resulting in a three-dimensional spiral flow accompanying with marked surface waves. (author)

  6. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.

  7. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  8. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  9. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  10. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  11. Oxidation of phenyl alanine by pyridinium chlorochromate in acidic DMF–water medium: A kinetic study

    Directory of Open Access Journals (Sweden)

    B.L. Hiran

    2016-11-01

    Full Text Available The kinetics of oxidation of phenyl alanine by pyridinium chlorochromate in DMF–water (70:30% mixture in presence of perchloric acid leads to the formation of corresponding aldehyde. The reaction is of first order each in [PCC], [HClO4] and [AA]. Michaelis–Menten type kinetics was observed with phenyl alanine. The reaction rates were determined at different temperatures [25, 30, 35, 40, 45, 50 °C] and the activation parameters were calculated. The reaction does not induce polymerization of acrylonitrile. With an increase in the amount of DMF in its aqueous mixture, the rate increases. A suitable mechanism for the reaction was postulated.

  12. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  13. Effective use of surface-water management to control saltwater intrusion

    Science.gov (United States)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  14. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  15. A kinetic model for the stability of spent fuel matrix under oxic conditions

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Eriksen, T.E.

    1996-01-01

    A kinetic model for the UO 2 -spent fuel dissolution has been developed by integrating all the fundamental and experimental evidence about the redox buffer capacity of the UO 2 matrix itself within the methodological framework of heterogeneous redox reactions and dissolution kinetics. The purpose of the model is to define the geochemical stability of the spent fuel matrix and its resistance to internal and external disturbances. The model has been built in basis the reductive capacity (RDC) of the spent fuel/water system. A sensitivity analysis has been performed in order to identify the main parameters that affect the RDC of the system, the oxidant consumption and the radionuclide release. The number of surface co-ordination sites, the surface area to volume ratio, the kinetics of oxidants generation by radiolysis and the kinetics of oxidative dissolution of UO 2 , have been found to be the main parameters that can affect the reductive capacity of the spent fuel matrix. The model has been checked against some selected UO 2 and spent fuel dissolution data, performed under oxidizing conditions. The results are quite encouraging. (orig.)

  16. Hydrogen peroxide kinetics in water radiolysis

    Science.gov (United States)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  17. Kinetics and mechanisms of the oxide film growth on the surface of α-Fe in transitional domains

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Berber, N.N.; Kargin, D.B.; Chalaya, O.V.

    2003-01-01

    The object of this work was to study the kinetics of the α-Fe surface oxidation with prevailing cubic texture at temperatures of 450-500 deg. C. The basic conformity to natural laws and mechanisms of the two-phase thin oxide films grows are determined. (author)

  18. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  19. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    International Nuclear Information System (INIS)

    Schaefer, C.; Jansen, A. P. J.

    2013-01-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  20. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  1. Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Nichipor Henrietta

    2017-09-01

    Full Text Available Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas fl ow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal efficiency of NOx might be increased by 8-16% with the presence of a catalyst in the gas irradiated field.

  2. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  3. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  4. Influential factors of formation kinetics of flocs produced by water treatment coagulants.

    Science.gov (United States)

    Wu, Chunde; Wang, Lin; Hu, Bing; Ye, Jian

    2013-05-01

    The growth rate and size of floc formation is of great importance in water treatment especially in coagulation process. The floc formation kinetics and the coagulation efficiency of synthetic water were investigated by using an on-line continuous optical photometric dispersion analyze and the analysis of water quality. Experimental conditions such as alum dosage, pH value for coagulation, stirring intensity and initial turbidity were extensively examined. The photometric dispersion analyze results showed that coagulation of kaolin suspensions with two coagulants (alum and polyaluminium chloride) could be taken as a two-phase process: slow and rapid growth periods. Operating conditions with higher coagulant doses, appropriate pH and average shear rate might be particularly advantageous. The rate of overall floc growth was mainly determined by a combination of hydraulic and water quality conditions such as pH and turbidity. The measurement of zeta potential indicates that polyaluminium chloride exhibited higher charge-neutralizing ability than alum and achieved lower turbidities than alum for equivalent Al dosages. Under the same operating conditions, the alum showed a higher grow rate, but with smaller floc size.

  5. NH4+ adsorption and adsorption kinetics by sediments in a drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Suna Hongyan

    2016-12-01

    Full Text Available The sorption isotherm and sorption kinetics of NH4+ by the Fen River reservoir sediment were investigated for a better understanding of the NH4+ sorption characteristics and parameters. The results showed that Q (adsorption content increased with the increase of Ceq (equilibrium concentration, sorption isotherms could be described by Freundlich equation (R2 from 0.97 to 0.99. Cation exchange capacity (CEC had a significant correlation with the parameters K and n (R2 was 0.85 and 0.95, respectively. The ENC0 (Ceq as Q was zero of S1, S2, S3 and S4 was 1.25, 0.57, 1.15 and 1.14 mg L-1, respectively, and they were less than the NH4+ concentrations in reservoir water. The sediments released NH4+ to the Fen River reservoir water and acted as a pollution source, in the form of complex and heterogeneous adsorbents. The NH4+ adsorption kinetic process was composed of ‘fast’ and ‘slow’ reaction patterns and could be fitted using both Elovich equation and Pseudo second-equation. More than one-step may be involved in the NH4+ sorption processes, and interior diffusion was not dominant ion action.

  6. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  7. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  8. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    Science.gov (United States)

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery

    Science.gov (United States)

    Wang, Xiaobiao; Xie, Shunping; Zhang, Xueliang; Chen, Cheng; Guo, Hao; Du, Jinkang; Duan, Zheng

    2018-06-01

    Surface water is vital resources for terrestrial life, while the rapid development of urbanization results in diverse changes in sizes, amounts, and quality of surface water. To accurately extract surface water from remote sensing imagery is very important for water environment conservations and water resource management. In this study, a new Multi-Band Water Index (MBWI) for Landsat 8 Operational Land Imager (OLI) images is proposed by maximizing the spectral difference between water and non-water surfaces using pure pixels. Based on the MBWI map, the K-means cluster method is applied to automatically extract surface water. The performance of MBWI is validated and compared with six widely used water indices in 29 sites of China. Results show that our proposed MBWI performs best with the highest accuracy in 26 out of the 29 test sites. Compared with other water indices, the MBWI results in lower mean water total errors by a range of 9.31%-25.99%, and higher mean overall accuracies and kappa coefficients by 0.87%-3.73% and 0.06-0.18, respectively. It is also demonstrated for MBWI in terms of robustly discriminating surface water from confused backgrounds that are usually sources of surface water extraction errors, e.g., mountainous shadows and dark built-up areas. In addition, the new index is validated to be able to mitigate the seasonal and daily influences resulting from the variations of the solar condition. MBWI holds the potential to be a useful surface water extraction technology for water resource studies and applications.

  10. WATER SURFACE RECONSTRUCTION IN AIRBORNE LASER BATHYMETRY FROM REDUNDANT BED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available In airborne laser bathymetry knowledge of exact water level heights is a precondition for applying run-time and refraction correction of the raw laser beam travel path in the medium water. However, due to specular reflection especially at very smooth water surfaces often no echoes from the water surface itself are recorded (drop outs. In this paper, we first discuss the feasibility of reconstructing the water surface from redundant observations of the water bottom in theory. Furthermore, we provide a first practical approach for solving this problem, suitable for static and locally planar water surfaces. It minimizes the bottom surface deviations of point clouds from individual flight strips after refraction correction. Both theoretical estimations and practical results confirm the potential of the presented method to reconstruct water level heights in dm precision. Achieving good results requires enough morphological details in the scene and that the water bottom topography is captured from different directions.

  11. Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation

    Science.gov (United States)

    Laureys, David

    2014-01-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product. PMID:24532061

  12. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation.

    Science.gov (United States)

    Laureys, David; De Vuyst, Luc

    2014-04-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product.

  13. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  14. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    Science.gov (United States)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  15. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    Science.gov (United States)

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.

  16. Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Air-Water Interface

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; Jongh, H.H.J. de

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air - water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  17. Protein exposed hydrophobicity reduces the kinetic barrier for adsoption of ovalbumin to the air-water interface.

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air-water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  18. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  19. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  20. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  1. A transient kinetic study of nickel-catalyzed methanation: Final report

    International Nuclear Information System (INIS)

    Hoost, T.E.; Goodwin, J.G. Jr.

    1988-11-01

    The results of this study are in two major parts. In Part I the use of steady-state isotopic transients of multiple elements (C, H, and O) under actual methanation reaction conditions has permitted an assessment of the reactivity of water on a Ni powder catalyst. It was concluded based on the addition of isotopic water that oxygen, once reacted to form water, is able to readsorb even where the surface coverage of CO remains high. At the low relative partial pressures of water used, however, there was no effect of added water on the formation of methane. The surface residence time of water determined from isotopic transients contains the residence time on the surface during the primary formation reaction as well as the time spent during readsorption(s). Part II addressed how a catalyst modifier (in this case Cl) affects methanation in CO hydrogenation using steady-state isotopic transient kinetic analysis (SSITKA) of methanation. The results obtained using silica-supported Ru suggest the structural rearrangements induced by the presence of chlorine, rather than selective site blocking or electronic interactions, may be the primary mechanism of chlorine modification of the catalytic properties of supported metals for CO hydrogenation. SSITKA indicated that the decrease in methanation activity with increasing initial Cl concentration was a function of a decrease in the number of reactive surface intermediates (or sites) and not of a change in site activity. 36 refs., 10 figs., 5 tabs

  2. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  3. ULTRASOUND PRETREATMENT OF ELEMENTAL IRON: KINETIC STUDIES OF DEHALOGENATION REACTION ENHANCEMENT AND SURFACE EFFECTS. (R828598C743)

    Science.gov (United States)

    This work presents data showing the kinetic improvement afforded by ultrasound pretreatment and illustrates the physical and chemical changes that take place at the iron surface. First-order rate constants improved as much as 78% with 2 h of ultrasound pretreatment. Scann...

  4. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    Science.gov (United States)

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are

  5. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Common Perception. A surface can be classified as. > Wetting. > Non-wetting. Depending on the spreading characteristics of a droplet of water that splashes on the surface. The behavior of fluid on a solid surface under static and dynamic ..... color of the number density profile. Ions at the interface tend to form pinning zones ...

  6. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  7. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  8. Surface tension of normal and heavy water

    International Nuclear Information System (INIS)

    Straub, J.; Rosner, N.; Grigull, V.

    1980-01-01

    A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard. The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the 'Scaling Laws'. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data. (orig.) [de

  9. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  10. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  11. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  12. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei Caixia; Liao Yingmin; Feng Zude, E-mail: zdfeng@xmu.edu.c [College of Materials, Xiamen University, Xiamen 361005 (China)

    2009-06-15

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm{sup -2} to 10 mA cm{sup -2}) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  13. Self-cleaning efficiency of artificial superhydrophobic surfaces.

    Science.gov (United States)

    Bhushan, Bharat; Jung, Yong Chae; Koch, Kerstin

    2009-03-03

    The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.

  14. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  15. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    Science.gov (United States)

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  16. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  17. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Science.gov (United States)

    Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.

    2018-01-01

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797

  18. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Directory of Open Access Journals (Sweden)

    Takahiro Fujioka

    2018-04-01

    Full Text Available A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

  19. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  20. Human Metabolite Lamotrigine-N(2)-glucuronide Is the Principal Source of Lamotrigine-Derived Compounds in Wastewater Treatment Plants and Surface Water.

    Science.gov (United States)

    Zonja, Bozo; Pérez, Sandra; Barceló, Damià

    2016-01-05

    Wastewater and surface water samples, extracted with four solid-phase extraction cartridges of different chemistries, were suspect-screened for the anticonvulsant lamotrigine (LMG), its metabolites, and related compounds. LMG, three human metabolites, and a LMG synthetic impurity (OXO-LMG) were detected. Preliminary results showed significantly higher concentrations of OXO-LMG in wastewater effluent, suggesting its formation in the wastewater treatment plants (WWTPs). However, biodegradation experiments with activated sludge demonstrated that LMG is resistant to degradation and that its human metabolite lamotrigine-N(2)-glucuronide (LMG-N2-G) is the actual source of OXO-LMG in WWTPs. In batch reactors, LMG-N2-G was transformed, following pseudo-first-order kinetics to OXO-LMG and LMG, but kinetic experiments suggested an incomplete mass balance. A fragment ion search applied to batch-reactor and environmental samples revealed another transformation product (TP), formed by LMG-N2-G oxidation, which was identified by high-resolution mass spectrometry. Accounting for all TPs detected, a total mass balance at two concentration levels in batch reactors was closed at 86% and 102%, respectively. In three WWTPs, the total mass balance of LMG-N2-G ranged from 71 to 102%. Finally, LMG-N2-G and its TPs were detected in surface water samples with median concentration ranges of 23-139 ng L(-1). The results of this study suggest that glucuronides of pharmaceuticals might also be sources of yet undiscovered, but environmentally relevant, transformation products.

  1. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  2. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  3. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  4. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Moreau, S.; Fenart, M.; Renault, J.P.

    2014-01-01

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  5. Theory of kinetics and equilibrium of ion exchange-adsorption and mechanism of extracting uranium from sea-water with titanic gel

    International Nuclear Information System (INIS)

    Ai Hongtao

    1989-01-01

    An isothermal equation for ion exchange-adsorption is derived by mass action law. The equation can be used to sum up empirical and semiempirical formulas of the exchange adsorption, such as Gapon Equation, Sips Formula, Langmuir Equation and Freundlich Formula. In this paper, by adopting the ion exchange reaction to act as the determining step of the ion exchange adsorption kinetics, and exchange-adsorption kinetics equation is derived. It is verified by he results of a series of experiments in which uranium is extracted form enriched sea-water and natural sea-water with hydrous titanium oxide (titanic gel). This equation can be used to explain not only the results of test which have been applied to prove fast intraparticle diffusion of liquid film deffusion mechanism, but also test data which can be expalined by the co-controlling fast intraparticle and liquid film diffusion, and the kinetic data which can not be clarified by diffusion mechanism. It is proposed that the mechanism of the exchange adsorption of uranium from sea-water with titanic gel is a cationic exchange reaction. A method for calculating the quantity of exchange-adsorption at equilibrium is also given

  6. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  7. The surface blistering kinetics and the H-platelet evolution in H-implanted germanium

    International Nuclear Information System (INIS)

    Yang Fan; Zhang Xuanxiong; Ye Tianchun; Zhuang Songlin

    2012-01-01

    The surface blistering phenomenon produced in H-implanted Ge by a series of low temperature annealing processes was investigated. The kinetic plot of the onset of blistering contains a break point that separates the straight-line plot into two parts, with two distinct slopes based on the calculated activation energy from the different temperature regions for 3×10 16 cm -2 and 5×10 16 cm -2 H-implanted doses. This plot indicates the existence of distinct, temperature dependent mechanisms, probably caused by the release of different types of H-platelets. The turning direction (from low to high temperature) of the Arrhenius plot with the break point is contrary to that of other known materials. The formation and evolution of the H-platelets under the Ge surface was revealed by TEM (transmission electron microscopy). The TEM results demonstrate that the 〈0 0 1〉 platelets parallel to the sample surface are first produced by a low H implantation dose; however, the vertical 〈0 1 0〉 platelets perpendicular to the sample surface form later as the H implantation dose increases. The H-platelets combine with each other, becoming micro-cracks. The {1 1 1} and {3 1 1} micro-cracks serve as interconnections between the 〈0 0 1〉-oriented micro-cracks below the substrate surface. Finally, the accumulated H 2 pressure in the cracks deforms the surface to generate Ge surface exfoliation.

  8. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    Science.gov (United States)

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  9. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  10. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  11. Effect of the submergence, the bed form geometry, and the speed of the surface water flow on the mitigation of pesticides in agricultural ditches

    Science.gov (United States)

    Boutron, Olivier; Margoum, Christelle; Chovelon, Jean-Marc; Guillemain, CéLine; Gouy, VéRonique

    2011-08-01

    Pesticides, which have been extensively used in agriculture, have become a major environmental issue, especially regarding surface and groundwater contamination. Of particular importance are vegetated farm drainage ditches, which can play an important role in the mitigation of pesticide contamination by adsorption onto ditch bed substrates. This role is, however, poorly understood, especially regarding the influence of hydrodynamic parameters, which make it difficult to promote best management practice of these systems. We have assessed the influence of three of these parameters (speed of the surface water flow, submergence, and geometrical characteristics of the bed forms) on the transfer and adsorption of selected pesticides (isoproturon, diuron, tebuconazole, and azoxystrobin) into the bed substrate by performing experiments with a tilted experimental flume, using hemp fibers as a standard of natural organic substrates that are found at the bottom of agricultural ditches. Results show the transfer of pesticides from surface water flow into bed substrate is favored, both regarding the amounts transferred into the bed substrate and the kinetics of the transfer, when the surface water speed and the submergence increase and when the bed forms are made of rectangular shapes. Extrapolation of flume data over a distance of several hundred meters suggests that an interesting possibility for improving the mitigation of pesticides in ditches would be to increase the submergence and to favor bed forms that tend to enhance perturbations and subsequent infiltration of the surface water flow.

  12. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  13. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    Energy Technology Data Exchange (ETDEWEB)

    Chason, Eric; Shenoy, Vivek

    2013-01-22

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  14. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  15. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...

  16. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  17. Peroxide formation and kinetics of sodium dissolution in alcohols

    International Nuclear Information System (INIS)

    Muralidaran, P.; Chandran, K.; Ganesan, V.; Periaswami, G.

    1997-01-01

    Suitable techniques for sodium removal and decontamination of sodium wetted components of Liquid Metal Fast Reactors (LMFRs) are necessary both for repair, reuse and decommissioning of such components. Among the methods followed for sodium removal, alcohol dissolution is usually employed for small components like bellow sealed valves, gripping tools to handle core components and sodium sampling devices (primary and secondary). One of the concerns in the alcohol dissolution method is the possible role of peroxide formation in the ethoxy group during storage and handling leading to explosion. This paper describes the study of peroxide formation in ethyl carbitol and butyl cellosolve as well as some of the results of dissolution kinetic studies carried out in our laboratory using different alcohols. The peroxide formation of ethyl carbitol and butyl cellosolve were studied by iodometric technique. It has been found that the peroxide formation is less in sodium containing alcohol than in pure one. Ethyl carbitol, butyl cellosolve and Jaysol-SS (mixture of ethyl alcohol, methyl alcohol, isopropyl alcohol and methyl isobutyl ketone) were used in dissolution kinetics studies. The effects due to area and orientation of the fresh sodium surface have also been investigated. The reaction rates were studied in the temperature range of 303-343 K. The rate of dissolution was estimated by measuring the sodium content of alcohol at periodic intervals. It is found that the reaction rate varies in the order of ethyl alcohol-water mixture > Jaysol-SS > butyl cellosolve > ethyl carbitol. While cleaning sodium using alcohol, the concentration of alcohol is held essentially constant throughout the process. The rate of reaction depends only on the amount of sodium and follows pseudo-first order kinetics. Increase in surface area has a marked impact on the dissolution rate at lower temperatures while at higher temperatures, the temperature factor overrides the effect due to surface area

  18. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Science.gov (United States)

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water

    International Nuclear Information System (INIS)

    Gunold, Roman; Schaefer, Ralf Bernhard; Paschke, Albrecht; Schueuermann, Gerrit; Liess, Matthias

    2008-01-01

    Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R s were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water. - We calibrated the Chemcatcher passive sampler for current-use polar pesticides in surface waters, allowing its application in future monitoring studies

  20. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  1. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  2. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  3. Plasma kinetics and biodistribution of water-soluble CdTe quantum dots in mice: a comparison between Cd and Te

    International Nuclear Information System (INIS)

    Han Ying; Xie Guangyun; Sun Zhiwei; Mu Ying; Han Sihai; Xiao Yang; Liu Na; Wang Hui; Guo Caixia; Shi Zhixiong; Li Yanbo; Huang Peili

    2011-01-01

    Water-soluble quantum dots (QDs) have shown potential as tumor diagnostic agents. However, little is known about their biological behaviors in vivo. Male ICR mice were intravenously given a single dose (2.5 μmol kg −1 body weight) of water-soluble cadmium–telluride (CdTe) QDs (the QDs are approximately 4 nm in diameter and have maximal emission at 630 nm). Inductively coupled plasma mass spectrometry (ICP-MS) was used for measuring the kinetic action of 111 Cd and 125 Te for 7 days. The plasma kinetics of Cd and Te followed a two-compartment model, in which Cd exhibited greater apparent volume of distribution, greater clearance, faster distribution half-life, and significantly slower elimination half-life compared to Te. Contrary to its relatively transient fate in the plasma, high levels of Cd persisted in the liver and kidneys. Te accumulated primarily in the spleen. The different plasma kinetics and distribution patterns of Cd and Te imply that CdTe QDs have been part of the degradation or aggregation in vivo.

  4. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  5. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  6. Context of surveillance of underground and surface waters

    International Nuclear Information System (INIS)

    2010-01-01

    This document briefly describes the evolutions of regulations on site liquid effluents and of guideline values concerning radioactive wastes, briefly presents the surveillance of underground and surface waters of CEA sites, comments the guideline values of the radiological quality of waters aimed at human consumption, and gives an overview of information which are brought to public's attention. Then, for different CEA sites (Cadarache, Marcoule, Saclay, Grenoble, Fontenay-aux-Roses, Valduc, DIF), this document proposes a presentation of the hydrological context, regulatory context, the surface and underground water surveillance process and values, the storing zones of old wastes

  7. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    International Nuclear Information System (INIS)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-01-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH . radical and H 3 O + surface defects. The coupling of incoming CO molecules with the surface OH . radicals on the ice clusters yields the formation of the COOH . radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol –1 and –22 kcal mol –1 , respectively. The COOH . radicals couple with incoming NH=CH 2 molecules (experimentally detected in the ISM) to form the NHCH 2 COOH . radical glycine through energy barriers of 12 kcal mol –1 , exceedingly high at ISM cryogenic temperatures. Nonetheless, when H 3 O + is present, one proton may be barrierless transferred to NH=CH 2 to give NH 2 =CH 2 + . This latter may react with the COOH . radical to give the NH 2 CH 2 COOH +. glycine radical cation which can then be transformed into the NH 2 CHC(OH) 2 +. species (the most stable form of glycine in its radical cation state) or into the NH 2 CHCOOH . neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H 3 O

  8. Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-ice Dust Particles

    Science.gov (United States)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical

  9. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  10. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.

    Science.gov (United States)

    Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina

    2017-12-01

    Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.

  11. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  12. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

    Science.gov (United States)

    Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin

    2017-02-14

    A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

  13. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  14. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  15. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  16. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ

    Science.gov (United States)

    Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.

    2018-06-01

    Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.

  17. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  18. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  19. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...... techniques are investigated and the production of patterned micro structured surfaces following two different manufacturing techniques is reported. The first is a combination of laser manufacturing and hot embossing on polystyrene. To compare geometry and functionality a non-silicon based lithography...

  20. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  1. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  2. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  3. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  4. Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-04-01

    Full Text Available To reduce the size and cost of an integrated infrared (IR and green airborne LiDAR bathymetry (ALB system, and improve the accuracy of the green ALB system, this study proposes a method to accurately determine water surface and water bottom heights using a single green laser corrected by the near water surface penetration (NWSP model. The factors that influence the NWSP of green laser are likewise analyzed. In addition, an NWSP modeling method is proposed to determine the relationship between NWSP and the suspended sediment concentration (SSC of the surface layer, scanning angle of a laser beam and sensor height. The water surface and water bottom height models are deduced by considering NWSP and using only green laser based on the measurement principle of the IR laser and green laser, as well as employing the relationship between NWSP and the time delay of the surface return of the green laser. Lastly, these methods and models are applied to a practical ALB measurement. Standard deviations of 3.0, 5.3, and 1.3 cm are obtained by the NWSP, water-surface height, and water-bottom height models, respectively. Several beneficial conclusions and recommendations are drawn through the experiments and discussions.

  5. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    Science.gov (United States)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  6. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  7. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  8. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  9. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  10. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  11. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  12. Water sorption kinetics of damaged beans: GAB model

    Directory of Open Access Journals (Sweden)

    Fernanda M. Baptestini

    Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.

  13. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  14. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  15. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Surface water; groundwater; stable isotopes; water quality; Second Songhua River basin. .... The total dissolved solid (TDS) was calculated by the con- centrations of major ions in ...... evaluating water quality management effectiveness; J.

  16. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  17. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  18. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  19. Static and kinetic friction force and surface roughness of different archwire-bracket sliding contacts.

    Science.gov (United States)

    Carrion-Vilches, Francisco J; Bermudez, María-Dolores; Fructuoso, Paula

    2015-01-01

    The aim of this study was to determine the static and kinetic friction forces of the contact bracket-archwire with different dental material compositions in order to select those materials with lower resistance to sliding. We carried out sliding friction tests by means of a universal testing machine following an experimental procedure as described in ASTM D1894 standard. We determined the static and kinetic friction forces under dry and lubricating conditions using an artificial saliva solution at 36.5ºC. The bracket-archwire pairs studied were: stainless steel-stainless steel; stainless steel-glass fiber composite; stainless steel-Nitinol 60; sapphire-stainless steel; sapphire-glass fiber composite; and sapphire-Nitinol 60. The best performance is obtained for Nitinol 60 archwire sliding against a stainless steel bracket, both under dry and lubricated conditions. These results are in agreement with the low surface roughness of Nitinol 60 with respect to the glass fiber composite archwire. The results described here contribute to establishing selection criteria for materials for dental archwire-brackets.

  20. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Directory of Open Access Journals (Sweden)

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  1. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  2. Kinetics of Pressurized Water Reactors with Hot or Cold Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1960-11-15

    The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.

  3. Surface WAter Scenario Help (SWASH) version 5.3 : technical description

    NARCIS (Netherlands)

    Roller, te J.A.; Berg, van den F.; Adriaanse, P.I.; Jong, de A.; Beltman, W.H.J.

    2015-01-01

    The user-friendly shell SWASH, acronym for Surface WAter Scenarios Help, assists the user in calculating pesticide exposure concentrations in the EU FOCUS surface water scenarios. SWASH encompasses five separate tools and models: (i) FOCUS Drift Calculator, calculating pesticide entries through

  4. Kinetics of the reaction between H· and superheated water probed with muonium

    International Nuclear Information System (INIS)

    Alcorn, Chris D.; Brodovitch, Jean-Claude; Percival, Paul W.; Smith, Marisa; Ghandi, Khashayar

    2014-01-01

    Highlights: • Rate constants for reactions of H with water resolve a controversy. • H reacts with superheated water via two channels. • The findings have important implications for the safety of some nuclear power reactors. - Abstract: Safe operation of supercritical water-cooled reactors requires knowledge of the kinetics of transient species formed by the radiolysis of water in the range 300–650 °C. Using muonium, it is possible to study aqueous H · atom chemistry over this temperature range. An important reaction to study is that of the H · atom with water itself, because it is a potential source of molecular H 2 . The concentration of H 2 is important to plant coolant chemistry, as H 2 is currently added to suppress oxidative corrosion in CANDU reactors. The reaction of muonium with H 2 O and D 2 O was studied experimentally up to 450 °C, and also via quantum chemical computations to investigate possible isotope effects. Our results suggest that although the H · atom abstraction from H 2 O is important at temperatures above 300 °C, the electron-producing channel (H · + H 2 O ⇌ H 3 O + + e aq - ) is significant at temperatures up to 300 °C, and becomes the dominant reaction channel at lower temperatures

  5. Boron content of South African surface waters: prelimenary assessment for irrigation

    International Nuclear Information System (INIS)

    Reid, P.C.; Davies, E.

    1989-01-01

    Boron, a naturally occuring constituent of surface and ground water, is an essential plant nutrient. However, at relatively low concentrations, boron becomes toxic to plant growth. In order to assess the boron status in South African surface waters, the Department of Water Affairs launched a long-term boron water quality assessment programme in 1985, encompassing the analysis of water samples taken at 91 sites throughout South Africa. Results to date indicate that the boron concentration in South African surface waters varies between 0,02 to 0,33 mg l -1 . At these concentrations even the most boron sensitive crops can be grown without fear of boron toxicity. 3 refs., 1 fig., 2 tabs

  6. Compilation of kinetic data for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Savage, D.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Kinetic data, including rate constants, reaction orders and activation energies, are compiled for 34 hydrolysis reactions involving feldspars, sheet silicates, zeolites, oxides, pyroxenes and amphiboles, and for similar reactions involving calcite and pyrite. The data are compatible with a rate law consistent with surface reaction control and transition-state theory, which is incorporated in the geochemical software package EQ3/6 and GWB. Kinetic data for the reactions noted above are strictly compatible with the transition-state rate law only under far-from-equilibrium conditions. It is possible that the data are conceptually consistent with this rate law under both far-from-equilibrium and near-to-equilibrium conditions, but this should be confirmed whenever possible through analysis of original experimental results. Due to limitations in the availability of kinetic data for mine-water reactions, and in order to simplify evaluations of geochemical models of groundwater evolution, it is convenient to assume local-equilibrium in such models whenever possible. To assess whether this assumption is reasonable, a modeling approach accounting for couple fluid flow and water-rock interaction is described that can be use to estimate spatial and temporal scale of local equilibrium. The approach is demonstrated for conditions involving groundwater flow in fractures at JNC's Kamaishi in-situ tests site, and is also used to estimate the travel time necessary for oxidizing surface waters to migrate to the level of a HLW repository in crystalline rock. The question of whether local equilibrium is a reasonable assumption must be addressed using an appropriate modeling approach. To be appropriate for conditions at the Kamaishi site using the modeling approach noted above, the fracture fill must closely approximate a porous mine, groundwater flow must be purely advective and diffusion of solutes across the fracture-host rock boundary must not occur. Moreover, the mineralogical and

  7. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    International Nuclear Information System (INIS)

    Saario, T.; Taehtinen, S.

    1997-01-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H 3 BO 3 . At 300 deg. C the LiOH concentrations higher than 10 -2 M (roughly 70 ppm of Li + ) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author)

  8. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T; Taehtinen, S [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H{sub 3}BO{sub 3}. At 300 deg. C the LiOH concentrations higher than 10{sup -2} M (roughly 70 ppm of Li{sup +}) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author).

  9. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  10. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  11. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.

    Science.gov (United States)

    Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun

    2014-10-01

    Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  13. Diffusion Influenced Adsorption Kinetics.

    Science.gov (United States)

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  14. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  15. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  16. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    Science.gov (United States)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  17. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  18. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  19. Perfluoroalkyl substances in the Maltese Environment - (I) Surface water and rain water

    NARCIS (Netherlands)

    Sammut, G.; Sinagra, E.; Helmus, R.; de Voogt, P.

    2017-01-01

    The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main

  20. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  1. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  2. Enhanced load-carrying capacity of hairy surfaces floating on water.

    Science.gov (United States)

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  3. Recruiting at the Edge: Kinetic Energy Inhibits Anchovy Populations in the Western Mediterranean

    Science.gov (United States)

    Ruiz, Javier; Macías, Diego; Rincón, Margarita M.; Pascual, Ananda; Catalán, Ignacio A.; Navarro, Gabriel

    2013-01-01

    The Strait of Gibraltar replenishes the Mediterranean with Atlantic waters through an intense eastward current known as the Atlantic Jet (AJ). The AJ fertilizes the southwestern Mediterranean and is considered to be the ultimate factor responsible for the comparatively high fish production of this region. Here, we perform an analysis of the available historical catches and catch per unit effort (CPUE), together with a long series of surface currents, kinetic energy and chlorophyll concentration. We show that the high kinetic energy of the AJ increases primary production but also negatively impacts the recruitment of anchovy. We contend that anchovy recruitment in the region is inhibited by the advection and dispersion of larvae and post-larvae during periods of strong advection by the AJ. The inhibitory impact of kinetic energy on anchovy landings is not a transient but rather a persistent state of the system. An exceptional combination of events creates an outbreak of this species in the Alboran Sea. These events depend on the Mediterranean-Atlantic exchange of water masses and, therefore, are highly sensitive to climate changes that are projected, though not always negatively, for fish landings. PMID:23451027

  4. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  5. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  6. Effect of high-extraction coal mining on surface and ground waters

    International Nuclear Information System (INIS)

    Kendorski, F.S.

    1993-01-01

    Since first quantified around 1979, much new data have become available. In examining the sources of data and the methods and intents of the researchers of over 65 case histories, it became apparent that the strata behaviors were being confused with overlapping vertical extents reported for the fractured zones and aquiclude zones depending on whether the researcher was interested in water intrusion into the mine or in water loss from surface or ground waters. These more recent data, and critical examination of existing data, have led to the realization that the former Aquiclude Zone defined for its ability to prevent or minimize the intrusion of ground or surface waters into mines has another important character in increasing storage of surface and shallow ground waters in response to mining with no permanent loss of waters. This zone is here named the Dilated Zone. Surface and ground waters can drain into this zone, but seldom into the mine, and can eventually be recovered through closing of dilations by mine subsidence progression away from the area, or filling of the additional void space created, or both. A revised model has been developed which accommodates the available data, by modifying the zones as follows: collapse and disaggregation extending 6 to 10 times the mined thickness above the panel; continuous fracturing extending approximately 24 times the mined thickness above the panel, allowing temporary drainage of intersected surface and ground waters; development of a zone of dilated, increased storativity, and leaky strata with little enhanced vertical permeability from 24 to 60 times the mined thickness above the panel above the continuous fracturing zone, and below the constrained or surface effects zones; maintenance of a constrained but leaky zone above the dilated zone and below the surface effects zone; and limited surface fracturing in areas of extension extending up to 50 ft or so beneath the ground surface. 119 ref., 5 figs., 2 tabs

  7. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  8. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    The efficiency of the quasi-solid-state dye-sensitized solar cell developed by Junghaenel and Tributsch, the so-called Nano Surface Conductivity Solar Cell (NSCSC), was improved from 2% to 3.5% introducing a compact TiO{sub 2} underlayer, modifying the surface of the mesoporous TiO{sub 2} electrode, optimizing the deposition process of the electrolyte film, and replacing the platinum counter electrode by a carbon layer. Space-resolved photocurrent images revealed the importance of a homogeneous distribution of the electrolyte film. An uneven dispersion led to localized areas of high and low photocurrents, whereas the latter were attributed to an insufficient concentration of the redox couple. Impedance spectroscopy was performed on cells containing different concentrations of the redox couple. By modeling the spectra using an equivalent circuit with a transmission line of resistive and capacitive elements, the characteristic parameters of electron transport in the TiO{sub 2}, such as diffusion length and electron lifetime were obtained. The measurements indicated that the transport of the positive charge to the counter electrode is the main process limiting the efficiency of the cells. Excess charge carrier decay in functioning devices was analyzed by contactless transient photoconductance measurements in the microwave frequency range (TRMC). The lifetime of the photogenerated charge carriers was observed to decrease with increasing applied potential, reaching its maximum close to the opencircuit potential of the cell, where the photocurrent density was minimal, i.e. the potential dependent decay observed was limited by the injection of electrons into the front contact. The functioning of this NSCSC indicated that the transport of the positive charge occurs by solid-state diffusion at the surface of the TiO{sub 2} particles. TRMC measurements on subset devices in the form of sensitized TiO{sub 2} layers revealed charge carrier kinetics strongly dependent on the

  9. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  10. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  11. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  12. Diffusion of small Cu islands on the Ni(111) surface: A self-learning kinetic Monte Carlo study

    Science.gov (United States)

    Acharya, Shree Ram; Shah, Syed Islamuddin; Rahman, Talat S.

    2017-08-01

    We elucidate the diffusion kinetics of a heteroepitaxial system consisting of two-dimensional small (1-8 atoms) Cu islands on the Ni(111) surface at (100-600) K using the Self-Learning Kinetic Monte Carlo (SLKMC-II) method. Study of the statics of the system shows that compact CuN (3≤N≤8) clusters made up of triangular units on fcc occupancy sites are the energetically most stable structures of those clusters. Interestingly, we find a correlation between the height of the activation energy barrier (Ea) and the location of the transition state (TS). The Ea of processes for Cu islands on the Ni(111) surface are in general smaller than those of their counterpart Ni islands on the same surface. We find this difference to correlate with the relative strength of the lateral interaction of the island atoms in the two systems. While our database consists of hundreds of possible processes, we identify and discuss the energetics of those that are the most dominant, or are rate-limiting, or most contributory to the diffusion of the islands. Since the Ea of single- and multi-atom processes that convert compact island shapes into non-compact ones are larger (with a significantly smaller Ea for their reverse processes) than that for the collective (concerted) motion of the island, the later dominate in the system kinetics - except for the cases of the dimer, pentamer and octamer. Short-jump involving one atom, long jump dimer-shearing, and long-jump corner shearing (via a single-atom) are, respectively, the dominating processes in the diffusion of the dimer, pentamer and octamer. Furthermore single-atom corner-rounding are the rate-limiting processes for the pentamer and octamer islands. Comparison of the energetics of selected processes and lateral interactions obtained from semi-empirical interatomic potentials with those from density functional theory show minor quantitative differences and overall qualitative agreement.

  13. Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin-water electrode system

    International Nuclear Information System (INIS)

    Bruggeman, Peter; Graham, Leigh; Groote, Joris de; Vierendeels, Jan; Leys, Christophe

    2007-01-01

    Electrical breakdown and water surface deformation in a metal pin-water electrode system with dc applied voltages is studied for small inter-electrode distances (2-12 mm). The radius of curvature of the metal pin is 0.5 cm to exclude corona before breakdown at these small inter-electrode spacings. Calculations of the water surface deformation as a function of the applied voltage and initial inter-electrode spacing are compared with measurements of the water elevation. For distances smaller than 7 mm the calculated stability limit of the water surface corresponds with the experimentally obtained breakdown voltage. It is proved with fast CCD images and calculations of the electrical field distribution that the water surface instability triggers the electrical breakdown in this case. The images show that at breakdown the water surface has a Taylor cone-like shape. At inter-electrode distance of 7 mm and larger the breakdown voltage is well below the water stability limit and the conductive channel at breakdown is formed between the pin electrode and the static water surface. Both cases are discussed and compared

  14. A global, 30-m resolution land-surface water body dataset for 2000

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  15. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  16. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  17. Adsorption of aromatic hydrocarbons and ozone at environmental aqueous surfaces.

    Science.gov (United States)

    Vácha, Robert; Cwiklik, Lukasz; Rezác, Jan; Hobza, Pavel; Jungwirth, Pavel; Valsaraj, Kalliat; Bahr, Stephan; Kempter, Volker

    2008-06-05

    Adsorption of environmentally important aromatic molecules on a water surface is studied by means of classical and ab initio molecular dynamics simulations and by reflection-absorption infrared spectroscopy. Both techniques show strong activity and orientational preference of these molecules at the surface. Benzene and naphthalene, which bind weakly to water surface with a significant contribution of dispersion interactions, prefer to lie flat on water but retain a large degree of orientational flexibility. Pyridine is more rigid at the surface. It is tilted with the nitrogen end having strong hydrogen bonding interactions with water molecules. The degree of adsorption and orientation of aromatic molecules on aqueous droplets has atmospheric implications for heterogeneous ozonolysis, for which the Langmuir-Hinshelwood kinetics mechanism is discussed. At higher coverages of aromatic molecules the incoming ozone almost does not come into contact with the underlying aqueous phase. This may rationalize the experimental insensitivity of the ozonolysis on the chemical nature of the substrate on which the aromatic molecules adsorb.

  18. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  19. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  20. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  1. Optimizing the solar photo-Fenton process in the treatment of contaminated water. Determination of intrinsic kinetic constants for scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Miguel [Universidad de Los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Malato, Sixto [Plataforma Solar de Almeria, Tabernas (PSA) (Spain); Pulgarin, Cesar [Institute of Environmental Engineering, Laboratory for Environmental Biotechnology, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Contreras, Sandra; Curco, David; Gimenez, Jaime; Esplugas, Santiago [Department d' Enginyeria Quimica i Metallurgia, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2005-10-01

    The elimination of aromatic compounds present in surface water by photo-Fenton with sunlight as the source of radiation was studied. The concentrations of Fe{sup 3+} and H{sub 2}O{sub 2} are key factors for this process. A solar simulator and a prototype parabolic collector were used as laboratory-scale reactors to find the parameters of those key factors to be used in the CPC (compound parabolic collector) pilot plant reactor. The initial mineralization rate constant (k{sub obs}) was determined and evaluated at different Fe{sup 3+} and H{sub 2}O{sub 2} concentrations to find the best values for maximum efficiency. In all the experiments the mineralization of an aqueous phenol solution was described by assuming a pseudo-first-order reaction. The intrinsic kinetic constants not dependent on the lighting conditions were also estimated for scale-up. (author)

  2. Water surface modeling from a single viewpoint video.

    Science.gov (United States)

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  3. Surface Water Quality Trends from EPA's LTM Network

    Science.gov (United States)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 μeq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement

  4. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies.

    Science.gov (United States)

    Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2018-05-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.

  5. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  6. Issues of the presence of parasitic protozoa in surface waters

    Directory of Open Access Journals (Sweden)

    Hawrylik Eliza

    2018-01-01

    This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  7. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  8. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  9. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  10. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    The combination of in situ and in particular in operando characterization methods such as electrochemical impedance spectroscopy (EIS) on both technical and model electrode are well known ways to gain some practical insight in electrode reaction kinetics. Yet, is has become clear that in spite...... of the strengths it is not sufficient to reveal much details of the electrode mechanisms mainly because it provide average values only. Therefore it has to be combined with surface science methods in order to reveal the interface structure and composition. Ex situ methods have been very useful over the latest....... Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  11. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  12. Simulation of uranium oxides reduction kinetics by hydrogen. Reactivities of germination and growth

    International Nuclear Information System (INIS)

    Brun, C.

    1997-01-01

    The aim of this work is to simulate the reduction by hydrogen of the tri-uranium octo-oxide U 3 O 8 (obtained by uranium trioxide calcination) into uranium dioxide. The kinetics curves have been obtained by thermal gravimetric analysis, the hydrogen and steam pressures being defined. The geometrical modeling which has allowed to explain the trend of the kinetics curves and of the velocity curves is an anisotropic germination-growth modeling. The powder is supposed to be formed of spherical grains with the same radius. The germs of the new UO 2 phase appear at the surface of the U 3 O 8 grains with a specific germination frequency. The growth reactivity is anisotropic and is very large in the tangential direction to the grains surface. Then, the uranium dioxide growths inside the grain and the limiting step is the grain surface. The variations of the growth reactivity and of the germination specific frequency in terms of the gases partial pressures and of the temperature have been explained by two different mechanisms. The limiting step of the growth mechanism is the desorption of water in the uranium dioxide surface. Concerning the germination mechanism the limiting step is a water desorption too but in the tri-uranium octo-oxide surface. The same geometrical modeling and the same germination and growth mechanisms have been applied to the reduction of a tri-uranium octo-oxide obtained by calcination of hydrated uranium trioxide. The values of the germination specific frequency of this solid are nevertheless weaker than those of the solid obtained by direct calcination of the uranium trioxide. (O.M.)

  13. Studies on kinetics of water quality factors to establish water transparency model in Neijiang River, China.

    Science.gov (United States)

    Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling

    2014-05-01

    The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.

  14. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  15. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon

    International Nuclear Information System (INIS)

    Barberoglou, M.; Zorba, V.; Stratakis, E.; Spanakis, E.; Tzanetakis, P.; Anastasiadis, S.H.; Fotakis, C.

    2009-01-01

    We report here an efficient method for preparing stable superhydrophobic and highly water repellent surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with chloroalkylsilane monolayers. By varying the laser pulse fluence on the surface one can successfully control its wetting properties via a systematic and reproducible variation of roughness at micro- and nano-scale, which mimics the topology of natural superhydrophobic surfaces. The self-cleaning and water repellent properties of these artificial surfaces are investigated. It is found that the processed surfaces are among the most water repellent surfaces ever reported. These results may pave the way for the implementation of laser surface microstructuring techniques for the fabrication of superhydrophobic and self-cleaning surfaces in different kinds of materials as well

  16. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  17. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  18. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Rimola, Albert; Sodupe, Mariona [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ugliengo, Piero, E-mail: albert.rimola@uab.cat [Dipartimento di Chimica, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR Torino, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  19. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.

    Science.gov (United States)

    Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L

    2018-01-01

    We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

  20. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  1. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics

    Science.gov (United States)

    Zhang, Jian; Wang, Tao; Liu, Pan; Liao, Zhongquan; Liu, Shaohua; Zhuang, Xiaodong; Chen, Mingwei; Zschech, Ehrenfried; Feng, Xinliang

    2017-05-01

    Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm-2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.

  2. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  3. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  4. Integrated modeling of groundwater–surface water interactions in a tile-drained agricultural field

    NARCIS (Netherlands)

    Rosemeijer, J.C.; Velde, van der Y.; McLaren, R.G.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater–surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely

  5. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  6. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data

    DEFF Research Database (Denmark)

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M

    2014-01-01

    Exploratory (i.e., voxelwise) spatial methods are commonly used in neuroimaging to identify areas that show an effect when a region-of-interest (ROI) analysis cannot be performed because no strong a priori anatomical hypothesis exists. However, noise at a single voxel is much higher than noise...... in a ROI making noise management critical to successful exploratory analysis. This work explores how preprocessing choices affect the bias and variability of voxelwise kinetic modeling analysis of brain positron emission tomography (PET) data. These choices include the use of volume- or cortical surface...

  7. Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes.

    Science.gov (United States)

    Maine, M A; Hadad, H R; Sánchez, G; Caffaratti, S; Pedro, M C

    2016-01-01

    The aim of this work was to compare Cr(III) and Cr(VI) removal kinetics from water by Pistia stratiotes and Salvinia herzogii. The accumulation in plant tissues and the effects of both Cr forms on plant growth were also evaluated. Plants were exposed to 2 and 6 mg L(-1) of Cr(III) or Cr(VI) during 30 days. At the end of the experiment, Cr(VI) removal percentages were significantly lower than those obtained for Cr(III) for both macrophytes. Cr(III) removal kinetics involved a fast and a slow component. The fast component was primarily responsible for Cr(III) removal while Cr(VI) removal kinetics involved only a slow process. Cr accumulated principally in the roots. In the Cr(VI) treatments a higher translocation from roots to aerial parts than in Cr(III) treatments was observed. Both macrophytes demonstrated a high ability to remove Cr(III) but not Cr(VI). Cr(III) inhibited the growth at the highest studied concentration of both macrophytes while Cr(VI) caused senescence. These results have important implications in the use of constructed wetlands for secondary industrial wastewater treatment. Common primary treatments of effluents containing Cr(VI) consists in its reduction to Cr(III). Cr(III) concentrations in these effluents are normally below the highest studied concentrations in this work.

  8. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  9. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  10. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  11. Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath--effect of sample dimensions and prior freezing and ageing.

    Science.gov (United States)

    Oillic, Samuel; Lemoine, Eric; Gros, Jean-Bernard; Kondjoyan, Alain

    2011-07-01

    Cooking loss kinetics were measured on cubes and parallelepipeds of beef Semimembranosus muscle ranging from 1 cm × 1 cm × 1 cm to 7 cm × 7 cm × 28 cm in size. The samples were water bath-heated at three different temperatures, i.e. 50°C, 70°C and 90°C, and for five different times. Temperatures were simulated to help interpret the results. Pre-freezing the sample, difference in ageing time, and in muscle fiber orientation had little influence on cooking losses. At longer treatment times, the effects of sample size disappeared and cooking losses depended only on the temperature. A selection of the tests was repeated on four other beef muscles and on veal, horse and lamb Semimembranosus muscle. Kinetics followed similar curves in all cases but resulted in different final water contents. The shape of the kinetics curves suggests first-order kinetics. Copyright © 2011 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  12. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  13. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  14. Effect of structural modifications on the drying kinetics of foods: changes in volume, surface area and product shape

    Directory of Open Access Journals (Sweden)

    Antonio De Michelis

    2013-10-01

    Full Text Available Macro and micro-structural changes take place during food dehydration. Macro-structural changes encompass modifications in shape, area and volume. Studies of such changes are important because dehydration kinetics (essential for calculating industrial dryers may be highly influenced by changes in food shape and dimensions. The overall changes in volume, surface area (“shrinkage” and shape (Heywood factor, with provides a close description of food shape were determined experimentally, and the results were correlated with simple expressions. Hence, although dehydration kinetics can be modeled with simplified overall shrinkage expressions, the possibility of selecting a suitable geometry and predicting the characteristics dimensions will provide higher accuracy. An additional unresolved problem is the lack of a general model that predicts macro-structural changes for various foods and diverse geometries. In this work, based on experimental data of sweet and sour cherries, and rose hip fruits, a simplified general model to predict changes in volume and surface area are proposed. To estimate how the changes in characteristic dimensions affect the kinetic studies, experimental drying curves for the three fruits by means of a diffusional model considered the following variants for the characteristic dimensions: (i The radius of the fresh food, assumed constant; (ii The radius of the partially dehydrated product; (iii The radius predicted by the correlation for structural changes, especially volume, obtained in this work and generalized for the three fruits, and (iv to demonstrate the need to study the macro-structural changes for all dehydrated foods, also be present the case of a restructured food.

  15. Isotopic modeling of water and sodium distribution and exchange kinetics in 7 stable hemodialysis patients

    International Nuclear Information System (INIS)

    Chamoiseau, S.; Bertrou, L.; Pujo, J.M.; Massol, M.

    1988-01-01

    Sequential serum sampling over 24 h. has been performed in 7 hemodialysis patients after simultaneous intra-venous injection of tritiated water and 24 Na. Each time-activity curve fits a biexponential pattern. A compartment analysis leads to describe either a simple but incomplete single compartment model or a much more satisfactory open two-compartment mamillary model featuring 2 intercompartment transfer rate constants k 21 and k 12 , and a loss out of the system, k 01 . These constants can be related to intrabody resistances to sodium and water transfers. Compartment analysis allows a comprehensive quantitated description of the exchange and transfer kinetics of sodium and water throughout the system. Evidence for a sodium reservoir, probably located in bone, can be drawn from the results and leads to propose a strategy for a targetted bone sodium removal [fr

  16. Adaptable bioinspired special wetting surface for multifunctional oil/water separation

    Science.gov (United States)

    Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik

    2017-01-01

    Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163

  17. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

    International Nuclear Information System (INIS)

    Scott, T.B.; Petherbridge, J.R.; Harker, N.J.; Ball, R.J.; Heard, P.J.; Glascott, J.; Allen, G.C.

    2011-01-01

    Highlights: → High resolution imagery (FIB, SEM and SIMS) of carbide inclusions in uranium metal. → Real time images following the reaction of the carbide inclusions with water vapour. → Shown preferential consumption of carbide over that of the bulk metal. → Quantity of impurities in the metal therefore seriously influence reaction rate. → Metal purity must be considered when storing uranium in air or moist conditions. - Abstract: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO 3 .xH 2 O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.

  18. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  19. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  20. Sulphur dioxide removal by turbulent transfer over grass, snow, and water surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Whelpdale, D M; Shaw, R W

    1974-01-01

    Vertical gradients of sulphur dioxide concentration have been measured over grass, snow, and water surfaces in order to assess the importance of these surfaces as SO/sub 2/ sinks. Concentrations were usually found to be lower near the surface indicating that removal occurs there. Vertical concentration gradients, normalized with repect to the concentration at 8 m, were generally greatest over water and least over snow, independent of meteorological conditions, suggesting that a water surface is the strongest SO/sub 2/ sink, with grass next, and snow weakest. The turbulent transfer of SO/sub 2/ to the interface is discussed in relation to stability of the lower atmosphere and physical and chemical properties of the surfaces. Using a bulk aerodynamic transfer approach similar to that for water vapour, values of SO/sub 2/ flux averaged over periods of from one to several hours were found to be of the order of 1 microgram/M/sup 2//S to the water and grass surfaces, and an order of magnitude smaller to the snow surface. Deposition velocities were found to be of the order of 1 cm/s.