WorldWideScience

Sample records for surface water information

  1. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  2. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  3. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  4. USGS Surface-Water Data for the Nation - National Water Information System (NWIS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS compiles online access to water-resources data collected at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the...

  5. Surface water quality assessment by the use of combination of multivariate statistical classification and expert information.

    Science.gov (United States)

    Tobiszewski, M; Tsakovski, S; Simeonov, V; Namieśnik, J

    2010-08-01

    The present study deals with the assessment of surface water quality from an industrial-urban region located in northern Poland near to the city of Gdansk. Concentrations of thirteen chemicals including total polycyclic aromatic hydrocarbons (PAHs), halogenated volatile organic compounds (HVOCs) and major ions in the samples collected at five sampling points during six campaigns were used as variables throughout the study. The originality in the monitoring data treatment and interpretation was the combination of a traditional classification approach (self-organizing maps of Kohonen) with PAH diagnostic ratios expertise to achieve a reliable pollution source identification. Thus, sampling points affected by pollution from traffic (petroleum combustion products), from crude oil processing (petroleum release related compounds), and from phosphogypsum disposal site were properly discriminated. Additionally, it is shown that this original assessment approach can be useful in finding specific pollution source tracers.

  6. Cryptosporidium and Giardia in surface water: a case study from Michigan, USA to inform management of rural water systems.

    Science.gov (United States)

    Dreelin, Erin A; Ives, Rebecca L; Molloy, Stephanie; Rose, Joan B

    2014-10-14

    Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1) explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2) examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3) synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001) with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies.

  7. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  8. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  9. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  10. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  11. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  12. Global surface density of water mass variations by using a two-step inversion by cumulating daily satellite gravity information

    Science.gov (United States)

    Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia

    2016-04-01

    We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.

  13. National water-information clearinghouse activities; ground-water perspective

    Science.gov (United States)

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  14. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  15. Total Nitrogen in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALNFuture is reported in kilograms/hectare/year. More information about these resources, including...

  16. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  17. Sustaining dry surfaces under water

    Science.gov (United States)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  18. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  19. Water Chemistry: Seeking Information

    Science.gov (United States)

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  20. A Multimodel Global Drought Information System (GDIS) for Near Real-Time Monitoring of Surface Water Conditions (Invited)

    Science.gov (United States)

    Nijssen, B.

    2013-12-01

    While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U

  1. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  2. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  3. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  4. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  5. Uncertainty in surface water flood risk modelling

    Science.gov (United States)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs

  6. Region 9 Surface Water Intakes (SDWIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPAâ??s Safe Drinking Water Information System (SDWIS) databases store information about drinking water. The federal version (SDWIS/FED) stores the information EPA...

  7. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  8. The method of determining surface water erosion influence on agricultural valorization of soils with usage of geoprocessing techniques and spatial information systems

    Directory of Open Access Journals (Sweden)

    Prus Barbara

    2016-12-01

    Full Text Available The aim of the paper is to propose methodical solutions concerning synthetic agricultural analysis of production space which consists in combined (synthetic – in spatial and statistical contexts – analysis and evaluation of quality and farming utility of soils in connection with soils erosive risk level. The paper is aimed at presentation of methodology useful in such type of analyses as well as demonstration to what extent the areas of farming production space being subject to restrictive protection are exposed to destructive effect of surface water erosion. Own factor (HDSP.E was suggested, which is a high degree synthesis of soil protection in connection with degrees of surface water erosion risk. The proposed methodology was used for detailed spatial analyses performed for Tomice – the Małopolska rural commune (case study. The area model elaborated for the proposed methodology’s purpose faced with soils mechanical composition allowed to make a model of surface water erosion in five-grade scale. Synthetic evaluation (product of spatial objects on numerous thematic layers of quality and farming utility of soils and also zones of surface water erosion risk allowed to assign spatial distribution of HDSP.E factor (abbreviation of high degree of soil protection combined with erosion. The analyses enabled to determine proportional contribution of the most valuable resources of farming production space that are subject to soil erosion negative phenomenon. Geoprocessing techniques used for the analyses of environmental elements of farming production space were applied in the paper. The analysis of spatial distribution of researched phenomena was elaborated in Quantum GIS programme.

  9. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  10. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  11. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  12. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  13. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  14. Rocky Mountain Arsenal surface water management plan : water year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2005 (October 1, 2004 to September 30, 2005) is an assessment of the nonpotable water demands at the Rocky...

  15. Rocky Mountain Arsenal surface water management plan : water year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2006 (October 1, 2005 to September 30, 2006) is an assessment of the nonpotable water demands at the Rocky...

  16. Surface water discharges from onshore stripper wells.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  17. SWFSC FED Mid Water Trawl Juvenile Rockfish Survey, Surface Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC FED Mid Water Trawl Juvenile Rockfish Survey: Station Information and Surface Data. Surveys have been conducted along the central California coast in May/June...

  18. Assimilation of satellite altimetry data in hydrological models for improved inland surface water information: Case studies from the "Sentinel-3 Hydrologic Altimetry Processor prototypE" project (SHAPE)

    Science.gov (United States)

    Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space

  19. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  20. Adsorption mechanism of water molecule on goethite (010) surface

    Science.gov (United States)

    Xiu, Fangyuan; Zhou, Long; Xia, Shuwei; Yu, Liangmin

    2016-12-01

    Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projector- augment wave (PAW) method. The mechanism of the interaction between goethite surface and H2O was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between H2O and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.

  1. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  2. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  3. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...

  4. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  5. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  6. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  7. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  8. Surface processing using water cluster ion beams

    Science.gov (United States)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  9. Surface processing using water cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H., E-mail: gtakaoka@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-07-15

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO{sub 2}, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  10. Exit Creek Water Surface Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from a longitudinal profile of water surface surveyed June 23-24, 2013 at Exit Creek, a stream draining Exit Glacier in Kenai...

  11. US Forest Service Surface Drinking Water Importance

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting watershed indexes to help identify areas of interest for protecting surface drinking water quality. The dataset depicted in this...

  12. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  13. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  14. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  15. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  16. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  17. Metagenomes of Microbial Communities in Arsenic- and Pathogen-Contaminated Well and Surface Water from Bangladesh

    OpenAIRE

    Layton, Alice C.; Chauhan, Archana; Williams, Daniel E.; Mailloux, Brian; Knappett, Peter S. K.; Ferguson, Andrew S.; McKay, Larry D.; Alam, M. Jahangir; Matin Ahmed, Kazi; van Geen, Alexander; Sayler, Gary S.

    2014-01-01

    The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport.

  18. Public Information for Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  19. Public Information for Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  20. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  1. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  2. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  3. Surface water and groundwater interaction on a hill island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    – the hill islands – is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field...

  4. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  5. Operational Surface Water Detection and Monitoring Using Radarsat 2

    Directory of Open Access Journals (Sweden)

    Sandra Bolanos

    2016-03-01

    Full Text Available Traditional on-site methods for mapping and monitoring surface water extent are prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs between the provinces and the federal government, an extensive number of water features within the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the Radarsat Constellation Mission (RCM offer unique capabilities to map the extent of water bodies at a national scale, including unmonitored sites, and leverage the current infrastructure of the Meteorological Service of Canada to monitor water information in remote regions. An analysis of the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up is used and complemented with a texture-based indicator to capture the most homogeneous water areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic Aperture Radar (SAR images are also discussed. Our results show that Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This will greatly improve current operational procedures for surface water monitoring information and impact a number of applications including weather forecasting, hydrological modeling, and drought/flood predictions.

  6. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  7. Water quality modeling using geographic information system (GIS) data

    Science.gov (United States)

    Engel, Bernard A

    1992-01-01

    Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.

  8. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  10. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  11. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.

    Science.gov (United States)

    Zhu, Tang; Cai, Chao; Guo, Jing; Wang, Rong; Zhao, Ning; Xu, Jian

    2017-03-22

    Polypropylene (PP), including isotactic PP (i-PP) and atactic PP (a-PP) with distinct tacticity, is one of the most widely used general plastics. Herein, ultra water repellent PP coatings with tunable adhesion to water were prepared via a simple casting method. The pure i-PP coating shows a hierarchical morphology with micro/nanobinary structures, exhibiting a water contact angle (CA) larger than 150° and a sliding angle less than 5° (for 5 μL water droplet). In contrast, the pure a-PP coating has a less rough morphology with a water contact angle of about 130°, and the water droplets stick on the coating at any tilted angles. For the composite i-PP/a-PP coatings, however, ultra water repellency with CA > 150° but water adhesion tailorable from slippery to sticky can be realized, depending on the contents of a-PP and i-PP. The different wetting behaviors are due to the various microstructures of the composite coatings resulting from the distinct crystallization ability of a-PP and i-PP. Furthermore, the existence of a-PP in the composite coatings enhances the mechanical properties compared to the i-PP coating. The proposed method is feasible to modify various substrates and potential applications in no-loss liquid transportation, slippery surfaces, and patterned superhydrophobic surfaces are demonstrated.

  12. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  13. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  14. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  15. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  16. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  17. Value of information for water quality management

    Science.gov (United States)

    Borisova, Tatiana; Shortle, James; Horan, Richard D.; Abler, David

    2005-06-01

    There is now much interest in comprehensive watershed-based approaches to water quality protection. While there is much to be said in favor of such an approach, it is also clear that implementation requires information that is often lacking. Given that information acquisition is costly, decisions are required about the types and amounts of information that should be sought. We examine the expected value of different types of information for price and quantity instruments for agricultural nitrogen pollution control in the Susquehanna River Basin. We also compare the ex ante economic efficiency of price and quantity instruments. The analysis explicitly accounts for public sector uncertainty about the benefits and costs of pollution reductions, with economic efficiency measured as the expected benefits less the expected costs of pollution reductions. We find optimized price controls to outperform optimized quantity controls under a range of possible information structures. For both instruments, information collection improves policy performance, with information about the benefits of pollution reductions having the greatest impact. The performance of the quantity instrument is more sensitive to information than is the price instrument. In consequence, the value of information to reduce benefit and cost uncertainty is greater for the quantity control.

  18. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  19. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  20. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  1. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  2. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  3. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  4. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ...The Environmental Protection Agency (EPA) is hosting a public meeting on April 24, 2012, concerning information that may inform the regulatory review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water Treatment Rule (LT2 rule). At this meeting, EPA will provide background information on the LT2 rule's uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to discuss and solicit public input on data and information related to microbial occurrence of Cryptosporidium, Giardia, viruses, and other pathogens/indicators in uncovered finished water reservoirs; public health risks; strategies to control or remove contaminants in uncovered finished water reservoirs; and potential assessment approaches to determine the effectiveness of these control and/or removal strategies. The primary focus of this meeting is to have a scientific and technical discussion related to uncovered finished water reservoirs. EPA will consider the data and/or information discussed at this meeting during the agency's review of the LT2 rule, which the agency announced as part of EPA's Retrospective Review Plan under Executive Order (E.O.) 13563 in August 2011.

  5. Nitrate reducing activity pervades surface waters during upwelling.

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Halarnekar, R.; Malik, A.; Vijayan, V.; Varik, S.; RituKumari; Jineesh V.K.; Gauns, M.U.; Nair, S.; LokaBharathi, P.A.

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence...

  6. Wettability and water uptake of holm oak leaf surfaces

    OpenAIRE

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper l...

  7. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  8. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  9. How water meets a hydrophobic surface: Reluctantly and with flucuations

    Science.gov (United States)

    Poynor Torigoe, Adele Nichole

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low density region forms near the surface. This depleted region would have implications in such diverse areas as colloidal self-assembly, and the boundary conditions of fluid flow. However, the literature still remains divided as to whether or not such a depleted region exists. To investigate the existence of this layer, we have employed three surface-sensitive techniques, time-resolved phase-modulated ellipsometry, surface plasmon resonance, and X-ray reflectivity. Both ellipsometry and X-ray reflectivity provide strong evidence for the low-density layer and illuminate unexpected temporal behavior. Using all three techniques, we found surprising fluctuations at the interface with a non-Gaussian distribution and a single characteristic time on the order of tenths of seconds. This information supports the idea that the boundary fluctuates with something akin to capillary waves. We have also investigated the dependence of the static and dynamic properties of the hydrophobic/water interface on variables such as temperature, contact angle, pH, dissolved gasses, and sample quality, among others, in a hope to discover the root of the controversy in the literature. We found that the depletion layer is highly dependent on temperature, contact angle and sample quality. This dependence might explain some of the discrepancies in the literature as different groups often use hydrophobic surfaces with different properties.

  10. 实验室信息管理系统在四川省跨界断面水质资金扣缴监测工作中的应用%Application of Laboratory Information Management System in Ecological Compensation Water Monitoring of Funds Withholding for Cross -section Surface Water Quality of Min and Tuo Rivers in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    鲁朝旭

    2014-01-01

    This article introduces the construction goal ,construction process and operation condition of laboratory information management system (LIMS) in ecological compensation water monitoring of funds withholding for cross -section surface water quality of Min and Tuo Rivers in Sichuan Province .On the basis of practice in the last two years ,it puts forward some suggestions for the construction of LIMS in environmental monitoring field .%介绍了四川省跨界断面水质资金扣缴工作环境监测实验室信息管理系统( LIMS)的构建目标、建设过程以及运行情况,在近两年的实际应用基础上,提出了实验室信息管理系统在环境监测领域建立的几点建议。

  11. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  12. Recovery from acidification in European surface waters

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2001-01-01

    Full Text Available Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56 showed significant (p ≤0.05 decreasing trends in pollution-derived sulphate. Only two sites showed a significant increase. Nitrate, on the other hand, had a much weaker and more varied pattern, with no significant trend at 35 of 56 sites, decreases at some sites in Scandinavia and Central Europe, and increases at some sites in Italy and the UK. The general reduction in surface water acid anion concentrations has led to increases in acid neutralising capacity (significant at 27 of 56 sites but has also been offset in part by decreases in base cations, particularly calcium (significant at 26 of 56 sites, indicating that much of the improvement in runoff quality to date has been the result of decreasing ionic strength. Increases in acid neutralising capacity have been accompanied by increases in pH and decreases in aluminium, although fewer trends were significant (pH 19 of 56, aluminium 13 of 53. Increases in pH appear to have been limited in some areas by rising concentrations of organic acids. Within a general trend towards recovery, some inter-regional variation is evident, with recovery strongest in the Czech Republic and Slovakia, moderate in Scandinavia and the United Kingdom, and apparently weakest in Germany. Keywords: acidification, recovery, European trends, sulphate, nitrate, acid neutralising capacity

  13. Holographic Mutual Information for Singular Surfaces

    CERN Document Server

    Mozaffar, M Reza Mohammadi; Omidi, Farzad

    2015-01-01

    We study corner contributions to holographic mutual information for entangling regions composed of a set of disjoint sectors of a single infinite circle in three-dimensional conformal field theories. In spite of the UV divergence of holographic mutual information, it exhibits a first order phase transition. We show that tripartite information is also divergent for disjoint sectors, which is in contrast with the well-known feature of tripartite information being finite even when entangling regions share boundaries. We also verify the locality of corner effects by studying mutual information between regions separated by a sharp annular region. Possible extensions to higher dimensions and hyperscaling violating geometries is also considered for disjoint sectors.

  14. Basic Information about Lead in Drinking Water

    Science.gov (United States)

    ... control treatment to prevent lead and copper from contaminating drinking water. Corrosion control treatment means utilities must ... Page How EPA Requires States and Public Water Systems to Protect Drinking Water The Safe Drinking Water ...

  15. Improving a pavement-watering method on the basis of pavement surface temperature measurements

    CERN Document Server

    Hendel, Martin; Diab, Youssef; Royon, Laurent

    2014-01-01

    Pavement-watering has been studied since the 1990's and is currently considered a promising tool for urban heat island reduction and climate change adaptation. However, possible future water resource availability problems require that water consumption be optimized. Although pavement heat flux can be studied to improve pavement-watering methods (frequency and water consumption), these measurements are costly and require invasive construction work to install appropriate sensors in a dense urban environment. Therefore, we analyzed measurements of pavement surface temperatures in search of alternative information relevant to this goal. It was found that high frequency surface temperature measurements (more than every 5 minutes) made by an infrared camera can provide enough information to optimize the watering frequency. Furthermore, if the water retaining capacity of the studied pavement is known, optimization of total water consumption is possible on the sole basis of surface temperature measurements.

  16. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  17. The novel use of climate information in water utility planning

    Science.gov (United States)

    Yates, D. N.

    2016-12-01

    Municipal water utilities have a long history of planning and yet their traditional use of climate information has been rather static in nature, using approaches such as 'safe-yield' to design their water infrastructure. New planning paradigms, such as triple-bottom-line approaches that integerate environemntal, social, and financial aspects of the water enterprise have led water utilies to use climate information in a much more rich and informative way. This presentation will describe examples of how climate climate information, hydrologic modeling, and water systems decision support tools are uniquely bleneded to help water utilties make informed decisions.

  18. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  19. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and q

  20. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    Science.gov (United States)

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  1. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications.

    Science.gov (United States)

    van Balen, Georgette Plemper; Martinet, Catherine a Marca; Caron, Giulia; Bouchard, Géraldine; Reist, Marianne; Carrupt, Pierre-Alain; Fruttero, Roberta; Gasco, Alberto; Testa, Bernard

    2004-05-01

    This review discusses liposome/water lipophilicity in terms of the structure of liposomes, experimental methods, and information content. In a first part, the structural properties of the hydrophobic core and polar surface of liposomes are examined in the light of potential interactions with solute molecules. Particular emphasis is placed on the physicochemical properties of polar headgroups of lipids in liposomes. A second part is dedicated to three useful methods to study liposome/water partitioning, namely potentiometry, equilibrium dialysis, and (1)H-NMR relaxation rates. In each case, the principle and limitations of the method are discussed. The next part presents the structural information encoded in liposome/water lipophilicity, in other words the solutes' structural and physicochemical properties that determine their behavior and hence their partitioning in such systems. This presentation is based on a comparison between isotropic (i.e., solvent/water) and anisotropic (e.g., liposome/water) systems. An important factor to be considered is whether the anisotropic lipid phase is ionized or not. Three examples taken from the authors' laboratories are discussed to illustrate the factors or combinations thereof that govern liposome/water lipophilicity, namely (a) hydrophobic interactions alone, (b) hydrophobic and polar interactions, and (c) conformational effects plus hydrophobic and ionic interactions. The next part presents two studies taken from the field of QSAR to exemplify the use of liposome/water lipophilicity in structure-disposition and structure-activity relationships. In the conclusion, we summarize the interests and limitations of this technology and point to promising developments.

  2. Information-Theoretic Benchmarking of Land Surface Models

    Science.gov (United States)

    Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong

    2016-04-01

    about 40%. There was relatively little difference between the different models. 1. G. Abramowitz, R. Leuning, M. Clark, A. Pitman, Evaluating the performance of land surface models. Journal of Climate 21, (2008). 2. W. Gong, H. V. Gupta, D. Yang, K. Sricharan, A. O. Hero, Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach. Water Resources Research 49, 2253-2273 (2013). 3. G. S. Nearing, H. V. Gupta, The quantity and quality of information in hydrologic models. Water Resources Research 51, 524-538 (2015). 4. H. V. Gupta, G. S. Nearing, Using models and data to learn: A systems theoretic perspective on the future of hydrological science. Water Resources Research 50(6), 5351-5359 (2014). 5. H. V. Gupta et al., Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences Discussions 10, 9147-9189 (2013).

  3. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    Science.gov (United States)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  4. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  5. Petroleum pollutant degradation by surface water microorganisms.

    Science.gov (United States)

    Antić, Malisa P; Jovancićević, Branimir S; Ilić, Mila; Vrvić, Miroslav M; Schwarzbauer, Jan

    2006-09-01

    It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Microorganisms were analyzed in a surface water sample from a canal (Pancevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum--filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic

  6. Surface water risk assessment of pesticides in Ethiopia.

    Science.gov (United States)

    Teklu, Berhan M; Adriaanse, Paulien I; Ter Horst, Mechteld M S; Deneer, John W; Van den Brink, Paul J

    2015-03-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small stream and for two types of small ponds. Seven selected pesticides were selected since they were estimated to bear the highest risk to humans on the basis of volume of use, application rate and acute and chronic human toxicity, assuming exposure as a result of the consumption of surface water. Potential ecotoxicological risks were not considered as a selection criterion at this stage. Estimates of exposure concentrations in surface water were established using modelling software also applied in the EU registration procedure (PRZM and TOXSWA). Input variables included physico-chemical properties, and data such as crop calendars, irrigation schedules, meteorological information and detailed application data which were specifically tailored to the Ethiopian situation. The results indicate that for all the pesticides investigated the acute human risk resulting from the consumption of surface water is low to negligible, whereas agricultural use of chlorothalonil, deltamethrin, endosulfan and malathion in some crops may result in medium to high risk to aquatic species. The predicted environmental concentration estimates are based on procedures similar to procedures used at the EU level and in the USA. Addition of aquatic macrophytes as an ecotoxicological endpoint may constitute a welcome future addition to the risk assessment procedure. Implementation of the methods used for risk characterization constitutes a good step forward in the pesticide registration procedure in Ethiopia.

  7. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  8. Adsorbed water on iron surface by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F.W.; Campos, T.M.B.; Cividanes, L.S., E-mail: flaviano@ita.br; Simonetti, E.A.N.; Thim, G.P.

    2016-01-30

    Graphical abstract: - Highlights: • We developed a new force field to describe the Fe–H{sub 2}O interaction. • We developed a new force field to describe the flexible water model at low temperature. • We analyze the orientation of water along the iron surface. • We calculate the vibrational spectra of water near the iron surface. • We found a complex relationship between water orientation and the atomic vibrational spectra at different sites of adsorption along the iron surface. - Abstract: The adsorption of H{sub 2}O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron–water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  9. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  10. Floating Vegetated Mats For Improving Surface Water Quality

    Science.gov (United States)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  11. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  12. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  13. Structure and reactivity of water at biomaterial surfaces.

    Science.gov (United States)

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  14. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  15. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  16. Section 11: Surface Water Pathway - Likelihood of Release

    Science.gov (United States)

    Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w

  17. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    each water source in each time step (i.e., reservoir diversion and groundwater pumping). The results provide valuable information for analysing the impacts of the conjunctive use of surface water and groundwater. For example, considering a drought scenario, the results show how the same level of total water supplied can be achieved by different management alternatives with different impact on the water quality, costs, and the state of the water sources at the end of the time horizon. The results allow also the clear understanding of the potential benefits from the conjunctive use of surface water and groundwater thorough the mitigation of the variation in the availability of surface water, improving the water quantity and/or water quality delivered to the users, or the better adaptation of such systems to a changing world.

  18. Biofilm development on metal surfaces in tropical marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Bhosle, N.B.

    environments. However, little is known about biofilm bacteria developed on metal surfaces, especially immersed in tropical marine waters. Similarly, not much is known about the nature of organic matter deposited on the surfaces over the period of immersion...

  19. The glass-liquid transition of water on hydrophobic surfaces.

    Science.gov (United States)

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  20. A methodology to bridge the water information gap

    NARCIS (Netherlands)

    Timmerman, J.G.; Beinat, E.; Termeer, C.J.A.M.; Cofino, W.P.

    2010-01-01

    The metaphor of the water information gap is used to describe the discontent between information users and information producers about the use of and need for specific information. This paper describes the rugby-ball methodology for specification of information needs that was developed on the basis

  1. A surface water flooding impact library for flood risk assessment

    Directory of Open Access Journals (Sweden)

    Aldridge Timothy

    2016-01-01

    Full Text Available The growing demand for improved risk-based Surface Water Flooding (SWF warning systems is evident in EU directives and in the UK Government’s Pitt Review of the 2007 summer floods. This paper presents a novel approach for collating receptor and vulnerability datasets via the concept of an Impact Library, developed by the Health and Safety Laboratory as a depository of pre-calculated impact information on SWF risk for use in a real-time SWF Hazard Impact Model (HIM. This has potential benefits for the Flood Forecasting Centre (FFC as the organisation responsible for the issuing of flood guidance information for England and Wales. The SWF HIM takes a pixel-based approach to link probabilistic surface water runoff forecasts produced by CEH’s Grid-to-Grid hydrological model with Impact Library information to generate impact assessments. These are combined to estimate flood risk as a combination of impact severity and forecast likelihood, at 1km pixel level, and summarised for counties and local authorities. The SWF HIM takes advantage of recent advances in operational ensemble forecasting of rainfall by the Met Office and of SWF by the Environment Agency and CEH working together through the FFC. Results are presented for a case study event which affected the North East of England during 2012. The work has been developed through the UK’s Natural Hazards Partnership (NHP, a group of organisations gathered to provide information, research and analysis on natural hazards for civil contingencies, government and responders across the UK.

  2. Conjunctive Surface Water and Groundwater Management under Climate Change

    Directory of Open Access Journals (Sweden)

    Xiaodong eZhang

    2015-09-01

    Full Text Available Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnerabilities of water supply systems and mitigate the water supply stress in responding to climate change. Some critical challenges and perspectives are discussed to help decision/policy makers develop more effective management and adaptation strategies for conjunctive water resources use in facing climate change under complex uncertainties.

  3. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  4. Study on Shanghai Water Management Information Standard and its application

    Institute of Scientific and Technical Information of China (English)

    Wang Huajie; Zheng Xiaoyang

    2007-01-01

    In Shanghai, three trades including water conservancy, water supply and water drainage are managed integratively by Shanghai Water Authority. However, trade division is apparent among them, and information sharing needs to be strengthened.Therefore, lack of information standard is becoming an urgent problem to be solved. According to the strategic objectives of "Golden Water Project" in China and "Digital City" in Shanghai, "Shanghai Water Management Information Standard" is made for normalizing information classifications, codes, terms,GIS symbols and attributed data structures. It not only coincides with national standards,ministerial standards and Shanghai local standards, but also embodies the characteristic of integrated water management in Shanghai. It provides "traffic rule" for resources integrating and information sharing. Some good research ideas such as omni-direction,multi-levels and facing application can be popularized in other provinces and municipalities of China.

  5. COMMUNITY PARTICIPATION IN SURFACE WATER HARVESTING ...

    African Journals Online (AJOL)

    USER

    2014-11-25

    Nov 25, 2014 ... There is seasonal water scarcity in Marigat Division and the water demand has been ... with improved storage and rainwater harvesting methods. Such water can be ..... in the planning process and decision making and this ... The organizations support the community ... systems for domestic uses in urban.

  6. 地表水酸化的研究进展及其湖泊酸化的环境信息研究%RESEARCH PROGRESS IN SURFACE WATER ACIDIFICATION AND STUDY ON ENVIRONMENTAL INFORMATION FROM LAKE ACIDIFICATION

    Institute of Scientific and Technical Information of China (English)

    王云飞; 朱育新; 尹宇; 潘红玺

    2001-01-01

    通过对发达资本主义国家在其工业化进程中产生的地表水酸化、资源与环境的破坏以及相关研究进展等的简介,审视我国大气污染、酸雨的发展趋势,预估部分酸雨区存在地表水酸化的潜在危险性。据此以云南高原湖泊洱海和阳宗海为例,从湖水矿化度、SO2-4离子浓度的动态变化和沉积记录的磁化率变化等分析研究,评述湖泊酸化的早期表现和判别标志。%The present paper reviewed the resources and environment destruction resulted from surface water acidification during the history of development in industrialized countries as well as concerning research progress.The deliberation on air pollution and acid precipitation spread tendency in China showed that there is potential danger which surface water would be acidified in some part of acid precipitation area in China.Erhai Lake and Yangzonghai Lake are used as examples.Early-stage expression of lake acidification and its indicators are appraised,by analysis the evolution of TDS and SO2-4 concentration in the lake water and the change of magnetic susceptibility in the sediment.

  7. Water Information Management & Analysis System (WIMAS) v 4.0

    Data.gov (United States)

    Kansas Data Access and Support Center — The Water Information Management and Analysis System (WIMAS) is an ArcView based GIS application that allows users to query Kansas water right data maintained by the...

  8. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  9. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  10. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  11. Simulation of water cluster assembly on a graphite surface.

    Science.gov (United States)

    Lin, C S; Zhang, R Q; Lee, S T; Elstner, M; Frauenheim, Th; Wan, L J

    2005-07-28

    The assembly of small water clusters (H2O)n, n = 1-6, on a graphite surface is studied using a density functional tight-binding method complemented with an empirical van der Waals force correction, with confirmation using second-order Møller-Plesset perturbation theory. It is shown that the optimized geometry of the water hexamer may change its original structure to an isoenergy one when interacting with a graphite surface in some specific orientation, while the smaller water cluster will maintain its cyclic or linear configurations (for the water dimer). The binding energy of water clusters interacting with graphite is dependent on the number of water molecules that form hydrogen bonds, but is independent of the water cluster size. These physically adsorbed water clusters show little change in their IR peak position and leave an almost perfect graphite surface.

  12. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  13. Equations for the calculation of N- and P-load on surface waters

    NARCIS (Netherlands)

    Steenvoorden, J.H.A.M.

    1983-01-01

    Nutrient loadson surface and ground waters is the result of inputs from various sources. For the development of a plan for water management information is needed about the consequences of alternative scenarios. Therefore mathematica! approaches have been developed for the contributions by the

  14. EPA Office of Water (OW): SDWIS - HUC12 Densities for Public Surface Water and Groundwater Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System location points, based on information from the Safe Drinking Water Act Information System (SDWIS/Federal) for a 2010 third quarter (SDWIS_2010Q3)...

  15. Surface Curvature-Induced Directional Movement of Water Droplets

    CERN Document Server

    Lv, Cunjing; Yin, Yajun; Zheng, Quanshui

    2010-01-01

    Here we report a surface curvature-induced directional movement phenomenon, based on molecular dynamics simulations, that a nanoscale water droplet at the outer surface of a graphene cone always spontaneously moves toward the larger end of the cone, and at the inner surface toward the smaller end. The analysis on the van der Waals interaction potential between a single water molecule and a curved graphene surface reveals that the curvature with its gradient does generate the driving force resulting in the above directional motion. Furthermore, we found that the direction of the above movement is independent of the wettability, namely is regardless of either hydrophobic or hydrophilic of the surface. However, the latter surface is in general leading to higher motion speed than the former. The above results provide a basis for a better understanding of many reported observations, and helping design of curved surfaces with desired directional surface water transportation.

  16. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  17. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  18. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  19. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2014-07-29

    term goals were to 1. exploit measurements of breaking wave noise and photographic images of whitecaps to infer bubble cloud populations at the sea ...surface reverberation in wind-driven seas , an additional objective has been to study the role of sub-surface bubbles on the attenuation and scattering of...acoustic signals, including determining methods for quantifying bubble populations with video footage of the sea surface and developing models of

  20. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Science.gov (United States)

    2013-04-30

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... research to examine the relationship between hydraulic fracturing and drinking water resources. The...

  1. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  2. Hydraulic "fracking": are surface water impacts an ecological concern?

    Science.gov (United States)

    Burton, G Allen; Basu, Niladri; Ellis, Brian R; Kapo, Katherine E; Entrekin, Sally; Nadelhoffer, Knute

    2014-08-01

    ecological impacts of these anthropogenic activities provides useful information for evaluations of potential HVHF hazards. Geographic information system-based modeling combined with strategic site monitoring has provided insights into the relative importance of these and other ecoregion and land-use factors in discerning potential HVHF impacts. Recent findings suggest that proper siting and operational controls along with strategic monitoring can reduce the potential for risks to aquatic ecosystems. Nevertheless, inadequate data exist to predict ecological risk at this time. The authors suggest considering the plausibility of surface water hazards associated with the various HVHF operations in terms of the ecological context and in the context of relevant anthropogenic activities.

  3. Mobile Water Quality Information Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Water quality remote sensing has grown to allow for operational monitoring of trophic status, assessment of cyanobacteria blooms, and historical and trend analysis...

  4. Surface water quality assessment by environmetric methods.

    Science.gov (United States)

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  5. Water Organization and Dynamics on Mineral Surfaces Interrogated by Graph Theoretical Analyses of Intermolecular Chemical Networks

    Directory of Open Access Journals (Sweden)

    Abdullah Ozkanlar

    2014-03-01

    Full Text Available Intermolecular chemical networks defined by the hydrogen bonds formed at the α-quartz|water interface have been data-mined using graph theoretical methods so as to identify and quantify structural patterns and dynamic behavior. Using molecular-dynamics simulations data, the hydrogen bond (H-bond distributions for the water-water and water-silanol H-bond networks have been determined followed by the calculation of the persistence of the H-bond, the dipole-angle oscillations that water makes with the surface silanol groups over time, and the contiguous H-bonded chains formed at the interface. Changes in these properties have been monitored as a function of surface coverage. Using the H-bond distribution between water and the surface silanol groups, the actual number of waters adsorbed to the surface is found to be 0.6 H2O/10 Å2, irrespective of the total concentration of waters within the system. The unbroken H-bond network of interfacial waters extends farther than in the bulk liquid; however, it is more fluxional at low surface coverages (i.e., the H-bond persistence in a monolayer of water is shorter than in the bulk Concentrations of H2O at previously determined water adsorption sites have also been quantified. This work demonstrates the complementary information that can be obtained through graph theoretical analysis of the intermolecular H-bond networks relative to standard analyses of molecular simulation data.

  6. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  7. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  8. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  9. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  10. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  11. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    Science.gov (United States)

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  12. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  13. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  14. SURFACE WATER QUALITY IN ADDIS ABABA, ETHIOPIA

    African Journals Online (AJOL)

    environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants ... Oxygen Demand (COD), Biological Oxygen Demand (BOD) and Dissolved ... appropriate waste water purifying plants. ..... University of Turku, Finland. 2.

  15. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.

    Science.gov (United States)

    Zhang, Xinbin; Zhao, Jie; Zhu, Qing; Chen, Ning; Zhang, Mingwen; Pan, Qinmin

    2011-07-01

    Walking on the water surface is a dream of humans, but it is exactly the way of life for some aquatic insects. In this study, a bionic aquatic microrobot capable of walking on the water surface like a water strider was reported. The novel water strider-like robot consisted of ten superhydrophobic supporting legs, two miniature dc motors, and two actuating legs. The microrobot could not only stand effortlessly but also walk and turn freely on the water surface, exhibiting an interesting motion characteristic. A numerical model describing the interface between the partially submerged leg and the air-water surface was established to fully understand the mechanism for the large supporting force of the leg. It was revealed that the radius and water contact angle of the legs significantly affect the supporting force. Because of its high speed, agility, low cost, and easy fabrication, this microrobot might have a potential application in water quality surveillance, water pollution monitoring, and so on.

  16. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.;

    2013-01-01

    At low coverage of water on Cu(110), substrate-mediated electrostatics lead to zigzagging chains along [001] as observed with STM [T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, “Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy” Phys. Rev. Lett. 96, 036105...... (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  17. Measurements of water surface snow lines in classical protoplanetary disks

    CERN Document Server

    Blevins, Sandra M; Banzatti, Andrea; Zhang, Ke; Najita, Joan R; Carr, John S; Salyk, Colette; Blake, Geoffrey A

    2015-01-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1-100 AU using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model comprising of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of $\\sim 3-11$ AU, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abu...

  18. Survival of Phytophthora infestans in Surface Water.

    Science.gov (United States)

    Porter, Lyndon D; Johnson, Dennis A

    2004-04-01

    ABSTRACT Coverless petri dishes with water suspensions of sporangia and zoospores of Phytophthora infestans were embedded in sandy soil in eastern Washington in July and October 2001 and July 2002 to quantify longevity of spores in water under natural conditions. Effects of solar radiation intensity, presence of soil in petri dishes (15 g per dish), and a 2-h chill period on survival of isolates of clonal lineages US-8 and US-11 were investigated. Spores in water suspensions survived 0 to 16 days under nonshaded conditions and 2 to 20 days under shaded conditions. Mean spore survival significantly increased from 1.7 to 5.8 days when soil was added to the water. Maximum survival time of spores in water without soil exposed to direct sunlight was 2 to 3 days in July and 6 to 8 days in October. Mean duration of survival did not differ significantly between chilled and nonchilled sporangia, but significantly fewer chilled spores survived for extended periods than that of nonchilled spores. Spores of US-11 and US-8 isolates did not differ in mean duration of survival, but significantly greater numbers of sporangia of US-8 survived than did sporangia of US-11 in one of three trials.

  19. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  20. Surface complexation at calcium mineral-water interfaces

    OpenAIRE

    Wu, Liuming

    1994-01-01

    Surface reactions occurring at solid-water interfaces in calcium mineral-ligands systems have been studied. Both hydrous apatite and fluorite surfaces show clear amphoteric properties. An ion exchange process between lattice ions of F- on fluorite and OH- ions in bulk solution is discovered. The surface adsorption of Alizarin Red S and sodium oleate are determined. Surface chemical reaction models are established based on acidbase potentiometric titrations, solubility, adsorption and zeta-pot...

  1. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  2. Tractor beam on the water surface

    CERN Document Server

    Punzmann, Horst; Xia, Hua; Falkovich, Gregory; Shats, Michael

    2014-01-01

    Can one send a wave to bring an object from a distance? The general idea is inspired by the recent success in moving micro particles using light and the development of a tractor beam concept. For fluid surfaces, however, the only known paradigm is the Stokes drift model, where linear planar waves push particles in the direction of the wave propagation. Here we show how to fetch a macroscopic floater from a large distance by sending a surface wave towards it. We develop a new method of remote manipulation of floaters by forming inward and outward surface jets, stationary vortices, and other complex surface flows using nonlinear waves generated by a vertically oscillating plunger. The flows can be engineered by changing the geometry and the power of a wave maker, and the flow dissipation. The new method is robust and works both for long gravity and for short capillary waves. We use a novel method of visualising 3D particle trajectories on the surface. This letter introduces a new conceptual framework for unders...

  3. Experimental Observation of Dark Solitons on Water Surface

    Science.gov (United States)

    2016-06-13

    vertical walls are made of transparent sections of glass supported by the metal frame. The water level of the free surface is measured with seven resistive...Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...observation of dark solitons on the water surface. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation

  4. Drainage-water travel times as a key factor for surface water contamination

    OpenAIRE

    Groenendijk, P.; Eertwegh, van den, A.J.M.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unrealistic to treat the saturated and unsaturated zones and the discharge to surface waters separately. Point models describe vertical water flow in the saturated zone and possibly lateral flow by defini...

  5. Quality of surface water in Missouri, water year 2012

    Science.gov (United States)

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  6. Quality of surface water in Missouri, water year 2013

    Science.gov (United States)

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. ASSESSMENT OF SURFACE WATER QUALITY IN AN ARSENIC CONTAMINATED VILLAGE

    Directory of Open Access Journals (Sweden)

    Kumud C. Saikia

    2012-01-01

    Full Text Available Arsenic contamination of ground water has occurred in various parts of the world, becoming a menace in the Ganga-Meghna-Brahmaputra basin (West Bengal and Assam in India and Bangladesh. Recently arsenic has been detected in Cachar and Karimganj districts of barak valley, Assam, bordering Bangladesh. In this area coli form contamination comprises the major constraint towards utilization of its otherwise ample surface water resources. The local water management exploited ground water sources using a centralized piped water delivery scheme without taking into account the geologically arsenic-prone nature of the sediments and aquifers in this area. Thus surface water was the suggestive alternative for drinking water in this area. The present study investigated surface water quality and availability in a village of Karimganj district, Assam, India contaminated with arsenic for identifying the potential problems of surface water quality maintenance so that with effective management safe drinking water could be provided. The study revealed that the area was rich in freshwater ecosystems which had all physico-chemical variables such as water temperature, pH, DO, total alkalinity, free CO2, heavy metals like lead, chromium and cadmium within WHO standards. In contrast, coli form bacteria count was found far beyond permissible limit in all the sources. Around 60% people of the village preferred ground water for drinking and only 6% were aware of arsenic related problems. The problem of bacterial contamination could be controlled by implementing some ameliorative measures so that people can safely use surface water. Inhabitants of the two districts should be given proper education regarding arsenic contamination and associated health risk. Effluents should be treated to acceptable levels and standards before discharging them into natural streams.

  8. Cloud information for FIRE from surface weather reports

    Science.gov (United States)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1990-01-01

    Surface weather observations of clouds were analyzed to obtain a global cloud climatology (Warren et al, 1986; 1988). The form of the synoptic weather code limits the types of cloud information which are available from these reports. Comparison of surface weather reports with instrumental observations during the FIRE field experiments can help to clarify the operational definitions which were made in the climatology because of the nature of the synoptic code. The long-term climatology from surface weather observations is also useful background for planning the location and timing of intensive field experiments.

  9. Knowledge and information management for integrated water resource management

    Science.gov (United States)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  10. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  11. High-resolution mapping of global surface water and its long-term changes

    Science.gov (United States)

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S.

    2016-12-01

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  12. Hydrological Response to ~30 years of Agricultural Surface Water Management

    Directory of Open Access Journals (Sweden)

    Giulia Sofia

    2017-01-01

    Full Text Available Amongst human practices, agricultural surface-water management systems represent some of the largest integrated engineering works that shaped floodplains during history, directly or indirectly affecting the landscape. As a result of changes in agricultural practices and land use, many drainage networks have changed producing a greater exposure to flooding with a broad range of impacts on society, also because of climate inputs coupling with the human drivers. This research focuses on three main questions: which kind of land use changes related to the agricultural practices have been observed in the most recent years (~30 years? How does the influence on the watershed response to land use and land cover changes depend on the rainfall event characteristics and soil conditions, and what is their related significance? The investigation presented in this work includes modelling the water infiltration due to the soil properties and analysing the distributed water storage offered by the agricultural drainage system in a study area in Veneto (north-eastern Italy. The results show that economic changes control the development of agro-industrial landscapes, with effects on the hydrological response. Key elements that can enhance or reduce differences are the antecedent soil conditions and the climate characteristics. Criticalities should be expected for intense and irregular rainfall events, and for events that recurrently happen. Agricultural areas might be perceived to be of low priority when it comes to public funding of flood protection, compared to the priority given to urban ones. These outcomes highlight the importance of understanding how agricultural practices can be the driver of or can be used to avoid, or at least mitigate, flooding. The proposed methods can be valuable tools in evaluating the costs and benefits of the management of water in agriculture to inform better policy decision-making.

  13. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  14. Conceptual design for the National Water Information System

    Science.gov (United States)

    Edwards, M.D.; Putnam, A.L.; Hutchison, N.E.

    1986-01-01

    The Water Resources Division of the U.S. Geological Survey began the design and development of a National Water Information System (NWIS) in 1983. The NWIS will replace and integrate the existing data systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information Program, and Water Resources Scientific Information Center. The NWIS has been designed as an interactive , distributed data system. The software system has been designed in a modular manner which integrates existing software functions and allows multiple use of software modules. The data of the existing water data, water use data, and water data indexing information by using a common relational data base management system. The NWIS will be operated on microcomputers located in each of the Water Resources Division 's District offices and many of its state, subdistrict, and field offices. The microcomputers will be linked together through a national telecommunication network maintained by the U.S. Geological Survey. The NWIS is scheduled to be placed in operation in 1990. (Author 's abstract)

  15. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  16. Quality of surface water in Missouri, water year 2014

    Science.gov (United States)

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  17. Quality of surface water in Missouri, water year 2010

    Science.gov (United States)

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  18. Quality of surface water in Missouri, water year 2009

    Science.gov (United States)

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  19. Quality of surface water in Missouri, water year 2011

    Science.gov (United States)

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  20. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  1. Role of water in polymer surface modification using organosilanes

    Science.gov (United States)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  2. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    2013-06-05

    Jun 5, 2013 ... The majority of South African inland surface water sources are compromised due to a ... minimising residual coagulant, minimising sludge production .... included as being indicative of the worst effects of indirect reuse.

  3. Second Inflection Point of the Surface Tension of Water

    Science.gov (United States)

    Kalova, Jana; Mares, Radim

    2012-06-01

    The theme of a second inflection point of the temperature dependence of the surface tension of water remains a subject of controversy. Using data above 273 K, it is difficult to get a proof of existence of the second inflection point, because of experimental uncertainties. Data for the surface tension of supercooled water and results of a molecular dynamics study were included into the exploration of existence of an inflection point. A new term was included into the IAPWS equation to describe the surface tension in the supercooled water region. The new equation describes the surface tension values of ordinary water between 228 K and 647 K and leads to the inflection point value at a temperature of about 1.5 °C.

  4. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2012-09-30

    compare the results with experiment. This work will be used to help interpret field data of bistatic scattering from sea ice cover and calibrate...approximate analytical and numerical acoustic models used to compute bistatic scattering. The clouds of bubbles entrained at the sea surface by breaking...ABSTRACT SAR 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified

  5. Surface Electromyographic Onset Detection Based On Statistics and Information Content

    Science.gov (United States)

    López, Natalia M.; Orosco, Eugenio; di Sciascio, Fernando

    2011-12-01

    The correct detection of the onset of muscular contraction is a diagnostic tool to neuromuscular diseases and an action trigger to control myoelectric devices. In this work, entropy and information content concepts were applied in algorithmic methods to automatic detection in surface electromyographic signals.

  6. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.;

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  7. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  8. USGS Water Use Data for the Nation - National Water Information System (NWIS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's National Water-Use Information Program is responsible for compiling and disseminating the nation's water-use data. The USGS works in...

  9. Information Exchange via Surface Modified Resonance Energy Transfer

    CERN Document Server

    Boström, Mathias; Huang, Dan; Ninham, Barry W; Sernelius, Bo E

    2013-01-01

    The theory is presented for resonance interaction between two atoms in an excited configuration: one atom, the "receptor" of information (i.e. energy), adsorbed on a phospholipid surface and the other atom, the "emitter" of information (i.e. energy), a long distance away. The dielectric function for a specific phospholipid membrane is obtained from density functional theory calculations. We present numerical results comparing the range and magnitude of non-specific Casimir-Polder interactions with the much more long-ranged, and highly specific, resonance interaction. A study of the resonance interaction with one or both atoms adsorbed on a phospholipid membrane surface reveals a possibility to have a cross over from attraction to repulsion or from repulsion to attraction at separations between receptor and emitter atoms exceeding several hundred {\\AA}ngstr\\"oms. The energy transfer and the observed transitions in the sign of the interaction energies near surfaces provide potential new ways to start recognitio...

  10. Simulation method for determining biodegradation in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Schoeberl, P.; Guhl, W. [Henkel KGaA, Duesseldorf (Germany). Hauptabteilung Oekologie; Scholz, N. [OXENO GmbH, Marl (Germany); Taeger, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-07-01

    OECD guidelines and EU directives on the biological testing of chemicals contain no methods able to simulate biodegradation in surface waters. The surface water simulation method presented in this paper is suitable for closing this gap. The species in the autochthonous biocoenosis used in the method form part of the food web in natural surface waters. The microbial degradation activity measured by the half-life is comparable with that in surface waters. The degrees of degradation measured in this surface water simulation method can be applied to natural surface waters. (orig.) [Deutsch] Die OECD- und EU-Richtlinien zur biologischen Pruefung von Chemikalien enthalten kein Verfahren, mit dem der biologische Abbau in Fliessgewaessern simuliert werden kann. Das in dieser Arbeit vorgestellte Fliessgewaesser-Simulationsmodell ist geeignet, diese Luecke zu schliessen. Die Arten der autochthonen Biocoenose des Modells sind Glieder im Nahrungsnetz natuerlicher Fliessgewaesser. Die an der Halbwertszeit gemessene mikrobielle Abbauaktivitaet ist mit derjenigen in Fliessgewaessern vergleichbar. Die im Fliessgewaesser-Simulationsmodell gemessenen Abbaugrade sind auf natuerliche Fliessgewaesser uebertragbar. (orig.)

  11. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  12. Water-clay surface interaction: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, O., E-mail: sobolev38@gmail.com [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France); Favre Buivin, F. [HES-SO Fribourg, Bd de Perolles 80-CP 32, CH-1705 Fribourg (Switzerland); Kemner, E.; Russina, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Glienicker Strasse 100, D-14109 Berlin (Germany); Beuneu, B. [Laboratoire Leon Brillouin, C.E. Saclay, 91191 Gif sur Yvette (France); Cuello, G.J. [Institut Laue Langevin and Ikerbasque, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France); Charlet, L. [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France)

    2010-08-23

    Graphical abstract: Interaction between water molecules and internal clay surfaces was studied by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} was used to reduce hydration of interlayer cations. - Abstract: The aim of this study was to investigate interaction between water molecules and internal clay surfaces by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} (NC{sub 4}H{sub 12}), was used to saturate the interlayer space of nontronite NAu-1 in order to reduce hydration of interlayer cations that could hinder the effects related to the clay-water interactions. The water content was low in order to reduce hydrogen bonding between water molecules. It was found that water molecules form strong hydrogen bonds with surface oxygen atoms of nontronite. The diffusion activation energy value E{sub a} = 29 {+-} 3 kJ/mol was obtained for water molecules hydrating the clay surface. These results confirm the assumption that surfaces of smectite clays with tetrahedral substitutions are hydrophilic.

  13. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies

    Science.gov (United States)

    Ucar, Ikrime O.; Erbil, H. Yildirim

    2012-10-01

    This study investigates the effect of surface roughness, wettability, water contact angle hysteresis (CAH) and wetting hysteresis (WH) of polymeric substrates to the water drop condensation rate. We used five polyolefin coatings whose surface free energies were in a close range of 30-37 mJ/m2 but having different surface roughness and CAH. The formation of water breath figures was monitored at a temperature just below the dew point. The initial number of the condensed droplets per unit area (N0) and droplet surface coverage were determined during the early stage of drop condensation where the droplet coalescence was negligible. It was found that the mean drop diameter of condensed droplets on these polymer surfaces grow according to a power law with exponent 1/3 of time, similar to the previous reports given in the literature. It was determined that surface roughness and corresponding CAH and WH properties of polymers have important effects on the number of nucleation sites and growth rate of the condensed water droplets. N0 values and the surface coverage increased with the increase in surface roughness, CAH and WH of the polymer surfaces. The total condensed water drop volume also increased with the increase in surface roughness in accordance with the increase of the number of nucleated droplets.

  14. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expe

  15. Lake Tahoe National Water Information System (NWIS) Wells

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data present a ground-water inventory of existing geospatial data and other information needed to determine the extent and characteristics of the aquifers in...

  16. use of geographic information system and water quality index to ...

    African Journals Online (AJOL)

    Osondu

    3Scientific Data Management Directorate, Tigray Science and. Technology Agency, Mekelle ... information system (GIS) and water quality index. (WQI). Methodology ... State, Hintalo Wajirat wereda. ..... In this research paper the application of.

  17. Use of geographic information system and water quality index to ...

    African Journals Online (AJOL)

    Use of geographic information system and water quality index to assess ... Ethiopian Journal of Environmental Studies and Management ... The study area Hewane is situated in the southern zone of Tigray Regional State, ... Article Metrics.

  18. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  19. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  20. Assessment of heavy metal river Ingulets surface water pollution

    OpenAIRE

    Trokhymenko, Ganna G.; Tsyhanyuk, Nina V.

    2017-01-01

    The low efficiency of implemented targeted programs to reduce the anthropogenic impact on hydroecosystem and overcoming its negative consequences demand a search for the optimal evidence reasonable decisions to improve the quality of Ingul river water basin for different economic sectors of water resources and the required number and suitable quality. Methodical bases of such research must be based on a detailed and comprehensive study of the hydrochemical regime and surface water quality. Th...

  1. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    Science.gov (United States)

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (XDMSO), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing XDMSO(≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  3. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  4. General database for ground water site information.

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  5. Monitoring surface water quality using social media in the context of citizen science

    Science.gov (United States)

    Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua

    2017-02-01

    Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.

  6. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    Science.gov (United States)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  7. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  8. Metropolitan Spokane Region Water Resources Study. Appendix A. Surface Water

    Science.gov (United States)

    1976-01-01

    the river as surface supply. This second area lies mostly north of the Spokane River extending up the val- ley known as Rathdrum Prairie and includes...4 10. 2-29 I .~ -A- IvA -4 -4 IS I rp4r 1-4 - 4NCs 4~ 10. 2- 3o * r~tar gg~wr 4 . fAPPENDIX I en00 -4 - r., 0 CM- WMC q ~~0 0r0 4. .44 . VFog 4102A3

  9. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  10. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  11. Development of city water supply net information system

    Institute of Scientific and Technical Information of China (English)

    CHENJing; GUOShiquan; LUJun

    2003-01-01

    Through analyzing the present conditions of water supply networks technical administration files in Chongqing, this paper points out the significance and urgency for exploiting advanced water supply networks information system. It also gives the concept of GIS and some suggestions for the exploitation.

  12. Surface Water Resources Response to Climate Changes in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in ...

  13. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  14. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  15. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  16. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  17. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    Science.gov (United States)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  18. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Abhay Kumar; Singh, Amit Kumar; Singh, M. P.

    2017-07-01

    The hydrogeochemical study of surface water in Pratapgarh district has been carried out to assess the major ion chemistry and water quality for drinking and domestic purposes. For this purpose, twenty-five surface water samples were collected from river, ponds and canals and analysed for pH, electrical conductivity, total dissolved solids (TDS), turbidity, hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 -, F-, Cl-, NO3 -, SO4 2-) and dissolved silica concentration. The analytical results show mildly acidic to alkaline nature of surface water resources of Pratapgarh district. HCO3 - and Cl- are the dominant anions, while cation chemistry is dominated by Na+ and Ca2+. The statistical analysis and data plotted on the Piper diagram reveals that the surface water chemistry is mainly controlled by rock weathering with secondary contributions from agriculture and anthropogenic sources. Ca2+-Mg2+-HCO3 -, Ca2+-Mg2+-Cl- and Na+-HCO3 --Cl- are the dominant hydrogeochemical facies in the surface water of the area. For quality assessment, values of analysed parameters were compared with Indian and WHO water quality standards, which shows that the concentrations of TDS, F-, NO3 -, Na+, Mg2+ and total hardness are exceeding the desirable limits in some water samples. Water Quality Index (WQI) is one of the most effective tools to communicate information on the quality of any water body. The computed WQI values of Pratapgarh district surface water range from 28 to 198 with an average value of 82, and more than half of the study area is under excellent to good category.

  19. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  20. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  1. The need for monetary information within corporate water accounting.

    Science.gov (United States)

    Burritt, Roger L; Christ, Katherine L

    2017-10-01

    A conceptual discussion is provided about the need to add monetary data to water accounting initiatives and how best to achieve this if companies are to become aware of the water crisis and to take actions to improve water management. Analysis of current water accounting initiatives reveals the monetary business case for companies to improve water management is rarely considered, there being a focus on physical information about water use. Three possibilities emerge for mainstreaming the integration of monetization into water accounting: add-on to existing water accounting frameworks and tools, develop new tools which include physical and monetary information from the start, and develop environmental management accounting (EMA) into a water-specific application and set of tools. The paper appraises these three alternatives and concludes that development of EMA would be the best way forward. Suggestions for further research include the need to examine the use of a transdisciplinary method to address the complexities of water accounting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  3. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  4. A Mechanism for Near-Surface Water Ice on Mars

    Science.gov (United States)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  5. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  6. THE METHODS OF EXTRACTING WATER INFORMATION FROM SPOT IMAGE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some techniques and methods for deriving water information from SPOT -4 (XI) image were investigatedand discussed in this paper. An algorithm of decision-tree (DT) classification which includes several classifiers based onthe spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate wa-ter bodies. Another algorithm of decision-tree classification based on both spectral characteristics and auxiliary informa-tion of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classificationmethod of maximum-likelyhood classification (MLC), and unsupervised method of interactive self-organizing dada analy-sis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used toassess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy wasvariable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm andmuch higher using both DTDS and MLC.

  7. Chemical bonding of water to metal surfaces studied with core-level spectroscopies

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; Pettersson, L.G.M.;

    2010-01-01

    and the interaction between the water monolayer and the surface. By combining synchrotron radiation-based X-ray photoelectron spectroscopy (XPS). X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) techniques with density functional theory (DFT) computational methods we obtain element......-specific information on the partial local density of states, local atomic structure, geometrical parameters and molecular orientation, allowing general principles for water-metal interaction to be derived....

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J. K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  10. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  11. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong

    2014-01-01

    There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater.

  12. Studying surface water balance in Kurdistan province using GIS

    Directory of Open Access Journals (Sweden)

    Nader Fallah

    2016-06-01

    Full Text Available The study of water exchange in a region or area, which emphasizes the principle of conservation of matter in the water cycle, is called balance. Investigating their balance is the basis for managing the rivers’ water management, the results of which refer to the change rate in surface water supply and can efficiently be used in decision making and optimal use of water resources. The present study was carried out in order to investigate the surface water balance in Kurdistan province using GIS. In so doing, digital topographic maps, soil map of the area, and meteorological data retrieved from the regional stations were used to prepare layers of precipitation, evaporation and infiltration of rainwater into the soil. Discharge-arearegion comparative method was employed to measure the amount of runoff and base flow for each sub-basin in raster form saved per unit area which was subsequently overlapped based on balance equation, and the balance of the region was displayed in a graphical mode. The results indicated that more surface water is wasted in the southeast and central area of the province.

  13. Spatial development of the wind-driven water surface flow

    Science.gov (United States)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  14. Influence of building resolution on surface water inundation outputs

    Science.gov (United States)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  15. Porosity and Surface Properites of SBA-15 with Grafted PNIPAAM: A Water Sorption Calorimetry Study

    Science.gov (United States)

    2011-01-01

    Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface properties. The modification process was carried out by (i) increasing the number of surface silanol groups, (ii) grafting 1-(trichlorosilyl)-2-(m-/p-(chloromethylphenyl) ethane, acting as an anchor for (iii) the polymerization of N-isopropylacrylamide. Water sorption isotherms and the enthalpy of hydration are presented. Pore size distributions were calculated on the basis of the water sorption isotherms by applying the BJH model. Complementary measurements with nitrogen sorption and small-angle X-ray diffraction are presented. The increase in the number of surface silanol groups occurs mainly in the intrawall pores, the anchor is mainly located in the intrawall pores, and the intrawall pore volume is absent after the surface grafting of PNIPAAM. Hence, PNIPAAM seals off the intrawall pores. Water sorption isotherms directly detect the presence of intrawall porosity. Pore size distributions can be calculated from the isotherms. Furthermore, the technique provides information regarding the hydration capability (i.e., wettability of different chemical surfaces) and thermodynamic information. PMID:21928772

  16. Infiltration of pesticides in surface water into nearby drinking water supply wells

    Science.gov (United States)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  17. Water Information as a Tool to Enhance Sustainable Water Management—The Australian Experience

    Directory of Open Access Journals (Sweden)

    James Horne

    2015-05-01

    Full Text Available Many countries and regions have struggled to put in place adequate water information systems to assist with sustainable water management. This article describes and assesses the key components of Australia’s water information and data systems, with particular reference to rural and regional Australia, focusing on progress with strengthening these systems at a national level since 2007. Through the early part of the period, much of Australia was experiencing a crisis in water availability. The article concludes with ongoing challenges for Australia and lessons from the Australian experience for other countries embarking on upgrading their water information and data systems. Upgrading a nation’s water information systems is a long-term task, but an important one in a world of climate change and increased climate variability. Substantial progress is likely to take five to 10 years to materialize. From the outset, upgrading information systems needs to be focused on data series that will facilitate answering key policy questions, assist water users in making significant decisions more effectively, and allow businesses and government to better address risks from water-related events. As always, political support matters. To sustain investments in information, its coverage must facilitate illuminating key questions and issues. Custodians of information systems must ensure that the value proposition is clear to all.

  18. Return of naturally sourced Pb to Atlantic surface waters

    Science.gov (United States)

    Bridgestock, Luke; van de Flierdt, Tina; Rehkämper, Mark; Paul, Maxence; Middag, Rob; Milne, Angela; Lohan, Maeve C.; Baker, Alex R.; Chance, Rosie; Khondoker, Roulin; Strekopytov, Stanislav; Humphreys-Williams, Emma; Achterberg, Eric P.; Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; de Baar, Hein J. W.

    2016-09-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

  19. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  20. Occurrence of illicit drugs in surface waters in China.

    Science.gov (United States)

    Li, Kaiyang; Du, Peng; Xu, Zeqiong; Gao, Tingting; Li, Xiqing

    2016-06-01

    Illicit drugs have been recognized as a group of emerging contaminants. In this work, occurrence of common illicit drugs and their metabolites in Chinese surface waters was examined by collecting samples from 49 lakes and 4 major rivers across the country. Among the drugs examined, methamphetamine and ketamine were detected with highest frequencies and concentration levels, consistent with the fact that these are primary drugs of abuse in China. Detection frequencies and concentrations of other drugs were much lower than in European lakes and rivers reported in the literature. In most Chinese surface waters methamphetamine and ketamine were detected at concentrations of several ng L(-1) or less, but in some southern lakes and rivers, these two drugs were detected at much higher concentrations (up to several tens ng L(-1)). Greater occurrence of methamphetamine and ketamine in southern surface waters was attributed to greater abuse and more clandestine production of the two drugs in southern China.

  1. Wavefront modulation of water surface wave by a metasurface

    Institute of Scientific and Technical Information of China (English)

    孙海涛; 程营; 王敬时; 刘晓峻

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.

  2. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    Science.gov (United States)

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

  3. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  4. Relations between information, time, and value of water

    Science.gov (United States)

    Weijs, S. V.; Galindo, L. C.

    2015-12-01

    This research uses with stochastic dynamic programming (SDP) as a tool to reveal economic information about managed water resources. An application to the operation of an example hydropower reservoir is presented. SDP explicitly balances the marginal value of water for immediate use and its expected opportunity cost of not having more water available for future use. The result of an SDP analysis is a steady state policy, which gives the optimal decision as a function of the state. A commonly applied form gives the optimal release as a function of the month, current reservoir level and current inflow to the reservoir. The steady state policy can be complemented with a real-time management strategy, that can depend on more real-time information. An information-theoretical perspective is given on how this information influences the value of water, and how to deal with that influence in hydropower reservoir optimization. This results in some conjectures about how the information gain from real-time operation could affect the optimal long term policy. Another issue is the sharing of increased benefits that result from this information gain in a multi-objective setting. It is argued that this should be accounted for in negotiations about an operation policy.

  5. Zirconium fluoride glass - Surface crystals formed by reaction with water

    Science.gov (United States)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  6. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  7. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more......Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface...

  8. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  9. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  10. Monitoring of endocrine disrupting chemicals in surface water

    CSIR Research Space (South Africa)

    Govender, S

    2008-06-01

    Full Text Available the surface. The chelated Pluronic-DMDDO ligand can be used for affinity purification of histidine tagged proteins. A regeneration formulation based on anionic SDS detergent desorbed pluronic modified polymeric membranes and the possibility of re... ingredients, household products and industrial chemicals. Surface waters are the main sink of said EDCs. Accurate EDC detection is usually via time consuming and costly ex situ LC-MS and GC-MS analysis. An important class of biosensors include those...

  11. Hydrodynamic boundary condition of water on hydrophobic surfaces.

    Science.gov (United States)

    Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian

    2013-05-01

    By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.

  12. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  13. Cellular, particle and environmental parameters influencing attachment in surface waters: a review.

    Science.gov (United States)

    Liao, C; Liang, X; Soupir, M L; Jarboe, L R

    2015-08-01

    Effective modelling of the fate and transport of water-borne pathogens is needed to support federally required pollution-reduction plans, for water quality improvement planning, and to protect public health. Lack of understanding of microbial-particle interactions in water bodies has sometimes led to the assumption that bacteria move in surface waters not associated with suspended mineral and organic particles, despite a growing body of evidence suggesting otherwise. Limited information exists regarding the factors driving interactions between micro-organisms and particles in surface waters. This review discusses cellular, particle and environmental factors potentially influencing interactions and in-stream transport. Bacterial attachment in the aquatic environment can be influenced by properties of the cell such as genetic predisposition and physiological state, surface structures such as flagella and fimbriae, the hydrophobicity and electrostatic charge of the cell surface, and the presence of outer-membrane proteins and extracellular polymeric substances. The mechanisms and degree of attachment are also affected by characteristics of mineral and organic particles including the size, surface area, charge and hydrophobicity. Environmental conditions such as the solution chemistry and temperature are also known to play an important role. Just as the size and surface of chemical particles can be highly variable, bacterial attachment mechanisms are also diverse.

  14. Surface Water and Flood Extent Mapping, Monitoring, and Modeling Products and Services for the SERVIR Regions

    Science.gov (United States)

    Anderson, Eric

    2016-01-01

    SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.

  15. Water accommodation on ice and organic surfaces: insights from environmental molecular beam experiments.

    Science.gov (United States)

    Kong, Xiangrui; Thomson, Erik S; Papagiannakopoulos, Panos; Johansson, Sofia M; Pettersson, Jan B C

    2014-11-26

    Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.

  16. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  17. The influence of surface color information and color knowledge information in object recognition.

    Science.gov (United States)

    Bramão, Inês; Faísca, Luís; Petersson, Karl Magnus; Reis, Alexandra

    2010-01-01

    In order to clarify whether the influence of color knowledge information in object recognition depends on the presence of the appropriate surface color, we designed a name-object verification task. The relationship between color and shape information provided by the name and by the object photo was manipulated in order to assess color interference independently of shape interference. We tested three different versions for each object: typically colored, black and white, and nontypically colored. The response times on the nonmatching trials were used to measure the interference between the name and the photo. We predicted that the more similar the name and the photo are, the longer it would take to respond. Overall, the color similarity effect disappeared in the black-and-white and nontypical color conditions, suggesting that the influence of color knowledge on object recognition depends on the presence of the appropriate surface color information.

  18. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aubrey E. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); U.S. Bureau of Reclamation, Albuquerque, NM (United States); Hopkinson, Leslie [West Virginia Univ., Morgantown, WV (United States); Soeder, Daniel [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  19. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  20. A Provenance Model for Real-Time Water Information Systems

    Science.gov (United States)

    Liu, Q.; Bai, Q.; Zednik, S.; Taylor, P.; Fox, P. A.; Taylor, K.; Kloppers, C.; Peters, C.; Terhorst, A.; West, P.; Compton, M.; Shu, Y.; Provenance Management Team

    2010-12-01

    Generating hydrological data products, such as flow forecasts, involves complex interactions among instruments, data simulation models, computational facilities and data providers. Correct interpretation of the data produced at various stages requires good understanding of how data was generated or processed. Provenance describes the lineage of a data product. Making provenance information accessible to hydrologists and decision makers not only helps to determine the data’s value, accuracy and authorship, but also enables users to determine the trustworthiness of the data product. In the water domain, WaterML2 [1] is an emerging standard which describes an information model and format for the publication of water observations data in XML. The W3C semantic sensor network incubator group (SSN-XG) [3] is producing ontologies for the description of sensor configurations. By integrating domain knowledge of this kind into the provenance information model, the integrated information model will enable water domain researchers and water resource managers to better analyse how observations and derived data products were generated. We first introduce the Proof Mark Language (PML2) [2], WaterML2 and the SSN-XG sensor ontology as the proposed provenance representation formalism. Then we describe some initial implementations how these standards could be integrated to represent the lineage of water information products. Finally we will highlight how the provenance model for a distributed real-time water information system assists the interpretation of the data product and establishing trust. Reference [1] Taylor, P., Walker, G., Valentine, D., Cox, Simon: WaterML2.0: Harmonising standards for water observation data. Geophysical Research Abstracts. Vol. 12. [2] da Silva, P.P., McGuinness, D.L., Fikes, R.: A proof markup language for semantic web services. Inf. Syst. 31(4) (2006), 381-395. [3] W3C Semantic Sensor Network Incubator Group http://www.w3.org/2005/Incubator

  1. Distribution of tritium in precipitation and surface water in California

    Science.gov (United States)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  2. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  3. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    1999-02-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane.

  4. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  5. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  6. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    Science.gov (United States)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  7. Assessing protozoan risks for surface drinking water supplies in Nova Scotia, Canada.

    Science.gov (United States)

    Krkosek, Wendy; Reed, Victoria; Gagnon, Graham A

    2016-02-01

    Protozoa, such as Cryptosporidium parvum and Giardia lamblia, pose a human health risk when present in drinking water. To minimize health risks, the Nova Scotia Treatment Standards for surface water and groundwater under the direct influence of surface water require a 3-log reduction for Giardia cysts and Cryptosporidium oocysts. This study determined the protozoan risk of municipal surface source waters in Nova Scotia, through the use of a pre-screening risk analysis of water supplies, followed by subsequent water quality analysis of the seven highest risk supplies. The water supplies were monitored monthly for 1 year to obtain baseline data that could be used for a quantitative microbial risk assessment (QMRA). The QMRA model outcomes were compared to the Health Canada health target of 10(-6) disability-adjusted life years/person/year. QMRA modeling shows that the treatment facilities meet the required log reductions and disability-adjusted life year target standards under current conditions. Furthermore, based on the results of this work, Nova Scotia should maintain the current 3-log reduction standard for Giardia cysts and Cryptosporidium oocysts. The results of this study show that a pre-screening step can help to inform water sources that are particularly vulnerable to protozoan contamination, which can lead to more focused, cost-effective sampling, and monitoring programs.

  8. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  9. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  10. Thin Water and Ice Films at Mineral Surfaces

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  11. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  12. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  13. Observation of water condensate on hydrophobic micro textured surfaces

    Science.gov (United States)

    Kim, Ki Wook; Do, Sang Cheol; Ko, Jong Soo; Jeong, Ji Hwan

    2013-07-01

    We visually observed that a dropwise condensation occurred initially and later changed into a filmwise condensation on hydrophobic textured surface at atmosphere pressure condition. It was observed that the condensate nucleated on the pillar side walls of the micro structure and the bottom wall adhered to the walls and would not be lifted to form a spherical water droplet using environmental scanning electron microscope.

  14. Zearalenone occurrence in surface waters in central Illinois, USA

    Science.gov (United States)

    Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops, such as corn and wheat. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development of a meth...

  15. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  16. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  17. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include t

  18. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results sh

  19. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  20. An Experimental Study of Planing Surfaces Operating in Shallow Water

    Science.gov (United States)

    1976-09-01

    D C APPROVED FOR PUBLIC RELEASE; (7 DISTRIBUTION UNLIMITED 22 1918 PT CLAIME Ar-Th -L’A THI S DOUETI 7E QUALITLY . AVAIILABIJaTECP FURNSR DTO DTIC...Aerodynamic tares were determined by towing the model just above the water surface at various trims and speeds. Only the drag was greatly affected by air

  1. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    Science.gov (United States)

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  2. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  3. Index of surface-water stations in Texas, January 1988

    Science.gov (United States)

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1988-01-01

    As of January 1, 1988, the surface-water data-collection network in Texas included 368 continuous streamflow, 12 continuous or daily reservoir-content, 38 gage height, 15 crest-stage partia 1-record, 4 periodic discharge through range, 32 floodhydrocjraph partial-record, 9 flood-profile partial-record, 36 low-flow partial-record 45 daily chemical-quality, 19 continuous-recording water-quality, 83 periodic biological, 19 lake surveys, 160 periodic organic and (or) nutrient, 3 periodic insecticide, 33 periodic pesticide, 20 automatic sampler, 137 periodic minor elements, 125 periodic chemical-quality, 74 periodic physica1-organic, 24 continuous-recording three- or four-parameter water-quality, 34 periodic sediment, 21 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemicalquality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations.

  4. 4D photogrammetric technique to study free surface water in open channels

    Science.gov (United States)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  5. Surface Water Data at Los Alamos National Laboratory 2000 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A.Shaull; M.R.Alexander; R.P.Reynolds; R.P.Romero; E.T.Riebsomer; C.T.McLean

    2001-06-02

    The principal investigators collected and computed surface water discharge data from 23 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs, two that flow into Canon del Valle and one that flows into Water Canyon.

  6. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  7. Surface Water Data at Los Alamos National Laboratory: 1999 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    2000-04-01

    The principal investigators collected and computed surface water discharge data from 22 stream-gaging stations that cover most of Los Alamos National Laboratory with one at Bandelier National Monument. Also included are discharge data from three springs that flow into Canon de Valle and nine partial-record storm water stations.

  8. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  9. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  10. Development of aquatic biomonitoring models for surface waters used for drinking water supply

    NARCIS (Netherlands)

    Penders, E.J.M.

    2011-01-01

    Given the need for continued quality control of surface waters used for the production of drinking water by state-of-the-art bioassays and biological early warning systems, the objective of the present thesis was to validate and improve some of the bioassays and biological early warning systems used

  11. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  12. Surface water data at Los Alamos National Laboratory: 2009 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  13. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    Science.gov (United States)

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  14. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...

  15. An analysis of water data systems to inform the Open Water Data Initiative

    Science.gov (United States)

    Blodgett, David L.; Read, Emily Kara; Lucido, Jessica M.; Slawecki, Tad; Young, Dwane

    2016-01-01

    Improving access to data and fostering open exchange of water information is foundational to solving water resources issues. In this vein, the Department of the Interior's Assistant Secretary for Water and Science put forward the charge to undertake an Open Water Data Initiative (OWDI) that would prioritize and accelerate work toward better water data infrastructure. The goal of the OWDI is to build out the Open Water Web (OWW). We therefore considered the OWW in terms of four conceptual functions: water data cataloging, water data as a service, enriching water data, and community for water data. To describe the current state of the OWW and identify areas needing improvement, we conducted an analysis of existing systems using a standard model for describing distributed systems and their business requirements. Our analysis considered three OWDI-focused use cases—flooding, drought, and contaminant transport—and then examined the landscape of other existing applications that support the Open Water Web. The analysis, which includes a discussion of observed successful practices of cataloging, serving, enriching, and building community around water resources data, demonstrates that we have made significant progress toward the needed infrastructure, although challenges remain. The further development of the OWW can be greatly informed by the interpretation and findings of our analysis.

  16. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  17. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Directory of Open Access Journals (Sweden)

    Nima Shahkaramipour

    2017-03-01

    Full Text Available Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol, polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.

  18. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  19. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay.

  20. Drainage-water travel times as a key factor for surface water contamination

    NARCIS (Netherlands)

    Groenendijk, P.; Eertwegh, van den G.A.P.H.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unreali

  1. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  2. Surface water data at Los Alamos National Laboratory: 1995 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barks, R. [ed.; Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.

    1996-08-01

    The principle investigators collected and computed surface water discharge data from 15 stream-gaging stations that cover most of Los Alamos National Laboratory. The United States Department of Interior Geological Survey, Water Resources Division, operates two of the stations under a subcontract; these are identified in the station manuscripts. Included in this report are data from one seepage run conducted in Los Alamos Canyon during the 1995 water year.

  3. Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake

    Directory of Open Access Journals (Sweden)

    Ilmar Tõnno

    2011-06-01

    Full Text Available Our aim was to find out to which extent fossil phytoplankton pigments in the large shallow and turbid Lake Võrtsjärv carry information on the history of phytoplankton communities. For this purpose we examined how the changes in the pigment composition of surface sediments follow their changes in the water column. Depth-integrated lake water and surface sediment samples were collected weekly in May–October 2007. Considering cyanobacterial and diatom dominance in phytoplankton, we analysed fucoxanthin, diadinoxanthin and diatoxanthin as marker pigments for diatoms, zeaxanthin as a marker pigment for total cyanobacteria and canthaxanthin as a marker pigment for colonial cyanobacteria. Chlorophyll a and its derivative pheophytin a were applied as indicators for total phytoplankton. The dynamics of phytoplankton pigments in surface sediments generally did not follow their dynamics in the water column, possibly due to intensive resuspension and a high sedimentation rate in a large and shallow lake. It was noticed that the surface sediment carries information on pigment degradation intensity and on weight and size characteristics of phytoplankton cells, which affect their sinking and floating velocities. Higher pigment contents of sediment in spring were presumably caused by lower resuspension due to high water level and slower degradation in cold water. Pheophytin a and the marker pigments of cyanobacteria were found to be persistent against degradation in upper sediment layers, which makes them useful indicators for tracking the historical changes in phytoplankton communities also in a shallow lake. Sharp decrease in chemically unstable pigment contents between the sediment surface and deeper layers indicates that only the uppermost sediment surface is resuspended in Lake Võrtsjärv. The transformation of the diatom marker carotenoid diadinoxanthin to diatoxanthin was found to occur mainly in sediments and not in the water column, and the

  4. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  5. Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China.

    Science.gov (United States)

    Li, Ting; Wang, Nanping; Li, Shijun

    2015-11-01

    A radon survey in surface water and drinking water was conducted using a portable degassing system associated with an ionisation chamber AlphaGUARD (PQ2000) for understanding levels of dissolved radon ((222)Rn) concentration in different types of water sources and risk assessment of radon in drinking water in Shenzhen City (SC) with a population of 10 628 900 in 2013, Guangdong Province of China. The measurements show that arithmetic means ± standard deviations of radon ((222)Rn) concentration are 52.05 ± 6.64, 0.29 ± 0.26, 0.15 ± 0.23 and 0.37 ± 0.42 kBq m(-3) in spring water, surface water, large and small public water supplies, respectively. Only radon concentrations of two water samples collected in mountainous areas are more than 11.10 kBq m(-3), exceeding the limit of radon concentration in drinking water stipulated by the national standard of China (GB5749-2006). The annual effective doses due to radon in drinking water were also calculated. The investigation suggests that there are no risks caused by radon in the drinking water in SC.

  6. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  7. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  8. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  9. Water footprint assessment to inform water management and policy making in South Africa

    NARCIS (Netherlands)

    Pahlow, M.; Snowball, J.; Fraser, G.

    2015-01-01

    One method to inform decisions with respect to sustainable, efficient and equitable water allocation and use is water footprint assessment (WFA). This paper presents a preliminary WFA of South Africa (SA) based on data for the period 1996–2005. Crop production was found to contribute about 75% of th

  10. China's water sustainability in the 21st century: a climate informed water risk assessment covering multi-sector water demands

    Directory of Open Access Journals (Sweden)

    X. Chen

    2013-08-01

    Full Text Available China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within year and across year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. The risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress are typically the regions with high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.

  11. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  12. Management of surface water and groundwater withdrawals to maintain environmental stream flows in Michigan

    Science.gov (United States)

    Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.

    2010-01-01

    In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.

  13. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration

    Science.gov (United States)

    Mull, Bonnie; Hill, Vincent R.

    2015-01-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261

  14. Historical Legacies, Information and Contemporary Water Science and Management

    Directory of Open Access Journals (Sweden)

    Charles J. Vörösmarty

    2011-05-01

    Full Text Available Hydrologic science has largely built its understanding of the hydrologic cycle using contemporary data sources (i.e., last 100 years. However, as we try to meet water demand over the next 100 years at scales from local to global, we need to expand our scope and embrace other data that address human activities and the alteration of hydrologic systems. For example, the accumulation of human impacts on water systems requires exploration of incompletely documented eras. When examining these historical periods, basic questions relevant to modern systems arise: (1 How is better information incorporated into water management strategies? (2 Does any point in the past (e.g., colonial/pre-European conditions in North America provide a suitable restoration target? and (3 How can understanding legacies improve our ability to plan for future conditions? Beginning to answer these questions indicates the vital need to incorporate disparate data and less accepted methods to meet looming water management challenges.

  15. Historical legacies, information and contemporary water science and management

    Science.gov (United States)

    Bain, Daniel J.; Arrigo, Jennifer A.S.; Green, Mark B.; Pellerin, Brian A.; Vörösmarty, Charles J.

    2011-01-01

    Hydrologic science has largely built its understanding of the hydrologic cycle using contemporary data sources (i.e., last 100 years). However, as we try to meet water demand over the next 100 years at scales from local to global, we need to expand our scope and embrace other data that address human activities and the alteration of hydrologic systems. For example, the accumulation of human impacts on water systems requires exploration of incompletely documented eras. When examining these historical periods, basic questions relevant to modern systems arise: (1) How is better information incorporated into water management strategies? (2) Does any point in the past (e.g., colonial/pre-European conditions in North America) provide a suitable restoration target? and (3) How can understanding legacies improve our ability to plan for future conditions? Beginning to answer these questions indicates the vital need to incorporate disparate data and less accepted methods to meet looming water management challenges.

  16. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  17. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  18. Ionization dynamics of water dimer on ice surface

    Science.gov (United States)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  19. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  20. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  1. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  2. Water contact angles and hysteresis of polyamide surfaces.

    Science.gov (United States)

    Extrand, C W

    2002-04-01

    The wetting behavior of a series of aliphatic polyamides (PAs) has been examined. PAs with varying amide content and polyethylene (PE) were molded against glass to produce surfaces with similar roughness. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while hysteresis increased. Hysteresis arose primarily from molecular interactions between the contact liquid and the solid substrates, rather than moisture absorption, variations in crystallinity, surface deformation, roughness, reorientation of amide groups, or surface contamination. Free energies of hysteresis were calculated from contact angles. For PE, which is composed entirely of nonpolar methylene groups, free energies were equivalent to the strength of dispersive van der Waals bonds. For PAs, free energies corresponded to fractional contributions from the dispersive methylene groups and polar amide groups.

  3. Nonlinear Acoustics at the Air-Water Free Surface

    Science.gov (United States)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  4. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  5. Phytoestrogens and mycoestrogens in surface waters--Their sources, occurrence, and potential contribution to estrogenic activity.

    Science.gov (United States)

    Jarošová, Barbora; Javůrek, Jakub; Adamovský, Ondřej; Hilscherová, Klára

    2015-08-01

    This review discusses the potential contribution of phytoestrogens and mycoestrogens to in vitro estrogenic activities occurring in surface waters and in vivo estrogenic effects in fish. Main types, sources, and pathways of entry into aquatic environment of these detected compounds were summarized. Reviewed concentrations of phyto/mycoestrogens in surface waters were mostly undetectable or in low ng/L ranges, but exceeded tens of μg/L for the flavonoids biochanin A, daidzein and genistein at some sites. While a few phytosterols were reported to occur at relatively high concentrations in surface waters, information about their potencies in in vitro systems is very limited, and contradictory in some cases. The relative estrogenic activities of compounds (compared to standard estrogen 17β-estradiol) by various in vitro assays were included, and found to differ by orders of magnitude. These potencies were used to estimate total potential estrogenic activities based on chemical analyses of phyto/mycoestrogens. In vivo effective concentrations of waterborne phyto/mycoestrogens were available only for biochanin A, daidzein, formononetin, genistein, equol, sitosterol, and zearalenone. The lowest observable effect concentrations in vivo were reported for the mycoestrogen zearalenone. This compound and especially its metabolites also elicited the highest in vitro estrogenic potencies. Despite the limited information available, the review documents low contribution of phyto/mycoestrogens to estrogenic activity in vast majority of surface waters, but significant contribution to in vitro responses and potentially also to in vivo effects in areas with high concentrations.

  6. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    Science.gov (United States)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  7. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  8. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  9. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Leforestier, C; Saykally, R J

    2004-05-25

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  10. Equations of atrazine transfer from agricultural land to surface water

    Science.gov (United States)

    Cann, C.

    1995-08-01

    As atrazine, the most widely used herbicide in agriculture, makes problems for water supply, the Cemagref study its transfer from lands to surface water. On a small basin of central Brittany, soil and water contents of atrazine have been monitored from 1991 to 1994. Data show that atrazine content of the top layer of soil decreases slowly after spreading. Degradation works more than leaching for this decrease. There is always atrazine in the water of the stream at the outlet of the basin. The concentration of atrazine in water increase sharply in every flood and then decrease slowly. The maximum level of concentration in each flood is very well correlated with the ratio of maximum discharge to the base flow. It means that quick superficial flow of water is the most contaminated water. It brings most of the total flow of atrazine which can be measured in the stream. However, this flow represent only a very small part of the spread atrazine on the basin: less than 1%.

  11. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  12. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO2) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca(2+) decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO2. Humic acid could largely low Tl removal efficiency during nMnO2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO2 and then removed accompanying with nMnO2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl.

  13. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  15. Input dynamics of pesticide transformation products into surface water

    Science.gov (United States)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples

  16. Multi-Site Model Benchmarking: Do Land Surface Models Leak Information?

    Science.gov (United States)

    Mocko, D. M.; Nearing, G. S.; Kumar, S.

    2014-12-01

    It is widely reported that land surface models (LSMs) are unable to use all of the information available from boundary conditions [1-4]. Evidence for this is that statistical models typically out-perform physics LSMs with the same forcing data. We demonstrate that this conclusion is not necessarily correct. The statistical models don't consider parameters, and the experiments cannot distinguish between information loss and bad information (disinformation). Recent work has outlined a rigorous interpretation of model benchmarking that allows us to measure the amount of information provided by model physics and the amount of information lost due to model error [5]. Recognizing that a complete understanding of model adequacy requires treatment across multiple locations [6] allows us to expand benchmarking theory to segregate bad and missing information. The result is a benchmarking method that that can distinguish error due to parameters, forcing data, and model structure - and, unlike other approaches, does not rely on parameter estimation, which can only provide estimates of parameter uncertainty conditional on model physics. Our new benchmarking methodology was compared with the standard methodology to measure information loss in several LSMs included in the current and developmental generations of the North American Land Data Assimilation System. The classical experiments implied that each of these models lose a significant amount of information from the forcing data; however, the new methodology shows clearly that this information did not actually exist in the boundary conditions in the first place. Almost all model bias can be attributed to incorrect parameters, and that most of the LSMs actually add information (via model physics) to what is available in the boundary conditions. 1 Abramowitz, G., Geophys Res Let 32, (2005). 2 Gupta, H. V., et al., Water Resour Res 48, (2012). 3 Luo, Y. Q. et al., Biogeosciences 9, (2012). 4 Han, E., et al., J Hydromet (2014). 5

  17. The Whitham Equation as a Model for Surface Water Waves

    CERN Document Server

    Moldabayev, Daulet; Dutykh, Denys

    2014-01-01

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better tha...

  18. Theoretical investigation of water formation on Rh and Pt Surfaces

    Science.gov (United States)

    Wilke, Steffen; Natoli, Vincent; Cohen, Morrel H.

    2000-06-01

    Catalytic water formation from adsorbed H and O adatoms is a fundamental reaction step in a variety of technologically important reactions involving organic molecules. In particular, the water-formation rate determines the selectivity of the catalytic partial oxidation of methane to syngas. In this report we present a theoretical investigation of the potential-energy diagram for water formation from adsorbed O and H species on Rh(111) and Pt(111) surfaces. The study is based on accurate first-principles calculations applying density-functional theory. Our results are compared to the potential-energy diagram for this reaction inferred from experimental data by Hickman and Schmidt [AIChE. J. 39, 1164 (1993)]. The calculations essentially reproduce the scheme of Hickman and Schmidt for water formation on Rh(111) with the important difference that the OH molecule is significantly more stable than assumed by Hickman and Schmidt. On Pt(111) surfaces, however, the calculations predict a barrier to OH formation very similar to that found on Rh(111). In particular, the calculated barrier to OH formation of about 20 kcal/mol seems to contradict the small 2.5 kcal/mol barrier assumed in the Hickman-Schmidt scheme and the observed large rate of water formation on Pt. A possible explanation for the apparent discrepancy between the large calculated barrier for OH formation on Pt and the experimentally observed rapid formation of water even at low temperatures is that the active sites for water formation on Pt are at "defect" sites and not on the ideally flat terraces. A similar conclusion has been reached by Verheij and co-workers [Surf. Sci. 371, 100 (1997); Chem. Phys. Lett. 174, 449 (1990); Surf. Sci. 272, 276 (1991)], who did detailed experimental work on water formation on Pt surfaces. Analyzing our results, we develop an explicit picture of the interaction processes governing the formation of OH groups. This picture rationalizes the calculated weak dependence of OH

  19. THE METHODS OF EXTRACTING WATER INFORMATION FROM SPOT IMAGE

    Institute of Scientific and Technical Information of China (English)

    DUJin-kang; FENGXue-zhi; 等

    2002-01-01

    Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper.An algorithmoif decision-tree(DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects,was developed and put forward to delineate water bodies.Another algorithm of decision-tree classification based on both spectral characteristics and auxiliary information of DEM and slope(DTDS) was also designed for water bodies extraction.In addition,supervised classification method of maximum-likelyhood classification(MLC),and unsupervised method of interactive self -organizing dada analysis technique(ISODATA) were used to extract waterbodies for comparison purpose.An index was designed and used to assess the accuracy of different methods abopted in the research.Results have shown that water extraction accuracy was variable with respect to the various techniques applied.It was low using ISODATA,very high using DT algorithm and much higher using both DTDS and MLC.

  20. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  1. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  2. Data-driven behavioural modelling of residential water consumption to inform water demand management strategies

    Science.gov (United States)

    Giuliani, Matteo; Cominola, Andrea; Alshaf, Ahmad; Castelletti, Andrea; Anda, Martin

    2016-04-01

    The continuous expansion of urban areas worldwide is expected to highly increase residential water demand over the next few years, ultimately challenging the distribution and supply of drinking water. Several studies have recently demonstrated that actions focused only on the water supply side of the problem (e.g., augmenting existing water supply infrastructure) will likely fail to meet future demands, thus calling for the concurrent deployment of effective water demand management strategies (WDMS) to pursue water savings and conservation. However, to be effective WDMS do require a substantial understanding of water consumers' behaviors and consumption patterns at different spatial and temporal resolutions. Retrieving information on users' behaviors, as well as their explanatory and/or causal factors, is key to spot potential areas for targeting water saving efforts and to design user-tailored WDMS, such as education campaigns and personalized recommendations. In this work, we contribute a data-driven approach to identify household water users' consumption behavioural profiles and model their water use habits. State-of-the-art clustering methods are coupled with big data machine learning techniques with the aim of extracting dominant behaviors from a set of water consumption data collected at the household scale. This allows identifying heterogeneous groups of consumers from the studied sample and characterizing them with respect to several consumption features. Our approach is validated onto a real-world household water consumption dataset associated with a variety of demographic and psychographic user data and household attributes, collected in nine towns of the Pilbara and Kimberley Regions of Western Australia. Results show the effectiveness of the proposed method in capturing the influence of candidate determinants on residential water consumption profiles and in attaining sufficiently accurate predictions of users' consumption behaviors, ultimately providing

  3. Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya.

    Science.gov (United States)

    Sima, Laura C; Kelner-Levine, Evan; Eckelman, Matthew J; McCarty, Kathleen M; Elimelech, Menachem

    2013-03-01

    In rapidly growing urban areas of developing countries, infrastructure has not been able to cope with population growth. Informal water businesses fulfill unmet water supply needs, yet little is understood about this sector. This paper presents data gathered from quantitative interviews with informal water business operators (n=260) in Kisumu, Kenya, collected during the dry season. Sales volume, location, resource use, and cost were analyzed by using material flow accounting and spatial analysis tools. Estimates show that over 76% of the city's water is consumed by less than 10% of the population who have water piped into their dwellings. The remainder of the population relies on a combination of water sources, including water purchased directly from kiosks (1.5 million m(3) per day) and delivered by hand-drawn water-carts (0.75 million m(3) per day). Energy audits were performed to compare energy use among various water sources in the city. Water delivery by truck is the highest per cubic meter energy demand (35 MJ/m(3)), while the city's tap water has the highest energy use overall (21,000 MJ/day). We group kiosks by neighborhood and compare sales volume and cost with neighborhood-level population data. Contrary to popular belief, we do not find evidence of price gouging; the lowest prices are charged in the highest-demand low-income area. We also see that the informal sector is sensitive to demand, as the number of private boreholes that serve as community water collection points are much larger where demand is greatest.

  4. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  5. Surface Contamination Monitor and Survey Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  6. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  7. Impact of density information on Rayleigh surface wave inversion results

    Science.gov (United States)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  8. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  9. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R(2), RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  10. Integrating remotely sensed surface water extent into continental scale hydrology

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  11. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  12. Utilizing an Automated Home-Built Surface Plasmon Resonance Apparatus to Investigate How Water Interacts with a Hydrophobic Surface

    Science.gov (United States)

    Poynor, Adele

    2011-03-01

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low- density region forms near the surface. We have employed an automated home-built Surface Plasmon Resonance (SPR) apparatus to investigate this boundary.

  13. Towards Physarum robots: computing and manipulating on water surface

    CERN Document Server

    Adamatzky, Andrew

    2008-01-01

    Plasmodium of Physarym polycephalum is an ideal biological substrate for implementing concurrent and parallel computation, including combinatorial geometry and optimization on graphs. We report results of scoping experiments on Physarum computing in conditions of minimal friction, on the water surface. We show that plasmodium of Physarum is capable for computing a basic spanning trees and manipulating of light-weight objects. We speculate that our results pave the pathways towards design and implementation of amorphous biological robots.

  14. Effective 3-D surface modeling for geographic information systems

    Directory of Open Access Journals (Sweden)

    K. Yüksek

    2013-11-01

    Full Text Available In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP with spatial data and query processing capabilities of Geographic Information Systems (GIS, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  15. Effective 3-D surface modeling for geographic information systems

    Science.gov (United States)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  16. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  17. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  18. Wavefront modulation of water surface wave by a metasurface

    Science.gov (United States)

    Sun, Hai-Tao; Cheng, Ying; Wang, Jing-Shi; Liu, Xiao-Jun

    2015-10-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).

  19. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination.

    Science.gov (United States)

    Li, Zhiting; Kozbial, Andrew; Nioradze, Nikoloz; Parobek, David; Shenoy, Ganesh Jagadeesh; Salim, Muhammad; Amemiya, Shigeru; Li, Lei; Liu, Haitao

    2016-01-26

    The intrinsic wettability of graphitic materials, such as graphene and graphite, can be readily obscured by airborne hydrocarbon within 5-20 min of ambient air exposure. We report a convenient method to effectively preserve a freshly prepared graphitic surface simply through a water treatment technique. This approach significantly inhibits the hydrocarbon adsorption rate by a factor of ca. 20×, thus maintaining the intrinsic wetting behavior for many hours upon air exposure. Follow-up characterization shows that a nanometer-thick ice-like water forms on the graphitic surface, which remains stabilized at room temperature for at least 2-3 h and thus significantly decreases the adsorption of airborne hydrocarbon on the graphitic surface. This method has potential implications in minimizing hydrocarbon contamination during manufacturing, characterization, processing, and storage of graphene/graphite-based devices. As an example, we show that a water-treated graphite electrode maintains a high level of electrochemical activity in air for up to 1 day.

  20. Oil capture from a water surface by a falling sphere

    Science.gov (United States)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  1. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  2. NATIONAL WATER INFORMATION SYSTEM OF THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Edwards, Melvin D.

    1985-01-01

    National Water Information System (NWIS) has been designed as an interactive, distributed data system. It will integrate the existing, diverse data-processing systems into a common system. It will also provide easier, more flexible use as well as more convenient access and expanded computing, dissemination, and data-analysis capabilities. The NWIS is being implemented as part of a Distributed Information System (DIS) being developed by the Survey's Water Resources Division. The NWIS will be implemented on each node of the distributed network for the local processing, storage, and dissemination of hydrologic data collected within the node's area of responsibility. The processor at each node will also be used to perform hydrologic modeling, statistical data analysis, text editing, and some administrative work.

  3. Water Diplomacy: A Synthesis of Water Information and Understanding to Create Actionable Knowledge

    Science.gov (United States)

    Gao, Y.; Islam, S.

    2010-12-01

    Water issues are complex because they cross multiple boundaries and involve various stakeholders with competing needs. The origin of many water issues is a dynamic consequence of competition and feedback among variables in the natural, societal and political domains. When viewed as a limited resource, water lends itself to destructive conflicts over its division; knowledge of water, however, can transform a finite water quantity into a flexible resource. To generate such a transformative knowledge base for water, we need a framework to synthesize explicit (scientific information) and tacit (contextual understanding) water knowledge. Such a framework must build on scientific objectivity and be cognizant of contextual differences inherent to water issues. An example of such an approach is qualitative reasoning (QR) that was developed by the artificial intelligence community to provide non-numerical descriptions of systems and their qualitative and quantitative behavior while preserving important behavioral properties and qualitative distinctions. Using the Apalachicola-Chattahoochee-Flint River Basin (ACF Basin) as an example we will illustrate the use of QR to model and analyze water conflicts in the context of a coupled Natural and Societal Domain (NSD) framework. Two QR models related to the ACF water dispute will be compared and contrasted. Our results suggest that QR models within a NSD framework can provide ways to resolve complex water problems through negotiated solutions.

  4. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    Science.gov (United States)

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  5. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  6. Evaporating behaviors of water droplet on superhydrophobic surface

    Science.gov (United States)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  7. Dynamic corona characteristics of water droplets on charged conductor surface

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-03-01

    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  8. Index of surface-water stations in Texas, January 1987

    Science.gov (United States)

    Rawson, Jack; Carrillo, E.R.; Buckner, H.D.

    1987-01-01

    As of January 1, 1987, the surface-water data-collection network in Texas included 376 continuous streamflow, 76 continuous or daily reservoir-content, 34 gage height, 16 crest-stage partial-record, 8 periodic discharge through range, 33 floodhydrograph partial-record, 9 flood-profile partial-record, 36 low-flow partial-record, 46 daily chemical-quality, 19 continuous-recording water-quality, 84 periodic biological, 17 lake surveys, 162 periodic organic and (or) nutrient, 3 periodic insecticide, 42 periodic pesticide, 19 automatic sampler, 141 periodic minor elements, 130 periodic chemical-quality, 78 periodic physical-organic, 22 continuous-recording three- or four-parameter water-quality, 34 periodic sediment, 22 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemical-quality or sediment'stations in Texas. Plate 2 shows the location of partial-record surfacewater stations.

  9. 76 FR 58462 - Information Collection; Qualified Products List for Water Enhancers (Gels) for Wildland Firefighting

    Science.gov (United States)

    2011-09-21

    ... Forest Service Information Collection; Qualified Products List for Water Enhancers (Gels) for Wildland... Products List for Water Enhancers (Gels) for Wildland Firefighting. DATES: Comments must be received in.... SUPPLEMENTARY INFORMATION: Title: Qualified Products List for Water Enhancers (Gels) for Wildland...

  10. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  11. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures......The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...

  12. Groundwater surface water interaction study using natural isotopes tracer

    Science.gov (United States)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  13. A Two-Step Double Filter Method to Extract Open Water Surfaces from Landsat ETM+ Imagery

    Science.gov (United States)

    Wang, Haijing; Kinzelbach, Wolfgang

    2010-05-01

    , which were taken within a few days of Landsat passing dates and which will serve here as ground truth information. On their basis the new method was compared to other available methods for extracting water pixels. Compared to the other methods, the new method can extract water surface not only from deep lakes/reservoirs and wetlands but also from small mud ponds in alkali flats and irrigation ponds in the fields. For the big and deep lakes, the extracted boundary of the lakes fits accurately the observed boundary. Five test sites in the study area in Northeast China with only shallow water surfaces were chosen and tested. The extracted water surfaces were compared with each site's digital globe maps, respectively to determine the accuracy of the method. The comparison shows that the method could extract all completely wet pixels (water area covering 100% of the pixel area) in all test sites. For partially wet pixels (50-100% of pixel area), the model can detect 91% of all pixels. No dry pixels were mistaken by the model as water pixels. Keywords: Remote sensing, Landsat ETM+ imaginary, Water Surface, NDVI, MNDWI, and SDD

  14. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  15. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in s

  16. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  17. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  18. Characterizing the Interaction between Groundwater and Surface Water in the Boise River for Water Sustainability

    Science.gov (United States)

    Hernandez, J.; Tan, K.; Portugais, B.

    2014-12-01

    Management of water resources has increasingly become aware of the importance of considering groundwater and surface water as an interconnected, single resource. Surface water is commonly hydraulically connected to groundwater, but the interactions are difficult to observe and measure. Such a conjunctive approach has often been left out of water-management considerations because of a lack of understanding of the processes occurring. The goal of this research is to increase the better understanding of the interaction between the surface water and groundwater using the study case of the Treasure Valley Aquifer and the Boise River in Idaho, framed on water sustainability. Water-budgets for the Treasure Valley for the calendar years 1996 and 2000 suggest that the Boise River lost to the shallow aquifer almost 20 Hm3 and 95 Hm3, respectively, along the Lucky Peak to Capitol Bridge reach. Groundwater discharge occurred into the Boise River, along the Capitol Bridge to Parma reach, at about 645 Hm3 and 653 Hm3for the calendar years 1996 and 2000, respectively (USBR). These figures highlight the importance of better understanding of the water flow because of disparity, which would impact groundwater management practices. There is a need of better understanding of the groundwater-surface water interface for predicting responses to natural and human-induced stresses. A groundwater flow model was developed to compute the rates and directions of groundwater movement through aquifer and confining units in the subsurface. The model also provides a representation of the interaction that occurs between the Boise River and the shallow aquifer in the Treasure Valley. Work in progress on the general flow pattern allows assessing of the connectivity between shallow aquifer and river for helping understanding the impacts of groundwater extraction. Quantifying the interaction between the two freshwater sources would be beneficial in proper water management decisions in order to optimize

  19. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  20. Agricultural insecticides threaten surface waters at the global scale

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  1. Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement

    Science.gov (United States)

    Snyder, Daniel T.; Risley, John C.; Haynes, Jonathan V.

    2012-01-01

    The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through "voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries." The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological information products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial

  2. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    OpenAIRE

    Mompelat, S.; Thomas, Olivier; Le Bot, Barbara

    2011-01-01

    International audience; The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit o...

  3. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun

    2006-01-01

    [1]Basu J K,Hazra S,Sanyal M K.Growth mechanism of Langmuir-Blodgett films.Phys Rev Lett,1999,82:4675-4678[2]Taylor R S,Shields R L.Molecular-dynamics simulations of the ethanol liquid-vapor interface.J Chem Phys,2003,119:12569-12576[3]Velev O D,Gurkov T D,Ivanov I B,et al.Abnormal thickness and stability of nonequilibrium liquid films.Phys Rev Lett,1995,75:264-267[4]Weng J G,Park S,Lukes J R,et al.Molecular dynamics investigation of thickness effect on liquid films.J Chem Phys,2000,113:5917-5923[5]Zakharov V V,Brodskaya E N,Laaksonen A.Surface tension of water droplets:A molecular dynamics study of model and size dependencies.J Chem Phys,1997,107:10675-10683[6]Wang J Z,Chen M,Guo Z Y.A two-dimensional molecular dynamics simulation of liquid-vapor nucleation.Chin Sci Bull,2003,48(7):623-626[7]Guissani Y,Guillot B.A computer simulation study of the liquid-vapor coexistence curve of water.J Chem Phys,1993,98:8221-8235[8]Wilson M A,Pohorille A,Pratt L R.Surface potential of the water liquid-vapor interface.J Chem Phys,1988,88:3281-3285[9]Alejandre J,Tildesley D J,Chapela G A.Molecular dynamics simulation of the orthobaric densities and surface tension of water.J Chem Phys,1995,102:4574-4583[10]Matsumoto M,Kataoka Y.Study on liquid-vapor interface of water (Ⅰ):Simulational results of thermodynamic properties and orientational structure.J Chem Phys,1988,88:3233-3245[11]Floriano M A,Angell C A.Surface tension and molar surface free energy and entropy of water to-27.2℃.J Phys Chem,1990,94:4199-4202[12]Jorgensen W L,Chandrasekhar J,Madura J D.Comparison of simple potential functions for simulating liquid water.J Chem Phys,1993,79:926-935[13]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials.J Phys Chem,1987,91:6269-6271[14]Arbuckle B W,Clancy P.Effects of the Ewald sum on the free energy of the extended simple point charge model for water.J Chem Phys,2002,116:5090-5098[15]Tarazona P,Chacon E,Reinaldo-Falagan M,et al

  4. Information and Knowledge for Water Governance in the Networked Society

    Directory of Open Access Journals (Sweden)

    Belén Pedregal

    2015-06-01

    Full Text Available In the last few years, parallel evolutionary processes in the socio-political, governmental and technological arenas have been providing new pathways for the collaborative generation, coordination and distribution of polycentric information. From a technological perspective, the proliferation of information and communication technologies (ICTs has boosted the availability of information about our planet, along with its storage, processing and dissemination capabilities. The Worldwide Web and satellite and electronic sensors combined with smart phone technologies have also opened new means for social, political and scientific innovation. From a socio-political standpoint, the implementation of policies that encourage the reutilisation of data and protect the right to information of interested parties, together with growing social demands for transparency, have resulted in an increasing number of governments drawing strategies to open up public data. In this context, this paper addresses two main topics that we deem will be key drivers for improved water governance in the near future. First, it discusses new practices of collaborative and distributed generation and disclosure of information for water governance, and the resulting challenges and opportunities afforded by the use of ICTs. Second, it looks at the interplay between the uptake of ICTs and institutional frameworks, social dynamics and technological structures within which they operate to understand the extent to which ICTs affect decision-making processes and contribute to creating alternative spaces for the production of common services or alternative discourses. Despite the advances in open data policies, findings suggest that there remain significant challenges to take full advantage of the opportunities offered by ICTs, mostly derived from the structural conditions of existing models of decision-making, and information generation and management. It seems that the potentialities of

  5. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    Science.gov (United States)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  6. Hydrated goethite (alpha-FeOOH) (100) interface structure: Ordered water and surface functional groups.

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, S.K.; Waychunas, G.A.; Trainor, T.P.; Eng, P.J.

    2009-12-15

    Goethite({alpha}-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous stud-ies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite(100) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the(100) cleavage faces. The proposed interface stoichiometry is ((H{sub 2}O)-(H{sub 2}O)-OH{sub 2}-OH-Fe-O-O-Fe-R) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe{sup 3+} ions) and OH{sub 2} type (monodentate hydroxyl with oxygen tied to only one Fe{sup 3+}). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface

  7. X-Ray Spectroscopy of the Liquid Water Surface

    Science.gov (United States)

    Saykally, Richard

    2004-03-01

    We have developed a new experiment for probing molecular details of liquid-vapor interfaces of volatile substances and their solutions under equilibrium conditions. Electronic and geometric structures of interfacial molecules are probed by EXAFS and NEXAFS methods in the soft X-ray region, using the Advanced Light Source, Berkeley, CA. Liquids are introduced into a high vacuum environment through the use of liquid microjets, which have been characterized independently by Raman spectroscopy. Detection of ions and electrons produced by the Auger avalanche probe the bulk and surface regions of the microjet, respectively, as a result of their different escape depths. Our first efforts involved a comparative study of the interfaces of water and methanol, wherein we detailed the first observation of surface relaxation for a liquid. Analysis of EXAFS data yielded a 6distance at the water interface, whereas a 5was found for methanol. NEXAFS measurements, interpreted in terms of density functional theory simulations, indicate a large population of interfacial water molecules having two free OH bonds ("acceptor only molecules"). This complements the "single donor" species identified in sum frequency generation experiments. These results are supported by recent theoretical calculations. For methanol and other simple alcohols, the data indicate that free alkyl groups extend into the vapor part of the interface. Preliminary results for aqueous solutions, as well as for other pure liquids, have been obtained and are presently under analysis. REFERENCES 1. K.R. Wilson, R.D. Schaller, B.S. Rude, T. Catalano, D.T. Co, J.D. Bozek, and R.J. Saykally, "Surface relaxation in liquid water and methanol studied by X-ray absorption spectroscopy," J. Chem. Phys 117,7738(2002). 2. K.R. Wilson, M. Cavalleri, B.S. Rude, R.D. Schaller, A. Nilsson, L.G.M. Pettersson, N. Goldman, T. Catalano, J.D. Bozek, and R.J. Saykally, "Characterization of hydrogen bond acceptor molecules at the water surface

  8. The interplay of snow, surface water, and groundwater reservoirs for integrated water resources management

    Science.gov (United States)

    Rajagopal, S.; Huntington, J.

    2015-12-01

    Changes in climate, growth in population and economy have increased the reliance on groundwater to augment supplies of surface water across the world, and especially the Western United States. Martis Valley, a high altitude, snow dominated watershed in the Sierra Nevada, California has both surface (river/reservoir) and groundwater resources that are utilized to meet demands within the valley. The recent drought and changing precipitation type (less snow, more rain) has stressed the regional surface water supply and has increased the reliance on groundwater pumping. The objective of this paper is to quantify how changes in climate and depletion of snow storage result in decreased groundwater recharge and increased groundwater use, and to assess if increased surface water storage can mitigate impacts to groundwater under historic and future climate conditions. These objectives require knowledge on the spatiotemporal distribution of groundwater recharge, discharge, and surface and groundwater interactions. We use a high resolution, physically-based integrated surface and groundwater model, GSFLOW, to identify key mechanisms that explain recent hydrologic changes in the region. The model was calibrated using a multi-criteria approach to various historical observed hydrologic fluxes (streamflow and groundwater pumping) and states (lake stage, groundwater head, snow cover area). Observations show that while groundwater use in the basin has increased significantly since the 1980's, it still remains a relatively minor component of annual consumptive water use. Model simulations suggest that changes from snow to rain will lead to increases in Hortonian and Dunnian runoff, and decreases in groundwater recharge and discharge to streams, which could have a greater impact on groundwater resources than increased pumping. These findings highlight the necessity of an integrated approach for evaluating natural and anthropogenic impacts on surface and groundwater resources.

  9. A review of heterogeneous photocatalysis for water and surface disinfection.

    Science.gov (United States)

    Byrne, John Anthony; Dunlop, Patrick Stuart Morris; Hamilton, Jeremy William John; Fernández-Ibáñez, Pilar; Polo-López, Inmaculada; Sharma, Preetam Kumar; Vennard, Ashlene Sarah Margaret

    2015-03-30

    Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give "self-disinfecting" surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  10. Surface Towed CSEM Systems for Shallow Water Mapping

    Science.gov (United States)

    Sherman, J.; Constable, S.; Kannberg, P. K.

    2015-12-01

    We have developed a low-power, surface towed electric dipole-dipole system suitable for mapping seafloor geology in shallow water and deployable from small boats. The transmitter is capable of up to 50 amps output using 12 VDC from a 110/240 VAC power supply, and can generate an arbitrary GPS stabilized ternary waveform. Transmitter antennas are typically 50 to 100 m long. Receivers are built around the standard Scripps seafloor electrode, amplifier, and logging systems but housed in floating PVC cases and equipped with GPS timing and positioning, pitch/roll/heading sensors, and accelerometers. Receiver dipoles are 1.5 m long rigid booms held 1 m below the surface. As with the Scripps deep-towed Vulcan system, rigid antennas are used to avoid noise associated with flexible antennas moving across Earth's magnetic field. The tow cable is a simple floating rope up to 1000 m long. Water depth and conductivity are sampled continuously in order to provide constraints for apparent resistivity calculations and inversion, and moored seafloor recorders can be used to extend transmitter/receiver offsets. The entire system can be air freighted and transported in one utility vehicle. We will present results from a study to map permafrost in shallow water off Prudhoe Bay, Alaska.

  11. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Physics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011 (Japan); Kudo, T.; Terada, H.; Takato, N. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Takatsuki, S.; Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, Daito, Osaka 574-8530 (Japan); Fukagawa, M.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-04-10

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  12. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  13. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  14. Environmental surveillance for toxigenic Vibrio cholerae in surface waters of Haiti.

    Science.gov (United States)

    Kahler, Amy M; Haley, Bradd J; Chen, Arlene; Mull, Bonnie J; Tarr, Cheryl L; Turnsek, Maryann; Katz, Lee S; Humphrys, Michael S; Derado, Gordana; Freeman, Nicole; Boncy, Jacques; Colwell, Rita R; Huq, Anwar; Hill, Vincent R

    2015-01-01

    Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.

  15. Environmental Surveillance for Toxigenic Vibrio cholerae in Surface Waters of Haiti

    Science.gov (United States)

    Kahler, Amy M.; Haley, Bradd J.; Chen, Arlene; Mull, Bonnie J.; Tarr, Cheryl L.; Turnsek, Maryann; Katz, Lee S.; Humphrys, Michael S.; Derado, Gordana; Freeman, Nicole; Boncy, Jacques; Colwell, Rita R.; Huq, Anwar; Hill, Vincent R.

    2015-01-01

    Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic. PMID:25385860

  16. Horizon effects with surface waves on moving water

    CERN Document Server

    Rousseaux, Germain; Mathis, Christian; Coullet, Pierre; Philbin, Thomas G; Leonhardt, Ulf

    2010-01-01

    Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [R. Schuetzhold and W. G. Unruh W G, Phys. Rev. D 66 (2002) 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/long wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  17. A Novel Energy efficient Surface water Wireless Sensor Network Algorithm

    Directory of Open Access Journals (Sweden)

    B.Meenakshi

    2012-07-01

    Full Text Available Maintaining the energy of sensors in Wireless Sensor Network (WSN is important in critical applications. It has been a challenge to design wireless sensor networks to enable applications for oceanographicdata collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. WSN consists of sensor nodes which sense the physical parameters such as temperature, humidity, pressure and light etc and send them to a fusion center namely Base Station (BS from where one can get the value of physical parameters at any time. Requirement of monitoring the environment might be anywhere, like middle of the sea or under the earth where man cannot go often to recharge the batterieswhich supplies the sensing device, transceiver and memory unit in the sensor node. So the usage of the battery power must be judicious in WSN. Earlier attempts have been made to prolong the network lifetime, but still it is a challenging task. In this paper we propose a Novel Energy efficient Surface water Wireless Sensor Network Algorithm (NES-WSN to optimize the energy consumption by WSN. The present work concentrates on energy saving of sensor nodes when they are deployed in the surface of the sea water. Whenever the sea surface temperature increases there will be a power loss which is reduced by clustering the nodes and by transferring data through multihop routing. Experimental results show that due to increase in temperature there is a definite power loss and it can be minimized by using NES-WSN algorithm definitely.

  18. Application of water quality indices and analysis of the surface water quality monitoring network in semiarid North-Central Chile.

    Science.gov (United States)

    Espejo, Lesly; Kretschmer, Nicole; Oyarzún, Jorge; Meza, Francisco; Núñez, Jorge; Maturana, Hugo; Soto, Guido; Oyarzo, Paula; Garrido, Marcela; Suckel, Felipe; Amezaga, Jaime; Oyarzún, Ricardo

    2012-09-01

    Surface water quality has increasing importance worldwide and is particularly relevant in the semiarid North-Central Chile, where agriculture and mining activities are imposing heavy pressure on limited water resources. The current study presents the application of a water quality index in four watersheds of the 29°-33°S realm for the period 1999-2008, based on the Canadian Council of Ministers for the Environment approach and the Chilean regulation for irrigation water quality. In addition, two modifications to the index are tested and a comprehensive characterization of the existing monitoring network is performed through cluster analysis. The basins studied show fairly good water quality in the overall, specially the Limarí basin. On the other hand, the lower index values were obtained for the headwaters of Elqui, associated with the El Indio mining district. The first modification of the indicator (i.e., to consider parameters differentially according to their effect on human health or the environment) did not produce major differences with respect to the original index, given the generally good water quality. The second modification (i.e., to consider as threshold values the more restrictive figures derived from a set of regulations) yielded important differences in the indicator values. Finally, an adequate characterization of the monitoring network was obtained. The results presented spatial coherence and the information can be used as a basis for the optimization of the monitoring network if required.

  19. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  20. Testing estimation of water surface in Italian rice district from MODIS satellite data

    Science.gov (United States)

    Ranghetti, Luigi; Busetto, Lorenzo; Crema, Alberto; Fasola, Mauro; Cardarelli, Elisa; Boschetti, Mirco

    2016-10-01

    Recent changes in rice crop management within Northern Italy rice district led to a reduction of seeding in flooding condition, which may have an impact on reservoir water management and on the animal and plant communities that depend on the flooded paddies. Therefore, monitoring and quantifying the spatial and temporal variability of water presence in paddy fields is becoming important. In this study we present a method to estimate dynamics of presence of standing water (i.e. fraction of flooded area) in rice fields using MODIS data. First, we produced high resolution water presence maps from Landsat by thresholding the Normalised Difference Flood Index (NDFI) made: we made it by comparing five Landsat 8 images with field-obtained information about rice field status and water presence. Using these data we developed an empirical model to estimate the flooding fraction of each MODIS cell. Finally we validated the MODIS-based flooding maps with both Landsat and ground information. Results showed a good predictability of water surface from Landsat (OA = 92%) and a robust usability of MODIS data to predict water fraction (R2 = 0.73, EF = 0.57, RMSE = 0.13 at 1 × 1 km resolution). Analysis showed that the predictive ability of the model decreases with the greening up of rice, so we used NDVI to automatically discriminate estimations for inaccurate cells in order to provide the water maps with a reliability flag. Results demonstrate that it is possible to monitor water dynamics in rice paddies using moderate resolution multispectral satellite data. The achievement is a proof of concept for the analysis of MODIS archives to investigate irrigation dynamics in the last 15 years to retrieve information for ecological and hydrological studies.

  1. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    Science.gov (United States)

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks.

  2. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    Science.gov (United States)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  3. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    Science.gov (United States)

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment.

  4. The effect of information on household water and energy use

    Science.gov (United States)

    Hans, Liesel

    Water and Energy Utilities are faced with growing demand at a time when supply expansion is increasingly costly, inconsistent and taxing on the environment. Given that supply expansion is limited, to meet future needs utilities need demand-side management policies to result in more reliable and consistent consumer responsiveness. Currently, most households do not have access to the level or type of information needed to respond to price signals in a reliable and effective way. Advanced information technology solutions exist and are being increasingly adopted, but we need to know more about how the informational setting affects decision-making, consumption levels and price responsiveness. This research analyzes the effect of information on household water and energy consumption, which is a decision-making environment characterized by uncertainty and imperfect information. This study also analyzes additional complexities stemming from infrequent billing, non-linear pricing structures, and combined utility bills, each of which may dampen price signals. I first develop a theoretical model of decision-making under uncertainty. I use this model to illustrate the effect of more frequent information, which eliminates uncertainty about past decisions, on remaining decisions within the billing period. The model emphasizes the role of risk preferences and the realization of the uncertain quantity. On average, risk averse consumers will increase consumption when uncertainty is reduced; risk seeking consumers will do the opposite. Introduction of a non-linear rate structure induces behavior that makes individuals appear as if they are risk averse or risk seeking, despite their actual risk preferences. This model highlights the importance of modeling multiple decisions within a billing period and accounting for a spectrum of risk preferences. In Chapter 3, I create a computerized laboratory experiment designed to generate data used to test some of the hypotheses formulated in

  5. Predicting sub-grid variability of soil water content from basic soil information

    Science.gov (United States)

    Qu, Wei; Bogena, Heye; Huisman, Johan Alexander; Vanderborght, Jan; Schuh, Max; Priesack, Eckart; Vereecken, Harry

    2015-04-01

    Knowledge of unresolved soil water content variability within model grid cells (i.e. sub-grid variability) is important for accurate predictions of land-surface energy and hydrologic fluxes. Here, we derived a closed-form expression to describe how soil water content variability depends on mean soil water content using stochastic analysis of 1D unsaturated gravitational flow based on the van Genuchten-Mualem (VGM) model. A sensitivity analysis of this closed-form expression showed that the n parameter strongly influenced both the shape and magnitude of the maximum of this relationship. In a next step, the closed-form expression was used to predict soil water content variability for eight datasets with varying soil texture using VGM parameters obtained from pedotransfer functions that rely on readily available soil information. Generally, there was good agreement between observed and predicted soil water content variability despite the obvious simplifications that were used to derive the closed-form expression (e.g. gravity flow in dry soils). A simplified closed-form expression that neglected the effect of pressure head fluctuations showed that the good performance in the dry soil range is related to the dominant role of the variability in MVG parameters determining water retention as compared to the effect of water flow. Furthermore, the novel closed-form expression was successfully used to inversely estimate the variability of hydraulic properties from observed data on soil water content variability from several test sites in Germany, China and Australia.

  6. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.

    Science.gov (United States)

    Huang, Liangliang; Gubbins, Keith E; Li, Licheng; Lu, Xiaohua

    2014-12-16

    The behavior of surface water, especially the adsorption and dissociation characteristics, is a key to understanding and promoting photocatalytic and biomedical applications of titanium dioxide materials. Using molecular dynamics simulations with the ReaxFF force field, we study the interactions between water and five different TiO2 surfaces that are of interest to both experiments and theoretical calculations. The results show that TiO2 surfaces demonstrate different reactivities for water dissociation [rutile (011) > TiO2-B (100) > anatase (001) > rutile (110)], and there is no water dissociation observed on the TiO2-B (001) surface. The simulations also reveal that the water dissociation and the TiO2 surface chemistry change, and the new surface Ti-OH and O-H functional groups affect the orientation of other near-surface water molecules. On the reactive surface, such as the rutile (110) surface, water dissociated and formed new Ti-OH and O-H bonds on the surface. Those functional groups enhanced the hydrogen bond networking with the near-surface water molecules and their configurations. On the nonreactive TiO2-B (001) surface where no molecular or dissociative water adsorption is observed, near-surface water can also form hydrogen bonds with surface oxygen atoms of TiO2, but their distance to the surface is longer than that on the rutile (011) surface.

  7. Nitrogen surface water retention in the Baltic Sea drainage basin

    Directory of Open Access Journals (Sweden)

    P. Stålnacke

    2014-09-01

    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  8. Surface water - groundwater interactions at different spatial and temporal scales

    DEFF Research Database (Denmark)

    Sebök, Éva

    in lowland catchments, mainly exploring and assessing Distributed Temperature Sensing (DTS) which by detecting variability in temperatures at the Sediment-Water Interface (SWI) can indirectly map variability in groundwater discharge at several spatial and temporal scales. On the small-scale (...As there is a growing demand for the protection and optimal management of both the surface water and groundwater resources, the understanding of their exchange processes is of great importance. This PhD study aimed at describing the natural spatial and temporal variability of these interactions...... detected large spatial variability in SWI temperatures with scattered high-discharge sites in a stream and also in a lake where discharge fluxes were estimated by vertical temperature profiles and seepage meter measurements. On the kilometre scale DTS indicated less spatial variability in streambed...

  9. Thermodynamics of surface defects at the aspirin/water interface

    Science.gov (United States)

    Schneider, Julian; Zheng, Chen; Reuter, Karsten

    2014-09-01

    We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.

  10. Embedded water-based surface heating part 2: experimental validation

    DEFF Research Database (Denmark)

    Karlsson, Henrik

    2010-01-01

    : hybrid 3D numerical model. Journal of Building Physics 33: 357-391). The thermal response of the system is tested in both long (16 h) and short (30 min) cycle experiments where the water flow alters between on and off. Temperature distribution, within the floor construction, and the heat exchange process...... are studied throughout the test cycles. The model underestimates the steady-state heat exchange from the pipe loop by 16% when boundary conditions and thermal properties according to the reference case are applied. Temperatures at the floor surface are assessed with good precision while temperatures......The transient operation of an embedded water-based floor heating system has been studied by means of a numerical simulation tool. Prior to this study, Caccavelli and Richard (Caccavelli D, Richard P (1994) Etude portant sur le dimensionnement d'un plancher chauffant a eau chaude en CIC. Rapport n...

  11. Witwatersrand Water Ingress Project - Information Management System (WWIPIMS), South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Hild, S.; Sieste, M.; Barth, A.; Rudinskaya, J. [Beak Consultants GmbH, Freiberg (Germany); Croukamp, L.; Roos, M. [Council for Geoscience (CGS), Pretoria (South Africa)

    2006-07-01

    The Witwatersrand Water Ingress Project at the Council for Geoscience, South Africa (CGS) deals with an inventory, a risk assessment and the development of rehabilitation strategies for abandoned mining sites in the Witwatersrand Mining Basin. The main focus is the prevention of water ingress and to understand the future decanting scenario. An Information Management System consisting of both a relational database and an application for the Witwatersrand Water Ingress Project is established for accessing and managing all project-related data. This easy to use application makes the data available to all staff at the CGS via several modules as well as a GIS-component for accessing and querying spatial data. This will enable the scientists to derive further knowledge of the water flowing processes by directly using all of the existing up-to-date data. Many additional functions, such as the support for map printing on demand, extensive possibilities for inquiries, data import and export, diagrams and a GIS-viewer for spatial inquiries do complete the system. (orig.)

  12. Towards Physarum Robots: Computing and Manipulating on Water Surface

    Institute of Scientific and Technical Information of China (English)

    Andrew Adamatzky; Jeff Jones

    2008-01-01

    Plasmodium of Physarum polycephalum is an ideal biological substrate for implementing concurrent and parallel com-putation, including combinatorial geometry and optimization on graphs. The scoping experiments on Physarum computing in conditions of minimal friction, on the water surface were performed. The laboratory and computer experimental results show that plasmodium of Physarum is capable of computing a basic spanning tree and manipulating of light-weight objects. We speculate that our results pave the pathways towards the design and implementation of amorphous biological robots.

  13. Rapid quantification method for Legionella pneumophila in surface water.

    Science.gov (United States)

    Wunderlich, Anika; Torggler, Carmen; Elsässer, Dennis; Lück, Christian; Niessner, Reinhard; Seidel, Michael

    2016-03-01

    World-wide legionellosis outbreaks caused by evaporative cooling systems have shown that there is a need for rapid screening methods for Legionella pneumophila in water. Antibody-based methods for the quantification of L. pneumophila are rapid, non-laborious, and relatively cheap but not sensitive enough for establishment as a screening method for surface and drinking water. Therefore, preconcentration methods have to be applied in advance to reach the needed sensitivity. In a basic test, monolithic adsorption filtration (MAF) was used as primary preconcentration method that adsorbs L. pneumophila with high efficiency. Ten-liter water samples were concentrated in 10 min and further reduced to 1 mL by centrifugal ultrafiltration (CeUF). The quantification of L. pneumophila strains belonging to the monoclonal subtype Bellingham was performed via flow-based chemiluminescence sandwich microarray immunoassays (CL-SMIA) in 36 min. The whole analysis process takes 90 min. A polyclonal antibody (pAb) against L. pneumophila serogroup 1-12 and a monoclonal antibody (mAb) against L. pneumophila SG 1 strain Bellingham were immobilized on a microarray chip. Without preconcentration, the detection limit was 4.0 × 10(3) and 2.8 × 10(3) CFU/mL determined by pAb and mAb 10/6, respectively. For samples processed by MAF-CeUF prior to SMIA detection, the limit of detection (LOD) could be decreased to 8.7 CFU/mL and 0.39 CFU/mL, respectively. A recovery of 99.8 ± 15.9% was achieved for concentrations between 1-1000 CFU/mL. The established combined analytical method is sensitive for rapid screening of surface and drinking water to allow fast hygiene control of L. pneumophila.

  14. Climate Change Information Dashboards for Water Resource Managers

    Science.gov (United States)

    Buja, Lawrence

    2016-04-01

    It is in the context of its application that one needs to determine if climate information is of high quality and ultimately useful. Therefore, it is important that the intersection between data providers and data consumers is structured in form of an iterative and collaborative exchange where science and application viewpoints can be brought together. A traditional "loading dock"-style hand-off of data fails to optimally inform decisions. It is now broadly recognized that a collaborative, open exchange is better suited to generate credible and salient products and knowledge that can be more confidently used in decisions. But in order for this exchange to be successful in practice, it needs to be sufficiently efficient to actually facilitate an exploratory process that is inherently iterative to determine the most informative products. It also requires a transparent approach that is easily understood and communicated. We will present prototypes of Climate Information Dashboards that collect on a single page to integrate a suite of key climate information for resource managers. The content of dashboards is based on standardized products that can be assembled to meet specific needs. They were co-designed with the water resource managers and are tailored to selected management and decision topics. The visualizations are tuned to quickly provide the basic information, yet below individual diagnostics are more detailed analyses that can be consulted. These dashboards offer a flexible way to connect decision-makers to climate model output. Conversely, such dashboards can also be applied to inform model development by providing insight into a suite of key characteristics of model performance that have been identified as critical by a sector.

  15. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  16. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.

    Science.gov (United States)

    Emtiazi, Farahnaz; Schwartz, Thomas; Marten, Silke Mareike; Krolla-Sidenstein, Peter; Obst, Ursula

    2004-03-01

    Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.

  17. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  18. The impact of municipal landfill on surface and ground water quality in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    R. Nyengera

    2012-11-01

    Full Text Available Leachate from Richmond municipal landfill, underlain by the Matsheumhlope unconfined aquifer in Bulawayo city and its consequent water resource quality impacts are evaluated. Leachate samples from collection ponds and water samples from a stream, and up and down-gradient boreholes fromthe landfill were tested for nine pollutants. The leachate pollutants found in both surface and ground water included metals (Fe, Pb and Hg and organic compounds that are hazardous to both human and the environmental health. Borehole water quality compliance with the relevant national and international regulations is reported. From borehole water samples, only chloride and nitrate with concentrations of 56.9 mg/ℓ and 2.26 mg/ℓ, respectively, were within the World Health Organisation (WHO recommended limits for drinking water of 250 mg/ℓ and 10 mg/ℓ, respectively. Lead and mercury concentrations of 0.22 mg/ℓ and 0.04 mg/ℓ were 10 times higher than WHO guidelines of 0.01 and 0.001 mg/ℓ, respectively. Both landfill and informal settlement activities near the landfill impact negatively to water resources quality in the area. City council should minimize waste by recycling, pre-treat collected leachate and drill monitoring wells around the landfill to check possible leachate leaks to water resources and take remedial actions, such assubmerged leachate combustion and evaporation.

  19. Observation of the vortex ring interacting with free surface of water

    OpenAIRE

    Nagata, Hiroshi; Sugaya, Shuji; 永田 拓; 菅谷 修士

    2002-01-01

    Vortex structures of the vortex rings ejected parallel or perpendicular to a free surface of water were studied by means of flow visualization experiments. The emphasis is on the process of vortex deformation, induction of the flow on the free surface, evolution of surface vortices and interaction between the surface vortices and vortices in the water. Experiments were conducted under the two surface conditions, i.e. a clean surface and a surface contaminated with surfactant droplets. The ele...

  20. Influence of surface polarity on water dynamics at the water/rutile TiO₂(110) interface.

    Science.gov (United States)

    Ohto, Tatsuhiko; Mishra, Ankur; Yoshimune, Seiji; Nakamura, Hisao; Bonn, Mischa; Nagata, Yuki

    2014-06-18

    We report molecular dynamics (MD) simulations of the water/clean rutile TiO2 (110) interface using polarizable and non-surface polarity force field models. The effect of surface polarity on the water dynamics near the TiO2(110) surface is addressed, specifically by calculating the water hydrogen bond and reorientational dynamics. The hydrogen bond lifetime of interfacial water molecules is several times longer than that of bulk water due to the strong water-TiO2 interactions. A comparison of the dynamics simulated with the polarizable and non-surface polarity models shows that, while the hydrogen bond lifetime between the interfacial water and TiO2 surface is insensitive to the surface polarity, the reorientational dynamics around this hydrogen bond axis is significantly influenced by the surface polarity; the surface polarity of the TiO2 increases the water-TiO2 interactions, stabilizing the local structure of the interfacial water molecules and restricting their rotational motion. This reorientation occurs predominantly by rotation around the O-H group hydrogen bonded to the TiO2 surface. Furthermore, we correlate the dynamics of the induced charge on the TiO2 surface with the interfacial water dynamics. Our results show that the timescale of correlations of the atom charges induced by the local electric field in bulk water is influenced by the rotational motion, hydrogen bond rearrangement and translational motion, while the induced charge dynamics of the TiO2 surface is governed primarily by the rotational dynamics of the interfacial water molecules. This study demonstrates that the solid surface polarity has a significant impact on the dynamics of water molecules near TiO2 surfaces.

  1. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  2. Building an Intelligent Water Information System - American River Prototype

    Science.gov (United States)

    Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    With better management, California's existing water supplies could go further to meeting the needs of the state's urban and agricultural uses. For example, California's water reservoirs are currently controlled and regulated using forecasts based upon more than 75 years of historical data. In the face of global climate change, these forecasts are becoming increasingly inadequate to precisely manage water resources. We propose implementing Leveraging the newest frontiers of information technology, we are developing a basin-scale real-time intelligent water infrastructure system that enables more information-intensive decision support. The complete system is made up of four key components. First, a strategically deployed ground-observation system will complement satellite measurements and provide continuous and accurate estimates of snowpack, soil moisture, vegetation state and energy balance across watersheds. Using our recently developed but mature technologies, we deliver measurements of hydrologic variables over a multi- tiered network of wireless sensor arrays, with a granularity of time and space previously unheard of. Second, satellite and aircraft remote sensing provide the only practical means of spatially continuous basin-wide measurement and monitoring of snow properties, vegetation characteristics and other watershed conditions. The ground-based system is designed to blend with remote sensing data on Sierra Nevada snow properties, and provide value-added products of unprecedented spatial detail and accuracy that are useable on a watershed level. Third, together the satellite and ground-based data make possible the updating of forecast tools, and routine use of physically based hydrologic models. The decision-support framework will provide tools to extract and visualize information of interest from the measured and modeled data, to assess uncertainties, and to optimize operations. Fourth, the advanced cyber infrastructure blends and transforms the numbers

  3. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  4. Transactions of the nineteenth water reactor safety information meeting

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. (comp.)

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

  5. Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement

    Science.gov (United States)

    Snyder, Daniel T.; Risley, John C.; Haynes, Jonathan V.

    2012-01-01

    water right has been retired. A final product from the study are datasets of indicators of the potential for subsurface return flow of irrigation water from agricultural areas to nearby streams. The datasets contain information on factors such as proximity to surface-water features, geomorphic floodplain characteristics, and depth to water. The digital data, metadata, and example illustrations for the datasets described in this report are available on-line from the USGS Water Resources National Spatial Data Infrastructure (NSDI) Node Website http://water.usgs.gov/lookup/getgislist or from the U.S. Government website DATA.gov at http://www.data.gov with links provided in a Microsoft® Excel® workbook in appendix A.

  6. Voluntary Field Data Collection for Landscape Phenology and Surface Water Essential Climate Variable Research

    Science.gov (United States)

    Jones, J. W.; Hudson-Dunn, A.; Aquino, K.; Pasa, M.; Paez, F.

    2013-12-01

    The U.S. Geological Survey is developing techniques to monitor vegetation and surface water condition for improved resource management. Educational materials and data forms that allow volunteer Citizen Scientists to collect information on vegetation and surface water extent to enhance satellite and web camera data analyses (http://egsc.usgs.gov/shenandoah.html) have been developed, tested, and refined. Collection is focused on supplementing landscape phenology and surface water extent (SWE) essential climate variable (ECV) research. Low cost instrumentation, subject education, and measurement calibration techniques all have utility for multiple remote sensing and biophysical studies. Trials have been conducted with subjects ranging from elementary school-aged summer camp children to science major undergraduate and graduate students. Experiments were replicated in several project study areas in Virginia that are also phenology and SWE-ECV research sites. Analysis of volunteer responses and their narrative feedback have improved the ability to request and assess data from volunteers. Children ages 12 and over were able to provide reliable supplemental information for phenology and aquatic research. Finally, trial observation and subject feedback both confirmed that participation furthered volunteer interest in science.

  7. Enhanced removal of nitrate from water using surface modification of adsorbents--a review.

    Science.gov (United States)

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya

    2013-12-15

    Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents.

  8. Water adsorption and dissociation on BeO (001) and (100) surfaces

    CERN Document Server

    Gómez, M A; Kress, J D; Pratt, L R; Gomez, Maria A.; Kress, Joel D.; Pratt, Lawrence R.

    2007-01-01

    Plateaus in water adsorption isotherms on hydroxylated BeO surfaces suggest significant differences between the hydroxylated (100) and (001) surface structures and reactivities. Density functional theory structures and energies clarify these differences. Using relaxed surface energies, a Wulff construction yields a prism crystal shape exposing long (100) sides and much smaller (001) faces. This is consistent with the BeO prisms observed when beryllium metal is oxidized. A water oxygen atom binds to a single surface beryllium ion in the preferred adsorption geometry on either surface. The water oxygen/beryllium bonding is stronger on the surface with greater beryllium atom exposure, namely the less-stable (001) surface. Water/beryllium coordination facilitates water dissociation. On the (001) surface, the dissociation products are a hydroxide bridging two beryllium ions and a metal coordinated hydride with some surface charge depletion. On the (100) surface, water dissociates into a hydroxide ligating a Be ato...

  9. Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Juan WU; Jian ZHANG; Wenlin JIA; Huijun XIE; Bo ZHANG

    2009-01-01

    The effects of chemical oxygen demand (COD) concentration in the influent on nitrous oxide (N2O) emissions, together with the relationships between N2O and water quality parameters in free water surface constructed wetlands, were investigated with laboratoryscale systems. N20 emission and purification performance of wastewater were very strongly dependent on COD concentration in the influent, and the total N2O emission in the system with middle COD influent concentration was the least. The relationships between N2O and the chemical and physical water quality variables were studied by using principal component scores in multiple linear regression analysis to predict N2O flux. The multiple linear regression model against principal components indicated that different water parameters affected N2O flux with different COD concentrations in the influent, but nitrate nitrogen affected N2O flux in all systems.

  10. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  11. Integration of Urban Features into a Coupled Groundwater-Surface Water Model

    Science.gov (United States)

    Bhaskar, A. S.; Welty, C.; Maxwell, R. M.

    2012-12-01

    To better understand the feedbacks between urban development and water availability, we are coupling an integrated hydrologic model with an urban growth model, both of the Baltimore, Maryland, USA region. The urban growth model SLEUTH has been calibrated, validated and run by collaborators at Shippensburg University. We are using ParFlow.CLM as the integrated hydrologic model. This model is applied to the 13,000 sq. km. Baltimore metropolitan area, which spans the Gunpowder and Patapsco watersheds. The model domain includes both Piedmont and Coastal Plain physiographic provinces. We have incorporated characteristics of both the natural hydrogeologic system and the superimposed urban environment. Standard hydrogeologic information such as hydraulic conductivity of fractured bedrock, Coastal Plain sediments, and surficial soils, as well as saprolite thickness, porosity, and specific storage properties have been included. We have also quantified a number of aspects representing urban development, such as residential and municipal well pumping, municipal reservoir use, lawn watering, and water supply pipe leakage estimates. We have represented impervious surface coverage using low surface hydraulic conductivity values. The land surface fluxes in CLM (Common Land Model) use surface land cover and therefore represent reduced evapotranspiration in urban areas. A study of urban and natural watershed inflows and inflows in this region indicated some urban features significantly modify catchment water balances. We are particularly interested in the effects of these urban hydrologic features on groundwater recharge in the Baltimore area. Prior to inclusion of subsurface heterogeneity, we initialized the model by running it hourly from 2000 to 2007. The initialization was generated by a dynamic spin-up process, using the UMBC High Performance Computing Facility. Observed meteorological forcing, such as hourly precipitation and air temperature, are used by the land surface

  12. Comparison of fipronil sources in North Carolina surface water ...

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in

  13. Water drop impact onto oil covered solid surfaces

    Science.gov (United States)

    Chen, Ningli; Chen, Huanchen; Amirfazli, Alidad

    2016-11-01

    Droplet impact onto an oily surface can be encountered routinely in industrial applications; e.g., in spray cooling. It is not clear from literature what impact an oil film may have on the impact process. In this work, water drop impact onto both hydrophobic (glass) and hydrophilic (OTS) substrates which were covered by oil films (silicone) of different thickness (5um-50um) and viscosity (5cst-100cst) were performed. The effects of drop impact velocity, film thickness, and viscosity of the oil film and wettability of the substrate were studied. Our results show that when the film viscosity and impact velocity is low, the water drop deformed into the usual disk shape after impact, and rebounded from the surface. Such rebound phenomena disappears, when the viscosity of oil becomes very large. With the increase of the impact velocity, crown and splashing appears in the spreading phase. The crown and splashing behavior appears more easily with the increase of film thickness and decrease of its viscosity. It was also found that the substrate wettability can only affect the impact process in cases which drop has a large Webber number (We = 594), and the film's viscosity and thickness are small. This work was support by National Natural Science Foundation of China and the Project Number is 51506084.

  14. Integrated modeling of groundwater–surface water interactions in a tile-drained agricultural field

    NARCIS (Netherlands)

    Rosemeijer, J.C.; Velde, van der Y.; McLaren, R.G.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater–surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely av

  15. Reducing phosphorus loading of surface water using iron-coated sand

    NARCIS (Netherlands)

    Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F.

    2013-01-01

    Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an

  16. Conductivity as an indicator of surface water quality in the proximity ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... Conductivity as an indicator of surface water quality in the ... FeCr smelting did not significantly impact surface water quality, but that surface run-off and/or ..... farming-management/soil-water/salinity/measuring-the-salinity-.

  17. Development of Hydrophobic Coatings for Water-Repellent Surfaces Using Hybrid Methodology

    Science.gov (United States)

    2014-04-01

    windows, optical components, protective eyewear, and clothing, this type of surface is desired for the material to be soil repellent and water ...Development of Hydrophobic Coatings for Water - Repellent Surfaces Using Hybrid Methodology by Amanda S. Weerasooriya, Jacqueline Yim, Andres A...Proving Ground, MD 21005-5069 ARL-TR-6898 April 2014 Development of Hydrophobic Coatings for Water - Repellent Surfaces Using Hybrid

  18. Water monitoring and its information management system in China; Chugoku ni okeru suishitsu monitoring to joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Quan, H.

    1996-01-10

    This paper summarizes the water monitoring system (WMS) in China applied mainly to surface water and operated within the competence of the Environmental Protection Agency. The WMS consists of a national water monitoring network and a water information system that monitors surface water periodically. The WMS comprises water monitoring stations classified from class 1 to class 4, which are located in 2,222 locations. Stations from class 1 to class 3 are operated by using computers, but class 4 stations are still incapable to use floppy disks to perform information transmission. When an information management system is completed at the China-Japan Friendship Environmental Protection Center being constructed by gratis assistance from the Japanese Government, transmission of water quality data will become possible by means of the cable line system in addition to the table system and the floppy system. The water quality data are published to general people in the forms of Chinese gazette for the environmental conditions, the environment yearbook, and the reports on environmental quality. However, the more important is to publish more publications to make people aware of the actual state of water pollution and have them cooperate in environment preservation. 4 refs., 1 fig.

  19. Design of water quality monitoring networks with two information scenarios in tropical Andean basins.

    Science.gov (United States)

    Bastidas, Juan Carlos; Vélez, Jorge Julián; Zambrano, Jeannette; Londoño, Adela

    2017-04-21

    Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km(2) watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km(2) watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors-and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.

  20. Surface Water Pollution in the Yangtze River Delta:Patterns and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the basis of field investigations, observations and experimental data combined with environmental monitoring information, the status and the spatial and temporal patterns of surface water pollution over the past ten years in the Yangtze River Delta have been assessed. The water quality of large rivers is still very good but most of the medium-sized and small rivers have been very seriously polluted. The appearance of black and odorous conditions in rivers in the urban areas has increased due to serious pollution by organic matter with consequent high oxygen demand. Annual increases in N and P concentrations in lakes have accelerated eutrophication. The water quality of rivers in small towns is rapidly deteriorating. The main sources of surface water pollution include industrial and domestic sewage, animal manures, chemical fertilizers in farmland, and polluted sediments in rivers and lakes.Countermeasures against these sources of pollution are presented. Regional laws and regulations for protection of surface waters and their enforcement are urgently required. A regional water environmental management agency should be established. The construction of sewage treatment plants of varying capacity must be accelerated to increase the proportion of sewage treated and to improve the quality of treated effluent. Animal wastes must be recycled effectively and efficiently, and the application rates of fertilizers and manures must be balanced with crop nutrient requirements to prevent diffuse pollution from agriculture.The comprehensive rehabilitation of medium-sized and small rivers should be intensified, and the delimitation and protection of the areas used as sources of drinking water should be strengthened.

  1. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    Science.gov (United States)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  2. Spatial and temporal assessment of surface water quality in the Arka River, Akkar, Lebanon.

    Science.gov (United States)

    Daou, Claude; Nabbout, Rony; Kassouf, Amine

    2016-12-01

    Surface water quality monitoring constitutes a crucial and important step in any water quality management system. Twenty-three physicochemical and microbiological parameters were assessed in surface water samples collected from the Arka River located in the Akkar District, north of Lebanon. Eight sampling locations were considered along the river and seven sampling campaigns were performed in order to evaluate spatial and temporal influences. The extraction of relevant information from this relatively large data set was done using principal component analysis (PCA), being a very well established chemometric tool in this field. In a first step, extracted PCA loadings revealed the implication of several physicochemical parameters in the discriminations and trends highlighted by PCA scores, mainly due to soil leaching and seawater intrusion. However, further investigations showed the implication of organic and bacterial parameters in the discrimination of stations in the Akkar flatland. These discriminations probably refer to anthropogenic pollution coming from the agricultural area and the surrounding villages. Specific ultraviolet absorption (SUVA) indices confirmed these findings since values decreased for samples collected across the villages and the flatland, indicating an increase in anthropogenic dissolved organic matter. This study will hopefully help the national and local authorities to ameliorate the surface water quality management, enabling its proper use for irrigation purposes.

  3. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    Science.gov (United States)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study

  4. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Quality of surface water in the coal-mining region, southwestern Indiana, March and May 1979

    Science.gov (United States)

    Renn, Danny E.; Ragone, Stephen E.; Wilber, William G.

    1980-01-01

    On August 3, 1977, the Surface Mine Control and Reclamation Act, Public Law 95-87 (the Act) was enacted by the 95th Congress. Under Section 507(b)(11) of the Act, an appropriate Federal or State agency must provide applicants for coal-mining permits hydrologic and water-quality information for the general use of proposed mining. To help meet the goals of the Act, the U.S. Geological Survey is designing a data-collection network in the coal-mining region of southwestern Indiana. The purpose of the network is to provide hydrologic and water-quality data on the ' general area ' for coal-mining permits. Because of the large size of the study area and the lack of hydrologic and water-quality data, a preliminary assessment is being done to determine the factors that affect water quality in the coal-mining region. This information will be used in designing a data network that will (1) provide the hydrologic and water-quality data needed by applicants for coal-mining permits and (2) determine the major factors that affect water quality. Reconnaissance data were collected at 293 sites in March, and hydrologic and water-quality data were collected at 84 synoptic sampling sites in May. (Synoptic sampling is the virtually simultaneous collection of data at specific sites.) In the reconnaissance, pH, specific conductance, dissolved-oxygen concentration, temperature, and Eh of streams were measured on site to provide general water-quality data. In the synoptic sampling, the preceding characteristics, as well as concentrations of various dissolved and suspended constituents of stream water and concentrations of heavy metals on streambed materials, were determined. 

  6. Multiscale controls on water surface roughness and implications for remote sensing of rivers

    Science.gov (United States)

    Overstreet, B. T.; Legleiter, C. J.; Harrison, L.; Pitcher, L. H.; Ryan, J.; Rennermalm, A. K.; Smith, L. C.

    2015-12-01

    Remote sensing has emerged as a viable and efficient tool for studying river systems and facilitating their rehabilitation. While many remote sensing applications utilize spectral information from the substrate and water column, light reflected from the water surface is often a significant component of the total at-sensor radiance. As water surface roughness (WSR) increases, a greater proportion of surface facets become oriented so as to reflect, rather than transmit, light. As a result, WSR exerts a primary control on the amount of surface reflected light measured by a remote sensor. WSR in rivers is a function of flow hydraulics, channel form, slope, bed roughness, and wind. While the relative influence of each of these components on WSR changes with scale, understanding these relationships could lead to methods for obtaining hydraulic information from image-derived metrics of WSR (i.e., surface reflectance). We collected field data on flow depth and velocity using an acoustic Doppler current profiler and simultaneously measured WSR using a custom built ultrasonic distance sensor on a diverse set of rivers ranging from a 15 m wide supraglacial river on the Greenland Ice Sheet to 100 m wide gravel-bed rivers in Wyoming and Oregon. Simultaneous multi- and hyperspectral image data sets indicate that image-derived surface reflectance is strongly correlated with WSR. Temporally distributed point measurements of flow depth, velocity, and WSR on the supraglacial river capture a threefold range in discharge (6 m3/s to 17 m3/s) and indicate that flow velocity is a primary control on WSR in smaller channels, even in the absence of sediment-induced bed roughness. Spatially distributed field measurements from large gravel-bed rivers suggests that spatial variability of WSR in the thalweg corresponds with geomorphic facies while WSR along the channel margins is more significantly influenced by grain size, relative submergence, and bank geometry. These findings suggest that

  7. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  8. Numerical study of surface water waves generated by mass movement

    Science.gov (United States)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\

  9. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.

    Science.gov (United States)

    Rykaczewski, Konrad

    2012-05-22

    By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 μm dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in

  10. Hydrogen yields from water on the surface of plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Howard E., E-mail: howard.e.sims@nnl.co.uk [National Nuclear Laboratory, Harwell Science Park, Didcot, Oxon OX11 0QT (United Kingdom); Webb, Kevin J.; Brown, Jamie [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom); Morris, Darrell [Nuclear Decommissioning Authority, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HU (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom)

    2013-06-15

    Highlights: ► Hydrogen evolution due to water radiolysis on samples of Sellafield PuO{sub 2}. ► Sharp increase in hydrogen evolution above 75% relative humidity. ► Hydrogen evolution due to radiolytic rather than thermal reaction. ► Analysis of trends from literature data. -- Abstract: The long term storage of separated plutonium dioxide (PuO{sub 2}) in sealed canisters requires an understanding of the processes occurring within the cans. This includes potential mechanisms that lead to can pressurisation, including the radiolysis of adsorbed water forming hydrogen. New measurements of H{sub 2} production rates from three sources of PuO{sub 2} show low rates at low water monolayer coverage but a sharp increase between 75% and 95% relative humidity. This behaviour being quite different to that reported for CeO{sub 2} and UO{sub 2}, which, therefore, cannot be considered as suitable analogues for PuO{sub 2}/H{sub 2}O radiation chemistry. It is concluded that surface recombination reactions are likely to be important in the radiation chemistry and that the H{sub 2} production arises from a radiolytic process and not a thermal reaction, at least in these experiments.

  11. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  12. Estimating the susceptibility of surface water in Texas to nonpoint-source contamination by use of logistic regression modeling

    Science.gov (United States)

    Battaglin, William A.; Ulery, Randy L.; Winterstein, Thomas; Welborn, Toby

    2003-01-01

    In the State of Texas, surface water (streams, canals, and reservoirs) and ground water are used as sources of public water supply. Surface-water sources of public water supply are susceptible to contamination from point and nonpoint sources. To help protect sources of drinking water and to aid water managers in designing protective yet cost-effective and risk-mitigated monitoring strategies, the Texas Commission on Environmental Quality and the U.S. Geological Survey developed procedures to assess the susceptibility of public water-supply source waters in Texas to the occurrence of 227 contaminants. One component of the assessments is the determination of susceptibility of surface-water sources to nonpoint-source contamination. To accomplish this, water-quality data at 323 monitoring sites were matched with geographic information system-derived watershed- characteristic data for the watersheds upstream from the sites. Logistic regression models then were developed to estimate the probability that a particular contaminant will exceed a threshold concentration specified by the Texas Commission on Environmental Quality. Logistic regression models were developed for 63 of the 227 contaminants. Of the remaining contaminants, 106 were not modeled because monitoring data were available at less than 10 percent of the monitoring sites; 29 were not modeled because there were less than 15 percent detections of the contaminant in the monitoring data; 27 were not modeled because of the lack of any monitoring data; and 2 were not modeled because threshold values were not specified.

  13. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  14. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    was confirm by further statistical analysis (cluster analysis and correlation matrix) of the water quality parameters. Spatial distribution of water quality parameters, trace elements and the results obtained from the statistical analysis was determined by geographical information system (GIS). In addition, the isotopic analysis of the sampled surface water and groundwater revealed that most of the surface water and groundwater were of meteoric origin with little or no isotopic variations. It is expected that outcomes of this research will form a baseline for making appropriate decision on water quality management by decision makers in the Lower Tano river Basin. Keywords: Water stable isotopes, Trace elements, Multivariate statistics, Evaluation indices, Lower Tano river basin.

  15. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  16. Groundwater/Surface-Water Interaction in the Context of South African Water Policy

    Science.gov (United States)

    Levy, J.; Xu, Y.

    2010-12-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. South Africa’s 1998 National Water Act (NWA) recognized water as a basic human right and its importance for ecological sustainability. Ecological integrity of water resources was considered an important component in redressing past social inequities, eliminating poverty, and encouraging economic development. Under the NWA, groundwater-use licenses are granted only after setting aside the groundwater Reserve, the amount of water needed to supply basic human needs and preserve a minimum degree of ecological integrity. One challenge to successful implementation of the NWA, therefore, is the accurate quantification of groundwater contributions to aquatic ecosystems. This is especially true considering that so many of South Africa’s aquifers are in highly heterogeneous and anisotropic fractured-rock settings. The most common approach taken in South Africa is estimation of average annual flux rates at the regional scale of quaternary catchments with baseflow separation techniques and then applying a water-budget approach, subtracting the groundwater discharge rate from the recharge rate. The water-balance approach might be a good first step, but it ignores spatial and temporal variability, potentially missing the local impacts associated with placement of production boreholes. Identification of discrete areas of groundwater discharge could be achieved with stable-isotopic and geochemical analyses and vegetative mapping. Groundwater-flow modeling should be used where possible as it holistically incorporates available data and can predict impacts of groundwater extraction and development based on the relative positions of boreholes and surface-water bodies. Sustainable development entails recognition of the trade-offs between preservation and development. There will always be scientific uncertainty associated with estimation and

  17. Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect.

    Science.gov (United States)

    Wu, Wanling; Zhu, Qingzeng; Qing, Fengling; Han, Charles C

    2009-01-06

    Surface geometrical microstructure and low surface free energy are the two most important factors for a self-cleaning surface. In this study, multiform geometrical microstructured surfaces were fabricated by casting and electrospinning polyurethanes with and without low surface energy segments. The effect of low surface energy on water repellency was evaluated. Low surface energy seems to make a more significant contribution to the static wetting behavior than do dynamic properties such as the improvement of sliding behavior. Sucking disk behavior was brought forward to explain the pinning state of a water droplet on hydrophobic surfaces with high water contact angles (>150 degrees ). A better understanding of the relationship between the static contact angle and the dynamic sliding property was provided.

  18. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  19. Urban surface water pollution problems arising from misconnections.

    Science.gov (United States)

    Revitt, D Michael; Ellis, J Bryan

    2016-05-01

    The impacts of misconnections on the organic and nutrient loadings to surface waters are assessed using specific household appliance data for two urban sub-catchments located in the London metropolitan region and the city of Swansea. Potential loadings of biochemical oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-N) due to misconnections are calculated for three different scenarios based on the measured daily flows from specific appliances and either measured daily pollutant concentrations or average pollutant concentrations for relevant greywater and black water sources obtained from an extensive review of the literature. Downstream receiving water concentrations, together with the associated uncertainties, are predicted from derived misconnection discharge concentrations and compared to existing freshwater standards for comparable river types. Consideration of dilution ratios indicates that these would need to be of the order of 50-100:1 to maintain high water quality with respect to BOD and NH4-N following typical misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring misconnections from all other appliances do not exceed 2%, the potential pollution problems due to BOD and NH4-N discharges would be alleviated but this would not be the case for PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant with a Population Equivalent value approaching 900,000 would be required to efficiently remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the capacity to deal

  20. CATALOG INFORMATION ON THE PERFORMANCE OF ALUMINUM IN SEA WATER

    Energy Technology Data Exchange (ETDEWEB)

    RH. Wagner and RA. Bonewitz

    1978-04-01

    To help evaluate aluminum alloys for OTEC heat exchanger tubes data on the performance of aluminum in surface and deep sea water has been assembled and computer cataloged. Pitting and crevice corrosion proved to be the types of attack that predominated. The cataloged data are the results of many static tests conducted under natural conditions of marine fouling, hence, they must be used carefully in qualifying aluminum for OTEC purposes. These data can serve the OTEC program best as a basis for selecting aluminum alloys that appear promising as candidates for further evaluation. The aluminum alloys 5052 and Alclad {7072) 3003 fall into this category. Available service histories also proved inadequate for qualifying aluminum alloys for the OTEC application, but they do support the selection of Alclad (7072) 3003 as a tubing alloy worthy of further consideration. Performance data covering areas of investigation peculiar to OTEC power plants is needed to permit a firm decision for or against aluminum alloy tubes.

  1. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  2. Real-space characterization of reactivity towards water at Bi2Te3(111) surface

    CERN Document Server

    Zhang, Kai-Wen; Yang, Chao-Long; Gan, Yuan; Li, Shichao; Huang, Wen-Kai; Song, Ye-Heng; Jia, Zhen-Yu; Li, Xiang-Bing; Zhu, Zihua; Wen, Jinsheng; Chen, Mingshu; Li, Shao-Chun

    2016-01-01

    Surface reactivity is important in modifying the physical and chemical properties of surface sensitive materials, such as the topological insulators (TIs). Even though many studies addressing the reactivity of TIs towards external gases have been reported, it is still under heavy debate whether and how the topological insulators react with H$_2$O. Here, we employ scanning tunneling microscopy (STM) to directly probe the surface reaction of Bi$_2$Te$_3$ towards H$_2$O. Surprisingly, it is found that only the top quintuple layer is reactive to H$_2$O, resulting in a hydrated Bi bilayer as well as some Bi islands, which passivate the surface and prevent from the subsequent reaction. A reaction mechanism is proposed with H$_2$Te and hydrated Bi as the products. Unexpectedly, our study indicates the reaction with water is intrinsic and not dependent on any surface defects. Since water inevitably exists, these findings provide key information when considering the reactions of Bi$_2$Te$_3$ with residual gases or atm...

  3. Effects of climate change on surface-water photochemistry: a review.

    Science.gov (United States)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2014-10-01

    Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.

  4. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  5. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.

    Science.gov (United States)

    Ahrens, Lutz; Felizeter, Sebastian; Sturm, Renate; Xie, Zhiyong; Ebinghaus, Ralf

    2009-09-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.

  6. The management of urban surface water flood risks: SUDS performance in flood reduction from extreme events.

    Science.gov (United States)

    Viavattene, C; Ellis, J B

    2013-01-01

    The need to improve the urban drainage network to meet recent urban growth and the redevelopment of old industrial and commercial areas provides an opportunity for managing urban surface water infrastructure in a more sustainable way. The use of sustainable urban drainage systems (SUDS) can reduce urban surface water flooding as well as the pollution impact of urban discharges on receiving waters. However, these techniques are not yet well known by many stakeholders involved in the decision-making process, or at least the evidence of their performance effectiveness may be doubted compared with more traditional engineering solutions often promoted by existing 1D/2D drainage models. The use of geographic information systems (GIS) in facilitating the inter-related risk analysis of sewer surface water overflows and urban flooding as well as in better communication with stakeholders is demonstrated in this paper. An innovative coupled 1D/2D urban sewer/overland flow model has been developed and tested in conjunction with a SUDS selection and location tool (SUDSLOC) to enable a robust management approach to surface water flood risks and to improve the resilience of the urban drainage infrastructure. The paper demonstrates the numerical and modelling basis of the integrated 1D/2D and SUDSLOC approach and the working assumptions and flexibility of the application together with some limitations and uncertainties. The role of the SUDSLOC modelling component in quantifying flow, and surcharge reduction benefits arising from the strategic selection and location of differing SUDS controls are also demonstrated for an extreme storm event scenario.

  7. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  8. Engaging the Applications Community of the future Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Srinivasan, M.; Andral, A.; Dejus, M.; Hossain, F.; Peterson, C.; Beighley, E.; Pavelsky, T.; Chao, Y.; Doorn, B.; Bronner, E.; Houpert, L.

    2015-04-01

    NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of

  9. Validating city-scale surface water flood modelling using crowd-sourced data

    Science.gov (United States)

    Yu, Dapeng; Yin, Jie; Liu, Min

    2016-12-01

    Surface water and surface water related flood modelling at the city-scale is challenging due to a range of factors including the availability of subsurface data and difficulty in deriving runoff inputs and surcharge for individual storm sewer inlets. Most of the research undertaken so far has been focusing on local-scale predictions of sewer surcharge induced surface flooding, using a 1D/1D or 1D/2D coupled storm sewer and surface flow model. In this study, we describe the application of an urban hydro-inundation model (FloodMap-HydroInundation2D) to simulate surface water related flooding arising from extreme precipitation at the city-scale. This approach was applied to model an extreme storm event that occurred on 12 August 2011 in the city of Shanghai, China, and the model predictions were compared with a ‘crowd-sourced’ dataset of flood incidents. The results suggest that the model is able to capture the broad patterns of inundated areas at the city-scale. Temporal evaluation also demonstrates a good level of agreement between the reported and predicted flood timing. Due to the mild terrain of the city, the worst-hit areas are predicted to be topographic lows. The spatio-temporal accuracy of the precipitation and micro-topography are the two critical factors that affect the prediction accuracies. Future studies could be directed towards making more accurate and robust predictions of water depth and velocity using higher quality topographic, precipitation and drainage capacity information.

  10. Protocol for quantitative tracing of surface water with synthetic DNA

    Science.gov (United States)

    Foppen, J. W.; Bogaard, T. A.

    2012-04-01

    Based on experiments we carried out in 2010 with various synthetic single stranded DNA markers with a size of 80 nucleotides (ssDNA; Foppen et al., 2011), we concluded that ssDNA can be used to carry out spatially distributed multi-tracer experiments in the environment. Main advantages are in principle unlimited amount of tracers, environmental friendly and tracer recovery at very high dilution rates (detection limit is very low). However, when ssDNA was injected in headwater streams, we found that at selected downstream locations, the total mass recovery was less than 100%. The exact reason for low mass recovery was unknown. In order to start identifying the cause of the loss of mass in these surface waters, and to increase our knowledge of the behaviour of synthetic ssDNA in the environment, we examined the effect of laboratory and field protocols working with artificial DNA by performing numerous batch experiments. Then, we carried out several field tests in different headwater streams in the Netherlands and in Luxembourg. The laboratory experiments consisted of a batch of water in a vessel with in the order of 10^10 ssDNA molecules injected into the batch. The total duration of each experiment was 10 hour, and, at regular time intervals, 100 µl samples were collected in a 1.5 ml Eppendorf vial for qPCR analyses. The waters we used ranged from milliQ water to river water with an Electrical Conductivity of around 400 μS/cm. The batch experiments were performed in different vessel types: polyethylene bottles, polypropylene copolymer bottles , and glass bottles. In addition, two filter types were tested: 1 µm pore size glass fibre filters and 0.2 µm pore size cellulose acetate filters. Lastly, stream bed sediment was added to the batch experiments to quantify interaction of the DNA with sediment. For each field experiment around 10^15 ssDNA molecules were injected, and water samples were collected 100 - 600 m downstream of the point of injection. Additionally

  11. Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

    2009-10-18

    Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the

  12. Surface water quality management using an integrated discharge permit and the reclaimed water market.

    Science.gov (United States)

    Jamshidi, Shervin; Niksokhan, Mohammad Hossein; Ardestani, Mojtaba

    2014-01-01

    Water quality trading is a sustainable framework for surface water quality management. It uses discharge permits to reduce the total treatment costs. For example, the case of Gharesoo River in Iran shows that the nitrogen permit market between point and non-point sources is 37% more economical than the command and control framework. Nevertheless, the cost saving may be reduced to 6% by the end of the study period (2050). This depression may be due to the limited technical support for wastewater treatment plants. Therefore, an integrated market is recommended in which the discharge permits and the reclaimed water are traded simultaneously. In this framework, the allocation of secondary treated domestic wastewater for irrigation can provide capacity for other pollutants to discharge into the surface water. This innovative approach may decrease the total treatment costs by 63% at present, while 65%, may be achieved by the end of the study period. Furthermore, this market is able to determine the environmental penalty, trading permits, and reuse prices. For example, the maximum ratio of the average reuse price to the penalty cost is determined as 1 to 10. It is introduced as an incentive indicator for stakeholders to consider the integrated market. Consequently, the applicability and the efficiency of using this approach are verified long term.

  13. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  14. Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces.

    Science.gov (United States)

    Kumar, Santosh; Schelling, Patrick K

    2006-11-28

    We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption energy depends rather weakly on coverage. We predict that the observed coverage dependence of the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole interactions between adsorbed water molecules. When oxygen vacancies are introduced in various surface layers, water molecules are attracted more strongly to the surface. We find that it is very slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the evolution of H(2). In the event that water does not oxidize the surface, we predict that the effective attractive water-vacancy interaction will result in a significant enhancement of the vacancy concentration at the surface in agreement with experimental observations. Finally, we present our results in the context of recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface.

  15. Mapping water surface roughness in a shallow, gravel-bed river using hyperspectral imagery

    Science.gov (United States)

    Overstreet, B. T.; Legleiter, C. J.

    2014-12-01

    Rapid advances in remote sensing are narrowing the gap between the data available for characterizing physical and biological processes in rivers and the information needed to guide river management decisions. The availability and quality of hyperspectral imagery have increased drastically over the past 20 years and hyperspectral data is now used in a number of different capacities that range from classifying riverine environments to measuring river bathymetry. A fundamental challenge in relating the spectral data from images to biophysical processes is the difficulty of isolating individual contributions to the at-sensor radiance, each associated with a different component of the fluvial environment. In this presentation we describe a method for isolating the contribution of light reflected from the water surface, or sun glint, from a hyperspectral image of a shallow gravel-bed river. We show that isolation and removal of sun glint can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. Observed-vs.-predicted R2 values for depth retrieval improved from 0.56 to 0.68 following sun glint removal. In addition to clarifying the signal associated with the water column and bed, isolating sun glint could unlock important hydraulic information contained within the topography of the water surface. We present data from flume and field experiments suggesting that the intensity of sun glint is a function of water surface roughness. In rivers, water surface roughness depends on local flow hydraulics: depth, velocity, and bed material grain size. To explore this relationship, we coupled maps of image-derived sun glint with hydraulic measurements collected with a kayak-borne acoustic Doppler current profiler along 2 km of the Snake River in Grand Teton National Park. Spatial patterns of sun glint are spatially correlated with field observations of near-surface velocity and depth, suggesting that reach scale hydraulics

  16. Beneath the Surface: The Unintended Consequences of Information Technology.

    Science.gov (United States)

    Link, Terry

    1999-01-01

    Looks behind the wonders of technology to real and potential losses by using the literature of sociology, education, psychology, philosophy, and semantics. Considers speed, the information glut, cultural amplification, the demise of community, and status, and suggests possible approaches to rethinking information technology. (Author/LRW)

  17. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    's oceans and seas is most significantly impacted by human activities. More than half of the world's population lives within 100 km of a coast and hence the overwhelming majority of anthropogenic fluxes to aquatic systems occur in the coastal zone. We discuss the particular challenges that arise from...... measurement requirements represent significant barriers to application to measurement of particle dry deposition fluxes although, as discussed, innovative solutions are now becoming available. In the final section, we examine meteorological controls on deposition to the coastal zone. This region of the world...... flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...

  18. Stability of shear shallow water flows with free surface

    CERN Document Server

    Chesnokov, Alexander; Gavrilyuk, Sergey; Pavlov, Maxim

    2016-01-01

    Stability of inviscid shear shallow water flows with free surface is studied in the framework of the Benney equations. This is done by investigating the generalized hyperbolicity of the integrodifferential Benney system of equations. It is shown that all shear flows having monotonic convex velocity profiles are stable. The hydrodynamic approximations of the model corresponding to the classes of flows with piecewise linear continuous and discontinuous velocity profiles are derived and studied. It is shown that these approximations possess Hamiltonian structure and a complete system of Riemann invariants, which are found in an explicit form. Sufficient conditions for hyperbolicity of the governing equations for such multilayer flows are formulated. The generalization of the above results to the case of stratified fluid is less obvious, however, it is established that vorticity has a stabilizing effect.

  19. 78 FR 57378 - Proposed Information Collection Request; Comment Request; Annual Public Water System Compliance...

    Science.gov (United States)

    2013-09-18

    ... AGENCY Proposed Information Collection Request; Comment Request; Annual Public Water System Compliance... Protection Agency is planning to submit an information collection request (ICR), ``Annual Public Water System... primary drinking water regulations in the state. These Annual State Public Water System Compliance...

  20. Environmental quality of primary and secundary construction materials in relation to re-use and protection of soil and surface water

    NARCIS (Netherlands)

    Aalbers ThG; Wilde PGM de; Rood GA; Vermij PHM; Saft RJ; Beek AIM van de; Broekman MH; Masereeuw P; Kamphuis Ch; Dekker PM; Valentijn EA; LAE-RIVM

    1996-01-01

    To support the General Administrative Order on Construction Materials (Soil and Surface Waters Protection) this document supplies information on: 1) the quantification of the standard values for the application of construction materials ; 2) the environmental quality (characterization) of constructi

  1. 78 FR 46597 - Agency Information Collection Activities: State Water Resources Research Institute Program Annual...

    Science.gov (United States)

    2013-08-01

    ....S. Geological Survey Agency Information Collection Activities: State Water Resources Research... Water Resources (NIWR) USGS Competitive Grant Program. As required by the Paperwork Reduction Act (PRA... also find information about this ICR at www.reginfo.gov . SUPPLEMENTARY INFORMATION: Title: State Water...

  2. Analysis of captopril in surface waters by differential pulse voltammetry method

    Energy Technology Data Exchange (ETDEWEB)

    Baranowska, I.; Markowski, P.; Wilk, K.

    2009-07-01

    One of the important problems concerning waters ecosystems is the presence of pharmaceuticals remains in different kinds of surface waters. These compounds cause huge changes in waters environment. They cause genetic changes in water organisms, are not also neutral for people in case of penetrating into drinking water. (Author)

  3. Extraordinarily Warm Northeast Pacific Surface Waters: 2014 Observations

    Science.gov (United States)

    Mihaly, S. F.; Dewey, R. K.; Freeland, H.

    2015-12-01

    Analysis of sea surface temperatures (SST) from January 2014 revealed a massive region in the northeast Pacific with extraordinarily warm conditions, exceeding all anomalies over the last several decades. Profile data from both Argo and Line-P surveys supports the Reynolds SSTa analysis and further indicates that the anomaly was, and continues to be, confined to the upper ocean, above approximately 100 m depth. The anomaly has lasted for many months, exceeding 4 standard deviations above the multi-decadal mean, a feature that would not be expected more than once in several millennia. The "blob", as it is dubbed, drifted first off and then towards shore during the spring and fall of 2014 driven by, among other forces, the seasonal up and down-welling winds, respectively that occur along the west coast of North America. By November 2014, when winter down-welling winds became prevalent, the warm surface waters encroached all the way into Barkley Sound along western Vancouver Island, as measured by the continuous temperature measurements on the NEPTUNE ocean observatory of Ocean Networks Canada. The analysis includes some of the known dynamical variations which contributed to the formation of the blob, with an emphasis on mid to high latitude atmosphere-ocean conditions, avoiding the temptation to link the development processes occurring in the Gulf of Alaska in the winter of 2013 to equatorial phenomena.

  4. Ocean-to-Ocean Dissimilarities of Salty Subtropical Surface Water

    Science.gov (United States)

    Gordon, A. L.

    2014-12-01

    Each ocean basin displays its own 'personality', reflecting its degree of isolation or connectivity to the global ocean, its place in the interocean exchange network and associated ocean overturning circulation systems, as well as regional circulation and air-sea exchange patterns. While dissimilarities are most notable in the northern hemisphere (the salty North Atlantic vs the fresher North Pacific; as well as the salty Arabian and the fresher Bay of Bengal, a miniature Atlantic/Pacific analog?) far removed from the grand equalizing interocean link of the circum-Antarctic belt, and where large continental blocks impose contrasting forcing, the southern hemisphere ocean basins also display differences. Ocean to ocean dissimilarities are evident in the dry subtropical climate belt, marked by deserts on land and salty surface ocean water. The subtropical sea surface salinity maximum (SSS-max) patterns of 5 the subtropical regimes (the North and South Atlantic, North and South Pacific, and the southern Indian Ocean) display significant dissimilarities in their relative position within their ocean basin, in the structure and seasonality of the SSS-max pattern. The near synoptic coverage of Aquarius and Argo profilers are further defining interannual variability. The South Atlantic SSS-max is pressed against the western boundary, whereas in the other regimes the SSS-max falls within the eastern half of the ocean basin, though the western South Pacific displays a secondary SSS-max. For further details see: A. Gordon, C. Giulivi, J. Busecke, F. Bingham, submitted to the SPURS Oceanography special issue.

  5. Persistent organic pollutants in China's surface water systems.

    Science.gov (United States)

    Han, Dongmei; Currell, Matthew J

    2017-02-15

    Following recent rapid industrialization, China is now one of the largest producers and consumers of organic chemicals in the world. This is compounded by variable regulatory oversight with respect to storage, use and waste management of these chemicals and their byproducts. This review synthesizes the data on the distribution of selected persistent organic pollutants (POPs) in waters in China. Surface water heavily polluted with POPs is distributed in the Yangtze River Estuary, Pearl River Delta, Minjiang River Estuary, Jiulongjiang Estuary, Daya Bay, Taihu Lake, and the waterways of Zhejiang Province, where concentrations of Polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) frequently exceed both international and Chinese guideline values. These areas are mainly distributed along the southeast coast of China, within or downstream of major manufacturing districts, intensive agricultural basins, and other industrial centers. A comparison of the levels of OCPs in the aquatic environment of China with other indicative regions worldwide shows comparable levels of pollution (overall range from below detection limit (BDL) to 5104.8ng/L and regional means from 2.9-929.6ng/L). PAHs and PCBs pollution appear to be particularly serious in China (PAHs overall ranging from BDL to 474,000ng/L with regional means from 15.1-72,400ng/L; PCBs from BDL to 3161ng/L with regional means ranging from 0.2-985.2ng/L). There is as yet limited evidence of serious perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) pollution. We discuss major sources and processes responsible for high POP occurrence using a range of measures (including diagnostic ratios of different compounds), regulatory oversight and policy gaps in the control of POPs in China, and potential long-term health and ecological effects. We argue that water quality guidelines, pollution control measures and cleanup strategies for POPs in China should be

  6. Surface Nuclear Magnetic Resonance (SNMR - A new method for exploration of ground water and aquifer properties

    Directory of Open Access Journals (Sweden)

    U. Yaramanci

    2000-06-01

    Full Text Available The Surface Nuclear Magnetic Resonance (SNMR method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand and clay layers, to examine the suitability of this new method for groundwater exploration and environmental investigations. More information is obtained by SNMR, particularly with respect to aquifer parameters, than with other geophysical techniques. SNMR measurements were carried out at three borehole locations, together with 2D and 1D direct current geoelectrics and well logging (induction log, gamma-ray log and pulsed neutron-gamma log. Permeabilities were calculated from the grain-size distributions of core material determined in the laboratory. It is demonstrated that the SNMR method is able to detect groundwater and the results are in good agreement with other geophysical and hydrogeological data. Using the SNMR method, the water content of the unsaturated and saturated zones (i.e. porosity of an aquifer can be reliably determined. This information and resistivity data permit in-situ determination of other aquifer parameters. Comparison of the SNMR results with borehole data clearly shows that the water content determined by SNMR is the free or mobile water in the pores. The permeabilities estimated from the SNMR decay times are similar to those derived from sieve analysis of core material. Thus, the combination of SNMR with geoelectric methods promises to be a powerful tool for studying aquifer properties.

  7. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffe, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivpalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  8. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  9. The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse.

    Science.gov (United States)

    Ghermandi, A; Bixio, D; Thoeye, C

    2007-07-15

    In Europe, the last two decades witnessed growing water stress, both in terms of water scarcity and quality deterioration, which prompted many municipalities for a more efficient use of the water resources, including a more widespread acceptance of water reuse practices. Treatment technology encompasses a vast variety of options. Constructed wetlands are regarded as key elements in polishing conventionally treated wastewater for recreational and environmental applications. A survey was conducted to assess the performance of tertiary free water surface constructed wetlands in treating both key and emerging contaminant categories in the perspective of water reuse. A database was created with information concerning systems with emerging and free-floating macrophytes. The database includes results from both full- and pilot-scale systems, and considers a broad variety of operating conditions. This paper provides an overview of the treatment performances of the constructed wetlands in the database and discusses their significance in the optic of water reclamation and reuse practices.

  10. Groundwater surface mapping informs sources of catchment baseflow

    OpenAIRE

    J. F. Costelloe; T. J. Peterson; K. Halbert; A. W. Western; J. J. McDonnell

    2014-01-01

    Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater ...

  11. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  12. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.

  13. Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    Science.gov (United States)

    Prigent, Catherine; Lettenmaier, Dennis P.; Aires, Filipe; Papa, Fabrice

    2016-03-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (0.25^circ × 0.25^circ) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

  14. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    Science.gov (United States)

    Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano

    2016-11-01

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.

  15. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Directory of Open Access Journals (Sweden)

    Jaimie S Torrance

    Full Text Available Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions or shape information had been standardized (i.e., surface-only versions. For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  16. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Science.gov (United States)

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  17. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic <