WorldWideScience

Sample records for surface water hg

  1. Levels of Cd, Hg and Zn in some surface waters from the Eastern ...

    African Journals Online (AJOL)

    Total trace metals levels - Cd, Hg and Zn, which may affect human health and the "health" of the aquatic ecosystem, were determined in the Umtata, Buffalo, Keiskamma and Tyume Rivers and in the Sandile and Umtata Dams. These elements were also determined in sediment samples from some of these surface waters.

  2. A competitive immunoassay for ultrasensitive detection of Hg"2"+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    She, Pei; Chu, Yanxin; Liu, Chunwei; Guo, Xun; Zhao, Kang; Li, Jianguo; Du, Haijing; Zhang, Xiang; Wang, Hong; Deng, Anping

    2016-01-01

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg"2"+. This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg"2"+ and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg"2"+. The ICT was able to directly detect Hg"2"+ without complexing due to the specific recognition of the mAb with Hg"2"+. The IC_5_0 and limit of detection (LOD) of the assay for Hg"2"+ detection were 0.12 ng mL"−"1 and 0.45 pg mL"−"1, respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg"2"+ were in range of 88.3–107.3% with the relative standard deviations (RSD) of 1.5–9.5% (n = 3). The proposed ICT was used for the detection of Hg"2"+ in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg"2"+ in environmental water samples and biological serum and urine samples. - Highlights: • The proposed ICT was able to directly detect Hg"2"+ without formation of Hg"2"+-ligand complex. • The proposed ICT exhibited high sensitivity, specificity, stability, precision and accuracy for Hg"2"+ detection. • The proposed ICT was applicable for the detection of trace amount of Hg"2"+ in water, human serum and urine samples.

  3. A competitive immunoassay for ultrasensitive detection of Hg{sup 2+} in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    She, Pei; Chu, Yanxin [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Liu, Chunwei; Guo, Xun [OptoTrace (Suzhou) Technologies, Inc., STE 316, Building 4, No. 218, Xinghu Street, bioBAY, Suzhou Industrial Park, Suzhou 215123 (China); Zhao, Kang [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Li, Jianguo, E-mail: lijgsd@suda.edu.cn [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Du, Haijing; Zhang, Xiang [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Wang, Hong [OptoTrace (Suzhou) Technologies, Inc., STE 316, Building 4, No. 218, Xinghu Street, bioBAY, Suzhou Industrial Park, Suzhou 215123 (China); Deng, Anping, E-mail: denganping@suda.edu.cn [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China)

    2016-02-04

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg{sup 2+}. This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg{sup 2+} and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg{sup 2+}. The ICT was able to directly detect Hg{sup 2+} without complexing due to the specific recognition of the mAb with Hg{sup 2+}. The IC{sub 50} and limit of detection (LOD) of the assay for Hg{sup 2+} detection were 0.12 ng mL{sup −1} and 0.45 pg mL{sup −1}, respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg{sup 2+} were in range of 88.3–107.3% with the relative standard deviations (RSD) of 1.5–9.5% (n = 3). The proposed ICT was used for the detection of Hg{sup 2+} in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg{sup 2+} in environmental water samples and biological serum and urine samples. - Highlights: • The proposed ICT was able to directly detect Hg{sup 2+} without formation of Hg{sup 2+}-ligand complex. • The proposed ICT exhibited high sensitivity, specificity, stability, precision and accuracy for Hg{sup 2+} detection. • The proposed ICT was applicable for the detection of trace amount of Hg{sup 2+} in water, human serum and urine samples.

  4. A competitive immunoassay for ultrasensitive detection of Hg(2+) in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering.

    Science.gov (United States)

    She, Pei; Chu, Yanxin; Liu, Chunwei; Guo, Xun; Zhao, Kang; Li, Jianguo; Du, Haijing; Zhang, Xiang; Wang, Hong; Deng, Anping

    2016-02-04

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg(2+). This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg(2+) and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg(2+). The ICT was able to directly detect Hg(2+) without complexing due to the specific recognition of the mAb with Hg(2+). The IC50 and limit of detection (LOD) of the assay for Hg(2+) detection were 0.12 ng mL(-1) and 0.45 pg mL(-1), respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg(2+) were in range of 88.3-107.3% with the relative standard deviations (RSD) of 1.5-9.5% (n = 3). The proposed ICT was used for the detection of Hg(2+) in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg(2+) in environmental water samples and biological serum and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enhanced spectrophotometric detection of Hg in water samples by surface plasmon resonance of Au nanoparticles after preconcentration with vortex-assisted liquid-liquid microextraction

    Science.gov (United States)

    Martinis, Estefanía M.; Wuilloud, Rodolfo G.

    2016-10-01

    This article presents an efficient, simple, and cost-effective method for the determination of trace amounts of Hg by vortex-assisted liquid-liquid microextraction (VALLME) coupled to microvolume UV-Vis spectrophotometry. This method correlates changes in the intensity of localized surface plasmon resonance (LSPR) of tetraoctylammonium bromide (TOABr) coated Au nanoparticles (NPs) after interaction with Hg2+ ion. Spectroscopic measurements of the TOABr-coated Au NPs phase with particular absorption properties (strong and well-defined absorption bands) after analyte extraction by VALLME, provide an accurate and sensitive determination of Hg in water samples, comparable with measurements obtained by atomic absorption spectrometry (AAS). Different variables including sample volume, extraction time, and TOABr-coated Au NPs dispersion volume were carefully studied; final experimental conditions were 5 mL, 120 μL and 5 min respectively. The limit of detection (LOD) was 0.8 ng mL- 1. The calibration curve was linear at concentrations between the limit of quantification (LOQ) (4.9 ng mL- 1) and up to at least 120 ng mL- 1 of Hg. The relative standard deviation for six replicate determinations of 20 ng mL- 1 of Hg was 4.7%. This method exhibited an excellent analytical performance in terms of selectivity and sensitivity and it was finally applied for Hg determination in spiked tap and mineral water samples.

  6. Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg(2.).

    Science.gov (United States)

    Li, Jiao; Lu, Liping; Kang, Tianfang; Cheng, Shuiyuan

    2016-03-15

    In this article, we developed an electrochemiluminescence (ECL) sensor with a high-intensity charge transfer interface for Hg(2+) detection based on Hg(II)-induced DNA hybridization. The sensor was fabricated by the following simple method. First, graphene oxide (GO) was electrochemically reduced onto a glassy carbon electrode through cyclic voltammetry. Then, amino-labeled double-stranded (ds)DNA was assembled on the electrode surface using 1-pyrenebutyric acid N-hydroxysuccinimide as a linker between GO and DNA. The other terminal of dsDNA, which was labeled with biotin, was linked to CdSe quantum dots via biotin-avidin interactions. Reduced graphene oxide has excellent electrical conductivity. dsDNA with T-Hg(II)-T base pairs exhibited more facile charge transfer. They both accelerate the electron transfer performance and sensitivity of the sensor. The increased ECL signals were logarithmically linear with the concentration of Hg(II) when Hg(2+) was present in the detection solution. The linear range of the sensor was 10(-11) to 10(-8)mol/L (R=0.9819) with a detection limit of 10(-11)mol/L. This biosensor exhibited satisfactory results when it was used to detect Hg(II) in real water samples. The biosensor with high-intense charge transfer performance is a prospect avenue to pursue more and more sensitive detection method. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Electron beam induced Hg desorption and the electronic structure of the Hg depleted surface of Hg1/sub -//sub x/Cd/sub x/Te

    International Nuclear Information System (INIS)

    Shih, C.K.; Friedman, D.J.; Bertness, K.A.; Lindau, I.; Spicer, W.E.; Wilson, J.A.

    1986-01-01

    Auger electron spectroscopy (AES), x-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED), and angle-resolved ultraviolet photoemission spectroscopy (ARPES) were used to study the electron beam induced Hg desorption from a cleaved (110)Hg/sub 1-//sub x/Cd/sub x/Te surface and the electronic structure of the Hg depleted surface. Solid state recrystallized Hg/sub 1-//sub x/Cd/sub x/Te single crystals were used. It was found that the electron beam heating dominated the electron beam induced Hg desorption on Hg/sub 1-//sub x/Cd/sub x/Te. At the electron beam energy used, the electron beam heating extended several thousand angstroms deep. However, the Hg depletion saturated after a few monolayers were depleted of Hg atoms. At the initial stage of Hg loss (only 3%), the surface band bends upward (more p type). The ARPES spectrum showed the loss of some E vs k dispersion after 22% Hg atoms were removed from the surface region, and no dispersion was observed after 43% Hg atoms were removed. These results have important implications on the electronic structure of the surfaces and interfaces of which the stoichiometry is altered

  8. Uptake of Hg2+ by picocyanobacteria in natural water from four Andean lakes

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available In lake food webs, planktonic bacteria and algae represent the greatest bioconcentration step for Hg2+ and monomethyl-Hg (MeHg. As they are the most abundant organisms in planktonic trophic webs and also the main food resource for herbivorous plankton, they can mobilize large amounts of Hg to higher trophic levels. In Andean Patagonian lakes (Argentina, dissolved organic matter (DOM concentration and character, coupled with photo-reactions, play a central role in the complexation of Hg2+ in the water column and can even regulate the uptake of Hg2+ by planktonic algae. In this investigation we evaluated the DOM character of natural waters (NW from four Andean lakes and studied its influence on the uptake of 197Hg2+ in a strain of the picocyanobacteria Synechococcus by using Hg2+ labeled with 197Hg2+. The uptake of radiolabeled Hg2+ by Synechococcus showed different magnitude in NW of lakes Moreno, El Trébol, Morenito and Escondido. Increasing lake DOM concentration reduced the bioavailability of Hg2+ as indicated by the lower uptakes rates found in NW with higher complexity and concentration of the DOM pool. Uptakes of Hg2+ by this picocyanobacteria contrasted among NW from pelagic (surface and bottom and littoral compartments of Lake Escondido which suggest that the entry of this metal may be highly variable even in the same environment. The study of the uptake of radiolabeled Hg2+ in a set of dilutions of NW from Lake Escondido demonstrated that the bioavailability of Hg2+ decrease with increasing DOM concentration.

  9. Photocatalysis of Hg2+ y Cr6+ in waste waters

    International Nuclear Information System (INIS)

    Franco, Alexander; Ortiz, Natalia; Mejia, Gloria; Restrepo, Gloria; Penuela, Gustavo

    2001-01-01

    This work was carried out to propose a treatment for the elimination of Hg 2 + and Cr 6 + ions that are present in wastewaters of the CIA and ISA laboratories. These ions are present in waste waters because in these laboratories analysis of chemical oxygen demand (COD), are performed in which HgSO 4 and K 2 Cr 2 O 7 are used. COD is a parameter very important to evaluate. In this paper water pollution results of chemical reduction of Hg 2 + and Cr 6 + ions using photo catalysis are reported and the elimination of both ions by using an adsorbent

  10. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  11. Selective solid-phase extraction of Hg(II) using silica gel surface - imprinting technique

    International Nuclear Information System (INIS)

    Zheng, H.; Geng, T.; Hu, L.

    2008-01-01

    A new ion-imprinted amino-functionalized silica gel sorbent was synthesized by surface-imprinting technique for preconcentration and separation of Hg(II) prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Compared to the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) have higher adsorption capacity and selectivity for Hg(II). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Hg(II) was 29.89 mg g -1 and 11.21 mg g -1 , respectively. The highest selectivity coefficient for Hg(II) in the presence of Zn(II) exceeded 230. The detection limit (3σ) of the method was 0.25 μg L -1 . The relative standard deviation of the method was 2.5% for eight replicate determinations of 10 μg of Hg 2+ in 200 mL-in-volume water sample. The procedure was validated by performing the analysis of the certified river sediment sample (GBW 08603, China) using the standard addition method. The developed method was also successfully applied to the determination of trace mercury in Chinese traditional medicine and water samples with satisfactory results. (authors)

  12. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  13. A highly sensitive protocol for the determination of Hg(2+) in environmental water using time-gated mode.

    Science.gov (United States)

    Huang, Dawei; Niu, Chenggang; Zeng, Guangming; Wang, Xiaoyu; Lv, Xiaoxiao

    2015-01-01

    In this paper, a sensitive time-gated fluorescent sensing strategy for mercury ions (Hg(2+)) monitoring is developed based on Hg(2+)-mediated thymine (T)-Hg(2+)-T structure and the mechanism of fluorescence resonance energy transfer from Mn-doped CdS/ZnS quantum dots to graphene oxide. The authors employ two T-rich single-stranded DNA (ssDNA) as the capture probes for Hg(2+), and one of them is modified with Mn-doped CdS/ZnS quantum dots. The addition of Hg(2+) makes the two T-rich ssDNA hybrids with each other to form stable T-Hg(2+)-T coordination chemistry, which makes Mn-doped CdS/ZnS quantum dots far away from the surface of graphene oxide. As a result, the fluorescence signal is increased obviously compared with that without Hg(2+). The time-gated fluorescence intensities are linear with the concentrations of Hg(2+) in the range from 0.20 to 10 nM with a limit of detection of 0.11 nM. The detection limit is much lower than the U.S. Environmental Protection Agency limit of the concentration of Hg(2+) for drinking water. The time-gated fluorescent sensing strategy is specific for Hg(2+) even with interference by other metal ions based on the results of selectivity experiments. Importantly, the proposed sensing strategy is applied successfully to the determination of Hg(2+) in environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  15. Surface passivation of HgCdTe by CdZnTe and its characteristics

    Science.gov (United States)

    Lee, T. S.; Choi, K. K.; Jeoung, Y. T.; Kim, H. K.; Kim, J. M.; Kim, Y. H.; Chang, J. M.; Song, W. S.; Kim, S. U.; Park, M. J.; Lee, S. D.

    1997-06-01

    In this paper, we report the results of capacitance-voltage measurements conducted on several metal-insulator semiconductor (MIS) capacitors in which HgCdTe surfaces are treated with various surface etching and oxidation processes. CdZnTe passivation layers were deposited on HgCdTe surfaces by thermal evaporation after the surfaces were etched with 0.5-2.0% bromine in methanol solution, or thin oxide layers (tox ˜ few ten Å) were grown on the surfaces, in order to investigate effects of the surface treatments on the electrical properties of the surfaces, as determined from capacitance-voltage (C-V) measurements at 80K and 1 MHz. A negative flat band voltage has been observed for MIS capacitors fabricated after etching of HgCdTe surfaces with bromine in methanol solutions, which is reported to make the surface Te-rich. It is inferred that residual Te on the surface is a positive charge, Te4+. C-V characteristics for MIS capacitors fabricated on oxide surfaces grown by air-exposure and electrolytic process have shown large hysteresis effects, from which it is inferred that imperfect and electrically active oxide compounds and HgTe particles near the surface become slow interface states.

  16. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Science.gov (United States)

    Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.

  17. Capability of Catfish (Clarias gariepinus to Accumulate Hg2+ From Water

    Directory of Open Access Journals (Sweden)

    Heny Suseno

    2015-12-01

    Full Text Available Mercury is hazardous contaminant that can be accumulated by aquatic organisms such as fishes, mussels etc. Catfish is one of source of animal protein but it also can accumulate Hg2+ from water that used in aquaculture. Due to less information about capability of catfish to accumulate Hg2+, therefore we studied bioaccumulation of Hg2+ that used biokinetic approach (aqueous uptake-rate, and elimination-rate.  Nuclear application technique was applied in this study by using radiotracer of 203Hg.  A simple kinetic model was then constructed to predict the bioaccumulation capability of   by catfish. The result of experiments were shown that the uptake rate of difference Hg2+ concentration were 79.90 to 101.22 ml.g-1.d-1. Strong correlation between uptake rates with increasing Hg2+concentration. In addition, the elimination rates were range 0.080 – 0.081 day-1. The biology half time (t1/2b of Hg2+ in whole body catfish were 8.50 – 8.63 days.  However, no clear correlation  between elimination rate with increasing concentration of Hg2+. The calculation of Bio Concentration Factor (BCF shown catfish have capability to accumulated Hg maximum 1242.69 time than its concentration in water

  18. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    Science.gov (United States)

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-03-30

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  19. First principles study of elemental mercury (Hg0) adsorption on low index CoMnO3 surfaces

    International Nuclear Information System (INIS)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen; Shen, Zhemin; Fan, Maohong

    2017-01-01

    Highlights: • Hg 0 adsorption on low index CoMnO 3 surface was predicted by DFT method. • Hg 0 is adsorbed on the CoMnO 3 surface with chemisorption interaction. • Hg 0 has highest adsorption energy on CoMnO 3 (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg 0 has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg 0 ) adsorption on CoMnO 3 surface for the first time. GGA/PBE functional were selected to determine the potential Hg 0 capture mechanisms. The results show that Hg 0 has good affinity with CoMnO 3 surfaces with chemical adsorption. The adsorption energy of Hg 0 -CoMnO 3 (1 0 0), Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg 0 was oxidized to its valence state of 0.236 on Mn site in CoMnO 3 (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) with 0.209e − and 0.189e − transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO 3 catalyst performed excellent in Hg 0 oxidation. Exposing CoMnO 3 (1 0 0) is most favorable in Hg 0 control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  20. Mercury methylation and reduction potentials in marine water: An improved methodology using {sup 197}Hg radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Koron, Neza [National Institute of Biology, Marine Biology Station, Fornace 41, 6330 Piran (Slovenia); Bratkic, Arne [Department of Environmental Sciences, ' Jozef Stefan' Institute, Jamova 39, 1000 Ljubljana (Slovenia); Ribeiro Guevara, Sergio, E-mail: ribeiro@cab.cnea.gov.ar [Laboratorio de Analisis por Activacion Neutronica, Centro Atomico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche (Argentina); Vahcic, Mitja; Horvat, Milena [Department of Environmental Sciences, ' Jozef Stefan' Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2012-01-15

    A highly sensitive laboratory methodology for simultaneous determination of methylation and reduction of spiked inorganic mercury (Hg{sup 2+}) in marine water labelled with high specific activity radiotracer ({sup 197}Hg prepared from enriched {sup 196}Hg stable isotope) was developed. A conventional extraction protocol for methylmercury (CH{sub 3}Hg{sup +}) was modified in order to significantly reduce the partitioning of interfering labelled Hg{sup 2+} into the final extract, thus allowing the detection of as little as 0.1% of the Hg{sup 2+} spike transformed to labelled CH{sub 3}Hg{sup +}. The efficiency of the modified CH{sub 3}Hg{sup +} extraction procedure was assessed by radiolabelled CH{sub 3}Hg{sup +} spikes corresponding to concentrations of methylmercury between 0.05 and 4 ng L{sup -1}. The recoveries were 73.0{+-}6.0% and 77.5{+-}3.9% for marine and MilliQ water, respectively. The reduction potential was assessed by purging and trapping the radiolabelled elemental Hg in a permanganate solution. The method allows detection of the reduction of as little as 0.001% of labelled Hg{sup 2+} spiked to natural waters. To our knowledge, the optimised methodology is among the most sensitive available to study the Hg methylation and reduction potential, therefore allowing experiments to be done at spikes close to natural levels (1-10 ng L{sup -1}). - Highlights: Black-Right-Pointing-Pointer Inorganic mercury methylation and reduction in marine water were studied. Black-Right-Pointing-Pointer High specific activity {sup 197}Hg was used to label Hg{sup 2+} spikes at natural levels. Black-Right-Pointing-Pointer Methylmercury extraction had 73% efficiency for 0.05-4 ng L{sup -1} levels. Black-Right-Pointing-Pointer High sensibility to assess methylation potentials, below 0.1% of the spike. Black-Right-Pointing-Pointer High sensibility also for reduction potentials, as low as 0.001% of the spike.

  1. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  2. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  3. Removal of mercury (Hg) from contaminated water at traditional gold mining area in Central Kalimantan

    OpenAIRE

    Wilopo, Wahyu; Rahman, Denizar; Eka Putra, Doni Prakasa; Warmada, I Wayan

    2015-01-01

    There are many traditional gold mining and processing in Murung Raya Regency, Central Kalimantan. The processing of gold mostly uses mercury (Hg) and produces a lot of waste water. It just throws to the river without any treatment. Therefore the concentration of mercury (Hg) in the river water is over than the standard of drinking water and reach up to 0.346 mg dm-3. This situation is very dangerous because almost of the people in the downstream area depend on the river water for their daily ...

  4. Highly Efficient Spin-to-Charge Current Conversion in Strained HgTe Surface States Protected by a HgCdTe Layer

    Science.gov (United States)

    Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.

    2018-04-01

    We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.

  5. Interface Properties and Surface Leakage of HgCdTe Photodiodes.

    Science.gov (United States)

    1980-01-01

    these techniques, we found that (a) the com- position of a 1200 )anodic film is 68% TeO2 , 27% CdO, and 6% HgO, and (b) the cations, especially the Hg...of TeO2 (Fig. 1); (b) irradiation with an electron beam of a few keV energy can convert the surface layer (10-100 1) of (Rg,Cd)Te into CdTe (Fig. 2...remove the scratches. The polishing cloth was secured to a glass olishing disk which is not affected by the corrosive nature of the etch - a 5

  6. Transition state kinetics of Hg(II) adsorption at gibbsite-water interface

    International Nuclear Information System (INIS)

    Weerasooriya, Rohan; Tobschall, Heinz J.; Seneviratne, Wasana; Bandara, Atula

    2007-01-01

    Kinetics of adsorption plays a pivotal factor in determining the bio-availability and mobility of Hg(II) in the environment. The kinetics of Hg(II) adsorption on gibbsite was examined as a function of pH, temperature and electrolyte type. Adsorption of Hg(II) was highly non-linear where the rate of Hg(II) retention was rapid initially and was followed by gradual or somewhat slow retention behavior with increasing contact time. The respective rate constants designated as k 1 (S-1: fast step) and k 2 (S-2: slow step). Always k 1 follows the order: k 1 ClO 4 >=k 1 (NO 3 ) 4 >>k 1 Cl . Such a relationship was not observed for the S-2 route. A two-step reaction model with pseudo-first order kinetics successfully described the adsorption rates of Hg(II) on gibbsite. Arrhenius and Erying models determined the thermodynamic parameters at activation states, which correspond to S-1 and S-2 routes. In a given system, always the activation energies showed a decrease with the pH. Gibbs free energy (ΔG numbersign ), enthalpy (ΔH numbersign ), and entropy (ΔS numbersign ) values of activation states were almost similar both in NaClO 4 and NaNO 3 which signal a similar Hg(II) adsorptive mechanism on gibbsite. The configurations of different Hg(II)-surface complexes were elucidated by transmission vibration spectroscopy

  7. Hg concentrations in fish from coastal waters of California and Western North America

    Science.gov (United States)

    Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2016-01-01

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.

  8. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  9. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relief valve requirements for hot water boilers (modifies HG-400.2). 53.05-2 Section 53.05-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... requirements for hot water boilers (modifies HG-400.2). (a) The relief valve requirements for hot water boilers...

  10. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.

    Science.gov (United States)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2017-01-01

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.

    Science.gov (United States)

    Ribeiro Guevara, Sergio; Zizek, Suzana; Repinc, Urska; Pérez Catán, Soledad; Jaćimović, Radojko; Horvat, Milena

    2007-03-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold

  12. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    Science.gov (United States)

    Marchewka, Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg1-xCdxTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (Eg=Γ8-Γ6) in the Hg1-xCdxTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg1-xCdxTe QW.

  13. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    International Nuclear Information System (INIS)

    Marchewka, Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg_1_-_xCd_xTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (E_g=Γ_8-Γ_6) in the Hg_1_-_xCd_xTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ_8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg_1_-_xCd_xTe QW.

  14. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio; Perez Catan, Soledad; Zizek, Suzana; Repinc, Urska; Jacimovic, Radojko; Horvat, Milena

    2007-01-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H 2 SO 4 or HCl were evaluated in freshwater sediments using 197 Hg radiotracer. Values obtained for the 197 Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197 Hg 2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg 2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg 2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H 2 SO 4 method is recommended, since it is free from these interferences. 197 Hg radiotracer (T 1/2 = 2.673 d) has a production rate that is about 50 times higher than that of 203 Hg (T 1/2 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203 Hg when it is used it in short-term experiments and produced by the irradiation of 196 Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196 Hg isotope is increased, the specific activity of the 197 Hg tracer can be significantly improved. In the present work, 197 Hg tracer was produced from mercury 51.58% enriched in the 196 Hg

  15. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters.

    Science.gov (United States)

    Huang, Pengcheng; Li, Sha; Gao, Nan; Wu, Fangying

    2015-11-07

    Heavy metal pollution can exert severe effects on the environment and human health. Simple, selective, and sensitive detection of heavy metal ions, especially two or more, using a single probe, is thereby of great importance. In this study, we report a new and facile strategy for discriminative detection of Hg(2+) and Cd(2+) with high selectivity and sensitivity via pH-modulated surface chemistry of the glutathione-capped gold NCs (GSH-Au NCs). By simply adjusting pH values of the colloidal solution of the NCs, Hg(2+) could specifically turn off the fluorescence under acidic pH, however, Cd(2+) could exclusively turn on the fluorescence under alkaline pH. This enables the NCs to serve as a dual fluorescent sensor for Hg(2+) and Cd(2+). We demonstrate that these two opposing sensing modes are presumably due to different interaction mechanisms: Hg(2+) induces aggregation by dissociating GSH from the Au surface via robust coordination and, Cd(2+) could passivate the Au surface by forming a Cd-GSH complex with a compact structure. Finally, the present strategy is successfully exploited to separately determine Hg(2+) and Cd(2+) in environmental water samples.

  16. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  17. Evaluation of the contamination for Hg and Pb in horticultural soils of the Bogota Savanna and of the effect of the Hg and Pb of the watering water and of the soils in several vegetables

    International Nuclear Information System (INIS)

    Vargas Zarate, Orlando; Mejia C, Leonidas

    1998-01-01

    Soils of six different horticultural zones of the Sabanna of Bogota were studied to quantify Hg and Pb accumulation in soils and crops caused by traditional and continuous irrigation with the highly polluted waters of Bogota River and its effluents. Soils of site No.6 representative of Rio Bogota is series (a fine clayed, mixed, isothermic family of aeric fluventic tropaquepts) was selected for greenhouse experiments conducted to show: a) The amounts of Hg and Pb absorbed by 3 different vegetables (lettuce, cucumber and carrots) grown under greenhouse conditions, irrigated with waters with variable Hg and Pb concentrations; b) the effects of increased levels of Hg and Pb in irrigation water on the accumulation level of both metals in soils at the harvest; and c) the individual effect and interactions of Hg and Pb on yields of each one vegetable. Results afforded this conclusions: 1) soils of all six sites have average Hg and Pb concentrations (0.5 and 110 ppm respectively) which exceed normal levels for soils (who, 1976); site 6 has the highest level of Hg and Pb accumulation (1.6 and 3.36 ppm); 2) for all three vegetables Hg and Pb accumulation level was almost proportional to Hg and Pb concentration in irrigation water; 3) Hg and Pb concentration in edible parts was different for each vegetable. Average contents of Hg and Pb were respectively 33 ppb and 172 ppm in lettuce; 24 ppb and 10 ppm in cucumber and 36 ppb and 48 ppm in carrots. Average absorption of Pb in lettuce was 17 times higher than in cucumber and 3.5 times higher than in carrots; Pb absorption levels widely surpass those recommended as permissible by WHO (1976) 4) high correlation coefficients were found between Hg and Pb absorption by lettuce (R=0.94 and 0.97 respectively), cucumber (R=0.89 and R=0.80 respectively) and carrots (R=0.99 y R=0.85 respectively) and the corresponding Hg and Pb accumulation levels in soils at harvest; 5) Effects of Hg and Pb levels in irrigation water on yields was

  18. A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca.

    Science.gov (United States)

    Henriques, Bruno; Rocha, Luciana S; Lopes, Cláudia B; Figueira, Paula; Duarte, A C; Vale, Carlos; Pardal, M A; Pereira, E

    2017-04-15

    Metal uptake from contaminated waters by living Ulva lactuca was studied during 6 days, under different relevant contamination scenarios. In mono-metallic solutions, with concentrations ranging from 10 to 100 μg L -1 for Hg, 10-200 μg L -1 for Cd, and 50-1000 μg L -1 for Pb, macroalgae (500 mg L -1 , d.w.) were able to remove, in most cases 93-99% of metal, allowing to achieve water quality criteria regarding both surface and drinking waters. In multi-metallic solutions, comprising simultaneously the three metals, living macroalgae still performed well, with Hg removal (c.a. 99%) not being significantly affected by the presence of Cd and Pb, even when those metals were in higher concentrations. Removal efficiencies for Cd and Pb varied between 57 and 96%, and 34-97%, respectively, revealing an affinity of U. lactuca toward metals: Hg > Cd > Pb. Chemical quantification in macroalgae, after bioaccumulation assays demonstrated that all Cd and Hg removed from solution was really bound in macroalgae biomass, while only half of Pb showed to be sorbed on the biomass. Overall, U. lactuca accumulated up to 209 μg g -1 of Hg, up to 347 μg g -1 of Cd and up to 1641 μg g -1 of Pb, which correspond to bioconcentration factors ranging from 500 to 2200, in a dose-dependent accumulation. Pseudo-first order, pseudo-second order and Elovich models showed a good performance in describing the kinetics of bioaccumulation, in the whole period of time. In the range of experimental conditions used, no mortality was observed and U. lactuca relative growth rate was not significantly affected by the presence of metals. Results represent an important contribution for developing a macroalgae-based biotechnology, applied for contaminated saline water remediation, more "green" and cost-effective than conventional treatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  20. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  1. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-Assembly of Gold Nanorods.

    Science.gov (United States)

    Chen, Lu; Lu, Linlin; Wang, Sufan; Xia, Yunsheng

    2017-06-23

    In this study, we present a valence states modulation strategy for picomole level assay of Hg 2+ using directional self-assembly of gold nanorods (AuNRs) as signal readout. Hg 2+ ions are first controllably reduced to Hg + ions by appropriate ascorbic acid, and the reduced Hg + ions react with the tips of the preadded AuNRs and form gold amalgam. Such Hg + decorated AuNRs then end-to-end self-assemble into one-dimensional architectures by the bridging effects of lysine based on the high affinity of NH 2 -Hg + interactions. Correspondingly, the AuNRs' longitudinal surface plasmon resonance is gradually reduced and a new broad band appears at 900-1100 nm region simultaneously. The resulting distinctly ratiometric signal output is not only favorable for Hg 2+ ions detection but competent for their quantification. Under optimal conditions, the linear range is 22.8 pM to 11.4 nM, and the detection limit is as low as 8.7 pM. Various transition/heavy metal ions, such as Pb 2+ , Ti 2+ , Co 2+ , Fe 3+ , Mn 2+ , Ba 2+ , Fe 2+ , Ni 2+ , Al 3+ , Cu 2+ , Ag + , and Au 3+ , do not interfere with the assay. Because of ultrahigh sensitivity and excellent selectivity, the proposed system can be employed for assaying ultratrace of Hg 2+ containing in drinking and commonly environmental water samples, which is difficult to be achieved by conventional colorimetric systems. These results indicate that the present platform possesses specific advantages and potential applications in the assay of ultratrace amounts of Hg 2+ ions.

  2. Probing spin helical surface states in topological HgTe nanowires

    Science.gov (United States)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  3. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  4. The determination of the surface potential for the CdxHg1-xTe crystals and the V-CdxHg1-xTe and Ni-V-CdxMg1-xTe structures

    International Nuclear Information System (INIS)

    Veliyulin, Eh.I.; Ragimova, R.A.; Mamedov, A.A.

    1996-01-01

    Surface potential of semiconductor crystals n-Cd x Hg 1-x Te (unannealed and annealed in mercury vapors) and of the structures V-Cd x Hg 1-x Te, Ni-V-Cd x Hg 1-x Te has been defined using spectroscopy of weak-field electric reflection. It is shown that a deep penetration of vanadium atoms in near the surface region of the crystal occurs in the structures on the basis of unannealed Cd x Hg 1-x Te. 1 ref.; 4 figs

  5. Relationships between Hg Air-surface exchange, Soil Moisture and Precipitation at a Background Vegetated Site in South-Eastern Australia.

    Science.gov (United States)

    Macsween, K.; Edwards, G. C.

    2017-12-01

    Despite many decades of research, the controlling mechanisms of mercury (Hg) air-surface exhange are still poorly understood. Particularly in Australian ecosystems where there are few anthropogenic inputs. A clear understanding of these mechanisms is vital for accurate representation in the global Hg models, particularly regarding re-emission. Water is known to have a considerable influence on Hg exchange within a terrestrial ecosystem. Precipitation has been found to cause spikes is Hg emissions during the initial stages of rain event. While, Soil moisture content is known to enhance fluxes between 15 and 30% Volumetric soil water (VSW), above which fluxes become suppressed. Few field experiments exist to verify these dominantly laboratory or controlled experiments. Here we present work looking at Hg fluxes over an 8-month period at a vegetated background site. The aim of this study is to identify how changes to precipitation intensity and duration, coupled with variable soil moisture content may influence Hg flux across seasons. As well as the influence of other meteorological variables. Experimentation was undertaken using aerodynamic gradient micrometeorological flux method, avoiding disruption to the surface, soil moisture probes and rain gauge measurements to monitor alterations to substrate conditions. Meteorological and air chemistry variables were also measured concurrently throughout the duration of the study. During the study period, South-Eastern Australia experienced several intense east coast low storm systems during the Autumn and Spring months and an unusually dry winter. VSW rarely reached above 30% even following the intense rainfall experienced during the east coast lows. The generally dry conditions throughout winter resulted in an initial spike in Hg emissions when rainfall occurred. Fluxes decreased shortly after the rain began but remained slightly elevated. Given the reduced net radiation and cooler temperatures experienced during the winter

  6. A water-soluble and retrievable ruthenium-based probe for colorimetric recognition of Hg(II) and Cys.

    Science.gov (United States)

    Cui, Yali; Hao, Yuanqiang; Zhang, Yintang; Liu, Baoxia; Zhu, Xu; Qu, Peng; Li, Deliang; Xu, Maotian

    2016-08-05

    A new ruthenium-based complex 1 [(bis(4,4'-dimethylphosphonic-2,2'-bipyridine) dithiocyanato ruthenium (II))] was developed as a colorimetric probe for the detection of Hg(II) and Cys (Cysteine). The obtained compound 1 can give interconversional color changes upon the alternating addition of Hg(II) and Cys in 100% aqueous solution. The specific coordination between NCS groups with Hg(II) can lead to the formation of 1-Hg(2+) complex, which can induce a remarkable spectral changes of probe 1. Afterwards the formed 1-Hg(2+) complex can act as effective colorimetric sensor for Cys. Owing to the stronger binding affinity of sulfhydryl group to Hg(2+), Cys can extract Hg(2+) from 1-Hg(2+) complex resulting in the release of 1 and the revival of absorption profile of the probe 1. By introducing the hydrophilic phosphonic acid groups, the proposed probe exhibited excellent water solubility. The limits of detection (LODs) of the assay for Hg(2+) and Cys are calculated to be 15nM and 200nM, respectively. Copyright © 2016. Published by Elsevier B.V.

  7. First principles study of elemental mercury (Hg{sup 0}) adsorption on low index CoMnO{sub 3} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Fan, Maohong [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming, 82071 (United States); School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332 (United States)

    2017-06-30

    Highlights: • Hg{sup 0} adsorption on low index CoMnO{sub 3} surface was predicted by DFT method. • Hg{sup 0} is adsorbed on the CoMnO{sub 3} surface with chemisorption interaction. • Hg{sup 0} has highest adsorption energy on CoMnO{sub 3} (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg{sup 0} has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg{sup 0}) adsorption on CoMnO{sub 3} surface for the first time. GGA/PBE functional were selected to determine the potential Hg{sup 0} capture mechanisms. The results show that Hg{sup 0} has good affinity with CoMnO{sub 3} surfaces with chemical adsorption. The adsorption energy of Hg{sup 0}-CoMnO{sub 3} (1 0 0), Hg{sup 0}-CoMnO{sub 3} (1 0 1) and Hg{sup 0}-CoMnO{sub 3} (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg{sup 0} was oxidized to its valence state of 0.236 on Mn site in CoMnO{sub 3} (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg{sup 0}-CoMnO{sub 3} (1 0 1) and Hg{sup 0}-CoMnO{sub 3} (1 1 0) with 0.209e{sup −} and 0.189e{sup −} transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO{sub 3} catalyst performed excellent in Hg{sup 0} oxidation. Exposing CoMnO{sub 3} (1 0 0) is most favorable in Hg{sup 0} control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  8. Novel methodology for the study of mercury methylation and reduction in sediments and water using {sup 197}Hg radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Guevara, Sergio; Perez Catan, Soledad [Centro Atomico Bariloche, Laboratorio de Analisis por Activacion Neutronica, Bariloche (Argentina); Zizek, Suzana; Repinc, Urska; Jacimovic, Radojko; Horvat, Milena [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2007-03-15

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H{sub 2}SO{sub 4} or HCl were evaluated in freshwater sediments using {sup 197}Hg radiotracer. Values obtained for the {sup 197}Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of {sup 197}Hg{sup 2+} into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg{sup 2+} contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg{sup 2+} contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H{sub 2}SO{sub 4} method is recommended, since it is free from these interferences. {sup 197}Hg radiotracer (T{sub 1/2} = 2.673 d) has a production rate that is about 50 times higher than that of {sup 203}Hg (T{sub 1/2} = 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to {sup 203}Hg when it is used it in short-term experiments and produced by the irradiation of {sup 196}Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the {sup 196}Hg isotope is increased, the specific activity of the {sup 197}Hg tracer can be significantly improved. In

  9. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China

    International Nuclear Information System (INIS)

    Yan, Zhicao; Liu, Guijian; Sun, Ruoyu; Wu, Dun; Wu, Bin; Zhou, Chuncai

    2013-01-01

    Highlights: • Hg concentrations in coal and surface water samples were determined. • Hg is enriched in the Huaibei coals. • Magmatic activities imparted influences on Hg content and distribution. • Hg contents in surface waters are relative low at the present status. - Abstract: The Hg concentrations in 108 samples, comprising 81 coal samples, 1 igneous rock, 2 parting rock samples and 24 water samples from the Huaibei Coal Mining District, China, were determined by cold-vapor atomic fluorescence spectrometry. The abundance and distribution of Hg in different coal mines and coal seams were studied. The weighted average Hg concentration for all coal samples in the Huaibei Coalfield is 0.42 mg/kg, which is about twice that of average Chinese coals. From southwestern to northeastern coalfield, Hg concentration shows a decreasing trend, which is presumably related to magmatic activity and fault structures. The relatively high Hg levels are observed in coal seams Nos. 6, 7 and 10 in the southwestern coal mines. Correlation analysis indicates that Hg in the southwestern and southernmost coals with high Hg concentrations is associated with pyrite. The Hg concentrations in surface waters in the Huaibei Coal Mining District range from 10 to 60 ng/L, and display a decreasing trend with distance from a coal waste pile but are lower than the regulated levels for Hg in drinking water

  10. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes.

    Science.gov (United States)

    Liu, Cheng-Bin; Hua, Xiu-Bing; Liu, Hong-Wei; Yu, Ben; Mao, Yu-Xiang; Wang, Ding-Yong; Yin, Yong-Guang; Hu, Li-Gang; Shi, Jian-Bo; Jiang, Gui-Bin

    2018-04-15

    To trace the most concerned bioavailable mercury (Hg) in aquatic environment, fish samples were collected from three typical regions in China, including 3 rivers and 1 lake in the Tibetan Plateau (TP, a high altitude background region with strong solar radiation), the Three Gorges Reservoir (TGR, the largest artificial freshwater reservoir in China), and the Chinese Bohai Sea (CBS, a heavily human-impacted semi-enclosed sea). The Hg isotopic compositions in fish muscles were analyzed. The results showed that anthropogenic emissions were the main sources of Hg in fish from TGR and CBS because of the observed negative δ 202 Hg and positive Δ 199 Hg in these two regions (TGR, δ 202 Hg: - 0.72 to - 0.29‰, Δ 199 Hg: 0.15 - 0.52‰; CBS, δ 202 Hg: - 2.09 to - 0.86‰, Δ 199 Hg: 0.07 - 0.52‰). The relatively higher δ 202 Hg and Δ 199 Hg (δ 202 Hg: - 0.37 - 0.08‰, Δ 199 Hg: 0.50 - 1.89‰) in fish from TP suggested the insignificant disturbance from local anthropogenic activities. The larger slopes of Δ 199 Hg/Δ 201 Hg in fish from TGR (1.29 ± 0.14, 1SD) and TP (1.25 ± 0.06, 1SD) indicated methylmercury (MeHg) was produced and photo-reduced in the water column before incorporation into the fish. In contrast, the photoreduction of Hg 2+ was the main process in CBS (slope of Δ 199 Hg/Δ 201 Hg: 1.06 ± 0.06, 1SD). According to the fingerprint data of Hg isotopes, the most important source for aquatic bioavailable Hg in TP should be the long-range transported Hg, contrasting to the anthropogenic originated MeHg from surface sediments and runoffs in TGR and inorganic Hg from continental inputs in CBS. Therefore, the isotopic signatures of Hg in fish can provide novel clues in tracing sources and behaviors of bioavailable Hg in aquatic systems, which are critical for further understanding the biogeochemical cycling of Hg. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  12. Standardization of radiochemical techniques aiming the study of Hg volatilization and methylation in water and sediment of gold mining areas in the Amazon region

    International Nuclear Information System (INIS)

    Guimaraes, Jean Remy Davee

    1992-09-01

    Methylation of inorganic Hg in aquatic systems is a key process in the environmental cycling of this metal, not yet studied in tropical conditions. Radiochemical techniques were adapted and simplified, aiming at the study of Hg volatilization and methylation in water and sediment of gold mining areas in the Amazon region. Preliminary experiments showed, in 35 days volatilization of up to 32 % of 203 Hg 2+ added to aqueous solutions. Acid K 2 Cr 2 0 7 0.1 M solutions were not effective in 203 Hg 0 trapping and the latter was highly and irreversibly absorbed by a variety of synthetic materials commonly used in laboratory work. Considerably simplified versions of the Furutani and Rudd (1980) radiochemical technique for the determination of methylation rates in environmental samples were developed and showed efficiencies close to 90 % in tests with methyl- 2 0 3 H g standards. In-situ incubations of surface sediments were performed in the Madeira River gold mining region, Rondonia State, Brazil, and potential net Hg methylation rates (MR) of up to 1 %.g-1.h-1 were found in black-water affluent like the Mutum-Parana and Jamari rivers and in the Samuel reservoir. MRs in the Madeira River sediments were lower, ranging 10-5 to 10-3 %.g-1.h-1 . MRs obtained in incubations of samples some weeks after collection were one or two orders of magnitude lower than those resulting from in-situ incubations. Methylation in autoclaved samples was close to minimum detectable rates. MRs in surface water samples was in all cases < 7.10-7 %.ml-1.h-1. The determination of the predominant methylation sites will allow a better standardization of the technique described herein, suitable for MR determinations even under the unfavorable conditions prevailing in the Amazon region. (author)

  13. Vibrational properties of homopolar and heteropolar surfaces and interfaces of the CdTe/HgTe system

    International Nuclear Information System (INIS)

    Rey Gonzalez, R.; Camacho B, A.; Quiroga, L.

    1993-08-01

    We present results of calculations for the density of vibrational modes for (001) and (111) homopolar, as well as for (011) heteropolar free surfaces of CdTe and HgTe. A rigid-ion model with a dynamical matrix parametrization including force constants up to second neighbours is used. We report on the existence of highly localized surface resonant modes at the top of the acoustic branch for CdTe and the bottom of the optical branch for HgTe. A different behaviour in the three directions analysed is found. The interface atomic planes show themselves as phonon gapless layers. The contribution of in-plane and out-of-plane vibration is analysed for both the surface and interface cases. (author). 7 refs, 7 figs

  14. A comparative study on surface morphology from the HgI2 semiconductors prepared by different techniques

    International Nuclear Information System (INIS)

    Martins, Joao F.T.; Ferraz, Caue de M.; Santos, Robinson A. dos; Mesquita, Carlos H. de; Hamada, Margarida M.

    2013-01-01

    The impurity effect in the surface morphology quality of HgI 2 crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detector. The crystals were purified and grown by two techniques: (1) physical vapor transport (PVT) and (2) saturated solution from dimethylsulfoxide (DMSO) complexes. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. The best quality of surface morphology was found for the crystals purified and grown by the PVT technique. Significant decrease in the impurity concentration was found, purifying the crystal by means of two successive growths by the PVT technique, while a Si contamination in the HgI 2 crystal was observed, during its growth by the DMSO method. Thus, for DMSO technique was not possible to identify the peaks of the other trace elements present as impurities in the PVT crystal, due to the high intensity of the Si peak in the DMSO crystal. It was demonstrated the impurities affect significantly the surface morphology quality from the HgI 2 crystal. Key Words: Semiconductor crystal, Radiation detector, Mercury Iodide crystal, surface morphology. (author)

  15. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg(2+) from water.

    Science.gov (United States)

    Luo, Xubiao; Shen, Tingting; Ding, Lin; Zhong, Weiping; Luo, Jianfeng; Luo, Shenglian

    2016-04-05

    A novel thymine-functionalized MIL-101 (MIL-101-Thymine) material was synthesized using a post-synthesis method to remove mercury at a high efficiency. MIL-101-Thymine was successfully prepared in this work and was confirmed by several characterization methods, such as (13)C nuclear magnetic resonance, X-ray diffraction, and infrared spectroscopy. The Hg(2+) adsorption agreed well with the Langmuir model, and the maximum adsorption capacity was 51.27mg/g. The adsorption rate fit with the pseudo-second-order kinetic model. Furthermore, MIL-101-Thymine exhibited excellent selectivity towards Hg(2+) over other cations, and the maximum value of the selective coefficient reached 947.34; this result is very likely due to the highly selective interactions of T-Hg(2+)-T in MIL-101-Thymine. The result of X-ray photoelectron spectroscopy also showed that Hg(2+) was coordinated with the N of thymine in MIL-101-Thymine. Moreover, the results of the thermogravimetric analysis and adsorption experiments showed that the Hg atom was two-coordinated with the thymine group. MIL-101-Thymine was used to remove trace Hg(2+) in real water samples, and satisfactory recoveries were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures

    Science.gov (United States)

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-01

    We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.

  17. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  18. Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia).

    Science.gov (United States)

    Gustaytis, M A; Myagkaya, I N; Chumbaev, A S

    2018-07-01

    Gold-bearing polymetallic Cu-Zn deposits of sulphur-pyrite ores were discovered in the Novo-Ursk region in the 1930s. The average content of mercury (Hg) was approximately 120 μg/g at the time. A comprehensive study of Hg distribution in waste of metal ore enrichment industry was carried out in the cold season on the tailing dump site and in adjacent areas. Mercury concentration in among snow particulate, dissolved and colloid fractions was determined. The maximal Hg content in particulate fraction from the waste tailing site ranged 230-573 μg/g. Such indices as the frequency of aerosol dust deposition events per units of time and area, enrichment factor and the total load allowed to establish that the territory of the tailing waste dump site had a snow cover highly contaminated with dust deposited at a rate of 247-480 mg/(m 2 ∙day). Adjacent areas could be considered as area with low Hg contamination rate with average deposition rate of 30 mg/(m 2 ∙day). The elemental composition of the aerosol dust depositions was determined as well, which allowed to reveal the extent of enrichment waste dispersion throughout adjacent areas. The amount of Hg entering environment with snowmelt water discharge was estimated. As a result of snowmelting, in 2014 the nearest to the dump site hydrographic network got Hg as 7.1 g with colloids and as 5880 g as particles. The results obtained allowed to assess the degree of Hg contamination of areas under the impact of metal enrichment industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Shanley, J.; Rohovec, Jan; Oulehle, F.; Krám, P.; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    Roč. 158, November (2015), s. 201-211 ISSN 0375-6742 R&D Projects: GA ČR(CZ) GAP210/11/1369 Institutional support: RVO:67985831 ; RVO:67985874 Keywords : Black Triangle * DOC quality * Filtered Hg * Hg/DOC ratio * Runoff fluxes * Seasonal changes * SUVA Subject RIV: DD - Geochemistry; DA - Hydrology ; Limnology (UH-J) Impact factor: 2.147, year: 2015

  20. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  1. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  2. Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+, and Cu2+

    Directory of Open Access Journals (Sweden)

    Matibur Zamadar

    2016-01-01

    Full Text Available Here we report the sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridylporphine tetrachloride (1 for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg2+, Pb2+, Cd2+, and Cu2+ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/or metal ion receptor capable of detecting two or more toxic metal ions, particularly Hg2+, Pb2+, and Cd2+ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd2+ in the presence of larger metal ions such as Hg2+, or Pb2+. Finally, the examination of the sensing properties of 1 demonstrated that it can operate as a Cu2+ ion selective sensor via metal displacement from the 1-Hg2+, 1-Pb2+, and 1-Cd2+.

  3. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    Science.gov (United States)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (pdetermined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of

  4. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  5. Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

    International Nuclear Information System (INIS)

    Ganbold, Erdene Ochir; Park, Jin Ho; Ock, Kwang Su; Joo, Sang Woo

    2011-01-01

    We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs

  6. Nano-scale pattern formation on the surface of HgCdTe produced by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.B.; Gudymenko, A.I.; Kladko, V.P.; Korchevyi, A.A.; Savkina, R.K.; Sizov, F.F.; Udovitska, R.S. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kiev (Ukraine)

    2015-08-15

    Presented in this work are the results concerning formation of nano-scale patterns on the surface of a ternary compound Hg{sub 1-x}Cd{sub x}Te (x ∝ 0.223). Modification of this ternary chalcogenide semiconductor compound was performed using the method of oblique-incidence ion bombardment with silver ions, which was followed by low-temperature treatment. The energy and dose of implanted ions were 140 keV and 4.8 x 10{sup 13} cm{sup -2}, respectively. Atomic force microscopy methods were used for the surface topography characterization. The structural properties of MCT-based structure was analyzed using double and triple crystal X-ray diffraction to monitor the disorder and strain of the implanted region as a function of processing conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The magnetic field and the evolution of element spots on the surface of the HgMn eclipsing binary ARAur

    Science.gov (United States)

    Hubrig, S.; Savanov, I.; Ilyin, I.; González, J. F.; Korhonen, H.; Lehmann, H.; Schöller, M.; Granzer, T.; Weber, M.; Strassmeier, K. G.; Hartmann, M.; Tkachenko, A.

    2010-10-01

    The system ARAur is a young late B-type double-lined eclipsing binary with a primary star of HgMn peculiarity. We applied the Doppler imaging method to reconstruct the distribution of Fe and Y over the surface of the primary using spectroscopic time series obtained in 2005 and from 2008 October to 2009 February. The results show a remarkable evolution of the element distribution and overabundances. Measurements of the magnetic field with the moment technique using several elements reveal the presence of a longitudinal magnetic field of the order of a few hundred gauss in both stellar components and a quadratic field of the order of 8kG on the surface of the primary star. Based on observations obtained at the 2.56-m Nordic Optical Telescope on La Palma, the Karl-Schwarzschild-Observatorium in Tautenburg and the STELLA robotic telescope on Tenerife. E-mail: shubrig@aip.de

  8. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    OpenAIRE

    Marchewka Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg1-xCdxTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the inve...

  9. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  10. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  11. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  12. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  13. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    He, Kai; Wang, Xi; Zhang, Peng; Chen, Yi-Yu [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Song-Min; Xie, Xiao-Hui; Lin, Chun, E-mail: chun-lin@mail.sitp.ac.cn; Ye, Zhen-Hua; Wang, Jian-Xin; Zhang, Qin-Yao, E-mail: qinyao@mail.sitp.ac.cn [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Li, Yang [Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-05-28

    This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and then the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.

  14. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  15. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  16. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  17. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  18. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam

    International Nuclear Information System (INIS)

    Avila P, P.

    1995-01-01

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences (α < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author)

  19. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  20. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  1. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xubiao, E-mail: luoxubiao@126.com [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Shen, Tingting; Ding, Lin; Zhong, Weiping; Luo, Jianfeng [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-04-05

    Highlights: • A novel thymine-functionalized MIL-101 (MIL-101-Thymine) was first synthesized by post-synthesis method. • The resulting MIL-101-Thymine exhibited high Hg{sup 2+} adsorption. • MIL-101-Thymine exhibited excellent selectivity towards Hg{sup 2+} over other metal ions. • MIL-101-Thymine was used to remove trace Hg{sup 2+} with satisfactory recoveries in real water samples. - Abstract: A novel thymine-functionalized MIL-101 (MIL-101-Thymine) material was synthesized using a post-synthesis method to remove mercury at a high efficiency. MIL-101-Thymine was successfully prepared in this work and was confirmed by several characterization methods, such as {sup 13}C nuclear magnetic resonance, X-ray diffraction, and infrared spectroscopy. The Hg{sup 2+} adsorption agreed well with the Langmuir model, and the maximum adsorption capacity was 51.27 mg/g. The adsorption rate fit with the pseudo-second-order kinetic model. Furthermore, MIL-101-Thymine exhibited excellent selectivity towards Hg{sup 2+} over other cations, and the maximum value of the selective coefficient reached 947.34; this result is very likely due to the highly selective interactions of T-Hg{sup 2+}–T in MIL-101-Thymine. The result of X-ray photoelectron spectroscopy also showed that Hg{sup 2+} was coordinated with the N of thymine in MIL-101-Thymine. Moreover, the results of the thermogravimetric analysis and adsorption experiments showed that the Hg atom was two-coordinated with the thymine group. MIL-101-Thymine was used to remove trace Hg{sup 2+} in real water samples, and satisfactory recoveries were obtained.

  2. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).

    Science.gov (United States)

    Keller, Nicole S; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    A method for the analysis of arsenic species in aqueous sulfide samples is presented. The method uses an ion chromatography system connected with a Hydride-Generation Atomic Fluorescence Spectrometer (IC-HG-AFS). With this method inorganic As(III) and As(V) species in water samples can be analyzed, including arsenite (HnAs(III)O3(n-3)), thioarsenite (HnAs(III)S3(n-3)), arsenate (HnAs(V)O4(n-3)), monothioarsenate (HnAs(V)SO3(n-3)), dithioarsenate (HnAs(V)S2O2(n-3)), trithioarsenate (HnAs(V)S3O(n-3)) and tetrathioarsenate (HnAs(V)S4(n-3)). The peak identification and retention times were determined based on standard analysis of the various arsenic compounds. The analytical detection limit was ~1-3 µg L(-1) (LOD), depending on the quality of the baseline. This low detection limit makes this method also applicable to discriminate between waters meeting the drinking water standard of max. 10 µg L(-1) As, and waters that do not meet this standard. The new method was successfully applied for on-site determination of arsenic species in natural sulfidic waters, in which seven species were unambiguously identified. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  4. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    Science.gov (United States)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  5. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  6. ARSENIC SPECIATION ANALYSIS IN GROUND WATER BY IC-HG-AFS

    Science.gov (United States)

    The determination of low levels of arsenic draws concern more than ever today, because of the possible legislative changes in the drinking water limit. The toxicity of arsenic depends upon its chemical form. Arsenite is the most toxic form, 25 to 50 times more toxic than arsena...

  7. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Formation of Dirac point and the topological surface states inside the strained gap for mixed 3D Hg1-xCdx Te

    Science.gov (United States)

    Marchewka, Michał

    2016-10-01

    In this paper the results of the numerical calculation obtained for the three-dimensional (3D) strained Hg1-xCdx Te layers for the x-Cd composition from 0.1 to 0.155 and a different mismatch of the lattice constant are presented. For the investigated region of the Cd composition (x value) the negative energy gap (Eg =Γ8 -Γ6) in the Hg1-xCdx Te is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point. The numerical calculation based on the finite difference method applied for the 8×8 kp model with the in-plane tensile strain for (001) growth oriented structure shows that the Dirac cone inside the induced insulating band gap for non zero of the Cd composition and a bigger strain caused by the bigger lattice mismatch (than for the 3D HgTe TI) can be obtained. It was also shown how different x-Cd compounds move the Dirac cone from the valence band into the band gap. The presented results show that 75 nm wide 3D Hg1-xCdx Te structures with x ≈ 0.155 and 1.6% lattice mismatch make the system a true topological insulator with the dispersion of the topological surface states similar to those ones obtained for the strained CdTe/HgTe QW.

  9. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    Science.gov (United States)

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  10. Characterization of the Fermi surface of BEDT-TTF4[Hg2Cl6].PhCl by electronic band structure calculations

    International Nuclear Information System (INIS)

    Veiros, L.F.; Canadell, E.

    1994-01-01

    Tight-binding band structure calculations for the room temperature structure of BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl show the existence of closed electron and hole Fermi surfaces, in agreement with the 2D metallic conductivity of this salt. It is shown that these closed Fermi surfaces result from the hybridization of two hidden 1D Fermi surfaces. However, our study also shows that a transition associated with either a usual or a hidden nesting type mechanism is unlikely. This explains why this salt retains its metallic properties without any resistivity anomaly down to 1.3 K. Our study suggests that BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl is somewhat anisotropic 2D semimetal and should exhibit Shubnikov-de Haas oscillations corresponding to a cross-sectional area of approximately 13% of the first Brillouin zone. (orig.)

  11. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent - Cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duan Taicheng; Song Xuejie; Xu Jingwei; Guo Pengran; Chen Hangting; Li Hongfei

    2006-01-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min -1 sample loading rate. The detection limit was 0.2 ng L -1 and much lower than that of conventional method (around 15.8 ng L -1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L -1 of Hg and the linear working curve is from 20 to 2000 ng L -1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory

  12. Speciation of inorganic antimony in polyethylene terephthalate (PET) bottled water using hydride generation atomic absorption spectrophotometry (HG-AAS)

    International Nuclear Information System (INIS)

    Markwo, Ali

    2015-07-01

    Antimony (Sb) is a regulated drinking water contaminant that has been found to leach from polyethylene terephthalate (PET) plastic containers into the waters stored in them. The common inorganic species of antimony in water are Sb(III) and Sb(V), with the former being more toxic and the latter being more soluble. In order to assess the extent to which waters stored in PET bottles are contaminated with inorganic Sb and to further examine the effect of typical storage conditions on migration rates, speciation analysis of inorganic Sb using hydride generation atomic absorption spectrophotometry (HG-AAS) was undertaken on selected PET plastic bottled waters marketed in the Greater Accra Region of Ghana. Six brands of PET plastic bottled waters were obtained at source on the day of packaging, and analyses undertaken on samples of the waters stored in the plastic containers at intervals of four weeks for twelve weeks, under three carefully chosen storage conditions distinctive of bottled water usage. Selected physicochemical properties of samples of the waters stored in the plastic containers and total Sb of samples of the plastic containers were also determined to discover the effect of some physical properties and certain major ions, and the influence of the different quality PET plastic types on Sb migration respectively. The study revealed amounts of total Sb in the PET plastic containers of the 6 brands ranging from 123.46 mg/kg to 146.45 mg/kg. The selected physicochemical properties of the waters stored in the PET plastic containers considered were pH (6.78 – 7.43), Ca2+ (1.61 – 12.39 mg/L), Mg2+ (1.00 – 4.96 mg/L), HCO3− (6.18 – 55.41 mg/L) and TDS (8.70 – 70.40 mg/L)). PET bottled waters of 5 out of the 6 brands contained Sb (initial total Sb ranging from 1.11 – 14.65 μg/L) before storage. Total Sb concentrations of the waters stored in the plastic containers were observed to increase with storage time under all the three storage conditions for

  13. Core-shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters.

    Science.gov (United States)

    Lopes, C B; Figueira, P; Tavares, D S; Lin, Z; Daniel-da-Silva, A L; Duarte, A C; Rocha, J; Trindade, T; Pereira, E

    2013-09-01

    The sorption capacity of nanoporous titanosilicate Engelhard titanosilicate number 4 (ETS-4) and silica-coated magnetite particles derivatised with dithiocarbamate groups towards Hg(II) was evaluated and compared in spiked ultra-pure and spiked surface-river water, for different batch factors. In the former, and using a batch factor of 100 m(3)/kg and an initial Hg(II) concentrations matching the maximum allowed concentration in an effluent discharge, both materials achieve Hg(II) uptake efficiencies in excess of 99 % and a residual metal concentration lower than the guideline value for drinking water quality. For the surface-river water and the same initial concentration, the Hg(II) uptake efficiency of magnetite particles is outstanding, achieving the quality criteria established by the Water Framework Directive (concerning Hg concentration in surface waters) using a batch factor of 50 m(3)/kg, while the efficiency of ETS-4 is significantly inferior. The dissimilar sorbents' Hg(II) removal efficiency is attributed to different uptake mechanisms. This study also highlights the importance of assessing the effective capacity of the sorbents under realistic conditions in order to achieve trustable results.

  14. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  15. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  16. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  17. High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1- x Te with a Converted Near-Surface Layer

    Science.gov (United States)

    Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.

    2018-04-01

    The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1- x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K

  18. High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1-x Te with a Converted Near-Surface Layer

    Science.gov (United States)

    Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.

    2018-04-01

    The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1-x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K

  19. Water-Soluble N-Acetyl-L-cysteine-Capped CdTe Quantum Dots Application for Hg(II Detection

    Directory of Open Access Journals (Sweden)

    Tianming Yang

    2013-01-01

    Full Text Available A simple, rapid, and specific method for Hg(II detection has been proposed based on the fluorescence change of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs. The presence of Hg(II ions could quench the fluorescence of QDs at 565 nm and meanwhile produce new peak in 700–860 nm wavelength range. The linear response range is 20–430 nM with the detection limit at 8.0 nM Hg(II. It was found that the position of the new peak was irrelevant to the size of QDs. Furthermore, the mechanism of the quenching of QDs fluorescence by Hg(II and the appearance of new peak in near-infrared area were also discussed and deduced through ultraviolet absorption spectrum, fluorescence spectrum, and X-ray photoelectron spectrum.

  20. Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach.

    Science.gov (United States)

    Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P; Chen, Celia Y

    2014-05-06

    Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg(+) and Hg(2+), into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg(+) and Hg(2+) uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg(+) or Hg(2+) were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg(2+) occurred during the course of the experiment, enhancing the uptake of Hg(2+) spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments.

  1. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution

    International Nuclear Information System (INIS)

    Cai Zhaoxia; Yang Hong; Zhang Yi; Yan Xiuping

    2006-01-01

    Water-soluble L-cysteine-capped-CdS nanoparticles were prepared in aqueous solution at room temperature through a straightforward one-pot process by using safe and low-cost inorganic salts as precursors, and characterized by transmission electron microscopy, X-ray diffraction spectrometry, Fourier transform infrared spectrometry, spectrofluorometry and ultraviolet-visible spectrometry. The prepared L-cysteine-capped-CdS nanoparticles were evaluated as fluorescence probe for Hg(II) detection. The fluorescence quenching of the L-cysteine-capped-CdS nanoparticles depended on the concentration and pH of Hg(II) solution. Maximum fluorescence quenching was observed at pH 7.4 with the excitation and emission wavelengths of 360 nm and 495 nm, respectively. Quenching of its fluorescence due to Hg(II) at the 20 nmol l -1 level was unaffected by the presence of 5 x 10 6 -fold excesses of Na(I) and K(I), 5 x 10 5 -fold excesses of Mg(II), 5 x 10 4 -fold excesses of Ca(II), 500-fold excesses of Al(III), 91-fold excesses of Mn(II), 23.5-fold excesses of Pb(II), 25-fold excesses of Fe(III), 25-fold excesses of Ag(I), 8.5-fold excesses of Ni(II) and 5-fold excesses of Cu(II). Under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of Hg(II) ranging from 16 nmol l -1 to 112 nmol l -1 . The limit of detection for Hg(II) was 2.4 nmol l -1 . The developed method was applied to the detection of trace Hg(II) in aqueous solutions

  2. Flow Alteration and Chemical Reduction: Air Stripping to Lessen Subsurface Discharges of Mercury to Surface Water

    Science.gov (United States)

    Brooks, S. C.; Bogle, M.; Liang, L.; Miller, C. L.; Peterson, M.; Southworth, G. R.; Spalding, B. P.

    2009-12-01

    Mercury concentrations in groundwater, surface water, and biota near an industrial facility in Oak Ridge, Tennessee remain high some 50 years after the original major releases from the facility to the environment. Since the mid-1980s, various remedial and abatement actions have been implemented at the facility, including re-routing water flows, armoring contaminated stream banks, relining or cleanout of facility storm drains, and activated charcoal treatment of groundwater and sump discharges. These actions were taken to reduce inorganic mercury inputs from the facility to the stream; a strategy that assumes limiting the inorganic mercury precursor will reduce Hg methylation and its subsequent bioaccumulation. To date, such actions have reduced mercury loading from the site by approximately 90% from levels typical of the mid 1980's, but waterborne mercury at the facility boundary remains roughly 100 times the typical local background concentration and methylmercury accumulation in aquatic biota exceed standards for safe consumption by humans and wildlife. In 2008 and 2009, a series of investigations was initiated to explore innovative approaches to further control mercury concentrations in stream water. Efforts in this study focused on decreasing waterborne inorganic mercury inputs from two sources. The first, a highly localized source, is the discharge point of the enclosed stormdrain network whereas the second is a more diffuse short reach of stream where metallic Hg in streambed sediments generates a continued input of dissolved Hg to the overlying water. Moving a clean water flow management discharge point to a position downstream of the contaminated reach reduced mercury loading from the streambed source by 75% - 100%, likely by minimizing resuspension of Hg-rich fine particulates and changing characteristic hyporheic flow path length and residence time. Mercury in the stormdrain discharge exists as highly reactive dissolved Hg(II) due to residual chlorine in

  3. Study of heavy metal concentration (As, Ba, Cd, Hg, Pb, Crin water resources and river of Borujerd city in 2008-2009

    Directory of Open Access Journals (Sweden)

    bahram kamarehei

    2010-02-01

    Full Text Available with industrial and economic growth and different material production that humans gained from natural resources for their comfort and walfare, inwardly introduced toxic material and heavy metal entered environment that there created serious problems for themselves and environment. This study accomplished to determine heavy metal concentration (As, Ba, Cd, Hg, Pb, Crin water resources and river of Borujerd city in 2008-2009. Materials and Methods: This descriptive cross-sectional study was conducted to determine heavy metal concentration (As, Ba, Cd, Hg, Pb, Cr in water resources and river of Borujerd city. 54 samples of water were taken from 18 drinking water wells, and also in two times 8 samples of Borujerd river were taken from before and after the city. Then samples carried into the lab and were concentrated ten times using expressed methods and standard methods. Then heavy metal concentration determined by AAP (WFX 130 and results analyzed by SPSS and EXCEL software. Results: Heavy metal concentration average (As, Ba, Cd, Hg, Pb, Cr in drinking water wells were 0. 0, 0. 3222, 0. 0014, 0. 0002, 0. 0077 mg/l respectively. and heavy metal concentration in river water after the city has been increased than before the city. Conclusion: Results indicated that heavy metal concentration average in Borujerd drinking water wells were lower than standard amounts and drinking water wells didn’t pollute with heavy metal. But heavy metal concentration in river water after the city has been increased than the before of it because city waste water enters the city river.

  4. Simultaneous determination of Hg, Pb, As, Cu, Zn and Ni in natural waters (with humic material) by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Morales S, E.A.; Zepeda L, E.

    1988-05-01

    Standardization of a method for simultaneous quantification of Hg, Pb, As, Cu, Zn and Ni in natural waters with humic acid contents was carried out. APDC for complexing free ions and silica gel as adsorber of metallic humates and further filtration were employed. X-ray fluorescence analysis was performed on filters. Good results were found for silica-gel as adsorber. Detection limits of 4 nanograms/milliliter were determined. (author)

  5. Microwave-induced activation of additional active edge sites on the MoS2 surface for enhanced Hg0 capture

    Science.gov (United States)

    Zhao, Haitao; Mu, Xueliang; Yang, Gang; Zheng, Chengheng; Sun, Chenggong; Gao, Xiang; Wu, Tao

    2017-10-01

    In recent years, significant effort has been made in the development of novel materials for the removal of mercury from coal-derived flue gas. In this research, microwave irradiation was adopted to induce the creation of additional active sites on the MoS2 surface. The results showed that Hg0 capture efficiency of the adsorbent containing MoS2 nanosheets being microwave treated was as high as 97%, while the sample prepared via conventional method only showed an efficiency of 94% in its first 180 min testing. After the adsorbent was treated by microwave irradiation for 3 more times, its mercury removal efficiency was still noticeably higher than that of the sample prepared via conventional method. Characterization of surface structure of the MoS2 containing material together with DFT study further revealed that the (001) basal planes of MoS2 crystal structure were cracked into (100) edge planes (with an angle of approximately 75°) under microwave treatment, which subsequently resulted in the formation of additional active edge sites on the MoS2 surface and led to the improved performance on Hg0 capture.

  6. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Common Perception. A surface can be classified as. > Wetting. > Non-wetting. Depending on the spreading characteristics of a droplet of water that splashes on the surface. The behavior of fluid on a solid surface under static and dynamic ..... color of the number density profile. Ions at the interface tend to form pinning zones ...

  7. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  8. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  9. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  10. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  11. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  12. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  13. Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters.

    Science.gov (United States)

    Barroso, M F; Ramos, S; Oliva-Teles, M T; Delerue-Matos, C; Sales, M G F; Oliveira, M B P P

    2009-01-01

    Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p < 0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.

  14. A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water

    International Nuclear Information System (INIS)

    Li, Zhili; Zhang, Ying; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Yan, Zhengyu; Liao, Shenghua

    2017-01-01

    An excellent biocompatible nitrogen-doped carbon dots (N-CDs) was successfully synthesized from orange juice and ethylenediamine by hydrothermal decomposition method. The as-prepared N-CDs were mono-dispersed spherical nanoparticles with a narrow size distribution of 0.5–3.0 nm and showed a good dispersion and stability in aqueous solution with the pH value ranging from 3.0 to 13.0. Photoluminescence spectra of as-prepared N-CDs demonstrated that the fluorescence intensity of N-CDs was increased with the doped nitrogen atoms and the FL-QY (fluorescence quantum yield) of N-CDs was up to 31.7%. Compared with Gly-CQDs(CQDs synthesied by Gly), which were prepared from chemical carbon source via hydrothermal decomposition method, the as-prepared N-CDs showed much lower cytotoxicity for Human THP-1 macrophage cells. These results indicated N-CDs prepared by our proposed method have excellent compatibility and more suitable for the application in biolabeling and bioimage. Due to the fluorescence quenching of N-CDs by mercury (II) ion (Hg 2+ ), a sensitive and selective method was developed for detecting Hg 2+ . The results indicated that the fluorescence intensity ratio of N-CDs was proportional to the concentration of Hg 2+ in the range from 4.0 μg/mL to 32.0 μg/mL and the recovery of spiked samples was ranged from 102.0% to 103.0%, which hinted our proposed method has a good sensitivity and accuracy and was suitable for detecting Hg 2+ with satisfactory in tap water.

  15. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  16. evaluation of surface water quality charac- teristics in ogun ...

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    total viable counts as the major water quality indicators. The PC2 had Temperature, COD,. Phosphate, heavy metals (Zn and Hg) and Fecal coliform as responsible for the observed 19% of the variation within the location. Organic constituent (BOD5), which has direct influence on dissolved oxygen depletion in the water.

  17. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure.

    Science.gov (United States)

    Xiong, Erhu; Wu, Liang; Zhou, Jiawan; Yu, Peng; Zhang, Xiaohua; Chen, Jinhua

    2015-01-01

    In this paper, a simple, selective and reusable electrochemical biosensor for the sensitive detection of mercury ions (Hg(2+)) has been developed based on thymine (T)-rich stem-loop (hairpin) DNA probe and a dual-signaling electrochemical ratiometric strategy. The assay strategy includes both "signal-on" and "signal-off" elements. The thiolated methylene blue (MB)-modified T-rich hairpin DNA capture probe (MB-P) firstly self-assembled on the gold electrode surface via Au-S bond. In the presence of Hg(2+), the ferrocene (Fc)-labeled T-rich DNA probe (Fc-P) hybridized with MB-P via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. As a result, the hairpin MB-P was opened, the MB tags were away from the gold electrode surface and the Fc tags closed to the gold electrode surface. These conformation changes led to the decrease of the oxidation peak current of MB (IMB), accompanied with the increase of that of Fc (IFc). The logarithmic value of IFc/IMB is linear with the logarithm of Hg(2+) concentration in the range from 0.5 nM to 5000 nM, and the detection limit of 0.08 nM is much lower than 10nM (the US Environmental Protection Agency (EPA) limit of Hg(2+) in drinking water). What is more, the developed DNA-based electrochemical biosensor could be regenerated by adding cysteine and Mg(2+). This strategy provides a simple and rapid approach for the detection of Hg(2+), and has promising application in the detection of Hg(2+) in real environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2016-08-15

    Mercury (Hg) and methylmercury (MeHg) are highly toxic and poorly studied in mangroves. Burrowing Uca crabs change sediment topography and biogeochemistry and thus may affect Hg distribution and MeHg formation. We studied added (203)Hg distribution, Me(203)Hg formation and sulfate reduction rates (SRR) in sediment aquariums containing Uca leptodactyla; and analyzed profiles of Me(203)Hg formation and SRR in sediment cores from two mangroves with distinct environmental impacts. MeHg formation and SRR were higher in the top (≤6cm) sediment and there was no significant difference in Hg methylation in more or less impacted mangroves. In aquariums, crab bioturbation favored Hg retention in the sediment. In the treatment without crabs, Hg volatilization and water Hg concentrations were higher. Hg methylation was higher in bioturbated aquariums but SRR were similar in both treatments. These findings suggest that bioturbating activity favors Hg retention in sediment but also promotes MeHg formation near the surface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  20. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...... techniques are investigated and the production of patterned micro structured surfaces following two different manufacturing techniques is reported. The first is a combination of laser manufacturing and hot embossing on polystyrene. To compare geometry and functionality a non-silicon based lithography...

  1. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water

    International Nuclear Information System (INIS)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-01-01

    Highlights: ► A novel type of functionalized MOF for heavy metal removal. ► Functionalization of MOF by a facile coordination-based postsynthetic strategy. ► Thiol-functionalization of MOF has been realized for the first time. ► Enhanced removal of Hg 2+ by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu 3 (BTC) 2 (H 2 O) 3 ] n (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu 3 (BTC) 2 ] n samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with –SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N 2 sorption–desorption isothermal. Significantly, the thiol-functionalized [Cu 3 (BTC) 2 ] n exhibited remarkably high adsorption affinity (K d = 4.73 × 10 5 mL g −1 ) and high adsorption capacity (714.29 mg g −1 ) for Hg 2+ adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg 2+ under the same condition.

  2. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fei [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Qiu, Ling-Guang, E-mail: lgqiu@ahu.edu.cn [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhu, Jun-Fa [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer A novel type of functionalized MOF for heavy metal removal. Black-Right-Pointing-Pointer Functionalization of MOF by a facile coordination-based postsynthetic strategy. Black-Right-Pointing-Pointer Thiol-functionalization of MOF has been realized for the first time. Black-Right-Pointing-Pointer Enhanced removal of Hg{sup 2+} by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu{sub 3}(BTC){sub 2}(H{sub 2}O){sub 3}]{sub n} (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu{sub 3}(BTC){sub 2}]{sub n} samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N{sub 2} sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu{sub 3}(BTC){sub 2}]{sub n} exhibited remarkably high adsorption affinity (K{sub d} = 4.73 Multiplication-Sign 10{sup 5} mL g{sup -1}) and high adsorption capacity (714.29 mg g{sup -1}) for Hg{sup 2+} adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg{sup 2+} under the same condition.

  3. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  4. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam; Evaluacion de metales pesados Cr, Fe, Ni, Cu, Zn, Cd, Pb y Hg en agua, sedimento y lirio acuatico (Eichhornia crassipes) de la Presa Jose Antonio Alzate, Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Avila P, P

    1996-12-31

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences ({alpha} < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author).

  5. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water.

    Science.gov (United States)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-11-30

    The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu(3)(BTC)(2)(H(2)O)(3)](n) (HKUST-1, BTC=benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu(3)(BTC)(2)](n) samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N(2) sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu(3)(BTC)(2)](n) exhibited remarkably high adsorption affinity (K(d)=4.73 × 10(5)mL g(-1)) and high adsorption capacity (714.29 mg g(-1)) for Hg(2+) adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg(2+) under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Surface tension of normal and heavy water

    International Nuclear Information System (INIS)

    Straub, J.; Rosner, N.; Grigull, V.

    1980-01-01

    A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard. The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the 'Scaling Laws'. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data. (orig.) [de

  7. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    Science.gov (United States)

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in

  8. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...

  9. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  10. Accumulation of Mercury (Hg) and Methyl Mercury (Me Hg) Concentrations In Selected Marine Biota From Manjung Coastal Area

    International Nuclear Information System (INIS)

    Anisa Abdullah; Zaini Hamzah; Ahmad Saat; Ahmad Saat; Abd Khalik Wood; Masitah Alias

    2015-01-01

    Level of mercury (Hg) and methyl mercury (Me Hg) in marine ecosystem has been intensively studied as these toxic substances could be accumulated in the marine biota. This study is focusing on the Hg and Me Hg content in marine biota in Manjung coastal area. This area has high potential being affected by rapid socio-economic development of Manjung area such as heavy industrial activities (coal fired power plant, iron foundries, port development and factories), agricultural runoff, waste and toxic discharge, quarries, housing constructions. It may has a potential risk when released into the atmosphere and dispersed on the surface of water and continue deposited at the bottom of the water and sediment and being absorbed by marine biota. The concentrations of Hg and Me Hg in marine ecosystem can be adversely affect human health when it enters the food chain. In this study, five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using inductively coupled plasma mass spectrometry (ICP-MS) technique. The Hg concentrations for dry and rainy season are in the range 65.13-102.12 μg/ kg and 75.75-106.10 μg/ kg respectively, while for MeHg concentrations for dry and rainy seasons are in the range 4.35-6.26 μg/ kg and 5.42-6.46 μg/ kg, respectively. These results are below the limit set by Malaysia Food Act (1983). Generally, marine biota from the Manjung coastal area is safe to consume due to low value of ingestion dose rate and health risk index (HRI) for human health. (author)

  11. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  12. Hyperemesis Gravidarum (HG)

    Science.gov (United States)

    ... Treatments Risks Complications Impact Take a Poll If HG continued past mid-pregnancy , did you experience complications ... Understanding Hyperemesis | Overview About Hyperemesis Gravidarum Hyperemesis gravidarum (HG) is a severe form of nausea and vomiting ...

  13. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  14. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  15. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  16. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  17. Distribution and air-sea exchange of mercury (Hg in the Yellow Sea

    Directory of Open Access Journals (Sweden)

    Z. J. Ci

    2011-03-01

    Full Text Available The Yellow Sea, surrounded by East China and the Korea Peninsula, is a potentially important receptor for anthropogenic mercury (Hg emissions from East Asia. However, there is little documentation about the distribution and cycle of Hg in this marine system. During the cruise covering the Yellow Sea in July 2010, gaseous elemental mercury (GEM or Hg(0 in the atmosphere, total Hg (THg, reactive Hg (RHg and dissolved gaseous mercury (DGM, largely Hg(0 in the waters were measured aboard the R/V Kexue III. The mean (±SD concentration of GEM over the entire cruise was 2.61 ± 0.50 ng m−3 (range: 1.68 to 4.34 ng m−3, which were generally higher than other open oceans. The spatial distribution of GEM generally reflected a clear gradient with high levels near the coast of East China and low levels in open waters, suggesting the significant atmospheric Hg outflow from East China. The mean concentration of THg in the surface waters was 1.69 ± 0.35 ng l−1 and the RHg accounted for a considerable fraction of THg (RHg: 1.08 ± 0.28 ng l−1, %RHg/THg = 63.9%. The mean concentration of DGM in the surface waters was 63.9 ± 13.7 pg l−1 and always suggested the supersaturation of Hg(0 in the surface waters with respect to Hg(0 in the atmosphere (the degree of saturation: 7.8 ± 2.3 with a range of 3.6–14.0. The mean Hg(0 flux at the air-sea interface was estimated to be 18.3 ± 11.8 ng m−2 h−1 based on a two-layer exchange model. The high wind speed and DGM levels induced the extremely high Hg(0 emission rates. Measurements at three stations showed no clear vertical patterns of DGM, RHg and THg in the water column. Overall, the elevated Hg levels in the Yellow Sea compared with other open oceans suggested that the human activity has influenced the oceanic Hg cycle downwind of East Asia.

  18. Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery.

    Science.gov (United States)

    Le Faucheur, Séverine; Vasiliu, Dan; Catianis, Irina; Zazu, Mariana; Dranguet, Perrine; Beauvais-Flück, Rebecca; Loizeau, Jean-Luc; Cosio, Claudia; Ungureanu, Costin; Ungureanu, Viorel Gheorghe; Slaveykova, Vera I

    2016-11-01

    Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH 3 Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH 3 Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.

  19. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  20. Immobilization of aqueous Hg(II) by mackinawite (FeS)

    International Nuclear Information System (INIS)

    Liu Jianrong; Valsaraj, Kalliat T.; Devai, Istvan; DeLaune, R.D.

    2008-01-01

    As one of the major constituents of acid volatile sulfide (AVS) in anoxic sediments, mackinawite (FeS) is known for its ability to scavenge trace metals. The interaction between aqueous Hg(II) (added as HgCl 2 ) and synthetic FeS was studied via batch sorption experiments conducted under anaerobic conditions. Due to the release of H + during formation of hydrolyzed Hg(II) species which is more reactive than Hg 2+ in surface adsorption, the equilibrium pH decreased with the increase in Hg(II)/FeS molar ratio. Counteracting the loss of FeS solids at lower pH, the maximum capacity for FeS to remove aqueous Hg(II) was approximately 0.75 mol Hg(II) (mol FeS) -1 . The comparison of X-ray power diffraction (XRPD) patterns of synthetic FeS sorbent before and after sorption showed that the major products formed from the interaction between FeS and the aqueous Hg(II) were metacinnabar, cinnabar, and mercury iron sulfides. With the addition of FeS at 0.4 g L -1 to a 1 mM Hg(II) solution with an initial pH of 5.6, Fe 2+ release was approximately 0.77 mol Fe 2+ per mol Hg(II) removed, suggesting that 77% of Hg(II) was removed via precipitation reaction under these conditions, with 23% of Hg(II) removed by adsorption. Aeration does not cause significant release of Hg(II) into the water phase

  1. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  2. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  3. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  4. Environmental Exposure of Children to Toxic Trace Elements (Hg, Cr, As) in an Urban Area of Yucatan, Mexico: Water, Blood, and Urine Levels.

    Science.gov (United States)

    Arcega-Cabrera, F; Fargher, L; Quesadas-Rojas, M; Moo-Puc, R; Oceguera-Vargas, I; Noreña-Barroso, E; Yáñez-Estrada, L; Alvarado, J; González, L; Pérez-Herrera, N; Pérez-Medina, S

    2018-05-01

    Merida is the largest urban center in the Mexican State of Yucatan. Here domestic sewage is deposited in poorly built septic tanks and is not adequately treated. Because of contamination from such waste, water from the top 20 m of the aquifer is unsuitable for human consumption. Given this situation and because children are highly vulnerable to environmental pollution, including exposure to toxic trace elements, this study focused on evaluating the exposure of children to arsenic (As), chromium (Cr), and mercury (Hg) in water. It also evaluated the relationship between the levels of these elements in water and their concentrations in urine and blood. Among the 33 children monitored in the study, arsenic surpassed WHO limits for blood in 37% of the cases, which could result from the ingestion of poultry contaminated with organoarsenic compounds. In the case of WHO limits for Mercury, 65% of the water samples analyzed, 28% of urine samples, and 12% of blood samples exceeded them. Mercury exposure was correlated with biological sex, some lifestyle factors, and the zone in Merida in which children live. These data suggest that the levels of some toxic metals in children may be affected by water source, socioeconomic factors, and individual behavior.

  5. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  6. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  7. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  8. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  9. Distribution and accumulation of Cd, Cu, Hg, Pb and Zn in the surface sediments of El Tobari Lagoon, central-East Gulf of California: An ecosystem associated with agriculture and aquaculture activities.

    Science.gov (United States)

    Jara-Marini, M E; Tapia-Alcaraz, J N; Dumer-Gutiérrez, J A; García-Rico, L; García-Hernández, J; Páez-Osuna, F

    2013-01-01

    The purpose of this research is to provide a comprehensive assessment of the concentration levels and spatial variability of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn) in El Tobari Lagoon in surface sediments during two seasons for several geochemical variables that could explain the observed heavy metal variability. Seventy-two surface sediments samples were collected in 12 different sites of the El Tobari Lagoon. Sediment samples were dried and subjected to acid extraction using a microwave system and five metals (Cd, Cu, Hg, Pb and Zn) were measured using atomic adsorption spectrometry. A certificate sediment material and blanks were used as quality control purposes. The enrichment factor (EF) and the index of geoaccumulation (Igeo) were calculated as index of metals contamination for the sediments, using aluminum as the conservative element. The five metals examined in sediments from El Tobari Lagoon exhibited a linear correlation with Al as result of the large specific surface areas of these sediment components and the chemical affinities between them. The metals contents in sites of the El Tobari Lagoon were variable, and Cd, Cu and Hg presented a seasonal behavior. The enrichment factor and index of geoaccumulation analysis indicated that Cd and Hg exhibited a certain extent (EF for Cd ranged from 4.10 to 10.29; EF for Hg ranged from 2.77 to 12.89) of anthropogenic pollution, while Cu showed sporadic (EF ranged from 0.43 to 2.54) anthropogenic contamination. The highest concentrations of Cd, Cu and Hg were found in the sites that regularly received discharge effluents from agriculture and aquaculture.

  10. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    Science.gov (United States)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  11. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  12. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  13. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  14. Inorganic mercury (Hg2+ uptake by different plankton fractions of Andean Patagonian lakes (Argentina

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available The species composition and the size structure of natural planktonic food webs may provide essential information to understand the fate of mercury and, in particular, the bioaccumulation pattern of Hg2+ in the water column of lake ecosystems. Heterotrophic and autotrophic picoplankton and phytoplankton are the most important entry points for Hg in aquatic ecosystems since they concentrate Hg2+ and MeHg from ambient water, making them available to planktonic consumers at higher trophic levels of lake food webs. In this investigation we studied the uptake of 197Hg2+ in natural plankton assemblages from four Andean lakes (Nahuel Huapi National Park, Patagonia, Argentina, comprised in the size fractions 0.2-2.7 μm (picoplankton, 0.2-20 μm (pico and nanoplankton and 20-50 μm (microplankton through experiments using Hg2+ labeled with 197Hg2+. The experimental results showed that the uptake of Hg2+ was highest in the smallest plankton fractions (0.2-2.7 μm and 0.2-20 μm compared to the larger fraction comprising microplankton (20-50 um. This pattern was consistent in all lakes, reinforcing the idea that among pelagic organisms, heterotrophic and autotrophic bacteria with the contribution of nanoflagellates and dinoflagellates constitute the main entry point of Hg2+ to the pelagic food web. Moreover, a significant direct relationship was found between the Hg2+ uptake and surface index of the planktonic fractions (SIf. Thus, the smaller planktonic fractions which bore the higher SI were the major contributors to the Hg2+ passing from the abiotic to the biotic pelagic compartments of these Andean lakes.

  15. Highly sensitive optical sensor that detects Hg"2"+ and Cu"2"+ by immobilizing dicarboxylate 1,5-diphenyl-3-thiocarbazone on surface functionalized PVA microspheres

    International Nuclear Information System (INIS)

    Bai, Xue; Gu, Haixin; Hua, Zulin; Dai, Zhangyan; Yang, Bei; Li, Yulong

    2015-01-01

    Highlights: • PVA microspheres were chosen as carrier and DDT groups were chosen as chromophores. • The DDT–PVA microspheres could detect Hg"2"+ and Cu"2"+ simultaneously within 120 s. • The DDT–PVA microspheres had excellent detection for Hg"2"+ and Cu"2"+ ions. • The DDT–PVA microspheres had preeminent selectivity and reusability. - Abstract: A novel optical sensor to detect Hg"2"+ and Cu"2"+ is prepared by immobilizing a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (DDT) group on functionalized polyvinyl alcohol (PVA) microspheres. This optical sensor is successfully fabricated by extensive characterization with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Its colorimetric properties, selectivity, sensitivity, and reversibility are investigated as well. In this sensing system, DDT–PVA selectively recognized multiple heavy metal ions, as indicated by the changes in color from orange to scarlet for Hg"2"+ and from orange to gray for Cu"2"+. In particular, this optical sensor exhibits the most apparent color changes at pH levels of 12 and 2. Hence, Hg"2"+ and Cu"2"+ can be detected in aqueous solution at minimum detection limits of 0.053 and 0.132 μM, respectively, with a UV-vis spectrometer. Furthermore, the sensor can be regenerated by ethylene diamine tetraacetic acid and reused several times. Therefore, the optical sensor can detect Hg"2"+ because of its selectivity, sensitivity, and reversibility.

  16. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  17. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment

  18. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  19. Stability of binary complexes of Pb(II, Cd(II and Hg(II with maleic acid in TX100-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Ramanaiah

    2014-09-01

    Full Text Available Binary complexes of maleic acid with toxic metal ions such as Pb(II, Cd(II and Hg(II have been studied in 0.0-2.5% v/v tritonX-100 (TX100 - water media at 303 K at an ionic strength of 0.16 M. The active forms of the ligand are LH2, LH- and L2-. The derived ‘best fit’ chemical speciation models are based on crystallographic R-factors, χ2 and Skewness and Kurtosis factors. The predominant species formed are of the type ML2, ML2H and ML3. The trend in variation of complex stability constants with change in the mole fraction of the medium is explained on the basis of prevailing electrostatic and non-electrostatic forces. The species distribution as a function of pH at different compositions of TX100-water mixtures and plausible speciation equilibria are presented and discussed. DOI: http://dx.doi.org/10.4314/bcse.v28i3.7

  20. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  1. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  2. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  3. 196Hg and 202Hg isotopic ratios in chondrites: revisited

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.

    1976-01-01

    Additional evidence for an isotopically anomalous Hg fraction in unequilibrated meteorites has been obtained using neutron activation to produce 196 Hg and 202 Hg followed by stepwise heating to extract the Hg. In the latest experiments Allende matrix samples released the anomalous Hg but various high-temperature inclusions did not. Nucleogenetic processes are suggested as the probable cause of the anomaly. (Auth.)

  4. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  5. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  6. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality.

    Science.gov (United States)

    Atanacković, Nebojša; Dragišić, Veselin; Stojković, Jana; Papić, Petar; Zivanović, Vladimir

    2013-11-01

    Upon completion of exploration and extraction of mineral resources, many mining sites have been abandoned without previously putting environmental protection measures in place. As a consequence, mine waters originating from such sites are discharged freely into surface water. Regional scale analyses were conducted to determine the hydrochemical characteristics of mine waters from abandoned sites featuring metal (Cu, Pb-Zn, Au, Fe, Sb, Mo, Bi, Hg) deposits, non-metallic minerals (coal, Mg, F, B) and uranium. The study included 80 mine water samples from 59 abandoned mining sites. Their cation composition was dominated by Ca2+, while the most common anions were found to be SO4(2-) and HCO3-. Strong correlations were established between the pH level and metal (Fe, Mn, Zn, Cu) concentrations in the mine waters. Hierarchical cluster analysis was applied to parameters generally indicative of pollution, such as pH, TDS, SO4(2-), Fe total, and As total. Following this approach, mine water samples were grouped into three main clusters and six subclusters, depending on their potential environmental impact. Principal component analysis was used to group together variables that share the same variance. The extracted principal components indicated that sulfide oxidation and weathering of silicate and carbonate rocks were the primary processes, while pH buffering, adsorption and ion exchange were secondary drivers of the chemical composition of the analyzed mine waters. Surface waters, which received the mine waters, were examined. Analysis showed increases of sulfate and metal concentrations and general degradation of surface water quality.

  7. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  8. High-resolution measurements of elemental mercury in surface water for an improved quantitative understanding of the Baltic Sea as a source of atmospheric mercury

    Science.gov (United States)

    Kuss, Joachim; Krüger, Siegfried; Ruickoldt, Johann; Wlost, Klaus-Peter

    2018-03-01

    Marginal seas are directly subjected to anthropogenic and natural influences from land in addition to receiving inputs from the atmosphere and open ocean. Together these lead to pronounced gradients and strong dynamic changes. However, in the case of mercury emissions from these seas, estimates often fail to adequately account for the spatial and temporal variability of the elemental mercury concentration in surface water (Hg0wat). In this study, a method to measure Hg0wat at high resolution was devised and subsequently validated. The better-resolved Hg0wat dataset, consisting of about one measurement per nautical mile, yielded insight into the sea's small-scale variability and thus improved the quantification of the sea's Hg0 emission. This is important because global marine Hg0 emissions constitute a major source of atmospheric mercury. Research campaigns in the Baltic Sea were carried out between 2011 and 2015 during which Hg0 both in surface water and in ambient air were measured. For the former, two types of equilibrators were used. A membrane equilibrator enabled continuous equilibration and a bottle equilibrator assured that equilibrium was reached for validation. The measurements were combined with data obtained in the Baltic Sea in 2006 from a bottle equilibrator only. The Hg0 sea-air flux was newly calculated with the combined dataset based on current knowledge of the Hg0 Schmidt number, Henry's law constant, and a widely used gas exchange transfer velocity parameterization. By using a newly developed pump-CTD with increased pumping capability in the Hg0 equilibrator measurements, Hg0wat could also be characterized in deeper water layers. A process study carried out near the Swedish island Øland in August 2015 showed that the upwelling of Hg0-depleted water contributed to Hg0 emissions of the Baltic Sea. However, a delay of a few days after contact between the upwelled water and light was apparently necessary before the biotic and abiotic transformations

  9. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Surface water; groundwater; stable isotopes; water quality; Second Songhua River basin. .... The total dissolved solid (TDS) was calculated by the con- centrations of major ions in ...... evaluating water quality management effectiveness; J.

  10. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong; Zhang, Lianbin; Wang, Peng

    2017-01-01

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH

  11. Physico-chemical state of mercury, cadmium, and zinc in surface waters of arid zone of the USSR

    International Nuclear Information System (INIS)

    Kulmatov, R.A.; Rakhmatov, U.; Kist, A.A.; Savenko, V.S.

    1983-01-01

    Experimental study was made on physico-chemical state of high-toxic heavy metals (Zn, Cd, and Hg) in waters of the Aral Sea and the Syr Darya and the Amu Darya rivers, representing the basic resrevoirs of surface waters of the Middle Asia. The complex of high-sensitive and selective radioanalytical techniques was developed for solution of the problem. The complex uncludes ultrafiltration, centrifugation, electrodialysis, sorption on sorbents of different nature, as well as neutron activation analysis. It was established that the major part of Hg, Cd and Zn can migrate in surface waters of the Middle Asia in the form of real and colloidal solutions. Zn and Cd are characterized by the prevalence of cationic really dissolved forms and Hg-anionic neutral and colloidal forms. The presence of the major mass of the given elements in the form of real and the finest colloids which are rather stable forms and can be transfered to long distances points to the promising character of applying hydrochemical methods of prospecting in arid zone of the USSR, because dispersion aureoles must be sufficiently wide. Possibility of formation of large aureoles of natural water contamination in the regions of mining and metallurgical enterprises must be considered as well

  12. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  13. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  14. Sampling problems and the determination of mercury in surface water, seawater, and air

    International Nuclear Information System (INIS)

    Das, H.A.; van der Sloot, H.A.

    1976-01-01

    Analysis of surface water for mercury comprises the determination of both ionic and organically bound mercury in solution and that of the total mercury content of the suspended matter. Eventually, metallic mercury has to be determined too. Requirements for the sampling procedure are given. A method for the routine determination of mercury in surface water and seawater was developed and applied to Dutch surface waters. The total sample volume is 2500 ml. About 500 ml is used for the determination of the content of suspended matter and the total amount of mercury in the water. The sample is filtered through a bed of previously purified active charcoal at a low flow-rate. The main portion ca. 2000 ml) passes a flow-through centrifuge to separate the solid fraction. One liter is used to separate ''inorganic'' mercury by reduction, volatilization in an airstream and adsorption on active charcoal. The other liter is led through a column of active charcoal to collect all mercury. The procedures were checked with 197 Hg radiotracer both as an ion and incorporated in organic compounds. The mercury is determined by thermal neutron activation, followed by volatilization in a tube furnace and adsorption on a fresh carbon bed. The limit of determination is approximately equal to 1 ng 1 -1 . The rate of desorption from and adsorption on suspended material has been measured as a function of a pH of the solution for Hg +2 and various other ions. It can be concluded that only the procedure mentioned above does not disturb the equilibrium. The separation of mercury from air is obtained by suction of 1 m 3 through a 0.22 μm filter and a charcoal bed. The determination is then performed as in the case of the water samples

  15. Study on the application of magnesium oxide adsorptive compound to preconcentrate trace elements (As, Cu, Co, Cr, Hg, Mn, Sb and Zn) in high salt water and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Giang, Nguyen; Tam, Nguyen Thanh; Phuong Mai, Truong Thi; Ho Tran The Huu [Center for Analytical Techniques, Nuclear Research Institute, Dalat (Viet Nam)

    2007-12-15

    The project presents preconcentration neutron activation analysis techniques for determination of trace metals (As, Co, Cr Cu, Hg, Mn, Sb and Zn) in high salt water by adsorption of trace metals on magnesium oxide. Precipitate is collected on 0.45 {mu}m membrane filters and irradiated in pneumatic rabit system and Lazy Susan facility at flux 5.10{sup 12} n/cm{sup 2}.sec for As, Cu, Mn and 2.10{sup 12} n/cm{sup 2}.sec for Hg, Sb, Cr, Co and Zn. The radioactivities of {sup 76}As, {sup 60}Co, {sup 64}Cu, {sup 51}Cr, {sup 203}Hg, {sup 56}Mn, {sup 124}Sb and {sup 65}Zn were measured. {sup 76}As, {sup 60}Co, {sup 64}Cu, {sup 51}Cr, {sup 203}Hg, {sup 56}Mn, {sup 124}Sb and {sup 65}Zn radio traces were used to establish optimum conditions and to evaluate the chemical yield. Detection limits of this method are 0.019, 0.006, 0.044, 0.058, 0.021, 0.027, 0.012 and 0.094 {mu}g of As, Co, Cr, Cu, Hg, Mn, Sb and Zn respectively. (author)

  16. The average concentrations of As, Cd, Cr, Hg, Ni and Pb in residential soil and drinking water obtained from springs and wells in Rosia Montana area.

    Data.gov (United States)

    U.S. Environmental Protection Agency — The average concentrations of As, Cd, Cr, Hg, Ni and Pb in n=84 residential soil samples, in Rosia Montana area, analyzed by X-ray fluorescence spectrometry are...

  17. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  18. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  19. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  20. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  1. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  2. Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography

    Science.gov (United States)

    Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao

    2018-02-01

    Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.

  3. Validation of the methodology for determining As, Sb, Hg, and Se in the water supply in Tudela, Navarra, spain, by atomic absorption; Validacion de la metodologia para la determinacion de As, Sb, Hg, y Se en aguas de abastecimiento a Tudela (Navarra) por absorcion atomica

    Energy Technology Data Exchange (ETDEWEB)

    Gale, M. A.; Cebrian, N.; Ormad, P.; Ovelleiro, J. L.

    2002-07-01

    In compliance with the current regulations on water quality, an analytical methodology has been put in place in the laboratory of the waste water treatment plant in Tudela, Navarre (Spain) to monitor As, Sb, Hg, and Se in the water going into the public water supply. The technique used to monitor these elements is atomic absorption spectrometry, As, Sb, Se are determined by the generation of hydrides and Hg by the generation of cold vapour. In addition, in order to ensure the authenticity of the results, the methodology employed has been validated by a study of the following technical characteristics: linearity, work interval, sensitivity, precision and accuracy. Extremely satisfactory results were obtained in all cases. A linear range between 0 and 1000 mg/l for all four elements and extremely low detection and quantification limits (less than 1 mg/l) were found. In the study of the method's accuracy, the C. V. s were below the legally established minima and the method was found to be very accurate. (Author) 18 refs.

  4. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  5. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  6. Intracellular Hg(0) Oxidation in Desulfovibrio desulfuricans ND132.

    Science.gov (United States)

    Wang, Yuwei; Schaefer, Jeffra K; Mishra, Bhoopesh; Yee, Nathan

    2016-10-03

    The disposal of elemental mercury (Hg(0)) wastes in mining and manufacturing areas has caused serious soil and groundwater contamination issues. Under anoxic conditions, certain anaerobic bacteria can oxidize dissolved elemental mercury and convert the oxidized Hg to neurotoxic methylmercury. In this study, we conducted experiments with the Hg-methylating bacterium Desulfovibrio desulfuricans ND132 to elucidate the role of cellular thiols in anaerobic Hg(0) oxidation. The concentrations of cell-surface and intracellular thiols were measured, and specific fractions of D. desulfuricans ND132 were examined for Hg(0) oxidation activity and analyzed with extended X-ray absorption fine structure (EXAFS) spectroscopy. The experimental data indicate that intracellular thiol concentrations are approximately six times higher than those of the cell wall. Cells reacted with a thiol-blocking reagent were severely impaired in Hg(0) oxidation activity. Spheroplasts lacking cell walls rapidly oxidized Hg(0) to Hg(II), while cell wall fragments exhibited low reactivity toward Hg(0). EXAFS analysis of spheroplast samples revealed that multiple different forms of Hg-thiols are produced by the Hg(0) oxidation reaction and that the local coordination environment of the oxidized Hg changes with reaction time. The results of this study indicate that Hg(0) oxidation in D. desulfuricans ND132 is an intracellular process that occurs by reaction with thiol-containing molecules.

  7. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  8. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  9. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    Science.gov (United States)

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  10. TURBIDITY REMOVAL FROM SURFACE WATER USING ...

    African Journals Online (AJOL)

    User

    2016-06-01

    Jun 1, 2016 ... Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. ... Conventional water treatment systems involve the use of synthetic ..... Thesis, Royal Institute of Technology (KTH),.

  11. Spatial aspects of surface water quality in the Jakara Basin, Nigeria using chemometric analysis.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin

    2012-01-01

    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.

  12. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    Science.gov (United States)

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from water samples contained concentrations of As (drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.

  13. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  14. HgSe(Te)-HgHal2 systems

    International Nuclear Information System (INIS)

    Pan'ko, V.V.; Khudolij, V.A.; Voroshilov, Yu.V.

    1989-01-01

    Using the methods of differential thermal and X-ray phase analyses the character of chemical interaction in the systems HgTe(Se)-HgHal 2 , where Hal is Cl, Br, I, is investigated. Formation of compounds Hg 3 Se 2 Hal 2 , Hg 3 Te 2 Hal 2 , Hg 3 TeCl 4 and Hg 3 TeBr 4 in these systems is established. The phase diagrams of the studied systems are presented. The parameters of elementary cells of the compounds with the unknown structure, as well as their unknown physicochemical properties, are determined

  15. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  16. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  17. Investigation of chemical forms of elements in surface waters

    International Nuclear Information System (INIS)

    Varshal, G.M.; Velyukhanova, T.K.; Koshcheeva, I.Ya.; Dorofeeva, V.A.; Buachidze, N.S.; Kasimova, O.G.; Makharadze, G.A.

    1983-01-01

    The main trends in the research of the state of elements in natural waters are examined. The hydrolysis of CU(2), Hg(2), Au(3), Sb(3), Ru(4) over a pH range, specific for natural waters, has been studied by solubility and paper electrophoresis technnques and by filtration through cellulose ionites. The regions of predominating different forms of hydroxo complexes have been found and the thermodynamic constants of hydrolysis equilibria have been calculated. Solubility, filtration through sephadexes and cellulose ionites, paper electrophoresis techniques were used to study the complexation of Cu(2), Hg(2), Au(3), Sb(3), Ru(4) with fulvic acids. Some data have been obtained on the composition, stability and molecular-mass distribution of fulvate complexes of ten elements in different oxidation states. High-molecular anionic fulvate complexes are among main forms of most easily hydrolysed elments in solution. The possibility has been shown of prediction of the ratio of coexisting forms of trace elements in solution by theoretical calculations and experimentally Using fractionation on cellulose ionites and sephadexes

  18. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  19. Hg(+) Frequency Standards

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  20. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  1. Investigation of the change in CdxHg1-xTe surface chemical structure under processing in N2O and H2 gases activated by a high-frequency discharge

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Zakhar'yash, T.I.; Kesler, V.G.; Parm, I.O.; Solov'ev, A.P.

    2001-01-01

    The change in Cd x Hg 1-x Te (CTM) surface chemical composition is investigated during the processing by atomic beams of oxygen and hydrogen, obtained by a method of the electronic impact in a high-frequency plasma (N 2 O and H 2 ). The analysis is carried out using methods of Auger electron spectroscopy and X-ray photoelectron spectroscopy. It is shown that consecutive treatment by beams of atomic oxygen and hydrogen results in removing from the sample surface as carbon impurities so a layer of as-grown oxide and metallic tellurium. It is concluded that the suggested technique of CTM substrate surface pretreatment can be used efficiently in manufacturing semiconductor junctions [ru

  2. Instability of confined water films between elastic surfaces

    NARCIS (Netherlands)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Friedrich

    2010-01-01

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a

  3. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  4. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  5. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  6. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  7. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  8. Issues of the presence of parasitic protozoa in surface waters

    Directory of Open Access Journals (Sweden)

    Hawrylik Eliza

    2018-01-01

    This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  9. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  10. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  11. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  12. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    The majority of South African inland surface water sources are compromised due to a long-standing national policy of mandatory return flows. With renewed emphasis on the removal of organic carbon in the latest SANS 241 water quality standard, many South African water treatment managers may need to consider ...

  13. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  14. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  15. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  16. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  17. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+.

    Science.gov (United States)

    Zhou, Na; Li, Jinhua; Chen, Hao; Liao, Chunyang; Chen, Lingxin

    2013-02-21

    A simple and sensitive electrochemical assay strategy of stripping voltammetry for mercury ions (Hg(2+)) detection is described based on the synergistic effect between ionic liquid functionalized graphene oxide (GO-IL) and gold nanoparticles (AuNPs). The AuNPs-GO-IL modified onto glassy carbon electrode (GCE) resulted in highly enhanced electron conductive nanostructured membrane and large electroactive surface area, which was excellently examined by scanning electron microscopy and cyclic voltammetry. After accumulating Hg(2+), anodic stripping voltammetry (ASV) was performed, and differential pulse voltammetry (DPV) was employed for signal recording of Hg(2+). Several main experimental parameters were optimized, i.e., deposition potential and time of AuNPs were -0.2 V and 180 s, respectively, and accumulation potential and time of Hg(2+) were -0.3 V and 660 s, respectively. Under the optimal conditions, this AuNPs-GO-IL-GCE sensor attained a good linearity in a wide range of 0.1-100 nM (R = 0.9808) between the concentration of the Hg(2+) standard and peak current. The limit of detection was estimated to be 0.03 nM at a signal-to-noise ratio of 3σ. A variety of common coexistent ions in water samples were investigated, showing no obvious interferences on the Hg(2+) detection. The practical application of the proposed sensor has been carried out and demonstrated as feasible for determination of trace levels of Hg(2+) in drinking and environmental water samples.

  18. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...

  19. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  20. Study of the odd mass transition nuclei: 185Hg, 187Hg, 189Hg and 183Ir

    International Nuclear Information System (INIS)

    Zerrouki, A.

    1979-01-01

    The radioactive decay of 185 Tl, 186 Tl, 187 Tl has been studied on the isotope separator Isocele II working on line with the Orsay synchrocyclotron from Au( 3 He,xn) reactions: the emitted α lines have been measured and the main γ lines belonging to the 187 Tl→ 187 Hg decay have been identified. The 185 Hg, 187 Hg, 189 Hg high spin states have been studied using the following (HI,xn) reactions obtained on the Strasbourg MP Tandem: 168 Er( 24 Mg,xn) 187 Hg, 188 Hg, 166 Er( 24 Mg,xn) 185 Hg, 186 Hg, 157 Gd( 32 S,xn) 184 Hg, 185 Hg, 158 Gd( 32 S,5n) 185 Hg and 175 Lu( 19 F,5n) 189 Hg. The excitation functions are indicated and a high spin level scheme of 189 Hg is proposed: it is compared to the 'quasiparticle + triaxial rotor' model predictions. A level scheme of 183 Ir is proposed from the data collected at Isolde II (CERN) by Dr. SCHUCK: it is analysed within the framework of the same theoretical model used above [fr

  1. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  2. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    Science.gov (United States)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral

  3. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  4. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  5. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  6. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gradient measurements of gaseous elemental mercury (Hg0) in the marine boundary layer of the northwest Sea of Japan (East Sea).

    Science.gov (United States)

    Kalinchuk, Viktor; Lopatnikov, Evgeny; Astakhov, Anatoly

    2018-06-01

    Gaseous elemental mercury (Hg 0 ) is a prolific and persistent contaminant in the atmosphere. Atmospheric concentrations of Hg 0 were determined from 17 September to 7 October 2015 in the northwest Sea of Japan aboard the Russian research vessel Professor Gagarinsky. Simultaneous measurements of Hg 0 concentrations were performed 2 m and 20 m above the sea surface using automatic Hg 0 analysers RA-915M and RA-915+, respectively. Concentrations ranged from 0.3 to 25.9 ng/m 3 (n = 5207) and from 0.3 to 27.8 ng/m 3 (n = 4415), with medians of 1.7 and 1.6 ng/m 3 , respectively. Elevated Hg 0 was observed during three episodes from 19 to 22 September, likely caused by one or more of the following factors: 1) atmospheric transport of Hg 0 from the west and south-west (from N. Korea, China, and the Yellow Sea region); 2) Hg 0 emission from the sea due to pollution by water from the Tumannaya River; or 3) underwater geological activities. Increased Hg 0 concentration was observed during periods when air masses flowed from the south, and low concentrations were observed when air masses came from the north. A daytime increase of Hg 0 concentrations at a height of 2 m occurred simultaneously with decreasing Hg 0 at a height of 20 m. These diurnal variations suggest that two contrasting processes occur during the daytime in the marine boundary layer (MBL): Hg 0 emission from the sea surface and Hg 0 oxidation in the MBL by active halogens formed by photolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ionization by a pulsed plasma surface water

    International Nuclear Information System (INIS)

    Bloyet, E.; Leprince, P.; Marec, J.; Llamas Blasco, M.

    1981-01-01

    The ionization mechanism is studied of a pulsed surface wave generating a microwave discharge. When the plasma is dominated by collisions, it is found that the velocity of the ionization front depends on the ponderomotive force due to the field gradient in the front. (orig.)

  9. Guidelines for surface water quality, vol. l

    International Nuclear Information System (INIS)

    1983-01-01

    A literature survey was carried out on the chemically toxic effects of uranium and uranium compounds on human health, aquatic life, plants and livestock. All the information collected is summarized in this document and, from it, maximum uranium concentrations in water at which toxic effects will not appear are recommended

  10. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  11. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  12. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  13. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  14. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Soltani-Felehgari, Farzaneh; Madrakian, Tayyebeh; Ghaedi, Hamed; Rezaeivala, Majid

    2013-01-01

    Highlights: ► A new modified electrochemical sensor was constructed and used. ► A new Schiff base coated nano-silica was used as modifier. ► The electrochemical properties of electrode were studied. ► This modifier enhanced the electrochemical properties of electrode. ► The electrode was used for simultaneous determination of Cd 2+ , Cu 2+ and Hg 2+ ions. -- Abstract: A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL −1 for the determination of Cd 2+ , Cu 2+ and Hg 2+ , respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd 2+ , Cu 2+ and Hg 2+ . Furthermore, the present method was applied to the determination of Cd 2+ , Cu 2+ and Hg 2+ in water and some foodstuff samples

  15. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  16. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    were investigated in this study: Nine samples from different surface water bodies, two samples from two effluent sources ... Ezeagu, Udi, Nkanu, Oji River and some parts of Awgu and Aninri ..... Study of Stream Output from Small Catchments.

  17. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  18. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  19. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  20. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Moreau, S.; Fenart, M.; Renault, J.P.

    2014-01-01

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  1. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  2. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.

    2013-01-01

    (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  3. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  4. Assessment of Hg contamination and exposure to miners and schoolchildren at a small-scale gold mining and recovery operation in Thailand.

    Science.gov (United States)

    Umbangtalad, S; Parkpian, P; Visvanathan, C; Delaune, R D; Jugsujinda, A

    2007-12-01

    Gold extracted by Hg-amalgamation process, which can cause both health and environmental problems, is widespread in South East Asia including Myanmar, Laos, Cambodia, and Thailand. Small-scale gold mining operations have been carried out since the year 2000 in Phanom Pha District, Phichit Province, Thailand. Since no data is available for evaluating Hg exposure, an investigation of mercury (Hg) contamination and exposure assessment was carried out at this mine site. Environmental monitoring illustrated the total Hg in water was as high as 4 microg/l while Hg in sediment ranged between 102 to 325 microg/kg dry weight. Both Hg deposition from the air (1.28 microg/100 cm(2)/day) and concentration in surface soil (20,960 microg/kg dry weight) were elevated in the area of amalgamation. The potential of Hg exposure to miners as well as to schoolchildren was assessed. The concentrations of Hg in urine of 79 miners who were directly (group I) or indirectly (group II) involved in the gold recovery operation were 32.02 and 20.04 microg/g creatinine, respectively, which did not exceed regulatory limits (35 microg/g creatinine). Hair Hg levels in both groups (group I and group II) also were not significantly higher than the non-exposed group. In terms of risk factors, gender and nature of food preparation and consumption were the two significant variables influencing the concentration of Hg in urine of miners (P mining process. In a second Hg exposure assessment, a group of 59 schoolchildren who attended an elementary school near the gold mine site was evaluated for Hg exposure. A slightly higher Hg urine concentration was detected in group I and group II (involved and not involved in gold recovery) at average levels of 15.82 and 9.95 microg/g creatinine, respectively. The average Hg values for both groups were below the established levels indicating no risk from Hg intake. Average Hg hair level in all schoolchildren (0.93 microg/g) was not significantly higher than reference

  5. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time.

    Science.gov (United States)

    Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei

    2013-09-15

    An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  7. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  8. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  9. Recovery from acidification in European surface waters

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.

    2001-01-01

    Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001

  10. Recovery of acidified European surface waters

    Czech Academy of Sciences Publication Activity Database

    Wright, R. F.; Larssen, T.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, Jiří; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.

    2005-01-01

    Roč. 39, č. 3 (2005), 64A-72A ISSN 0013-936X. [ Acid Rain 2005. International Conference on Acid Deposition /7./. Prague, 12.06.2005-17.06.2005] Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER:2010 EVK1-CT-1999-00018; DEFRA(GB) EPG 1/3/194; ICST(ES) REN2000-0889/GLO Institutional research plan: CEZ:AV0Z60170517 Keywords : acid ification * recovery * European lake districts Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.054, year: 2005

  11. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  12. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  13. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  14. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun; Yang, Jieyi; Wan, Fang; Ge, Quan; Yang, Longlai; Ding, Zunliang; Yang, Dequan; Sacher, Edward R.; Isimjan, Tayirjan T.

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a

  15. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  16. Pesticides distribution in surface waters and sediments of lotic and ...

    African Journals Online (AJOL)

    An investigation on the availability and distribution of Lindane (HCHs) and Total organochlorine phosphate (TOCP) in the surface waters and sediments of selected water bodies in Agbede wetlands was carried out from December, 2012 to May, 2014 in order to cover seasonal trends in both matrixes. A Gas Chromatograph ...

  17. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we

  18. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  19. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  20. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  1. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  2. Influence of Road Surface Microtexture on Thin Water Film Traction

    OpenAIRE

    BEAUTRU , Yannick; Kane , Malal; Do , Minh Tan; Cerezo , Véronique

    2012-01-01

    This paper deals with the contribution of road surface microtexture to the relationship between tire/road friction and water depth. The main objectives are the estimation of local water depths trapped at the tire/road interface and the definition of a critical water depth which can be used for driver assistance and information systems. Tests are performed in laboratory. Specimens are slabs made of asphalt concrete and mosaics composed of coarse aggregates. The aggregate mosaics are sandblaste...

  3. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  4. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  5. Context of surveillance of underground and surface waters

    International Nuclear Information System (INIS)

    2010-01-01

    This document briefly describes the evolutions of regulations on site liquid effluents and of guideline values concerning radioactive wastes, briefly presents the surveillance of underground and surface waters of CEA sites, comments the guideline values of the radiological quality of waters aimed at human consumption, and gives an overview of information which are brought to public's attention. Then, for different CEA sites (Cadarache, Marcoule, Saclay, Grenoble, Fontenay-aux-Roses, Valduc, DIF), this document proposes a presentation of the hydrological context, regulatory context, the surface and underground water surveillance process and values, the storing zones of old wastes

  6. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  7. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  8. Mercury Stable Isotopes Discriminate Different Populations of European Seabass and Trace Potential Hg Sources around Europe.

    Science.gov (United States)

    Cransveld, Alice; Amouroux, David; Tessier, Emmanuel; Koutrakis, Emmanuil; Ozturk, Ayaka A; Bettoso, Nicola; Mieiro, Cláudia L; Bérail, Sylvain; Barre, Julien P G; Sturaro, Nicolas; Schnitzler, Joseph; Das, Krishna

    2017-11-07

    Our study reports the first data on mercury (Hg) isotope composition in marine European fish, for seven distinct populations of the European seabass, Dicentrarchus labrax. The use of δ 202 Hg and Δ 199 Hg values in SIBER enabled us to estimate Hg isotopic niches, successfully discriminating several populations. Recursive-partitioning analyses demonstrated the relevance of Hg stable isotopes as discriminating tools. Hg isotopic values also provided insight on Hg contamination sources for biota in coastal environment. The overall narrow range of δ 202 Hg around Europe was suggested to be related to a global atmospheric contamination while δ 202 Hg at some sites was linked either to background contamination, or with local contamination sources. Δ 199 Hg was related to Hg levels of fish but we also suggest a relation with ecological conditions. Throughout this study, results from the Black Sea population stood out, displaying a Hg cycling similar to fresh water lakes. Our findings bring out the possibility to use Hg isotopes in order to discriminate distinct populations, to explore the Hg cycle on a large scale (Europe) and to distinguish sites contaminated by global versus local Hg source. The interest of using Hg sable isotopes to investigate the whole European Hg cycle is clearly highlighted.

  9. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.

    Science.gov (United States)

    Moche, Martin; Schlüter, Rabea; Bernhardt, Jörg; Plate, Kristina; Riedel, Katharina; Hecker, Michael; Becher, Dörte

    2015-09-04

    Staphylococcal biofilms are associated with persistent infections due to their capacity to protect bacteria against the host's immune system and antibiotics. Cell-surface-associated proteins are of great importance during biofilm formation. In the present study, an optimized biotinylation approach for quantitative GeLC-MS-based analysis of the staphylococcal cell-surface proteome was applied and the cytoplasmic protein fraction was analyzed to elucidate proteomic differences between colony biofilms and planktonic cells. The experimental setup enabled a time-resolved monitoring of the proteome under both culture conditions and the comparison of biofilm cells to planktonic cells at several time points. This allowed discrimination of differences attributed to delayed growth phases from responses provoked by biofilm conditions. Biofilm cells expressed CcpA-dependent catabolic proteins earlier than planktonic cells and strongly accumulated proteins that belong to the SigB stress regulon. The amount of the cell-surface protein and virulence gene regulator Rot decreased within biofilms and MgrA-dependent regulations appeared more pronounced. Biofilm cells simultaneously up-regulated activators (e.g., SarZ) as well as repressors (e.g., SarX) of RNAIII. A decreased amount of high-affinity iron uptake systems and an increased amount of the iron-storage protein FtnA possibly indicated a lower demand of iron in biofilms.

  10. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  11. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  12. Collective structures in 185Hg

    International Nuclear Information System (INIS)

    Bourgeois, C.; Hildingsson, L.; Perrin, N.; Sergolle, H.; Hannachi, F.; Bastin, G.; Porquet, M.G.; Thibaud, J.P.; Beck, F.A.; Merdinger, J.C.

    1988-01-01

    Excited states of 185 Hg have been investigated via the 161 Dy ( 28 Si, 4n) reaction at 145 MeV. In-beam gamma-ray spectroscopy studies have been performed with the ''Chateau de Cristal'' 4π-multidetector array. Level scheme of 185 Hg has been established. Shape coexistence, still present in 185 Hg like in the neighbouring Hg isotopes, manifests itself through a weakly populated decoupled band built on the 13/2+ isomer and three strongly-coupled bands built on the prolate 1/2-[521], 7/2-[514], and 9/2+[624] Nilsson states

  13. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  14. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  15. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    International Nuclear Information System (INIS)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-01-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] −1 , the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem

  16. Issues of the presence of parasitic protozoa in surface waters

    Science.gov (United States)

    Hawrylik, Eliza

    2018-02-01

    Parasitic protozoa are very numerous organisms in the environment that play an important role in the spread of water-borne diseases. Water-borne epidemics caused by parasitic protozoa are noted throughout the world. Within these organisms, intestinal protozoa of the genera Cryptosporidium and Giardia are ones of the most serious health hazards for humans. This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  17. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  18. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  19. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  20. Possibilities of surface waters monitoring at mining areas using UAV

    Directory of Open Access Journals (Sweden)

    Lisiecka Ewa

    2018-01-01

    Full Text Available The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV. The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  1. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  2. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  3. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  4. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  5. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  6. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    Science.gov (United States)

    Amado Filho, G. M.; Andrade, L. R.; Farina, M.; Malm, O.

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702±318 μg Hg g -1 was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding.

  7. An investigation of mercury sources in the Puyango-Tumbes River: Using stable Hg isotopes to characterize transboundary Hg pollution.

    Science.gov (United States)

    Schudel, Gary; Miserendino, Rebecca Adler; Veiga, Marcello M; Velasquez-López, P Colon; Lees, Peter S J; Winland-Gaetz, Sean; Davée Guimarães, Jean Remy; Bergquist, Bridget A

    2018-07-01

    Mercury (Hg) concentrations and stable isotopes along with other trace metals were examined in environmental samples from Ecuador and Peru's shared Puyango-Tumbes River in order to determine the extent to which artisanal- and small-scale gold mining (ASGM) in Portovelo-Zaruma, Ecuador contributes to Hg pollution in the downstream aquatic ecosystem. Prior studies investigated the relationship between ASGM activities and downstream Hg pollution relying primarily on Hg concentration data. In this study, Hg isotopes revealed an isotopically heavy Hg signature with negligible mass independent fractionation (MIF) in downstream sediments, which was consistent with the signature observed in the ASGM source endmember. This signature was traced as far as ∼120 km downstream of Portovelo-Zaruma, demonstrating that Hg stable isotopes can be used as a tool to fingerprint and trace sources of Hg over vast distances in freshwater environments. The success of Hg isotopes as a source tracer in fresh waters is largely due to the particle-reactive nature of Hg. Furthermore, the magnitude and extent of downstream Hg, lead, copper and zinc contamination coupled with the Hg isotopes suggest that it is unlikely that the smaller artisanal-scale activities, which do not use cyanidation, are responsible for the pollution. More likely it is the scale of ores processed and the cyanide leaching, which can release other metals and enhance Hg transport, used during small-scale gold mining that is responsible. Thus, although artisanal- and small-scale gold mining occur in tandem in Portovelo-Zaruma, a distinction should be made between these two activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  9. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  10. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  11. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  12. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  13. Wavefront modulation of water surface wave by a metasurface

    International Nuclear Information System (INIS)

    Sun Hai-Tao; Cheng Ying; Liu Xiao-Jun; Wang Jing-Shi

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. (paper)

  14. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Guangle [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 73 Guanshui Road, Guiyang, Guizhou 550002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 73 Guanshui Road, Guiyang, Guizhou 550002 (China)]. E-mail: fengxinbin@vip.skleg.cn; Wang Shaofeng [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 73 Guanshui Road, Guiyang, Guizhou 550002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Shang Lihai [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 73 Guanshui Road, Guiyang, Guizhou 550002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)

    2006-08-15

    Total Hg and methyl-Hg were evaluated in mine wastes, soils, water, and vegetations from the Wuchuan Hg-mining areas, Guizhou, China. Mine wastes contain high total Hg concentrations, ranging from 79 to 710 {mu}g g{sup -1}, and methyl-Hg from 0.32 to 3.9 ng g{sup -1}. Total Hg in soil samples range from 0.33 to 320 {mu}g g{sup -1} and methyl-Hg from 0.69 to 20 ng g{sup -1}. Vegetations present a high average total Hg concentration of 260 ng g{sup -1}, which greatly exceeds the maximum Hg concentration of 20 ng g{sup -1} recommended by the Chinese National Standard Agency for food sources. The rice samples contain elevated methyl-Hg concentrations, ranging from 4.2 to 18 ng g{sup -1}. Stream water collected from Hg-mining areas is also contaminated, containing Hg as high as 360 ng l{sup -1}, and methyl-Hg reaches up to 5.7 ng l{sup -1}. Data indicate heavy Hg-contaminations and significant conversion of methyl-Hg in the study areas. - Mercury mining activities in Wuchun, Guizhou, China have resulted in seriously mercury contamination to the local environment.

  15. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China

    International Nuclear Information System (INIS)

    Qiu Guangle; Feng Xinbin; Wang Shaofeng; Shang Lihai

    2006-01-01

    Total Hg and methyl-Hg were evaluated in mine wastes, soils, water, and vegetations from the Wuchuan Hg-mining areas, Guizhou, China. Mine wastes contain high total Hg concentrations, ranging from 79 to 710 μg g -1 , and methyl-Hg from 0.32 to 3.9 ng g -1 . Total Hg in soil samples range from 0.33 to 320 μg g -1 and methyl-Hg from 0.69 to 20 ng g -1 . Vegetations present a high average total Hg concentration of 260 ng g -1 , which greatly exceeds the maximum Hg concentration of 20 ng g -1 recommended by the Chinese National Standard Agency for food sources. The rice samples contain elevated methyl-Hg concentrations, ranging from 4.2 to 18 ng g -1 . Stream water collected from Hg-mining areas is also contaminated, containing Hg as high as 360 ng l -1 , and methyl-Hg reaches up to 5.7 ng l -1 . Data indicate heavy Hg-contaminations and significant conversion of methyl-Hg in the study areas. - Mercury mining activities in Wuchun, Guizhou, China have resulted in seriously mercury contamination to the local environment

  16. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  17. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  18. The mercury chromates Hg6Cr2O9 and Hg6Cr2O10-Preparation and crystal structures, and thermal behaviour of Hg6Cr2O9

    International Nuclear Information System (INIS)

    Weil, Matthias; Stoeger, Berthold

    2006-01-01

    The basic mercury(I) chromate(VI), Hg 6 Cr 2 O 9 (=2Hg 2 CrO 4 .Hg 2 O), has been obtained under hydrothermal conditions (200deg. C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K 2 Cr 2 O 7 . Hydrothermal treatment of microcrystalline Hg 6 Cr 2 O 9 in demineralised water at 200deg. C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg 6 Cr 2 O 10 (=2Hg 2 CrO 4 .2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg 6 Cr 2 O 9 : space group P2 1 2 1 2 1 , Z=4, a=7.3573(12), b=8.0336(13), c=20.281(3)A, 3492 structure factors, 109 parameters, R[F 2 >2σ(F 2 )]=0.0371, wR(F 2 all)=0.0517; Hg 6 Cr 2 O 10 : space group Pca2 1 , Z=4, a=11.4745(15), b=9.4359(12), c=10.3517(14)A, 3249 structure factors, 114 parameters, R[F 2 >2σ(F 2 )]=0.0398, wR(F 2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg 6 Cr 2 O 9 contains three different Hg 2 2+ dumbbells, whereas Hg 6 Cr 2 O 10 contains two different Hg 2 2+ dumbbells and two Hg 2+ cations. The Hg I -Hg I distances are characteristic and range between 2.5031(15) and 2.5286(9)A. All Hg 2 2+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg 2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07A. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66A. Upon heating at temperatures above 385deg. C, Hg 6 Cr 2 O 9 decomposes in a four-step mechanism with Cr 2 O 3 as the end-product at temperatures above 620 deg. C

  19. Molecular Dynamics Studies of Overbased Detergents on a Water Surface.

    Science.gov (United States)

    Bodnarchuk, M S; Dini, D; Heyes, D M; Breakspear, A; Chahine, S

    2017-07-25

    Molecular dynamics (MD) simulations are reported of model overbased detergent nanoparticles on a model water surface which mimic their behavior on a Langmuir trough or large water droplet in engine oil. The simulations predict that the structure of the nanoparticle on a water surface is different to when it is immersed in a bulk hydrophobic solvent. The surfactant tails are partly directed out of the water, while the carbonate core maximizes its extent of contact with the water. Umbrella sampling calculations of the potential of mean force between two particles showed that they are associated with varying degrees with a maximum binding free energy of ca. 10 k B T for the salicylate stabilized particle, ca. 8 k B T for a sulfurized alkyl phenate stabilized particle, and ca. 5 k B T for a sulfonate stabilized particle. The differences in the strength of attraction depend on the proximity of nearest approach and the energy penalty associated with the disruption of the hydration shell of water molecules around the calcium carbonate core when the two particles approach. This is greatest for the sulfonate particle, which partially loses the surfactant ions to the solution, and least for the salicylate, which forms the weakest water "cage". The particles are separated by a water hydration layer, even at the point of closest approach.

  20. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  1. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  2. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  3. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  4. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  5. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  6. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  7. Water and nutrient budgets at field and regional scale : travel times of drainage water and nutrient loads to surface water

    NARCIS (Netherlands)

    Eertwegh, van den G.A.P.H.

    2002-01-01

    Keywords : water and nutrient budget, travel time of drainage water, dual-porosity concept, agricultural nutrient losses, loads to surface water, field-scale experiments, regional-scale

  8. Delay of turbulent by surface heating in water

    International Nuclear Information System (INIS)

    Arakeri, V.H.

    1980-01-01

    Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)

  9. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  10. 46 CFR 53.10-3 - Inspection and tests (modifies HG-500 through HG-540).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Inspection and tests (modifies HG-500 through HG-540... tests (modifies HG-500 through HG-540). (a) The inspections required by HG-500 through HG-540 must be performed by the “Authorized Inspector” as defined in HG-515 of section IV of the ASME Boiler and Pressure...

  11. Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg(II)-imprinted polymer nanoparticles.

    Science.gov (United States)

    Alizadeh, Taher; Hamidi, Negin; Ganjali, Mohamad Reza; Rafiei, Faride

    2017-12-05

    Mercury ion-imprinted polymer nanoparticles (Hg-IP-NPs) were synthesized via precipitation polymerization by using itaconic acid as a functional monomer. A carbon paste electrode was impregnated with the synthesized Hg-IP-NPs and MWCNTs to obtain a highly sensitive and selective electrode for determination of Hg(II). Mercury ion is first accumulated on the electrode surface via an open circuit procedure. After reduction of Hg(II) ions to its metallic form at a negative pre-potential, square wave anodic stripping voltammetry was applied to generate the electrochemical signal. The high affinity of the Hg-IP-NPs for Hg(II) was substantiated by comparing of the signals of electrodes with imprinted and non-imprinted polymer. The beneficial effect of MWCNTs on the voltammetric signal is also demonstrated. Under the optimized conditions and at a typical working potential of +0.05 V (vs. Ag/AgCl), the electrode has a linear response in the 0.1-20 nmol L -1 Hg(II) concentration range and a 29 pM detection limit. The electrochemical sensitivity is as high as 1441 A·M -1 ·cm -2 which is among the best values known. The electrode was applied to the determination of Hg(II) in water samples. Graphical abstract Schematic representation of the sensor electrode modified with mercury-imprinted polymer nanoparticles, and the recognition and voltammetric determination steps.

  12. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... dynamics (MD) simulations of a hydrophilic air-water-silica system using the MD package FASTTUBE. We employ quantum chemistry calculation to obtain air-silica interaction parameters for the simulations. Our simulations are based in the following force fields: i) The silica-silica interaction is based...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  13. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  14. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  15. Evaluation of the effect of temperature, pH, and bioproduction on Hg concentration in sediments, water, molluscs and algae of the delta of the Ebro river.

    Science.gov (United States)

    Schuhmacher, M; Domingo, J L; Llobet, J M; Corbella, J

    1993-01-01

    The effects of temperature, pH, and bioproduction on mercury levels in sediments, water, molluscs and algae from the delta of the Ebro river (NE Spain) were determined in this study. Mercury concentrations were measured in a cold-vapor atomic absorption spectrophotometer. The ranges of mercury concentrations were the following: sediments, 0.014-0.185 microgram g-1; water, 0.001-0.018 microgram g-1; molluscs, 0.118-0.861 microgram g-1; and algae 0.008-0.026 microgram g-1. Although not statistically significant, a decrease in the pH of the water corresponded with a diminution in the content of mercury in sediments and molluscs, while the mercury levels in water and algae were lower in the areas with high levels of bioproduction. The concentrations of mercury in water significantly decreased with temperature. However, the differences with temperature of the mercury concentrations in sediments did not reach the level of significance. Consequently, water would not be an adequate indicator to determine the levels of mercury contamination, although both sediments and molluscs can be used for this purpose.

  16. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  17. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    International Nuclear Information System (INIS)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.; Romero, R.P.

    1999-01-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane

  18. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  19. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  20. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  1. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  2. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  3. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  4. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  5. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  6. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  7. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  8. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  9. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  10. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  11. Surface water assessment on the influence of space distribution on ...

    African Journals Online (AJOL)

    In this work, the influence of space distribution on physico-chemical parameters of refinery effluent discharge has been studied, using treated effluent water discharged from the Port Harcourt Refinery Company (PHRC) into the Ekerekana Creek in Okrika as reference. Samples were collected at surface level from the ...

  12. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  13. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  14. [Occurrence of bacteria of the Yersinia genus in surface water].

    Science.gov (United States)

    Krogulska, B; Maleszewska, J

    1992-01-01

    The aim of the study was determination of the frequency of occurrence of Yersinia genus bacteria in surface waters polluted to various degrees with bacteria of the coliform and of fecal coli. For detection of Yersinia rods the previously elaborated medium Endo MLCe and the membrane filter method were applied. Samples of 42 surface waters were examined, including 26 from rivers and 16 from lakes, ponds and clay-pits. On the basis of sanitary bacteriological analysis 16 surface waters were classified to class I purity, 10 to class II, the remaining ones to class III or beyond classification. Yersinia rods were detected in 15 water bodies that is 35.7% of the examined waters. A total of 27 Yersinia strains were identified with dominance of Y. intermedia (14 strains) and Y. enterocolitica (10 strains). Three strains represented by the species Yersinia frederiksenii. Most of the Y. enterocolitica strains belonged to biotype 1, the particular strains being represented by various serotypes. Hence their different origin may be concluded. The pathogenic serotypes 0:3 and 0:9 of Yersinia enterocolitica were not detected.

  15. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  16. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  17. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  18. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  19. Water surface modeling from a single viewpoint video.

    Science.gov (United States)

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  20. Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II binary complexes of l-methionine in 1,2-propanediol-water mixtures

    Directory of Open Access Journals (Sweden)

    M. Padma Latha

    2007-04-01

    Full Text Available Chemical speciation of Pb(II, Cd(II, Hg(II, Co(II, Ni(II, Cu(II and Zn(II complexes of L-methionine in 0.0-60 % v/v 1,2-propanediol-water mixtures maintaining an ionic strength of 0.16 M at 303 K has been studied pH metrically. The active forms of ligand are LH2+, LH and L-. The predominant species detected are ML, MLH, ML2, ML2H, ML2H2 and MLOH. Models containing different numbers of species were refined by using the computer program MINIQUAD 75. The best-fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the dielectric constant of the medium is explained on the basis of electrostatic and non-electrostatic forces.

  1. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  2. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  3. A Study on Water Surface Profiles of Rivers with Constriction

    Science.gov (United States)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even

  4. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  5. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  6. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Filho, G.M.A. [Instituto de Pesquisas Jardim Botanico do Rio de Janeiro (Brazil). Programa Zona Costeira; Andrade, L.R.; Farina, M. [Cidade Universitaria, Rio de Janeiro (Brazil). Instituto de Ciencias Biomedicas, Departamento de Anatomia; Malm, O. [Cidade Universitaria, Rio de Janeiro (Brazil). Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Radioisotopos Eduardo Penna Franca

    2002-07-01

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702{+-}318{mu}g Hgg{sup -1} was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding. (author)

  7. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  8. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more...

  9. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  10. Perfluoroalkyl substances in the Maltese Environment - (I) Surface water and rain water

    NARCIS (Netherlands)

    Sammut, G.; Sinagra, E.; Helmus, R.; de Voogt, P.

    2017-01-01

    The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main

  11. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    spatial resolution; ii) spatially continuous profiles along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was conducted to analyse the value of the new UAV-borne datatype for improving hydrological models, in particular estimates of GW (Groundwater)- SW (Surface Water...

  12. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  13. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  14. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  15. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  16. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  17. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  18. Potential measures for emission reduction within the European Water Framework Directive : Illustrated by fact sheets for Cd, Hg, PAHs and TBT

    NARCIS (Netherlands)

    Janssen MPM; van Leeuwen LC; Posthuma-Doodeman CJAM; Vos JH; Linders JBJH; SEC; mev

    2012-01-01

    Landen van de Europese Unie zetten verschillende middelen in om te voldoen aan de verplichtingen van de Kaderrichtlijn Water (KRW). Volgens de KRW moeten lidstaten onder andere voldoen aan de normen voor chemische stoffen in oppervlaktewater en van zeer gevaarlijke stoffen moeten de emissies tot nul

  19. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  1. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric - pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  2. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  3. Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks.

    Science.gov (United States)

    Alves, Renato I S; Sampaio, Carolina F; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Segura-Muñoz, Susana I

    2014-08-01

    Pardo River (Brazil) is suffering from an important anthropogenic impact due to the pressure of highly populated areas and the influence of sugarcane cultivation. The objective of the present study was to determine the levels of 13 trace elements (As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V and Zn) in samples of surface water and sediments from the Pardo River. Furthermore, the human health risks associated with exposure to those metals through oral intake and dermal absorption were also evaluated. Spatial and seasonal trends of the data were closely analyzed from a probabilistic approach. Manganese showed the highest mean concentrations in both water and sediments, remarking the incidence of the agricultural activity and the geological characteristics within the basin. Thallium and arsenic were identified as two priority pollutants, being the most important contributors to the Hazard Index (HI). Since non-carcinogenic risks due to thallium exposure slightly exceeded international guidelines (HI>1), a special effort should be made on this trace element. However, the current concentrations of arsenic, a carcinogenic element, were in accordance to acceptable lifetime risks. Nowadays, there is a clear increasing growth in human population and economic activities in the Pardo River, whose waters have become a serious strategic alternative for the potential supply of drinking water. Therefore, environmental monitoring studies are required not only to assure that the current state of pollution of Pardo River does not mean a risk for the riverside population, but also to assess the potential trends in the environmental levels of those elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Self-induced free surface oscillations caused by water jet

    International Nuclear Information System (INIS)

    Fukaya, M.; Madarame, H.; Okamoto, K.; Iida, M.; Someya, S.

    1995-01-01

    The interaction between the high speed flow and the free surfaces could induced surface oscillations. Recently, some kinds of self-induced free surface oscillations caused by water jet were discovered, e.g., a self-induced sloshing, 'Jet-Flutter' and a self-induced manometer oscillation. These oscillations have many different characteristics with each other. In this study, the similarities and differences of these oscillations are examined, and the geometrical effects on the phenomena are experimentally investigated. The self-induced sloshing and the Jet-Flutter have different dimensionless traveling times, which suggests a difference in the energy supply mechanism. When the distance between the inlet and the outlet is small in a vessel, the self-induced manometer oscillation could occur in the multi-free-surface system. (author)

  5. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  6. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    International Nuclear Information System (INIS)

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Arain, Muhammad Balal; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Sarfraz, Raja Adil; Jamal, Muhammad Khan; Shah, Abdul Qadir

    2009-01-01

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 μg l -1 . Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 μg l -1 , respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 μg l -1 . The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na + , K + , and SO 4 2- were found to be higher in surface and ground water, while elevated levels of Ca 2+ and Cl - were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  7. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  8. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  9. Trace-level mercury removal from surface water

    International Nuclear Information System (INIS)

    Klasson, K.T.; Bostick, D.T.

    1998-01-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water

  10. Modelling of long term nitrogen retention in surface waters

    Science.gov (United States)

    Halbfaß, S.; Gebel, M.; Bürger, S.

    2010-12-01

    In order to derive measures to reduce nutrient loadings into waters in Saxony, we calculated nitrogen inputs with the model STOFFBILANZ on the regional scale. Thereby we have to compare our modelling results to measured loadings at the river basin outlets, considering long term nutrient retention in surface waters. The most important mechanism of nitrogen retention is the denitrification in the contact zone of water and sediment, being controlled by hydraulic and micro-biological processes. Retention capacity is derived on the basis of the nutrient spiralling concept, using water residence time (hydraulic aspect) and time-specific N-uptake by microorganisms (biological aspect). Short time related processes of mobilization and immobilization are neglected, because they are of minor importance for the derivation of measures on the regional scale.

  11. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  12. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  13. Linking land use with pesticides in Dutch surface waters.

    Science.gov (United States)

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds.

  14. Radioactivity in the Dutch surface waters after Chernobylsk

    International Nuclear Information System (INIS)

    Kroesbergen, J.; Ballegooijen, L. van; Uunk, E.J.B.

    1988-12-01

    A survey is given of the impact of the nuclear accident in Chernobylsk upon the Dutch surface waters. With this the measurements, which have been performed in the various compartments (water, suspended matter, bottom, biota) are presented. Since the investigation is still going, the period from May 1986 - December 1987 has been chosen. This period is long enough in order to obtain an impression of the long-term effects. In chapter 2 a description is given of the measuring program performed and the analyzing methods employed. In chapter 3 the activation measurements in the surface waters, the suspended matter and the bottom are considered. Also the contamination of biologic matter and the purification mud is discussed. Chapter 4 gives a survey of the amount of radionuclides, which have been accumulated in the Dutch surface waters as a result of the Chernobylsk accident. The investigation of the processes are discussed in chapter 5. Since the study of the effects of radionuclides in the aquatic environment is still going, only some aspects are treated. Chapter 6 gives a general discussion of the results. Also an estimation is presented towards the future development of the contamination of the aquatic environment. Finally in chapter 7 the most important conclusions are summarized. Also some recommendations are made with regard to future measurements to be taken. (author). 72 refs.; 36 figs.; 26 tabs

  15. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  16. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  17. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  18. Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chakrabortya, P.; Sharma, B.M.; Babu, P.V.R.; Yao, K.M.; Jaychandran, S.

    , 1991; Liu et al., 2006; Tack and Verloo, 1995). Mercury accumulates in sediment globally from many physical, chemical, biological, geological and anthropogenic environmental processes. Thus, sediment can be a good indicator of water quality of a...-Black method (Schumacher, 2002). This method has been widely used for the determination of total organic carbon in the soil and sediments. 3.0 Results and discussion The general description and texture analysis of the studied sediments are presented...

  19. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  20. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury.

    Science.gov (United States)

    Perrot, Vincent; Masbou, Jeremy; Pastukhov, Mikhail V; Epov, Vladimir N; Point, David; Bérail, Sylvain; Becker, Paul R; Sonke, Jeroen E; Amouroux, David

    2016-02-01

    In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.

  1. Simultaneous Removal of Hg(II and Phenol Using Functionalized Activated Carbon Derived from Areca Nut Waste

    Directory of Open Access Journals (Sweden)

    Lalhmunsiama

    2017-07-01

    Full Text Available Areca nut waste was utilized to obtain high surface area activated carbon (AC, and it was further functionalized with succinic anhydride under microwave irradiation. The surface morphology and surface functional groups of the materials were discussed with the help of scanning electron microscope(SEM images and fourier transform infra-red (FT-IR analysis. The specific surface area of the AC and functionalized-AC was obtained by the Brunauer-Emmett-Teller (BET method, and found to be 367.303 and 308.032 m2/g, respectively. Batch experiments showed that higher pH favoured the removal of Hg(II, whereas the phenol removal was slightly affected by the changes in the solution pH. The kinetic data followed pseudo-first order kinetic model, and intra-particle diffusion played a significant role in the removal of both pollutants. The maximum sorption capacity of Hg(II and phenol were evaluated using Langmuir adsorption isotherms, and found to be 11.23 and 5.37 mg/g, respectively. The removal of Hg(II was significantly suppressed in the presence of chloride ions due to the formation of a HgCl2 species. The phenol was specifically adsorbed, forming the donor–acceptor complexes or π–π electron interactions at the surface of the solid. Further, a fixed-bed column study was conducted for both Hg(II and phenol. The loading capacity of the column was estimated using the nonlinear Thomas equation, and found to be 2.49 and 2.70 mg/g, respectively. Therefore, the study showed that functionalized AC obtained from areca nut waste could be employed as a sustainable adsorbent for the simultaneous removal of Hg(II and phenol from polluted water.

  2. Surface Water Quality Trends from EPA's LTM Network

    Science.gov (United States)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 μeq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement

  3. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  4. Microcystin-LR in surface water of Ponjavica river

    Directory of Open Access Journals (Sweden)

    Natić Dejan

    2012-01-01

    Full Text Available Background/Aim. Cyanobacterial toxins befall a group of various compounds according to chemical structure and health effects on people and animals. The most significant in this large group of compounds are microcystins. Their presence in water used for human consumption causes serious health problems, liver beeing the target organ. Microcystins are spread all over the world. Waterblooms of cyanobacterias and their cyanotoxins are also common in the majority of surface waters in Serbia. The aim of this study was to propose HPLC method for determination of mikrocystin-LR, to validate the method and to use it for determination of microcystin-LR in the surface water of the river Ponjavica. The Ponjavica is very eutrophic water and has ideal conditions for the cyanobacterial growth. Methods. Sample of water form the Ponjavica river were collected during the summer 2008. Coupled columns (HLB, Sep-Pak, were used for sample preparation and HPLC/PDA method was used for quantification of microcystin- LR. Results. Parameters of validation show that the proposed method is simple, fast, sensitive (0.1 mg/L and selective with the yield of 89%-92%. The measuring uncertainty of

  5. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  6. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Studies on the treatment of surface water using rajma seeds

    Directory of Open Access Journals (Sweden)

    Merlin S. Babitha

    2018-03-01

    Full Text Available Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it’s biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  8. Studies on the treatment of surface water using rajma seeds

    Science.gov (United States)

    Merlin, S. Babitha; Abirami, M.; Kumar, R. Suresh

    2018-03-01

    Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it's biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  9. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  10. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  11. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  12. Water condensation on ultrahydrophobic flexible micro pillar surface

    Science.gov (United States)

    Narhe, Ramchandra

    2016-05-01

    We investigated the growth dynamics of water drops in controlled condensation on ultrahydrophobic geometrically patterned polydimethylsiloxane (PDMS) cylindrical micro pillars. At the beginning, the condensed drops size is comparable to the pattern dimensions. The interesting phenomenon we observe is that, as the condensation progresses, water drops between the pillars become unstable and enforced to grow in the upward direction along the pillars surface. The capillary force of these drops is of the order of μ\\text{N} and acts on neighboring pillars. That results into bending of the pillars. Pillars bending enhances the condensation and favors the most energetically stable Wenzel state.

  13. Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee

    Science.gov (United States)

    Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.

    2006-01-01

    surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.

  14. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  15. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    Science.gov (United States)

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  16. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  17. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    Science.gov (United States)

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  18. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  19. Mathematical modelization of surface waters for drinking water; Modelizacion matematica de la potabilizacion de aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Llanes, L.A.; Alvarez Rosell, S.

    1995-06-01

    The application of the general strategy of deterministic modelling to the water treatment for human consumption process for surface waters is treated in this paper. Deterministic models that describe the behaviour of clarification processes: coagulation-flocculation an filtration with respect to the principal parameters that define the water principal parameters that define the water quality: turbidity, color, pH, organic matter an presence of iron, manganese and aluminium cations were obtained. The models have been checked in actual operation conditions of water treatment plant for human consumption located in Campo Florido, Havana, cuba, named Planta Norte Habana. This plant receives water from three dams. The obtained results were good. The models are valid to describe the process, to corroborate the main theories related to water clarification and to know more about this process. The complexity of the models permits their rapid and efficient solution even without the aid of a digital computer. (Author) 5 refs.

  20. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    Science.gov (United States)

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  1. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  2. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  3. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  4. Surface characterization of polymethylmetacrylate bombarded by charged water droplets

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo; Takaishi, Riou; Asakawa, Daiki; Sakai, Yuji; Iijima, Yoshitoki

    2009-01-01

    The electrospray droplet impact (EDI), in which the charged electrospray water droplets are introduced in vacuum, accelerated, and allowed to impact the sample, is applied to polymethylmetacrylate (PMMA). The secondary ions generated were measured by an orthogonal time-of-flight mass spectrometer. In EDI mass spectra for PMMA, fragment ions originating from PMMA could not be detected. This is due to the fact that the proton affinities of fragments formed from PMMA are smaller than those from acetic acid contained in the charged droplet. The x-ray photoelectron spectroscopy spectra of PMMA irradiated by water droplets did not change with prolonged cluster irradiation, i.e., EDI is capable of shallow surface etching for PMMA with a little damage of the sample underneath the surface.

  5. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  6. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water

    International Nuclear Information System (INIS)

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-01-01

    Highlights: • Graphenes magnetic composite nanoparticles (Fe 3 O 4 -GS) were used to adsorb metal ions. • The adsorption of metal ions onto Fe 3 O 4 -GS could be well interpreted by the Freundlich equation. • The adsorption of metal ions onto Fe 3 O 4 -GS fit pseudo-second order kinetic model. • Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. - Abstract: In the present study, a kind of graphenes magnetic material (Fe 3 O 4 -GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effictive for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pH ZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe 3 O 4 -GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g −1 for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature

  7. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  8. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  9. Just passing through --- high Hg deposition to Puerto Rico forest moves quickly off the landscape

    Science.gov (United States)

    Shanley, J. B.; Willenbring, J. K.; Kaste, J. M.; Occhi, M.; McDowell, W. H.

    2012-12-01

    Atmospheric mercury (Hg) in wet deposition at the Luquillo Experimental Forest in northeastern Puerto Rico, averages 28 μg m-2 yr-1, higher than any site in the USA Mercury Deposition Network. Despite the high deposition, Hg content of soils, vegetation, and biota are below global averages. The low Hg content of watershed surfaces, coupled with exceptionally high stream total Hg flux, suggest that most of the Hg passes through the watershed with minimal retention. We assessed Hg dynamics in two adjacent watersheds, Rio Icacos underlain by quartz diorite, and Rio Mameyes underlain by volcaniclastic rocks. At both sites, high-flow Hg concentrations approached 100 ng L-1, dominated by particulate Hg. In order to assess the apparent pass-through nature of Hg in this tropical forest, we measured 7Be and 10Be isotopes from natural, cosmogenic fallout adsorbed on stream suspended particles to constrain the Hg age /residence time and source (atmospheric vs. geogenic or legacy Hg from 19th century gold mining). Ubiquitous 7Be (half-life 53 days) and relatively high 7Be/10Be ratios on suspended particles suggest that stream Hg was dominated by erosion from exposed surfaces, supporting a short residence time. The low watershed retention of the high Hg throughput limits adverse biological effects in this tropical ecosystem.

  10. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  11. Estimation of precipitable water from surface dew point temperature

    International Nuclear Information System (INIS)

    Abdel Wahab, M.; Sharif, T.A.

    1991-09-01

    The Reitan (1963) regression equation which is of the form lnw=a+bT d has been examined and tested to estimate precipitable water content from surface dew point temperature at different locations. The study confirms that the slope of this equation (b) remains constant at the value of .0681 deg. C., while the intercept (a) changes rapidly with the latitude. The use of the variable intercept can improve the estimated result by 2%. (author). 6 refs, 4 figs, 3 tabs

  12. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  13. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  14. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  15. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  16. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  17. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    Science.gov (United States)

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (Pmacro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  18. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  19. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  20. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  1. Modelling episodic acidification of surface waters: the state of science.

    Science.gov (United States)

    Eshleman, K N; Wigington, P J; Davies, T D; Tranter, M

    1992-01-01

    Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.

  2. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  3. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    Science.gov (United States)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  4. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  5. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  6. Environmetric data interpretation to assess surface water quality

    International Nuclear Information System (INIS)

    Simeonova, P.; Papazova, P.; Lovchinov, V.

    2013-01-01

    Two multivariate statistical methods (Cluster analysis /CA/ and Principal components analysis /PCA/) were applied for model assessment of the water quality of Maritsa River and Tundja River on Bulgarian territory. The study used long-term monitoring data from many sampling sites characterized by various surface water quality indicators. The application of CA to the indicators results in formation of clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again, latent factors confirming, in principle, the clustering output. Their identification coincide correctly to the location of real pollution sources along the rivers catchments. The linkage of the sampling sites along the river flow by CA identified several special patterns separated by specific tracers levels. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level

  7. Adsorption of water, sulfates and chloride on arsenopyrite surface

    Science.gov (United States)

    Silva, Juliana C. M.; dos Santos, Egon C.; de Oliveira, Aline; Heine, Thomas; De Abreu, Heitor A.; Duarte, Hélio A.

    2018-03-01

    Arsenopyrite is one of the sulfide minerals responsible for acid rock drainage (ARD) and is one of the most hazardous in regions affected by mining activities. This phenomenon involves complex reaction mechanism. Although it is intensely investigated, there is a lack of consensus concerning the reaction mechanisms and more information is still necessary. In this work, the adsorption of water, hydrochloric acid, and sulfuric acid on arsenopyrite (001) surface was investigated by means of Density Functional calculations and the results compared to other sulfides aiming to understand the mineral/water interface. The interaction of the chemical species with the (001) FeAsS surface is the first step to understand the intricate oxidation mechanism of arsenopyrite. Molecular water adsorption on (001) FeAsS is more favored than the adsorption of sulfate favoring the dissolution of sulfates and enhancing its oxidation. The estimated adsorption energies of water, sulfates and chloride on other sulfide minerals are compared with the estimated values for arsenopyrite and the chemical reactivity differences discussed in detail.

  8. Impact on surface water quality due to coke oven effluents

    International Nuclear Information System (INIS)

    Ghose, M.K.; Roy, S.

    1994-01-01

    Large quantities of water are used for the quenching of hot coke and also for washing the gas produced from the coke ovens. Liquid effluents thus generated are highly polluted and are being discharged into the river Damodar without proper treatment. Four coke plants of Bharat Coking Coal Ltd.(BCCL) have been surveyed for characterization and to assess the impact on surface water quality. About 175-200 kilolitres of waste water is being generated per day by each of the coke plants. The concentration of CO, BOD, COD, TSS, phenol and cyanide in each of the coke plants were found to exceed the limits specified by pollution control board. Ammonia, oil and grease and TDS were found to be 19.33 mg/l, 7.81 mg/l, 1027.75 mg/l respectively. Types of samples collected, sampling frequencies, sample preservation and the results obtained have been discussed. (author). 6 refs., 1 tab., 1 fig

  9. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  10. Physical basis for river segmentation from water surface observables

    Science.gov (United States)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  11. Probability of misclassifying biological elements in surface waters.

    Science.gov (United States)

    Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna

    2017-11-24

    Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.

  12. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in

  13. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  14. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg{sup 2+} ions detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting; Dong, Jiang Xue; Liu, Shi Gang; Li, Na; Lin, Shu Min; Fan, Yu Zhu [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715 (China); Lei, Jing Lie [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715 (China)

    2017-01-15

    Highlights: • The carbon quantum dots (CQDs) synthesized with PEI showed an extraordinary reducibility. • The Ag/CQDs composite was prepared by using CQDs as reducing and stabilizing agent. • A simple Ag/CQDs composite-based dual-signal probe was provided for Hg{sup 2+} detection. • The proposed strategy shows a potential for detecting Hg{sup 2+} in real water samples. - Abstract: A stable silver nanoparticles/carbon quantum dots (Ag/CQDs) composite was prepared by using CQDs as reducing and stabilizing agent. The CQDs synthesized with polyethyleneimine (PEI) showed an extraordinary reducibility. When Hg{sup 2+} was presented in the Ag/CQDs composite solution, a color change from yellow to colorless was observed, accompanied by a shift of surface plasmon resonance (SPR) band and decrease in absorbance of the Ag/CQDs composite. On the basis of the further studies on TEM, XPS and XRD analysis, the possible mechanism is attributed to the formation of a silver-mercury amalgam. Hence, a two dimensional sensing platform for Hg{sup 2+} detection was constructed upon the Ag/CQDs composite. Based on the change of absorbance, a good linear relationship was obtained from 0.5 to 50 μM for Hg{sup 2+}. And the limit of detection for Hg{sup 2+} was as low as 85 nM, representing high sensitivity to Hg{sup 2+}. More importantly, the proposed method also exhibits a good selectivity toward Hg{sup 2+} over other metal ions. Besides, this strategy demonstrates practicability for the detection of Hg{sup 2+} in real water samples with satisfactory results.

  15. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  16. Agricultural insecticides threaten surface waters at the global scale.

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  17. Dissolution of organic solvents from painted surfaces into water

    International Nuclear Information System (INIS)

    Wren, J.C.; Jobe, D.J.; Sanipelli, G.G.; Ball, J.M.

    2000-01-01

    The presence of volatile iodine in containment buildings is one of the major safety concerns in the potential event of nuclear reactor accidents. Organic impurities in containment water, originating from various painted structural surfaces and organic materials, could have a significant impact on iodine volatility following an accident. To determine the source and magnitude of organic impurities and their effects on time-dependent iodine volatility, the dissolution for organic constituents from paints used in reactor buildings has been studied under postulated accident conditions. The studies of the organic dissolution from carbon steel coupons coated with zinc-primed vinyl, epoxy-primed polyurethane or epoxy paints over the temperature range 25-90 deg C are reported. Relatively large activation energies were measured for the release of the principal organic compounds from painted surfaces, suggesting it is the release of the solvents from the paint matrix rather than their diffusion through the solution that is the rate determining step for the dissolution mechanism. The similarities in the values of activation energies for the dissolution of different organic compounds from the paints suggest the release rate is independent of the nature of the painted surface or the type of organic being released from the surface. These two observations indicate that it may be possible to write a generalized rate expression for the release of organic compounds from painted surfaces in containment following an accident. The possible implications of these results for predicting iodine volatility in containment are also discussed. (author)

  18. Phase diagrams of ZnTe-HgTe-Te and ZnTe-CdTe-HgTe-Te systems

    International Nuclear Information System (INIS)

    Andrukhiv, A.M.; Litvak, A.M.; Mironov, K.E.

    1992-01-01

    ZnTe-HgTe-Te system liquidus surface is investigated and solid solution layers are produced in this system by the method of liquid-phase epitaxy (LPE). The theoretical analysis of experimental and theoretical data allows to calculate the diagram of ZnTe-CdTe-HgTe-Te system fusibility. A significant effect of elastic stresses of the epitaxial layer, grown on CdTe substrate, on the process of LPE of solid solutions is established

  19. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  20. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  1. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  2. Cleaning the feed-water pipeline internal surfaces

    International Nuclear Information System (INIS)

    Podkopaev, V.A.

    1984-01-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washing by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones

  3. Cleaning the feed-water pipeline internal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, V.A.

    1984-12-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washed by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water with the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones.

  4. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how

  5. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Science.gov (United States)

    Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.

    2018-01-01

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797

  6. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    Directory of Open Access Journals (Sweden)

    Takahiro Fujioka

    2018-04-01

    Full Text Available A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

  7. Water response to ganglioside GM1 surface remodelling.

    Science.gov (United States)

    Brocca, P; Rondelli, V; Mallamace, F; Di Bari, M T; Deriu, A; Lohstroh, W; Del Favero, E; Corti, M; Cantu', L

    2017-01-01

    Gangliosides are biological glycolipids participating in rafts, structural and functional domains of cell membranes. Their headgroups are able to assume different conformations when packed on the surface of an aggregate, more lying or standing. Switching between different conformations is possible, and is a collective event. Switching can be induced, in model systems, by concentration or temperature increase, then possibly involving ganglioside-water interaction. In the present paper, the effect of GM1 ganglioside headgroup conformation on the water structuring and interactions is addressed. Depolarized Rayleigh Scattering, Raman Scattering, Quasielastic Neutron Scattering and NMR measurements were performed on GM1 ganglioside solutions, focusing on solvent properties. All used techniques agree in evidencing differences in the structure and dynamics of solvent water on different time-and-length scales in the presence of either GM1 headgroup conformations. In general, all results indicate that both the structural properties of solvent water and its interactions with the sugar headgroups of GM1 respond to surface remodelling. The extent of this modification is much higher than expected and, interestingly, ganglioside headgroups seem to turn from cosmotropes to chaotropes upon collective rearrangement from the standing- to the lying-conformation. In a biological perspective, water structure modulation could be one of the physico-chemical elements contributing to the raft strategy, both for rafts formation and persistence and for their functional aspects. In particular, the interaction with approaching bodies could be favoured or inhibited or triggered by complex-sugar-sequence conformational switch. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  9. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  10. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  11. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  12. Horizon effects with surface waves on moving water

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain; Maissa, Philippe; Mathis, Christian; Coullet, Pierre [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNS 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf, E-mail: Germain.Rousseaux@unice.f [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2010-09-15

    Surface waves on a stationary flow of water are considered in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases, three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity (Schuetzhold R and Unruh W G 2002 Phys. Rev. D 66 044019). A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/ short wavelength case kh>>1, where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  13. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  14. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales....... The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low...... alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB...

  15. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Physics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011 (Japan); Kudo, T.; Terada, H.; Takato, N. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Takatsuki, S.; Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, Daito, Osaka 574-8530 (Japan); Fukagawa, M.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-04-10

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  16. Soil and water characteristics of a young surface mine wetland

    Science.gov (United States)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  17. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    International Nuclear Information System (INIS)

    Honda, M.; Kudo, T.; Terada, H.; Takato, N.; Takatsuki, S.; Nakamoto, T.; Inoue, A. K.; Fukagawa, M.; Tamura, M.

    2016-01-01

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H 2 O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models

  18. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  19. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; González, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims. We re-analyse the available spectropolarimetric material...

  20. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  1. Hg uptake in ureteral obstructions

    International Nuclear Information System (INIS)

    Desgrez, J.P.; Bourguignon, M.; Raynaud, C.; CEA, 91 - Orsay

    1976-01-01

    In the presence of a total obstruction the results obtained with the Hg uptake test, as indeed with other functional tests, inform on the value of the kidney function at the time but have no prognostic value where repair possibilities are concerned. Some preliminary results seem to show however that very soon after the obstacle is removed, by the 10th or 15th day perhaps, quantitative functional tests may once more be used to evaluate the functional prognosis. This would mean that by waiting about two weeks after the disappearance of a total obstruction the Hg uptake test may again be used in all confidence. In order to check this deduction, which is based on slender evidence but which nevertheless has important practical implications, the measurement of the Hg uptake rate during the days following removal of the obstacle appears essential. In long-standing partial obstructions the Hg uptake rate gives an accurate assessment of the functional balance and helps considerably in the choice of therapy [fr

  2. Surface water quality in a water run-off canal system: A case study in Jubail Industrial City, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Zia Mahmood Siddiqi

    2016-06-01

    Full Text Available Water quality in a run-off canal system in an industrial area was evaluated for a range of physical and chemical properties comprising trace metals (including mercury (Hg, chromium (Cr, iron (Fe, manganese (Mn, salinity, pH, turbidity, total dissolved solids, total suspended solids, chemical oxygen demand (COD, and dissolved oxygen. High concentrations of potassium (K (1.260–2.345 mg/l and calcium (Ca (19.170–35510 mg/l demonstrated that the salinity in the water was high, which indicates that industrial effluents from fertilizer manufacturing and Chlor-alkali units are being discharged into the canal system. Almost all the metal concentrations in water and sediment were within the thresholds established by the local regulatory body. Concentrations of Cr (0.0154–0.0184 mg/l, Mn (0.0608–0.199 mg/l, Fe (0.023–0.035 mg/l, COD (807–916 mg/l, and turbidity (633 ± 15–783 ± 22 NTU were high where the canal discharges into the Persian Gulf; these discharges may compromise the health of the aquatic ecosystem. There is concern about the levels of Hg in water (0.00135–0.0084 mg/l, suspended sediment (0.00308–0.0096 mg/l, and bed sediment (0.00172–0.00442 mg/l because of the bio-accumulative nature of Hg. We also compared the total Hg concentrations in fish from Jubail, and two nearby cities. Hg contents were highest in fish tissues from Jubail. This is the first time that heavy metal pollution has been assessed in this water run-off canal system; information about Hg is of particular interest and will form the basis of an Hg database for the area that will be useful for future investigations.

  3. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    Science.gov (United States)

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  4. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  6. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    Science.gov (United States)

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks

  7. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  8. Properties of water surface discharge at different pulse repetition rates

    Czech Academy of Sciences Publication Activity Database

    Ruma, R.; Hosseini, S.H.R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, Petr; Akiyama, H.

    2014-01-01

    Roč. 116, č. 12 (2014), s. 123304-123304 ISSN 0021-8979 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : plasma in air * water surface discharge * pulse frequency * hydrogen peroxide * organic dye Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.183, year: 2014 http://dx.doi.org/ 10.1063/1.4896266

  9. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  10. Cocaine and metabolites in waste and surface water across Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Nuijs, Alexander L.N. van [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium)], E-mail: alexander.vannuijs@ua.ac.be; Pecceu, Bert [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne [Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege, (ULg), CHU Sart-Tilman, 4000 Liege (Belgium); Jorens, Philippe G. [Department of Clinical Pharmacology/Clinical Toxicology, University of Antwerp (Ukraine), University Hospital of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium); Bervoets, Lieven; Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Neels, Hugo [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory of Toxicology, ZNA Stuivenberg, Lange Beeldekensstraat 267, 2060 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-01-15

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water.

  11. Cocaine and metabolites in waste and surface water across Belgium

    International Nuclear Information System (INIS)

    Nuijs, Alexander L.N. van; Pecceu, Bert; Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne; Jorens, Philippe G.; Bervoets, Lieven; Blust, Ronny; Neels, Hugo; Covaci, Adrian

    2009-01-01

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water

  12. Microbial Monitoring of Surface Water in South Africa: An Overview

    Directory of Open Access Journals (Sweden)

    Brendan S. Wilhelmi

    2012-07-01

    Full Text Available Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18.

  13. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  14. Diversity of Salmonella isolates from central Florida surface waters.

    Science.gov (United States)

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  15. Highly sensitive optical sensor that detects Hg{sup 2+} and Cu{sup 2+} by immobilizing dicarboxylate 1,5-diphenyl-3-thiocarbazone on surface functionalized PVA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue, E-mail: baixue@hhu.edu.cn; Gu, Haixin; Hua, Zulin; Dai, Zhangyan; Yang, Bei; Li, Yulong

    2015-11-15

    Highlights: • PVA microspheres were chosen as carrier and DDT groups were chosen as chromophores. • The DDT–PVA microspheres could detect Hg{sup 2+} and Cu{sup 2+} simultaneously within 120 s. • The DDT–PVA microspheres had excellent detection for Hg{sup 2+} and Cu{sup 2+} ions. • The DDT–PVA microspheres had preeminent selectivity and reusability. - Abstract: A novel optical sensor to detect Hg{sup 2+} and Cu{sup 2+} is prepared by immobilizing a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (DDT) group on functionalized polyvinyl alcohol (PVA) microspheres. This optical sensor is successfully fabricated by extensive characterization with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Its colorimetric properties, selectivity, sensitivity, and reversibility are investigated as well. In this sensing system, DDT–PVA selectively recognized multiple heavy metal ions, as indicated by the changes in color from orange to scarlet for Hg{sup 2+} and from orange to gray for Cu{sup 2+}. In particular, this optical sensor exhibits the most apparent color changes at pH levels of 12 and 2. Hence, Hg{sup 2+} and Cu{sup 2+} can be detected in aqueous solution at minimum detection limits of 0.053 and 0.132 μM, respectively, with a UV-vis spectrometer. Furthermore, the sensor can be regenerated by ethylene diamine tetraacetic acid and reused several times. Therefore, the optical sensor can detect Hg{sup 2+} because of its selectivity, sensitivity, and reversibility.

  16. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  17. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  18. Mercury profiles in sediment from the marginal high of Arabian Sea: an indicator of increasing anthropogenic Hg input.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender

    2016-05-01

    Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.

  19. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  20. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  1. Further Studies, About New Elements Production, by Electrolysis of Cathodic Pd Thin–Long Wires, in Alcohol-Water Solutions (H, D) and Th-Hg Salts. New Procedures to Produce Pd Nano-Structures

    CERN Document Server

    Celani, F; Righi, E; Trenta, G; Catena, C; D’Agostaro, G; Quercia, P; Andreassi, V; Marini, P; Di Stefano, V; Nakamura, M; Mancini, A; Sona, P G; Fontana, F; Gamberale, L; Garbelli, D; Celia, E; Falcioni, F; Marchesini, M; Novaro, E; Mastromatteo, U

    2005-01-01

    Abstract They were continued, at National Institute of Nuclear Physics, Frascati National Laboratories-Italy, the systematic studies about detection of new elements, some even with isotopic composition different from natural one, after prolonged electrolysis of Pd wires. The electrolytic solution adopted is the, unusual, used from our experimental group since 1999. In short, it was a mixture of both heavy ethyl alcohol (C2H5OD at 90-95%) and water (D2O, at 10-5%), with Th salts at micromolar concentration and Hg at even lower concentration (both of spectroscopic purity). The liquid solutions, before use, were carefully vacuum distilled (and on line 100nm filtered) at low temperatures (30-40°C) and analysed by ICP-MS. The pH was kept quite mild (acidic at about 3-4). The cathode is Pd (99.9% purity) in the shape of long (60cm) and thin wires (diameter only 0.05mm). Before use, it is carefully cleaned and oxidised by Joule heating in air following a (complex) procedure from us continuously improved (since 1995...

  2. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  3. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4