WorldWideScience

Sample records for surface voc vapor

  1. Adsorption of vapor-phase VOCs (benzene and toluene) on modified clays and its relation with surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, C.; Gallardo-Velazquez, T.; Arellano-Cardenas, S. [National School of Biological Sciences (Mexico). Biophysics Dept.; Osorio-Revilla, G. [National School of Biological Sciences (Mexico). Biochemical Engineering Dept.

    2008-04-15

    A study was conducted to investigate the potential use of modified clays for the adsorption of volatile organic compounds (VOCs) present in air. These VOCs which include toluene and benzene, are among the main air pollutants that represent a human health risk at high concentrations, mostly in indoor environments. In this study, a Mexican bentonite was used to prepare 3 modified clays, notably an organoclay (OC-CPC) by intercalating cetylpyridinium chloride (CPC); an aluminum-pillared clay (Al-PILC); and an inorganic-organic clay (IOC-CPC) prepared from Al-PILC intercalating CPC. Their structures were differentiated by infrared and thermogravimetric analyses, and the interlayer distance was assessed through X-ray diffraction. Toluene and benzene adsorption on OC-CPC was higher than in IOC-CPC and Al-PILC. Natural clay showed no adsorption capacity for these compounds. Comparison of the gas chromatography retention times for non polar and low-polarity compounds (octyne and benzene) in columns packed with OC-CPC and a commercial non polar column (squalene) showed that the OC-CPC possessed a higher organophilic (non polar) nature than squalene. This explains the higher benzene and toluene adsorption capacity of the OC-CPC compared with the other modified clays. It was concluded that organoclays represent a potential alternative for the adsorption of volatile organic compounds such as benzene and toluene present in indoor environments. Since the OC-CPC is hydrophobic by nature, the relative humidity of water vapour in the environment would not affects its adsorption capacity. 27 refs., 5 tabs., 5 figs.

  2. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    In this paper, we report multiplex SERS based VOCs detection with a leaning nano-pillar substrate. The VOCs analyte molecules adsorbed at the tips of the nano-pillars produced SERS signal due to the field enhancement occurring at the localized surface plasmon hot spots between adjacent leaning nano...... chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination...... of acetone and ethanol vapor was also successfully demonstrated. The vibrational fingerprints of molecular structures provide specific Raman peaks for different VOCs contents. To the best of our knowledge, this is the first multiplex VOCs detection using SERS. We believe that this work may lead to a portable...

  3. Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC

    Science.gov (United States)

    2013-12-01

    ER-201119) Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC December 2013 This document...SUBTITLE Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...ANALYSIS TO EVALUATE VAPOR INTRUSION ........................ 21 6.3.1 Site-by-Site Analysis of Results: Building VI Classifications ................. 21

  4. Bubble-Facilitated VOC Transport from LNAPL Smear Zones and Its Potential Effect on Vapor Intrusion.

    Science.gov (United States)

    Soucy, Nicole C; Mumford, Kevin G

    2017-02-10

    Most conceptual and mathematical models of soil vapor intrusion assume that the transport of volatile organic compounds (VOCs) from a source toward a building is limited by diffusion through the soil gas. Under conditions where advection occurs, transport rates are higher and can lead to higher indoor air concentrations. Advection-dominated conditions can be created by gas bubble flow in the saturated zone. A series of laboratory column experiments were conducted to measure mass flux due to bubble-facilitated VOC transport from light nonaqueous phase liquid (LNAPL) smear zones. Smear zones that contained both LNAPL residual and trapped gas, as well as those that contained only LNAPL residual, were investigated. Results showed that the VOC mass flux due to bubble-facilitated transport was orders-of-magnitude higher than under diffusion-limited conditions. Results also showed that the mass flux due to bubble-facilitated transport was intermittent, and increased with an increased supply of dissolved gases.

  5. Bubble-facilitated VOC transport from LNAPL smear zones and its potential effect on vapor intrusion: Laboratory experiments

    Science.gov (United States)

    Soucy, N. C.; Mumford, K. G.

    2016-12-01

    Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through the volatilization of hydrocarbons from the source and the subsequent transport of vapor through the soil. If subjected to the rise and fall of a water table, an LNAPL source can become a smear zone that consists of trapped discontinuous LNAPL blobs (residual) and has a higher aqueous permeability and higher surface area-to-volume ratio than pool sources. The rise and fall of a water table can also trap atmospheric air bubbles alongside the LNAPL. If these bubbles expand and become mobile, either through partitioning of volatile organic compounds (VOCs) or the production of biogenic gases, bubble-facilitated vertical vapor transport can occur. It is important to understand the bubble-facilitated transport of VOCs as it is a mechanism that could lead to faster transport. The transport of VOCs from smear zones was investigated using laboratory column and visualization experiments. In the column experiments, pentane LNAPL was emplaced in a 5 cm sand-packed source zone and the water level was raised and lowered to trap residual LNAPL and air bubbles. Each column also contained a 10 cm-high zone of clean saturated sand, and a 10 cm vadose zone of 4 mm-diameter glass beads. Water was pumped through the source and occlusion zones, and air flowed across the top of the column, where vapor samples were collected and analyzed immediately by gas chromatography. In the visualization experiments, pentane LNAPL was emplaced in a two-dimensional cell designed to allow visualization of mobilized LNAPL and gas through glass walls. Results of the column experiments showed VOC mass fluxes in test columns were 1-2 orders of magnitude greater than in the control columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport. The results from the visualization experiments showed gas fingers growing and mobilizing over time, and supports

  6. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  7. Vapor stabilizing surfaces for superhydrophobicity

    Science.gov (United States)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  8. Volatile Organic Compound (VOC Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-03-01

    Full Text Available Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs (toluene-propylene-butadiene from air was performed using a poly dimethyl siloxane (PDMS/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10−4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID. The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  9. Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up.

    Science.gov (United States)

    Rebollar-Perez, Georgette; Carretier, Emilie; Lesage, Nicolas; Moulin, Philippe

    2011-03-03

    Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs) (toluene-propylene-butadiene) from air was performed using a poly dimethyl siloxane (PDMS)/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10-4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID). The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  10. Surface acoustic wave sensing of VOCs in harsh chemical environments

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, K.B.; Martin, S.J.; Ricco, A.J.

    1993-06-01

    The measurement of VOC concentrations in harsh chemical and physical environments is a formidable task. A surface acoustic wave (SAW) sensor has been designed for this purpose and its construction and testing are described in this paper. Included is a detailed description of the design elements specific to operation in 300{degree}C steam and HCl environments including temperature control, gas handling, and signal processing component descriptions. In addition, laboratory temperature stability was studied and a minimum detection limit was defined for operation in industrial environments. Finally, a description of field tests performed on steam reforming equipment at Synthetica Technologies Inc. of Richmond, CA is given including a report on destruction efficiency of CCl{sub 4} in the Synthetica moving bed evaporator. Design improvements based on the field tests are proposed.

  11. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use.

  12. Volatile organic compounds (VOCs) in surface coating materials: Their compositions and potential as an alternative fuel.

    Science.gov (United States)

    Dinh, Trieu-Vuong; Choi, In-Young; Son, Youn-Suk; Song, Kyu-Yong; Sunwoo, Young; Kim, Jo-Chun

    2016-03-01

    A sampling system was designed to determine the composition ratios of VOCs emitted from 31 surface coating materials (SCMs). Representative architectural, automotive, and marine SCMs in Korea were investigated. Toluene, ethylbenzene, and xylene were the predominant VOCs. The VOC levels (wt%) from automotive SCMs were significantly higher than those from architectural and marine paints. It was found that target SCMs comprised mainly VOCs with 6-10 carbon atoms in molecules, which could be adsorbed by activated carbon. The saturated activated carbon which had already adsorbed toluene, ethylbenzene, and m-xylene was combusted. The saturated activated carbon was more combustible than new activated carbon because it comprised inflammable VOCs. Therefore, it could be an alternative fuel when using in a "fuelization system". To use the activated carbon as a fuel, a control technology of VOCs from a coating process was also designed and introduced.

  13. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    NARCIS (Netherlands)

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, Matthias; Baker, R.W.

    1997-01-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined wi

  14. Study on characteristics of double surface VOC emissions from dry flat-plate building materials

    Institute of Scientific and Technical Information of China (English)

    WANG Xinke; ZHANG Yinping; ZHAO Rongyi

    2006-01-01

    This paper sets up an analytic model of double surface emission of volatile organic compound (VOC) from dry, flat-plate building materials. Based on it, the influence of factors including air change rate, loading factor of materials in the room, mass diffusion coefficient, partition coefficient, convective mass transfer coefficient, thickness of materials, asymmetric convective flow and initial VOC concentration distribution in the building material on emission is discussed. The conditions for simplifying double surface emission into single surface emission are also discussed. The model is helpful to assess the double surface VOC emission from flat-plate building materials used in indoor furniture and space partition.

  15. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  16. Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion.

    Science.gov (United States)

    Fair, Justin D; Bailey, William F; Felty, Robert A; Gifford, Amy E; Shultes, Benjamin; Volles, Leslie H

    2010-01-01

    Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern.

  17. Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion

    Directory of Open Access Journals (Sweden)

    Justin D. Fair

    2010-01-01

    Full Text Available Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern.

  18. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils.

    Science.gov (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P

    2000-01-01

    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  19. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent....... The measurement results are found reproducible, and the detection limit is found to be 9.5 pg (acetone molecule). The detection sensitivity is 28.7 % higher than that of the recent reported leaning silicon nanopillar substrate. With further system miniaturization, the sensing technique can work as a portable SERS...... circular patterns is 30 +/- 5 nm. Silver (30 nm) and gold (15 nm) plasmonic active layers are deposited on the nanostructures subsequently. SERS measurements on different concentrations of acetone vapor ranged from 0.7, 1.5, 3.5, 10.3, 24.5 % and control have been performed with the substrate...

  20. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  1. Designing polymer surfaces via vapor deposition

    Directory of Open Access Journals (Sweden)

    Ayse Asatekin

    2010-05-01

    Full Text Available Chemical Vapor Deposition (CVD methods significantly augment the capabilities of traditional surface modification techniques for designing polymeric surfaces. In CVD polymerization, the monomer(s are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. Since de-wetting and surface tension effects are absent, CVD coatings conform to the geometry of the underlying substrate. Hence, CVD polymers can be readily applied to virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. CVD methods integrate readily with other vacuum processes used to fabricate patterned surfaces and devices. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, thickness control, and the synthesis of films with graded composition. This article focuses on two CVD polymerization methods that closely translate solution chemistry to vapor deposition; initiated CVD and oxidative CVD. The basic concepts underlying these methods and the resultant advantages over other thin film coating techniques are described, along with selected applications where CVD polymers are an enabling technology.

  2. QCM gas phase detection with ceramic materials - VOCs and oil vapors

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A.; Dickert, Franz L. [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2011-06-15

    Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed. (orig.)

  3. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  4. Performance of the JULES land surface model for UK Biogenic VOC emissions

    Science.gov (United States)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    Emissions of biogenic non-methane volatile organic compounds (NMVOCs) are important for air quality and tropospheric composition. Through their contribution to the production of tropospheric ozone and secondary organic aerosol (SOA), biogenic VOCs indirectly contribute to climate forcing and climate feedbacks [1]. Biogenic VOCs encompass a wide range of compounds and are produced by plants for growth, development, reproduction, defence and communication [2]. There are both biological and physico-chemical controls on emissions [3]. Only a few of the many biogenic VOCs are of wider interest and only two or three (isoprene and the monoterpenes, α- and β-pinene) are represented in chemical transport models. We use the Joint UK Land Environment Simulator (JULES), the UK community land surface model, to estimate biogenic VOC emission fluxes. JULES is a process-based model that describes the water, energy and carbon balances and includes temperature, moisture and carbon stores [4, 5]. JULES currently provides emission fluxes of the 4 largest groups of biogenic VOCs: isoprene, terpenes, methanol and acetone. The JULES isoprene scheme uses gross primary productivity (GPP), leaf internal carbon and the leaf temperature as a proxy for the electron requirement for isoprene synthesis [6]. In this study, we compare JULES biogenic VOC emission estimates of isoprene and terepenes with (a) flux measurements made at selected sites in the UK and Europe and (b) gridded estimates for the UK from the EMEP/EMEP4UK atmospheric chemical transport model [7, 8], using site-specific or EMEP4UK driving meteorological data, respectively. We compare the UK-scale emission estimates with literature estimates. We generally find good agreement in the comparisons but the estimates are sensitive to the choice of the base or reference emission potentials. References (1) Unger, 2014: Geophys. Res. Lett., 41, 8563, doi:10.1002/2014GL061616; (2) Laothawornkitkul et al., 2009: New Phytol., 183, 27, doi

  5. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Science.gov (United States)

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream.

  6. Volatile Organic Compound (VOC) emissions from feedlot pen surface materials as affected by within pen location, moisture, and temperature

    Science.gov (United States)

    A laboratory study was conducted to evaluate the effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC) from surface materials obtained from feedlot pens where beef cattle were fed a diet containing 30% wet distillers grain plus solubles. Surface material...

  7. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  8. Surface acoustic wave vapor sensors based on resonator devices

    Science.gov (United States)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  9. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    Science.gov (United States)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-10-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ-1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ-1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ-1 higher, respectively, than in the PBD reactor at 53 J l-1. The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment.

  10. Selective detection of elemental mercury vapor using a surface acoustic wave (SAW) sensor.

    Science.gov (United States)

    Kabir, K M Mohibul; Sabri, Ylias M; Matthews, Glenn I; Jones, Lathe A; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-21

    The detection of elemental mercury (Hg(0)) within industrial processes is extremely important as it is the first major step in ensuring the efficient operation of implemented mercury removal technologies. In this study, a 131 MHz surface acoustic wave (SAW) delay line sensor with gold electrodes was tested towards Hg(0) vapor (24 to 365 ppbv) with/without the presence of ammonia (NH3) and humidity (H2O), as well as volatile organic compounds (VOCs) such as acetaldehyde (MeCHO), ethylmercaptan (EM), dimethyl disulfide (DMDS) and methyl ethyl ketone (MEK), which are all common interfering gas species that co-exist in many industrial applications requiring mercury monitoring. The developed sensor exhibited a detection limit of 0.7 ppbv and 4.85 ppbv at 35 and 55 °C, respectively. Furthermore, a repeatability of 97% and selectivity of 92% in the presence of contaminant gases was exhibited by the sensor at the chosen operating temperature of 55 °C. The response magnitude of the developed SAW sensor towards different concentrations of Hg(0) vapor fitted well with the Langmuir extension isotherm (otherwise known as loading ratio correlation (LRC)) which is in agreement with our basic finite element method (FEM) work where an LRC isotherm was observed for a simplified model of the SAW sensor responding to different Hg contents deposited on the Au based electrodes. Overall, the results indicate that the developed SAW sensor can be a potential solution for online selective detection of low concentrations of Hg(0) vapor found in industrial stack effluents.

  11. Molecular dynamics simulation of liquid-vapor surface tension

    Institute of Scientific and Technical Information of China (English)

    王德; ZENG; Danling; 等

    2002-01-01

    A molecular dynamics simulation model is established based on the well-known Lennard-Jones 12-6 potential function to determine the surface tension of a Lennard-Jones liquid-vapor interface.The simulation is carried out with argon as the working fluid of a given molecular number at different temperature and different truncated radius.It is found that the surface tension of a Lennard-Jones fluid is likely to be bigger for a bigger truncated radius,and tends to be constant after the truncated radius increased to a certain value.It is also found that the surface tension becomes smaller as the temperature increases.

  12. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - CSIA Protocol for Vapor Intrusion Investigations

    Science.gov (United States)

    2014-07-01

    Ethylene Dichloride) AFB Air Force Base bgs Below ground surface cis-1,2-DCE cis-1,2-Dichloroethene COC Constituent of concern CSIA Compound-Specific...in the environment. CSIA measures the carbon, chlorine , and/or hydrogen isotope ratios for individual chemicals. The results, however, are not...PDB) for carbon, Standard Mean Ocean Chloride (SMOC) for chlorine , and Vienna-Standard Mean Ocean Water (V-SMOW) for hydrogen. CSIA Protocol for

  13. Vaporization Studies from Slag Surfaces Using a Thin Film Technique

    Science.gov (United States)

    Seetharaman, Seshadri; Shyrokykh, Tetiana; Schröder, Christina; Scheller, Piotr R.

    2013-08-01

    The investigations of vanadium vaporization from CaO-SiO2-FeO-V2O5 thin film slags were conducted using the single hot thermocouple technique (SHTT) with air as the oxidizing atmosphere. The slag samples were analyzed after the experiments by SEM/EDX. The vanadium content was found to decrease as a function of time. The loss of vanadium from the slag film after 30 minutes of oxidation was approximately 18 pct and after 50 minutes, it was nearly 56 pct. The possible mechanism of vanadium loss would be the surface oxidation of vanadium oxide in the slag, VO x to V5+, followed by surface evaporation of V2O5, which has a high vapor pressure at the experimental temperature.

  14. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  15. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-08-31

    Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  16. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi [Department of Mechanical Systems Engineering, Yamagata Univ., Yonezawa, Yamagata (Japan)

    2000-11-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  17. Remove volatile organic compounds (VOCs) with membrane separation techniques

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  18. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China.

    Science.gov (United States)

    You, Zhiqiang; Zhu, Yun; Jang, Carey; Wang, Shuxiao; Gao, Jian; Lin, Che-Jen; Li, Minhui; Zhu, Zhenghua; Wei, Hao; Yang, Wenwei

    2017-01-01

    To develop a sound ozone (O3) pollution control strategy, it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O3. Using the "Shunde" city as a pilot summer case study, we apply an innovative response surface modeling (RSM) methodology based on the Community Multi-Scale Air Quality (CMAQ) modeling simulations to identify the O3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O3 impacts of volatile organic compound (VOC) control strategy. Our results show that Shunde is a typical VOC-limited urban O3 polluted city. The "Jiangmen" city, as the main upper wind area during July 2014, its VOCs and nitrogen oxides (NOx) emissions make up the largest contribution (9.06%). On the contrary, the contribution from local (Shunde) emission is lowest (6.35%) among the seven neighbor regions. The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde. The results of dynamic source contribution analysis further show that the local NOx control could slightly increase the ground O3 under low (10.00%) and medium (40.00%) reduction ratios, while it could start to turn positive to decrease ground O3 under the high NOx abatement ratio (75.00%). The real-time assessment of O3 impacts from VOCs control strategies in Pearl River Delta (PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O3 concentration in Shunde. Copyright © 2016. Published by Elsevier B.V.

  19. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  20. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Seok-Won Kang

    2015-08-01

    Full Text Available Bi-layer (Au-Si3N4 microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  1. High surface area graphene foams by chemical vapor deposition

    Science.gov (United States)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  2. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  3. 用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡%MODIFIED POLANYI-DUBININ EQUATION TO ORRELATE ADSORPTION EQUILIBRIUM OF VOC-WATER VAPOR MIXTURES ON ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2001-01-01

    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  4. Vapor bubble evolution on a heated surface containing open microchannels

    Science.gov (United States)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  5. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form-f...

  6. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  7. Surface application of soybean peroxidase and calcium peroxide for reducing odorous VOC emissions from swine manure slurry

    Science.gov (United States)

    A laboratory experiment was conducted to evaluate and compare topical and fully mixed treatments of soybean peroxidase and calcium peroxide (SBP/CaO2) for reducing odorous volatile organic compound (VOC) emissions from swine manure slurry. The five treatments consisted of a control, the fully mixed ...

  8. Simulation of Vapor Flows Between Two Closed Surfaces of Evaporation and Condensation at High Vacuum

    Institute of Scientific and Technical Information of China (English)

    张旭斌; 许春建; 周明

    2003-01-01

    The steady multi-component vapor flows between two closed surfaces of evaporation and condensation are investigated numerically by the nonlinear Bhatnagar-Gross-Krook equation. The mathematical model will make it possible to determine the profiles of the process variables between two surfaces of evaporation and condensation if the conditions of evaporation and condensation surfaces are taken into consideration. It is used to simulate the vapor behaviors of the pure dibutylphthalate and the ethylhexyl phthalate-ethylhexyl sebacate mixture. The effects of the liquid composition of the evaporation surface, the evaporation temperature, the condensation temperature and the distance between evaporation and condensation surfaces on the evaporation efficiency and separation factor are discussed.

  9. Vaporization heat transfer of dielectric liquids on a wick-covered surface

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Baker, K.

    1993-01-01

    Vaporization heat transfer characteristics were measured for the dielectric liquid FC-72 on a horizontal heated surface covered with wire screen wicks with the mesh number for the screens varying from 24 to 100. In such a situation the liquid level can be either higher or lower than the heated surface. When the liquid level was above the heated surface (shallow pool boiling), the height of the liquid level above the surface, h, was varied from 0 to 10 mm. When the liquid level was below the heated surface (evaporation through capillary pumping), the distance from the liquid level to the edge of the surface, L, was adjusted from 0 to 15 mm. Experimental data revealed that the critical heat flux (CHF) decreases as the mesh number is increased from 24 to 100 for both vaporation and shallow pool boiling, showing that the vapor-escaping limit is more important than the capillary limit in flat plate heat pipe application.

  10. Vaporization heat transfer of dielectric liquids on a wick-covered surface

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Baker, K.

    1993-01-01

    Vaporization heat transfer characteristics were measured for the dielectric liquid FC-72 on a horizontal heated surface covered with wire screen wicks with the mesh number for the screens varying from 24 to 100. In such a situation the liquid level can be either higher or lower than the heated surface. When the liquid level was above the heated surface (shallow pool boiling), the height of the liquid level above the surface, h, was varied from 0 to 10 mm. When the liquid level was below the heated surface (evaporation through capillary pumping), the distance from the liquid level to the edge of the surface, L, was adjusted from 0 to 15 mm. Experimental data revealed that the critical heat flux (CHF) decreases as the mesh number is increased from 24 to 100 for both vaporation and shallow pool boiling, showing that the vapor-escaping limit is more important than the capillary limit in flat plate heat pipe application.

  11. Interaction of water vapor with clean and oxygen-covered uranium surfaces

    Science.gov (United States)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1987-04-01

    The interaction of water vapor with clean and oxygen-covered high-purity polycrystalline uranium surfaces was studied between 85 and 298 K with thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectroscopy (SIMS). Saturation of the uranium surface with oxygen or water vapor produced an asymmetric O1s photoelectron peak that consisted of a main oxide contribution and a small component assigned to strongly chemisorbed oxygen or hydroxyl ions, respectively. Saturation of the clean or oxygen-covered surface with water vapor at 85 K produced multilayer ice that was converted to oxide and adsorbed hydroxyl ions after warming to room temperature. A significant difference in binding energies was observed in the O1s spectra between water vapor adsorption on clean and oxygen-covered surfaces that lends support to the oxygen inhibition of the water vapor-uranium reaction by a surface mechanism. The initial oxidation mechanisms of uranium with oxygen and water vapor are discussed.

  12. The Aging Study on Polyethylene Terephthalate with Surface Modification by Water Vapor Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aging effects of the contact angle and surface energy on polyethylene tereph thalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and sur face energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.

  13. TO PURGE OR NOT TO PURGE? VOC CONCENTRATION ...

    Science.gov (United States)

    Soil vapor surveys are commonly used as a screening technique to delineate volatile organic compound (VOC) contaminant plumes and provide information for soil sampling plans. Traditionally, three purge volumes of vapor are removed before a sample is collected. One facet of this study was to evaluate the VOC concentrations lost during purging and explore the potential implications of those losses. The vapor data was compared to collocated soil data to determine if any correlation existed between the VOC concentrations. Two different methods for soil vapor collection were compared: 1) active/micro-volume; and 2) active/macro-volume. The active/micro-volume vapor sample had total line purge volume of 1.25 mL and the active/macro-volume vapor sample had a total line purge volume of 15 mL. Six line purge volumes were collected for each vapor sampling technique, with the fourth purge volume representing the traditional sample used for site screening data. Each sample was collected by gas tight syringe and transferred to a thermal de sorption tube for sorption, transport, and analysis. Following the removal of the soil vapor samples, collocated soil samples were taken. For both active vapor sampling techniques, the VOC concentrations in the first three purge volumes exceeded the VOC concentrations in the last three purge volumes. This implies that the general rule of removal of three purge volumes prior to taking a sample for analysis could lead to underestimating the

  14. A New Technique for the Retrieval of Near Surface Water Vapor Using DIAL Measurements

    Science.gov (United States)

    Ismail, Syed; Kooi, Susan; Ferrare, Richard; Winker, David; Hair, Johnathan; Nehrir, Amin; Notari, Anthony; Hostetler, Chris

    2015-01-01

    Water vapor is one of the most important atmospheric trace gas species and influences radiation, climate, cloud formation, surface evaporation, precipitation, storm development, transport, dynamics, and chemistry. For improvements in NWP (numerical weather prediction) and climate studies, global water vapor measurements with higher accuracy and vertical resolution are needed than are currently available. Current satellite sensors are challenged to characterize the content and distribution of water vapor in the Boundary Layer (BL) and particularly near the first few hundred meters above the surface within the BL. These measurements are critically needed to infer surface evaporation rates in cloud formation and climate studies. The NASA Langley Research Center Lidar Atmospheric Sensing Experiment (LASE) system, which uses the Differential Absorption Lidar (DIAL) technique, has demonstrated the capability to provide high quality water vapor measurements in the BL and across the troposphere. A new retrieval technique is investigated to extend these DIAL water vapor measurements to the surface. This method uses signals from both atmospheric backscattering and the strong surface returns (even over low reflectivity oceanic surfaces) using multiple gain channels to cover the large signal dynamic range. Measurements can be made between broken clouds and in presence of optically thin cirrus. Examples of LASE measurements from a variety of conditions encountered during NASA hurricane field experiments over the Atlantic Ocean are presented. Comparisons of retrieved water vapor profiles from LASE near the surface with dropsonde measurements show very good agreement. This presentation also includes a discussion of the feasibility of developing space-based DIAL capability for high resolution water vapor measurements in the BL and above and an assessment of the technology needed for developing this capability.

  15. Guidance on the use of passive-vapor-diffusion samplers to detect volatile organic compounds in ground-water-discharge areas, and example applications in New England

    Science.gov (United States)

    Church, Peter E.; Vroblesky, Don A.; Lyford, Forest P.

    2002-01-01

    Polyethylene-membrane passive-vapor-diffusion samplers, or PVD samplers, have been shown to be an effective and economical reconnaissance tool for detecting and identifying volatile organic compounds (VOCs) in bottom sediments of surface-water bodies in areas of ground-water discharge. The PVD samplers consist of an empty glass vial enclosed in two layers of polyethylene membrane tubing. When samplers are placed in contaminated sediments, the air in the vial equilibrates with VOCs in pore water. Analysis of the vapor indicates the presence or absence of VOCs and the likely magnitude of concentrations in pore water.

  16. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  17. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  18. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  19. VOCs in Arid soils: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE`s Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40.

  20. VOC transport in vented drums containing simulated waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

    1994-02-01

    A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

  1. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  2. Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Schwartz, S. S.; Gunshor, R. L.

    Surface Acoustic Wave (SAW) devices can function as sensitive detectors of vapors. The high surface acoustic energy density of the device makes it extremely sensitive to the presence of molecules adsorbed from the gas phase. Mass loading by the adsorbate is the primary mechanism for the surface wave velocity perturbation. If the device is used as the frequency control element of an oscillator, perturbations in wave velocity on the order of 10 parts per billion may be resolved by means of a frequency counter. Zno-on-Si SAW resonators have been examined as vapor sensors. The piezoelectric ZnO layer permits transduction between electrical and acoustic energies, as well as endowing the surface with particular adsorptive properties. These devices exhibit C-values up to 12,000 at a resonant frequency of 109 MHZ. The resonant frequency of the device shifts upon exposure to a vapor-air mixture, with a transient response which is distinct for each of the organic vapors tested. Due to the permeability of the polycrystalline ZnO layer, the instantaneous reversibility of the resonant frequency shift is found to depend on the type of adsorbed molecule.

  3. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  4. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    OpenAIRE

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M. -A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; C. Jaye; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stu...

  5. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    OpenAIRE

    Seltzer, S. J.

    2011-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stud...

  6. Critical-point analysis of the liquid-vapor interfacial surface tension

    Science.gov (United States)

    Salvino, R. E.

    1990-01-01

    The interfacial surface tension of the liquid-vapor system is analyzed near the critical point in a manner similar to bulk thermodynamic critical-point analyses. This is accomplished by a critical-point analysis of the single-phase hard-wall surface tension. Both a Landau expansion and a scaling theory equation of state are investigated. Some general exponent relations are derived and, in addition, some thermodynamically defined correlation lengths are discussed.

  7. Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces

    Science.gov (United States)

    Shevkunov, S. V.

    2008-12-01

    Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicanoĭnical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.

  8. Surface layer evolution caused by the bombardment with ionized metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Döbeli, M., E-mail: doebeli@phys.ethz.ch [Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland); Dommann, A.; Maeder, X.; Neels, A. [Centre Suisse d’Electronique et de Microtechnique CSEM SA, Rue Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland); Passerone, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Rudigier, H. [OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); Scopece, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Widrig, B.; Ramm, J. [OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein)

    2014-08-01

    The evolution of the composition of tungsten carbide and silicon surfaces initiated by the bombardment with Zr and Cr ions has been investigated as a function of the substrate bias voltage. Surface composition profiles were measured by Rutherford backscattering and have been compared with the results obtained by the TRIDYN simulation program. It is found that the general dependence of film thickness on substrate bias is satisfactorily reproduced by this model. Deviations between experiment and simulation are attributed to possible partial oxidation of the surface or uncertainties in the charge state distribution of metal ions. The results confirm that TRIDYN facilitates the predictability of the nucleation of metallic vapor at substrate surfaces.

  9. Effect of Vapor Flow on Jumping Droplets during Condensation on Superhydrophobic Surfaces

    Science.gov (United States)

    Preston, Daniel J.; Miljkovic, Nenad; Enright, Ryan; Limia, Alexander; Wang, Evelyn N.

    2013-11-01

    Upon coalescence of droplets on a superhydrophobic surface, the net reduction in droplet surface area results in a release of surface energy that can cause the coalesced droplet to ``jump'' away from the surface. Jumping condensing surfaces have been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. While the heat transfer enhancement of jumping condensation is well documented, droplet behavior after departure from the surface has not been considered. Vapor flows to the condensing surface due to mass conservation. This flow can increase drag on departing droplets, resulting in complete droplet reversal and return to the surface. Upon return, these larger droplets impede heat transfer until they jump again or finally shed due to gravity. By characterizing individual droplet trajectories during condensation on hydrophobic nanostructured copper oxide surfaces for a variety of heat fluxes (q'' = 0.1 - 2 W/cm2), we showed that vapor flow entrainment dominates droplet motion for droplets smaller than R ~ 30 um at high heat fluxes (q'' >2 W/cm2). Furthermore, we developed an analytical model of droplet motion based on first principles and the Reynolds drag equation which agreed well with the experimental data. We considered condensation on both flat and tubular geometries with our model, and we suggest avenues to further enhance heat transfer which minimize droplet return due to entrainment.

  10. Adsorption at the liquid-vapor surface of a binary liquid mixture

    Science.gov (United States)

    Whitmer, J. K.; Kiselev, S. B.; Law, B. M.

    2005-11-01

    In a binary liquid mixture, the component possessing the lowest surface tension preferentially adsorbs at the liquid-vapor surface. In the past this adsorption behavior has been extensively investigated for critical binary liquid mixtures near the mixture's critical temperature Tc. In this fluctuation-dominated regime the adsorption is described by a universal function of the dimensionless depth z /ξ where ξ is the bulk correlation length. Fewer studies have quantitatively examined adsorption for off-critical mixtures because, in this case, one must carefully account for both the bulk and surface crossover from the fluctuation-dominated regime (close to Tc) to the mean-field dominated regime (far from Tc). In this paper we compare extensive liquid-vapor ellipsometric adsorption measurements for the mixture aniline+cyclohexane at a variety of critical and noncritical compositions with the crossover theory of Kiselev and co-workers [J. Chem. Phys. 112, 3370 (2000)].

  11. Voc Degradation in TF-VLS Grown InP Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve; Sutter-Fella, Carolin M.; Hettick, Mark; Javey, Ali; Bermel, Peter

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the whole sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.

  12. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  13. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    Science.gov (United States)

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  14. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  15. High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings

    CERN Document Server

    Seltzer, S J

    2009-01-01

    Anti-relaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling free motion of the alkali atoms and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of anti-relaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free (SERF) atomic magnetometer with sensitivi...

  16. Communication: Surface-facilitated softening of ordinary and vapor-deposited glasses

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-08-01

    A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 105 K s-1, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts. In both cases, softening is likely to begin at the sample surface and progress into its bulk via a transformation front. Furthermore, such a surface-facilitated mechanism complies with zero-order, Arrhenius rate law. The activation energy barriers for the softening transformation imply that the kinetics must be defined, at least in part, by the initial thermodynamic and structural state of the samples.

  17. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...... through modulation of the VCSEL output power as the polymer swell. We have investigated the responsivity of this technique experimentally using a plasma polymerized polystyrene coating and explain the results theoretically as a reflectance modulation of the top DBR.......We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain...

  18. Ultraviolet and radical oxidation of airborne VOC`s. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Heinsohn, R.J.; Spaeder, T.A.; Albano, M.T.; Schmelzle, J.P.; Fetter, R.O.

    1994-03-18

    Airborne VOC`s reactions initiated by UV radiation at selected wavelengths from 185 to 308 nm have been studied. A simplified chemical kinetic mechanism is proposed incorporating photolysis and radical reactions. The concentration of HCHO and CH{sub 3}OH were predicted as a function of time, radiation wavelength, actinic flux and initial ozone concentration. The gas velocity and HCHO concentration were predicted in a gas stream flowing over a UV bulb. Experiments were conducted in which ethanol vapor and air were irradiated by low-pressure mercury bulbs. Ethanol disappeared in an overall first-order manner and an intermediate species, believed to be acetaldehyde, appeared and then disappeared.

  19. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review.

    Science.gov (United States)

    Afzal, Adeel; Iqbal, Naseer; Mujahid, Adnan; Schirhagl, Romana

    2013-07-17

    The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors - based on piezoelectric crystal resonators - are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.

  20. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    Directory of Open Access Journals (Sweden)

    S. Situ

    2013-03-01

    Full Text Available In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC emission model (MEGAN v2.1. The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by ~3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou-Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  1. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    Energy Technology Data Exchange (ETDEWEB)

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  2. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    Science.gov (United States)

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  3. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    Energy Technology Data Exchange (ETDEWEB)

    Assari, Mohamad javad [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rangkooy, Hossinali [Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of)

    2015-07-01

    Highlights: • A novel nanocomposite including bone char and gold nanoparticle was developed for capture of Hg{sup 0} vapor. • EDS and XRD results confirm the presence of nano-gold on the surface of the bone char support. • The majority of the pores were found to be in the mesoporous range. • The dynamic capacity of 586 μg/g was obtained for Hg{sup 0} vapor. - Abstract: The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg{sup 0}) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV–VIS–NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg{sup 0} determination. Dynamic capacity of nanocomposite for Hg{sup 0} was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg{sup 0}. It could be applied for the laboratory and field studies.

  4. Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Pais, M. R.; Baker, K.

    1993-01-01

    Experiments were conducted to investigate the vaporization heat transfer characteristics for the dielectric liquid FC-72 on several wicking surfaces which may be used in flat-plate heat pipes. The wicking materials studied included microstructure enhanced surfaces and coarse surfaces covered with screen meshes. Experimental data for q versus deltaT curves and critical heat fluxes were obtained for the two different operating conditions of a heat pipe, evaporation, and shallow pool boiling. When the liquid level was above the heated surface, the height of the liquid level above the surface was varied from 0 to 10 mm. When the liquid level was below the heated surface, the distance from the liquid level to the edge of the surface was adjusted from 0 to 15 mm. Experimental results revealed that for shallow pool boiling when the heated surface was covered with a wire screen mesh, the heat transfer coefficient increased at lower heat fluxes but the critical heat flux (CHF) decreased for all the surfaces tested. In the case of evaporation, both CHF and the heat transfer coefficient increased as the microstructure surfaces were covered with screen meshes.

  5. Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Pais, M. R.; Baker, K.

    1993-01-01

    Experiments were conducted to investigate the vaporization heat transfer characteristics for the dielectric liquid FC-72 on several wicking surfaces which may be used in flat-plate heat pipes. The wicking materials studied included microstructure enhanced surfaces and coarse surfaces covered with screen meshes. Experimental data for q versus deltaT curves and critical heat fluxes were obtained for the two different operating conditions of a heat pipe, evaporation, and shallow pool boiling. When the liquid level was above the heated surface, the height of the liquid level above the surface was varied from 0 to 10 mm. When the liquid level was below the heated surface, the distance from the liquid level to the edge of the surface was adjusted from 0 to 15 mm. Experimental results revealed that for shallow pool boiling when the heated surface was covered with a wire screen mesh, the heat transfer coefficient increased at lower heat fluxes but the critical heat flux (CHF) decreased for all the surfaces tested. In the case of evaporation, both CHF and the heat transfer coefficient increased as the microstructure surfaces were covered with screen meshes.

  6. Formation of alkenes and oxygenated VOCs from light mediated surface chemistry of nonanoic acid at the air-seawater interface

    Science.gov (United States)

    Gonzalez, L.; Volkamer, R.; Ciuraru, R.; Bernard, F.; George, C.

    2013-12-01

    Organic carbon is relevant in the atmosphere because it affects oxidative capacity that determines the removal rate of climate active gases and modifies aerosols. The significant presence of organic compounds at the surface of the ocean is a source for primary and secondary aerosol formation that potentially can modify cloud cover. Field observations of glyoxal over the remote marine boundary layer, and the tropical free troposphere remain unexplained by atmospheric models, and indicate missing sources of marine organic carbon species from heterogeneous processes mediated by light. We have studied the light induced surface chemistry of synthetic aqueous -mixtures containing NaCl, NaBr, NaI, photosensitizers (humic acids) and an organic surfactant (nonanoic acid) in a photochemical Quartz flowreactor. The air from the flowreactor was transferred to a dark reactor where the products from photosensitized reactions at the air/sea interface were further exposed to ozone. The products were sampled in the presence/absence of light and ozone by Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) and Light-Emitting-Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (LED-CE-DOAS). In the presence of light nonenal formation is observed. Addition of ozone leads to the formation of glyoxal, among other products. Further experiments were conducted in an atmospheric simulation chamber. We discuss first results and atmospheric implications.

  7. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    S. Liu

    2010-11-01

    Full Text Available We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy and water vapor fluxes were measured using eddy covariance systems (EC and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed the differences between the sensible heat fluxes measured by EC and LAS. The results show that the main EC source areas were within a radius of 250 m at all sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed according to season and site, and there were characteristic seasonal variations in the energy and water vapor fluxes at all sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The evapotranspiration (ET at YK was larger than those at the other two sites. The monthly ET reached its peak in July at YK and in June at GT in both 2008 and 2009, while it reached its peak in August at AR in 2008 and in June in 2009. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the energy imbalance of EC, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  8. Surface organization of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy

    OpenAIRE

    Gocalinska, A.; Manganaro, M.; Vvedensky, D. D.; Pelucchi, E.

    2012-01-01

    We present a systematic study of the morphology of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy which are imaged with ex situ atomic force microscopy. These films show a dramatic range of different surface morphologies as a function of the growth conditions and substrate (growth temperature, V/III ratio, and miscut angle < 0.6deg and orientation toward A or B sites), ranging from stable step flow to previously unreported strong step bunching, over 10 nm in height. These o...

  9. Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation

    CERN Document Server

    Bruot, Nicolas

    2016-01-01

    Surface tension is a macroscopic manifestation of the cohesion of matter, and its value $\\sigma_\\infty$ is readily measured for a flat liquid-vapor interface. For interfaces with a small radius of curvature $R$, the surface tension might differ from $\\sigma_\\infty$. The Tolman equation, $\\sigma(R) = \\sigma_\\infty / (1 + 2 \\delta/R)$, with $\\delta$ a constant length, is commonly used to describe nanoscale phenomena such as nucleation. Here we report experiments on nucleation of bubbles in ethanol and n-heptane, and their analysis in combination with their counterparts for the nucleation of droplets in supersaturated vapors, and with water data. We show that neither a constant surface tension nor the Tolman equation can consistently describe the data. We also investigate a model including $1/R$ and $1/R^2$ terms in $\\sigma(R)$. We describe a general procedure to obtain the coefficients of these terms from detailed nucleation experiments. This work explains the conflicting values obtained for the Tolman length i...

  10. Surface Structure of GaN(0001) in the Chemical Vapor Deposition Environment

    Energy Technology Data Exchange (ETDEWEB)

    Munkholm, A. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Stephenson, G.B.; Eastman, J.A.; Thompson, C.; Auciello, O. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Thompson, C. [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Fini, P.; Speck, J.S.; DenBaars, S.P. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Fuoss, P.H. [ATT Laboratories---Research, Florham Park, New Jersey 07932 (United States)

    1999-07-01

    We report the first observation of the atomic-scale structure of the GaN(0001) surface in the metal-organic chemical vapor deposition environment. Measurements were performed using {ital in situ} grazing-incidence x-ray scattering. We determined the surface equilibrium phase diagram as a function of temperature and ammonia partial pressure, which contains two phases with 1{times}1 and ({radical} (3) {times}2{radical} (3) )R30{degree} symmetries. The ({radical} (3) {times}2{radical} (3) )R30{degree} phase is found to have a novel {open_quotes}missing row{close_quotes} structure with 1/3 of the surface Ga atoms absent. {copyright} {ital 1999} {ital The American Physical Society }

  11. Enabling organosilicon chemistries on inert polymer surfaces with a vapor-deposited silica layer.

    Science.gov (United States)

    Anderson, A; Ashurst, W R

    2009-10-06

    Given the large surface area-to-volume ratios commonly encountered in microfluidics applications, the ability to engineer the chemical properties of surfaces encountered in these applications is critically important. However, as various polymers are rapidly replacing glass and silicon as the chosen materials for microfluidics devices, the ability to easily modify the surface chemistry has been diminished by the relatively inert nature of some commonly employed polymer surfaces, such as poly(methyl methacrylate) (PMMA), polystyrene, and polydimethylsiloxane (PDMS). This paper describes the low-temperature, vapor-phase deposition of robust silica layers to PMMA, polystyrene, and PDMS surfaces, which enables the functionalization of these surfaces by standard organosilane chemistries. Attenuated total reflection infrared spectroscopy, contact angle goniometry, ellipsometry, and atomic force microscopy are used to characterize the silica layers that form on these surfaces. Aqueous immersion experiments indicate that the silica layer has excellent stability in aqueous environments, which is a prerequisite for microfluidics applications, but for PMMA surfaces, low adhesion of the silica layer to the underlying substrate is problematic. For PDMS substrates, the presence of the silica layer helps to slow the process of hydrophobic recovery, which is an additional advantage.

  12. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2015-09-15

    Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  13. Atmospheric control on isotopic composition and d-excess in water vapor over ocean surface

    Science.gov (United States)

    Fan, Naixin

    For decades, stable isotopes of water have been used as proxies to infer the variation of the hydrological cycle. However, it is still not clear how various atmospheric processes quantitatively control kinetic fractionation during evaporation over the ocean. Understanding kinetic fractionation is important in that the interpretation of the isotopic composition record preserved in ice cores and precipitation relies in part on the isotopic information at the moisture source. In addition, the isotopic composition of vapor contains information about variation of atmospheric processes such as turbulence and change in moisture source region which is useful for studying meteorological processes and climate change. In this study the isotopic composition of water vapor in the marine boundary layer (MBL) over the ocean was investigated using a combination of a newly developed marine boundary layer (MBL) model and observational data. The new model has a more realistic MBL structure than previous models and includes new features such as vertical advection of air and diffusion coefficients that vary continuously in the vertical direction. A robust linear relationship between deltaD and delta18O was found in observational oceanic water vapor data and the model can well capture the characteristics of this relationship. The individual role of atmospheric processes or variables on deltaD, delta18O and d-excess was quantitatively investigated and an overview of the combined effect of all the meteorological processes is provided. In particular, we emphasize that the properties of subsiding air (such as its mixing ratio and isotopic values) are crucial to the isotopic composition of surface water vapor. Relative humidity has been used to represent the moisture deficit that drives evaporative isotopic fluxes, however, we argue that it has serious limitations in explaining d-excess variation as latitude varies. We introduce a new quantity Gd=SST-Td, the difference between the sea

  14. A Review of Vapor Intrusion Models

    OpenAIRE

    Yao, Yijun; Suuberg, Eric M.

    2013-01-01

    A complete vapor intrusion (VI) model, describing vapor entry of volatile organic chemicals (VOCs) into buildings located on contaminated sites, generally consists of two main parts-one describing vapor transport in the soil and the other its entry into the building. Modeling the soil vapor transport part involves either analytically or numerically solving the equations of vapor advection and diffusion in the subsurface. Contaminant biodegradation must often also be included in this simulatio...

  15. Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces

    Science.gov (United States)

    Meloni, Simone; Giacomello, Alberto; Casciola, Carlo Massimo

    2016-12-01

    Heterogeneous nucleation is the preferential means of formation of a new phase. Gas and vapor nucleation in fluids under confinement or at textured surfaces is central for many phenomena of technological relevance, such as bubble release, cavitation, and biological growth. Understanding and developing quantitative models for nucleation is the key to control how bubbles are formed and to exploit them in technological applications. An example is the in silico design of textured surfaces or particles with tailored nucleation properties. However, despite the fact that gas/vapor nucleation has been investigated for more than one century, many aspects still remain unclear and a quantitative theory is still lacking; this is especially true for heterogeneous systems with nanoscale corrugations, for which experiments are difficult. The objective of this focus article is analyzing the main results of the last 10-20 years in the field, selecting few representative works out of this impressive body of the literature, and highlighting the open theoretical questions. We start by introducing classical theories of nucleation in homogeneous and in simple heterogeneous systems and then discuss their extension to complex heterogeneous cases. Then we describe results from recent theories and computer simulations aimed at overcoming the limitations of the simpler theories by considering explicitly the diffuse nature of the interfaces, atomistic, kinetic, and inertial effects.

  16. Mechanism of operation and design considerations for surface acoustic wave device vapor sensors

    Science.gov (United States)

    Wohltjen, H.

    1984-04-01

    Surface acoustic wave (SAW) devices offer many attractive features for application as vapor phase chemical microsensors. This paper describes the characteristics of SAW devices and techniques by which they can be employed as vapor sensors. The perturbation of SAW amplitude and velocity by polymeric coating films was investigated both theoretically and experimentally. High sensitivity can be achieved when the device is used as the resonating element in a delay line oscillator circuit. A simple equation has been developed from theoretical considerations which offers reasonably accurate quantitative predictions of SAW Device frequency shifts when subjected to a given mass loading. In this mode the SAW device behaves in a fashion very similar to conventional bulk wave quartz crystal microbalance except that the sensitivity can be several orders of magnitude higher and the device size can be several orders of magnitude smaller. Detection of mass changes of less than 1 femtogram by a SAW device having a surface area of 0.0001 square cm. is theoretically possible.

  17. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    Science.gov (United States)

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  18. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  19. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  20. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  1. XPS STUDIES ON SURFACE MODIFIED POLY[1-(TRIMETHYLSILYL)-1-PROPYNE] MEMBRANES Ⅱ SURFACE MODIFICATION BY BROMINE VAPOR

    Institute of Scientific and Technical Information of China (English)

    XU Guanfan; SUN Xiaoguang; QIU Xuepeng; ZHANG Jinlan; ZHENG Guodong

    1994-01-01

    Surface modification of poly [ 1-(trimethylsilyl )-1-propyne ] ( PTMSP ) membranes by bromine vapor has been studied. It is shown that Br/C atomic ratio at the surfacesincreased with the time of bromination until about 60 min, then it reached a plateau. The results of XPS and IR studies indicated that the addition of bromine to double bonds and the replacement of H on CH3 by bromine had taken place so that a new peak at 286.0 eV (C-Br)in C1sspectra and some new bands, e. g. at 1220 and 580cm-1,in IR spectra were formed. The fact, Po2, permeability of oxygen, decreased and αO2/N2, separation factor of oxygen relative to nitrogen, increased with bromination time, shows that surface modification of PTMSP by bromine may be an efficient approachto prepare PTMSP membranes used for practical gas separations.

  2. Surface Analysis of Hexagonal Boron Nitride Grown by Chemical Vapor Deposition

    Science.gov (United States)

    Robinson, Zachary; Hite, J. K.; Eddy, C. R., Jr.; Bermudez, V. M.; Feigelson, B. N.

    Hexagonal boron nitride (hBN) is an important material for development of 2-dimensional heterostructures. Chemical vapor deposition of hBN on Cu-foil substrates is one possible route towards large-scale production of hBN films with low defect density. Therefore, studying the growth kinetics of hBN on different orientations of Cu is an important first step towards understanding and controlling the growth process. In this work, hBN was simultaneously grown on Cu(111), Cu(100), Cu(110), and Cu-foil in order to investigate how the different substrate orientations affect the hBN overlayer. The post-growth crystallographic orientations were measured with electron backscatter diffraction (EBSD), and film coverages we measured with XPS. In addition, a grazing-incidence infrared reflection absorption spectroscopy (IRRAS) technique was developed to quickly characterize each hBN film. It was found that the growth rate was inversely proportional to the surface free energy of the Cu surface, with Cu(111) having the most h-BN surface coverage. The Cu foil predominately crystallized with a (100) surface orientation, and had a film coverage very close to the Cu(100).

  3. Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide.

    Science.gov (United States)

    Wagner, George W; Sorrick, David C; Procell, Lawrence R; Brickhouse, Mark D; Mcvey, Iain F; Schwartz, Lewis I

    2007-01-30

    Vaporized hydrogen peroxide (VHP) has proven efficacy for biological decontamination and is a common gaseous sterilant widely used by industry. Regarding chemical warfare agent decontamination, VHP is also effective against HD and VX, but not GD. Simple addition of ammonia gas to VHP affords reactivity toward GD, while maintaining efficacy for HD (and bioagents) and further enhancing efficacy for VX. Thus, modified VHP is a broad-spectrum CB decontaminant suitable for fumigant-type decontamination scenarios, i.e., building, aircraft, and vehicle interiors and sensitive equipment. Finally, as an interesting aside to the current study, commercial ammonia-containing cleaners are also shown to be effective surface decontaminants for GD, but not for VX or HD.

  4. Surface tension at the liquid-vapor interface of screened ionic mixtures

    Directory of Open Access Journals (Sweden)

    M.González-Melchor

    2004-01-01

    Full Text Available The liquid-vapor interface of binary mixtures of charged particles is studied using molecular dynamics (MD simulations. The interaction between particles is given by a short-range repulsive potential plus an attractive/repulsive Yukawa term, which models screened electrostatic interactions. To obtain the components of the pressure tensor two methods were used: a hybrid MD method which combines the hard sphere and continuous forces and a standard continuous MD method where the hard sphere was replaced by a soft interaction. We show that both models give essentially the same results. As the range of interaction decreases, the critical temperature and surface tension increase. The comparison with the restricted primitive model of ionic fluids is discussed.

  5. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Science.gov (United States)

    Li, X. W.; Li, J. X.; Gao, C. Y.; Chang, M.

    2011-10-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of the key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  6. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.

    Science.gov (United States)

    Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

    2010-04-06

    In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.

  7. Algorithm for Recovery of Integrated Water Vapor Content in the Atmosphere over Land Surfaces Based on Satellite Spectroradiometer Data

    Science.gov (United States)

    Lisenko, S. A.

    2017-05-01

    An algorithm is proposed for making charts of the distribution of water vapor in the atmosphere based on multispectral images of the earth by the Ocean and Land Color Instrument (OLCI) on board of the European research satellite Sentinel-3. The algorithm is based on multiple regression fits of the spectral brightness coefficients at the upper boundary of the atmosphere, the geometric parameters of the satellite location (solar and viewing angles), and the total water vapor content in the atmosphere. A regression equation is derived from experimental data on the variation in the optical characteristics of the atmosphere and underlying surface, together with Monte-Carlo calculations of the radiative transfer characteristics. The equation includes the brightness coefficients in the near IR channels of the OLCI for the absorption bands of water vapor and oxygen, as well as for the transparency windows of the atmosphere. Together these make it possible to eliminate the effect of the reflection spectrum of the underlying surface and air pressure on the accuracy of the measurements. The algorithm is tested using data from a prototype OLCI, the medium resolution imaging spectrometer (MERIS). A sample chart of the distribution of water vapor in the atmosphere over Eastern Europe is constructed without using subsatellite data and digital models of the surface relief. The water vapor contents in the atmosphere determined using MERIS images and data provided by earthbound measurements with the aerosol robotic network (AERONET) are compared with a mean square deviation of 1.24 kg/m2.

  8. Surface Chemistry and Tribology of Copper Surfaces in Carbon Dioxide and Water Vapor Environments

    Science.gov (United States)

    2011-02-23

    progress). Simultaneous XAS and cyclic voltammetry of Cu in bicarbonate solutions under potentiostatic control at the Berkeley Synchrotron facility (Figure...bicarbonate ions that mimic the conditions of the wet brush-rotor contact. Electrochemical control of the surface by cyclic voltammetry makes it...the electrochemical modifications of Cu under potentiostat control and solution pH 3) Determine the loss of mass of Cu when in carbonate containing

  9. The Dynamic Role of Melt-Vapor Surface Tension in Magmatic Degassing

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2004-05-01

    It is well known from classical nucleation theory that melt-vapor surface tension (σ ) critically influences both the supersaturation pressure needed to initiate eruptive degassing (Δ Pcritical) and the rate of gas bubble nucleation (J ). Here we highlight an important aspect of melt-vapor surface tension that is generally ignored, namely, that σ is dynamic quantity responsive to the changes in melt composition, water content, and temperature that occur during magma storage and ascent. Crystallization, degassing, and cooling impart a time-dependency to σ that must be considered in any effort to accurately model eruption processes. In this study, we document changes to σ in natural, water-saturated dacitic melt at 200 MPa and 950-1055° C and 5.7-4.8 wt% H2O. Rather than traditional macroscopic measurements (sessile drop, capillarity, detachment techniques), we experimentally determine the Δ Pcritical of bubble nucleation during depressurization from 200 MPa as a function of T and wt% H2O (techniques as in Mangan and Sisson, E&PSL, 2000), and then solve for σ at those conditions using classical nucleation theory (Blander and Katz, AIChE Jour., 1975). Meshing experiment and theory gives σ = 42 (±3), 60 (±7), 73 (±3) mN/m at T= 950, 1000, 1055° C, and H2O = 5.7 (±0.1), 5.3 (±0.2), 4.8 (±0.1) wt%, respectively. Our data show a negative dependence of σ on dissolved water content of -33 mN/m/wt% H2O and a positive dependence of σ on temperature of +0.30 mN/m/° C. Comparable relationships between σ and changing water content and temperature were obtained in sessile-drop style experiments using hydrous haplogranite melts (Bagdassarov et al., Amer. Mineral., 2000). To illustrate how the observed σ -H2O-T dependencies might impact degassing models we consider two idealized regimes. The first is a storage regime in which isobaric cooling and crystallization in the magma chamber gradually increases the H2O content of the residual melt. Surface tension is

  10. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  11. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, C.D.; Outcalt, S.L. [National Institute of Standards and Technology, Boulder, CO (United States)

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  12. Vapor shielding effects on energy transfer from plasma-gun generated ELM-like transient loads to material surfaces

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.

    2016-02-01

    Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.

  13. Using continuous measurements of near-surface atmospheric water vapor isotopes to document snow-air interactions

    Science.gov (United States)

    Steen-Larsen, Hans Christian; Masson-Delmotte, Valerie; Hirabayashi, Motohiro; Winkler, Renato; Satow, Kazuhide; Prie, Frederic; Bayou, Nicolas; Brun, Eric; Cuffey, Kurt; Dahl-Jensen, Dorthe; Dumont, Marie; Guillevic, Myriam; Kipfstuhl, Sepp; Landais, Amaelle; Popp, Trevor; Risi, Camille; Steffen, Konrad; Stenni, Barbara; Sveinbjornsdottir, Arny

    2014-05-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm from the surface has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We observe a clear diurnal cycle in both the value and gradient of the isotopic composition of the water vapor above the snow surface. The diurnal amplitude in δD is found to be ~15‰. The diurnal isotopic composition follows the absolute humidity cycle. This indicates a large flux of vapor from the snow surface to the atmosphere during the daily warming and reverse flux during the daily cooling. The isotopic measurements of the flux of water vapor above the snow give new insights into the post depositional processes of the isotopic composition of the snow. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow

  14. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Science.gov (United States)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in

  15. Effect of surface tension, viscosity, and process conditions on polymer morphology deposited at the liquid-vapor interface.

    Science.gov (United States)

    Haller, Patrick D; Bradley, Laura C; Gupta, Malancha

    2013-09-17

    We have observed that the vapor-phase deposition of polymers onto liquid substrates can result in the formation of polymer films or particles at the liquid-vapor interface. In this study, we demonstrate the relationship between the polymer morphology at the liquid-vapor interface and the surface tension interaction between the liquid and polymer, the liquid viscosity, the deposition rate, and the deposition time. We show that the thermodynamically stable morphology is determined by the surface tension interaction between the liquid and the polymer. Stable polymer films form when it is energetically favorable for the polymer to spread over the surface of the liquid, whereas polymer particles form when it is energetically favorable for the polymer to aggregate. For systems that do not strongly favor spreading or aggregation, we observe that the initial morphology depends on the deposition rate. Particles form at low deposition rates, whereas unstable films form at high deposition rates. We also observe a transition from particle formation to unstable film formation when we increase the viscosity of the liquid or increase the deposition time. Our results provide a fundamental understanding about polymer growth at the liquid-vapor interface and can offer insight into the growth of other materials on liquid surfaces. The ability to systematically tune morphology can enable the production of particles for applications in photonics, electronics, and drug delivery and films for applications in sensing and separations.

  16. Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2014-11-01

    Full Text Available This study investigates chemical grafting with fatty acid chlorides as a method for the surface modification of hydrophilic web materials. The resulting changes in the water repellence and barrier properties were studied. For this purpose, different grades of polyvinyl alcohol (PVOH were coated on regenerated cellulose films (“cellophane” and paper and then grafted with fatty acid chlorides. The PVOH grades varied in their degree of hydrolysis and average molecular weight. The surface was esterified with two fatty acid chlorides, palmitoyl (C16 and stearoyl chloride (C18, by chemical grafting. The chemical grafting resulted in water-repellent surfaces and reduced water vapor transmission rates by a factor of almost 19. The impact of the surface modification was greater for a higher degree of hydrolysis of the polyvinyl alcohol and for shorter fatty acid chains. Although the water vapor barrier for palmitoyl-grafted PVOH was higher than for stearoyl-grafted PVOH, the contact angle with water was lower. Additionally, it was shown that a higher degree of hydrolysis led to higher water vapor barrier improvement factors after grafting. Furthermore, the oxygen permeability decreased after grafting significantly, due to the fact that the grafting protects the PVOH against humidity when the humidity is applied on the grafted side. It can be concluded that the carbon chain length of the fatty acid chlorides is the limiting factor for water vapor adsorption, but the grafting density is the bottleneck for water diffusing in the polymer.

  17. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  18. A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension

    Science.gov (United States)

    Fechter, Stefan; Munz, Claus-Dieter; Rohde, Christian; Zeiler, Christoph

    2017-05-01

    The numerical approximation of non-isothermal liquid-vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  19. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  20. [Study on control and management for industrial volatile organic compounds (VOCs) in China].

    Science.gov (United States)

    Wang, Hai-Lin; Zhang, Guo-Ning; Nei, Lei; Wang, Yu-Fei; Hao, Zheng-Ping

    2011-12-01

    Volatile organic compounds (VOCs) emitted from industrial sources account for a large percent of total anthropogenic VOCs. In this paper, VOCs emission characterization, control technologies and management were discussed. VOCs from industrial emissions were characterized by high intensity, wide range and uneven distribution, which focused on Bejing-Tianjin Joint Belt, Shangdong Peninsula, Yangtze River Delta and the Pearl River Delta. The current technologies for VOCs treatment include adsorption, catalytic combustion, bio-degradation and others, which were applied in petrochemical, oil vapor recovery, shipbuilding, printing, pharmaceutical, feather manufacturing and so on. The scarcity of related regulations/standards plus ineffective supervision make the VOCs management difficult. Therefore, it is suggested that VOCs treatment be firstly performed from key areas and industries, and then carried out step by step. By establishing of actual reducing amount control system and more detailed VOCs emission standards and regulations, applying practical technologies together with demonstration projects, and setting up VOCs emission registration and classification-related-charge system, VOCs could be reduced effectively.

  1. A Remote Sensing Method for Estimating Surface Air Temperature and Surface Vapor Pressure on a Regional Scale

    Directory of Open Access Journals (Sweden)

    Renhua Zhang

    2015-05-01

    Full Text Available This paper presents a method of estimating regional distributions of surface air temperature (Ta and surface vapor pressure (ea, which uses remotely-sensed data and meteorological data as its inputs. The method takes into account the effects of both local driving force and horizontal advection on Ta and ea. Good correlation coefficients (R2 and root mean square error (RMSE between the measurements of Ta/ea at weather stations and Ta/ea estimates were obtained; with R2 of 0.77, 0.82 and 0.80 and RMSE of 0.42K, 0.35K and 0.20K for Ta and with R2 of 0.85, 0.88, 0.88 and RMSE of 0.24hpa, 0.35hpa and 0.16hpa for ea, respectively, for the three-day results. This result is much better than that estimated from the inverse distance weighted method (IDW. The performance of Ta/ea estimates at Dongping Lake illustrated that the method proposed in the paper also has good accuracy for a heterogeneous surface. The absolute biases of Ta and ea estimates at Dongping Lake from the proposed method are less than 0.5Kand 0.7hpa, respectively, while the absolute biases of them from the IDW method are more than 2K and 3hpa, respectively. Sensitivity analysis suggests that the Ta estimation method presented in the paper is most sensitive to surface temperature and that the ea estimation method is most sensitive to available energy.

  2. Dejima VOC dan rangaku

    Directory of Open Access Journals (Sweden)

    Bambang Wibawarta

    2008-10-01

    Full Text Available Japan and the Netherlands have maintained a special relationship for about 300years since the adoption of the National Seclusion policy, the so-called sakoku bythe Tokugawa shogunate (1603-1867. The Dutch began trading with Japan andengaging with Japanese society in 1600, when a Dutch ship, De Liefde, arrived inKyushu. The Tokugawa government measures regarding foreign policy includedregulations on foreign access to Japan and a prohibition on Japanese goingabroad. Between the middle of the seventeenth to the early nineteenth century,Japan was characterized by a stable political pattern in which representativesof the VOC (Dutch East India Company, were the only Europeans with a rightto trade in Japan. In the course of this period, the Japanese evaluation of theDutch changed from regarding them as commercial agents to seeing them asimporters of European knowledge. This paper is especially concerned with theinfluence of the so-called ‘Dutch Studies’ (rangaku on the early modernizationof Japan, especially with regard to medicine and the natural sciences. Thisresearch examines the development of rangaku and the trading between Japanand VOC at Dejima.

  3. Advances in modeling semiconductor epitaxy: Contributions of growth orientation and surface reconstruction to InN metalorganic vapor phase epitaxy

    Science.gov (United States)

    Kusaba, Akira; Kangawa, Yoshihiro; Kempisty, Pawel; Shiraishi, Kenji; Kakimoto, Koichi; Koukitu, Akinori

    2016-12-01

    We propose a newly improved thermodynamic analysis method that incorporates surface energies. The new theoretical approach enables us to investigate the effects of the growth orientation and surface reconstruction. The obtained knowledge would be indispensable for examining the preferred growth conditions in terms of the contribution of the surface state. We applied the theoretical approach to study the growth processes of InN(0001) and (000\\bar{1}) by metalorganic vapor phase epitaxy. Calculation results reproduced the difference in optimum growth temperature. That is, we successfully developed a new theoretical approach that can predict growth processes on various growth surfaces.

  4. Thermal dynamics-based mechanism for intense laser-induced material surface vaporization

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2008-09-01

    Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase. Such interaction involving high brightness radiative flux causes multitude of non-linear events involving thermal phase transition at soild–liquid–gas interfaces. A theoretical perspective involving thermal dynamics of the vaporization process and consequent non-linear multiple thermal phase transitions under the action of laser plasma is the subject matter of the present work. The computational calculations were carried out where titanium (Ti) was treated as a condensed medium. The solution to the partial differential equations governing the thermal dynamics and the underlying phase transition event in the multiphase system is based on non-stationary Eulerian variables. The Mach number depicts significant fluctuations due to thermal instabilities associated with the laser beam flux and intensity. A conclusive amalgamation has been established which relates material surface temperature profile to laser intensity, laser flux and the pressure in the plasma cloud.

  5. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    Science.gov (United States)

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.

  6. Examination of vapor sorption by fullerene, fullerene-coated surface acoustic wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Grate, J.W. [Pacific Northwest Lab., Richland, WA (United States); Abraham, M.H.; Du, C.M. [Univ. College London (United Kingdom); McGill, R.A. [Geo-Centers, Inc., Fort Washington, MD (United States); Shuely, W.J. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-06-01

    The sorption of vapors by fullerene is compared with the sorption of vapors by an assembled fullerene thin film on a surface acoustic wave vapor sensor. A linear solvation energy relationship derived for solid fullerene at 298 K was used to calculate gas/solid partition coefficients for the same vapors as those examined using the vapor sensor. This relationship correctly predicted the relative vapor sensitivities observed with the vapor sensor. A new linear solvation energy relationship for vapor adsorption by graphite at 298 K has been determined, and solid fullerene and solid graphite are found to be quite similar in their vapor sorption properties. Comparisons have also been made with linear organic and inorganic polymers, including poly(isobutylene), poly(epichorophydrin), OV25, and OV202. In all cases, sorption is driven primarily by dispersion interactions. The assembled fullerene material is generally similar in vapor selectivity to the other nonpolar sorbent materials considered but yields less sensitive vapor sensors than linear organic polymers. 39 refs., 2 figs., 2 tabs.

  7. On speciation of VOC localization

    Science.gov (United States)

    Chen, S.; Chang, J.; Wang, J.

    2011-12-01

    Most of the gas-phase chemical mechanisms successfully used in gas-phase atmospheric chemical processes, such as CBM-Z, RADM2 or SAPRC-07, treat hundreds of VOC as lumped organic species by their chemical characteristics. Most of the model results are compared with total VOC observations, and it is not appropriate to compare lumped VOC simulations to observations even if there are separate VOC observations like Photochemical Assessment Monitoring Stations (PAMS). While the PAMS Air Quality Model (PAMS-AQM) is developed, separate organic species observed by PAMS without a doubt can be directly compared with model simulations. From the past case study (Chen et al., 2010), it shows a major and very significant finding in that detailed emissions of VOC in the existing emissions database are often in error in Taiwan or other countries due to the fact that the annual VOC emissions are classified into hundreds of species-specific emissions by using the speciation factors following the protocol of the U.S. EPA (AP-42). Based on all PAMS observations from 2006-2007, four base cases with well comparable meteorological simulations were selected for the unified correction for all sources in Taiwan. After the PAMS species emissions are modified, the diurnal patterns and simulation-observation correlation for most of the PAMS species are improved, and the concentration levels are more comparable with those of observations. More expanded case studies also revealed necessary corrections for the PAMS species emissions. Sensitivity analyses for lumped organic species with modified PAMS species emissions are also conducted. After modified PAMS emissions are added into lumped VOC emissions, there is an increase of only 10% of totally VOC emissions. While the sources of the lumped VOC emissions are changed, ozone formation shows no significant change with modified lumped VOC emissions. This helps to support the argument that for ozone simulation, the lumped VOC processes balance out

  8. Surface Reactivity of Iron Oxide Pigmentary Powders toward Atmospheric Components: XPS and Gravimetry of Oxygen and Water Vapor Adsorption

    Science.gov (United States)

    Ismail; Cadenhead; Zaki

    1996-11-10

    The adsorption of oxygen and water vapor on a number of specially prepared alpha-Fe2O3 samples was measured gravimetrically at 25°C. The samples themselves were prepared from a steel-pickling chemical waste (97 wt% FeSO4·7H2O) by roasting the original material at 700°C for 5 h in air, oxygen, and nitrogen. Estimated surface coverages by the adsorbed oxygen and water vapor were made on the basis of nitrogen-adsorption-based surface areas, while the nature of the sample surfaces was investigated by both X-ray photoelectron spectroscopy (XPS) and field emission SEM (FESEM) techniques. In addition a depth profiling study utilizing a sputtering argon beam and XPS was undertaken. Morphological studies using FESEM showed that, while the surface areas were essentially the same (27-29 m2/g) for all three samples, the sample prepared in nitrogen had a significantly larger particle size than the other two. These studies also indicated that neither oxygen nor water vapor adsorption caused any significant structural changes. The differing sample preparations resulted in differing oxygenated surfaces for the alpha-Fe2O3 samples, with the degree of oxygenation decreasing in the order of preparatory gases: oxygen, (wet) air, nitrogen. The amounts of both oxygen and water vapor adsorbed were in inverse proportion to the original degree of surface oxygenation, though the amounts of both represented fractional coverage at best. While the water vapor adsorption was always greater than that of oxygen, the former was more weakly adsorbed, as was indicated by the ease of desorption. Depth profiling failed to indicate any bulk diffusion of oxygen but could not be considered reliable since even the attenuated argon beam used here still brought about reduction of surface iron. Both oxygen and dissociative water adsorption are thought to involve surface sites of high coordination unsaturation. Oxygen is postulated to adsorb on such poorly oxygenated sites primarily as O-2; however, O2

  9. Seasonal and Short-term Variation of Water Vapor Isotope ratios in Surface Air in Sapporo, Japan

    Science.gov (United States)

    Sunmonu, L. A.; Fujiyoshi, Y.; Muramoto, K.; Kurita, N.

    2011-12-01

    Stable isotopes of atmospheric water vapor provide information about movement of water and its phase changes in the atmosphere. Surface water vapor's δD and δ18O measurement was conducted in Sapporo (43.1N, 141.3E), a humid continental site characterized by a warm but not humid summer and a quite cold and snowy winter, in Hokkaido, Japan with a Los Gatos Research's (LGR) Water-Vapor Isotope Analyzer (WVIA, model DLT-100). The observation in Sapporo was carried out in four phases: (I) 28 April 2009 - 25 June 2009; (II) 15 September 2009 - 29 November 2009; (III) 1 April 2010 - 21 May 2010 and (IV) 17 December 2010 - 30 May 2011. In addition, auxiliary data (air temperature, atmospheric pressure, relative humidity, wind speed & direction, etc.) were obtained with an automatic weather station (AWS). Thus, the objective of this study is to investigate the characteristics of δD and δ18O of atmospheric water vapor near the ground in Sapporo and to explore the meteorological processes that influence δD and δ18O of atmospheric water vapor at the surface. In general, δD and δ18O were higher in warm season (PHASES I & III) than in cold season (PHASES II & IV) with almost equal day-to-day δD variability in both seasons. The lightest δD (-239.7%) occurs in the month of March/April despite not being the coldest month in Sapporo. This is thought to be due to "rigorous" evaporation due to snow-melting. In addition, over periods of about 1-7days, considerable variations occurred, sometimes exceeding 100% for δD. These considerable variations were attributable to weather phenomena such as sea-breeze and cold frontal passages. The former causes δD to increase abruptly while the latter causes an abrupt decrease.

  10. Studies related to the surfaces of the moon and planets. [a discussion of vapor deposition and glasses of lunar composition

    Science.gov (United States)

    Hapke, B.

    1974-01-01

    A variety of glasses of lunar composition were prepared with different amounts of Fe and Ti under both reducing and oxidizing conditions, and also by sputter-deposition and thermal evaporation and condensation. These materials were analyzed by wet chemical, electron microprobe, ESR, Mossbauer and magnetic methods. The effects of darkening processes on surface soils of airless bodies are discussed along with the effects of vapor phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith.

  11. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions.

    Science.gov (United States)

    Liu, Xuan-He; Guan, Cui-Zhong; Ding, San-Yuan; Wang, Wei; Yan, Hui-Juan; Wang, Dong; Wan, Li-Jun

    2013-07-17

    Surface covalent organic frameworks (SCOFs), featured by atomic thick sheet with covalently bonded organic building units, are promised to possess unique properties associated with reduced dimensionality, well-defined in-plane structure, and tunable functionality. Although a great deal of effort has been made to obtain SCOFs with different linkages and building blocks via both "top-down" exfoliation and "bottom-up" surface synthesis approaches, the obtained SCOFs generally suffer a low crystallinity, which impedes the understanding of intrinsic properties of the materials. Herein, we demonstrate a self-limiting solid-vapor interface reaction strategy to fabricate highly ordered SCOFs. The coupling reaction is tailored to take place at the solid-vapor interface by introducing one precursor via vaporization to the surface preloaded with the other precursor. Following this strategy, highly ordered honeycomb SCOFs with imine linkage are obtained. The controlled formation of SCOFs in our study shows the possibility of a rational design and synthesis of SCOFs with desired functionality.

  12. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    Science.gov (United States)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  13. Microbial growth with vapor-phase substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany); Wick, Lukas Y., E-mail: lukas.wick@ufz.de [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany)

    2011-04-15

    Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and high bioavailability despite restricted mobility of bacteria in the vadose zone. Since many bacteria tend to accumulate at solid-water, solid-air and air-water interfaces, such phase boundaries are of a special interest for VOC-biodegradation. In an attempt to evaluate microbial activity toward air-borne substrates, this study investigated the spatio-temporal interplay between growth of Pseudomonas putida (NAH7) on vapor-phase naphthalene (NAPH) and its repercussion on vapor-phase NAPH concentrations. Our data demonstrate that growth rates of strain PpG7 were inversely correlated to the distance from the source of vapor-phase NAPH. Despite the high gas phase diffusivity of NAPH, microbial growth was absent at distances above 5 cm from the source when sufficient biomass was located in between. This indicates a high efficiency of suspended bacteria to acquire vapor-phase compounds and influence headspace concentration gradients at the centimeter-scale. It further suggests a crucial role of microorganisms as biofilters for gas-phase VOC emanating from contaminated groundwater or soil. - Research highlights: > Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene. > Bacteria influence NAPH vapor-phase concentration gradients at centimeter-scale. > Microbial growth on vapor-phase naphthalene is inversely correlated to its source. > Bacteria are good biofilters for gas-phase NAPH emanating from contaminated sites. - Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene and effectively influence vapor-phase naphthalene concentration gradients at the centimeter scale.

  14. Enhancing vapor generation at a liquid-solid interface using micro/nanoscale surface structures fabricated by femtosecond laser surface processing

    Science.gov (United States)

    Anderson, Troy P.; Wilson, Chris; Zuhlke, Craig A.; Kruse, Corey; Gogos, George; Ndao, Sidy; Alexander, Dennis

    2015-03-01

    Femtosecond Laser Surface Processing (FLSP) is a versatile technique for the fabrication of a wide variety of micro/nanostructured surfaces with tailored physical and chemical properties. Through control over processing conditions such as laser fluence, incident pulse count, polarization, and incident angle, the size and density of both micrometer and nanometer-scale surface features can be tailored. Furthermore, the composition and pressure of the environment both during and after laser processing have a substantial impact on the final surface chemistry of the target material. FLSP is therefore a powerful tool for optimizing interfacial phenomena such as wetting, wicking, and phasetransitions associated with a vapor/liquid/solid interface. In the present study, we utilize a series of multiscale FLSPgenerated surfaces to improve the efficiency of vapor generation on a structured surface. Specifically, we demonstrate that FLSP of stainless steel 316 electrode surfaces in an alkaline electrolysis cell results in increased efficiency of the water-splitting reaction used to generate hydrogen. The electrodes are fabricated to be superhydrophilic (the contact angle of a water droplet on the surface is less than 5 degrees). The overpotential of the hydrogen evolution reaction (HER) is measured using a 3-electrode configuration with a structured electrode as the working electrode. The enhancement is attributed to several factors including increased surface area, increased wettability, and the impact of micro/nanostructures on the bubble formation and release. Special emphasis is placed on identifying and isolating the relative impacts of the various contributions.

  15. HYDROGEN AND VOC RETENTION IN WASTE BOXES

    Energy Technology Data Exchange (ETDEWEB)

    PACE ME; MARUSICH RM

    2008-11-21

    The Hanford Waste Management Project Master Documented Safety Analysis (MDSA) (HNF-14741, 2003) identifies derived safety controls to prevent or mitigate the risks of a single-container deflagration during operations requiring moving, venting or opening transuranic (TRU)-waste containers. The issue is whether these safety controls are necessary for operations involving TRU-waste boxes that are being retrieved from burial at the Hanford Site. This paper investigates the potential for a deflagration hazard within these boxes and whether safety controls identified for drum deflagration hazards should be applied to operations involving these boxes. The study evaluates the accumulation of hydrogen and VOCs within the waste box and the transport of these gases and vapors out of the waste box. To perform the analysis, there were numerous and major assumptions made regarding the generation rate and the transport pathway dimensions and their number. Since there is little actual data with regards to these assumptions, analyses of three potential configurations were performed to obtain some indication of the bounds of the issue (the concentration of hydrogen or flammable VOCs within a waste box). A brief description of each of the three cases along with the results of the analysis is summarized.

  16. Deposition of nanocrystalline nonstoichiometric chromium oxide coatings on the surface of multiwalled carbon nanotubes by chromium acetylacetonate vapor pyrolysis

    Science.gov (United States)

    Kremlev, K. V.; Ob'edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Andreev, P. V.

    2017-04-01

    Nanocrystalline coatings of nonstoichiometric chromium oxide have been obtained for the first time on the surface of multiwalled carbon nanotubes (MWCNTs) by the method of metalorganic chemical-vapor deposition using chromium acetylacetonate as a precursor. The new hybrid nanomaterial (Cr2O2.4/MWCNT) has been characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. It is established that oxidation of the hybrid nanomaterial in air under soft conditions (at 380°C) leads to the formation of nanocrystalline chromium oxide (Cr2O3) on the surface of MWCNTs.

  17. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete

    Science.gov (United States)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.

    2016-08-01

    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  18. Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules.

    Science.gov (United States)

    Kawasaki, Hideya; Ozawa, Tomoyuki; Hisatomi, Hirotaka; Arakawa, Ryuichi

    2012-08-30

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in a sample. However, when using an organic matrix in the MALDI-IMS of small molecules, inhomogeneous matrix crystallization may yield poorly reproducible peaks in the mass spectra. We describe a solvent-free approach that employs a homogeneously deposited metal nanoparticle layer (or film) for small-molecule detection. Platinum vapor deposition surface-assisted laser desorption/ionization imaging mass spectrometry (Pt vapor deposition SALDI-IMS) of small molecules was performed as a solvent-free and organic-matrix-free method. A commercially available magnetron sputtering device was used for Pt deposition. Vapor deposition of Pt produced a homogenous layer of nanoparticles over the surface of the target imaging sample. The effectiveness of Pt vapor deposition SALDI-IMS was demonstrated for the direct detection of small analytes of inkjet ink on printed paper as well as for various other analytes (saccharides, pigments, and drugs) separated by thin-layer chromatography (TLC), without the need for extraction or concentration processes. The advantage of choosing Pt instead of Au in SALDI-IMS was also shown. A solvent-free approach involving the direct deposition of Pt on samples (SALDI-IMS) is effective for the analysis of inkjet-printed papers and various analytes separated by TLC. This method would be useful in imaging analyses of various insulating materials such as polymers and biological materials. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Heat and Mass Transfer during Chemical Vapor Deposition on the Particle Surface Subjected to Nanosecond Laser Heating

    CERN Document Server

    Peng, Quan; He, Yaling; Mao, Yijin

    2016-01-01

    A thermal model of chemical vapor deposition of titanium nitride (TiN) on the spherical particle surface under irradiation by a nanosecond laser pulse is presented in this paper. Heat and mass transfer on a single spherical metal powder particle surface subjected to temporal Gaussian heat flux is investigated analytically. The chemical reaction on the particle surface and the mass transfer in the gas phase are also considered. The surface temperature, thermal penetration depth, and deposited film thickness under different laser fluence, pulse width, initial particle temperature, and particle radius are investigated. The effect of total pressure in the reaction chamber on deposition rate is studied as well. The particle-level model presented in this paper is an important step toward development of multiscale model of LCVI.

  20. Distributions of personal VOC exposures: a population-based analysis.

    Science.gov (United States)

    Jia, Chunrong; D'Souza, Jennifer; Batterman, Stuart

    2008-10-01

    Information regarding the distribution of volatile organic compound (VOC) concentrations and exposures is scarce, and there have been few, if any, studies using population-based samples from which representative estimates can be derived. This study characterizes distributions of personal exposures to ten different VOCs in the U.S. measured in the 1999--2000 National Health and Nutrition Examination Survey (NHANES). Personal VOC exposures were collected for 669 individuals over 2-3 days, and measurements were weighted to derive national-level statistics. Four common exposure sources were identified using factor analyses: gasoline vapor and vehicle exhaust, methyl tert-butyl ether (MBTE) as a gasoline additive, tap water disinfection products, and household cleaning products. Benzene, toluene, ethyl benzene, xylenes chloroform, and tetrachloroethene were fit to log-normal distributions with reasonably good agreement to observations. 1,4-Dichlorobenzene and trichloroethene were fit to Pareto distributions, and MTBE to Weibull distribution, but agreement was poor. However, distributions that attempt to match all of the VOC exposure data can lead to incorrect conclusions regarding the level and frequency of the higher exposures. Maximum Gumbel distributions gave generally good fits to extrema, however, they could not fully represent the highest exposures of the NHANES measurements. The analysis suggests that complete models for the distribution of VOC exposures require an approach that combines standard and extreme value distributions, and that carefully identifies outliers. This is the first study to provide national-level and representative statistics regarding the VOC exposures, and its results have important implications for risk assessment and probabilistic analyses.

  1. Theoretical study of adsorption of water vapor on surface of metallic uranium

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH2 wich C2v configuration is obtained in the state of 5A1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.474 7 kJ.mol-1, which indicates a typical chemical adsorption.

  2. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces.

    Science.gov (United States)

    Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L

    2014-02-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods.

  3. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    Science.gov (United States)

    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T.

    2017-01-01

    For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H2-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H2 ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  4. Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Jean-François Feller

    2014-01-01

    Full Text Available Different grades of chemically functionalized carbon nanotubes (CNT have been processed by spraying layer-by-layer (sLbL to obtain an array of chemoresistive transducers for volatile organic compound (VOC detection. The sLbL process led to random networks of CNT less conductive, but more sensitive to vapors than filtration under vacuum (bucky papers. Shorter CNT were also found to be more sensitive due to the less entangled and more easily disconnectable conducting networks they are making. Chemical functionalization of the CNT’ surface is changing their selectivity towards VOC, which makes it possible to easily discriminate methanol, chloroform and tetrahydrofuran (THF from toluene vapors after the assembly of CNT transducers into an array to make an e-nose. Interestingly, the amplitude of the CNT transducers’ responses can be enhanced by a factor of five (methanol to 100 (chloroform by dispersing them into a polymer matrix, such as poly(styrene (PS, poly(carbonate (PC or poly(methyl methacrylate (PMMA. COOH functionalization of CNT was found to penalize their dispersion in polymers and to decrease the sensors’ sensitivity. The resulting conductive polymer nanocomposites (CPCs not only allow for a more easy tuning of the sensors’ selectivity by changing the chemical nature of the matrix, but they also allow them to adjust their sensitivity by changing the average gap between CNT (acting on quantum tunneling in the CNT network. Quantum resistive sensors (QRSs appear promising for environmental monitoring and anticipated disease diagnostics that are both based on VOC analysis.

  5. Low VOC drying of lumber and wood panel products. Progress report No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Wild, P.; Yan, Hui; Banerjee, S. [and others

    1997-10-01

    This progress report summarizes three accomplishments in a study of low volatile organic compound (VOC) drying of lumber and wood panel products. A mathematical model for predicting moisture emissions from particle was constructed and is being extended to VOCs. VOCs emissions from drying boards show that VOCs appear to be evenly released from all surfaces. Preliminary results from monthly analyses of loblolly pines indicate that resin acids appear to decrease between March to August, and that no consistent trends are apparent for terpenes. 3 refs., 13 figs., 1 tab.

  6. NEW SOIL VOC SAMPLERS: EN CORE AND ACCU CORE SAMPLING/STORAGE DEVICES FOR VOC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani Jr

    2006-06-01

    Soil sampling and storage practices for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from samples. The En Core{reg_sign} sampler is designed to collect and store soil samples in a manner that minimizes loss of contaminants due to volatilization and/or biodegradation. An ASTM International (ASTM) standard practice, D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, describes use of the En Core sampler to collect and store a soil sample of approximately 5 grams or 25 grams for volatile organic analysis and specifies sample storage in the En Core sampler at 4 {+-} 2 C for up to 48 hours; -7 to -21 C for up to 14 days; or 4 {+-} 2 C for up to 48 hours followed by storage at -7 to -21 C for up to five days. This report discusses activities performed during the past year to promote and continue acceptance of the En Core samplers based on their performance to store soil samples for VOC analysis. The En Core sampler is designed to collect soil samples for VOC analysis at the soil surface. To date, a sampling tool for collecting and storing subsurface soil samples for VOC analysis is not available. Development of a subsurface VOC sampling/storage device was initiated in 1999. This device, which is called the Accu Core{trademark} sampler, is designed so that a soil sample can be collected below the surface using a dual-tube penetrometer and transported to the laboratory for analysis in the same container. Laboratory testing of the current Accu Core design shows that the device holds low-level concentrations of VOCs in soil samples during 48-hour storage at 4 {+-} 2 C and that the device is ready for field evaluation to generate additional performance data. This report discusses a field validation exercise that was attempted in Pennsylvania in 2004 and activities being performed to plan and conduct a field validation study in 2006. A draft ASTM

  7. Photoluminescence intensity enhancement of GaAs by vapor-deposited GaS - A rational approach to surface passivation

    Science.gov (United States)

    Jenkins, Phillip P.; Hepp, Aloysius F.; Power, Michael B.; Macinnes, Andrew N.; Barron, Andrew R.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster (/t-Bu/GaS)4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally-characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  8. Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Du, M. [College of Textiles and Clothing, Yancheng Institute of Industry Technology, Jiangsu 224000 (China); Lv, J.C.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Liu, G.L.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-09-15

    Highlights: • Aramid fiber surface was modified by PIVPGP of AA to improve wettability, adhesion. • Surface modification effect by PIVPGP of AA increased and then decreased with time. • Surface modification effect increased and then stayed unaltered with output power. • Ar plasma was the most effective in PIVPGP of AA on aramid fiber surface. • In studied range, optimum technology of PIVPGP of AA: Ar plasma, 15 min, 300 W. - Abstract: Plasma induced vapor phase graft polymerization (PIVPGP) method was applied to modify aramid fiber surface. In this study, aramid fibers were pretreated under various plasma conditions such as different treatment times, output powers and working gases to see how these plasma processing parameters influenced the PIVPGP of acrylic acid (AA) on aramid fiber surface and its surface structure and properties. The analysis results of atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS) showed the increase of surface roughness and the introduction of O=C−OH, which confirmed that the PIVPGP of AA on aramid fiber surface was achieved. The contact angle and interfacial shear strength (IFSS) of the aramid fibers modified by PIVPGP of AA prominently decreased and increased, respectively, indicating the obvious improvements of surface wettability and adhesion between aramid fiber and matrix. The surface modification effects of aramid fiber by PIVPGP of AA firstly increased and then after 15 min slightly decreased with the increasing plasma treatment time, and but firstly increased and then after 300 W nearly remained unchanged with the increasing output power, respectively. Among different working gases, Ar plasma occupied first place, O{sub 2} plasma and N{sub 2} plasma came second and third in the aspect of PIVPGP of AA on aramid fiber surface, respectively. It could be concluded that the PIVPGP of AA on aramid fiber surface could effectively improve surface wettability and adhesion. Plasma conditions had signally

  9. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  10. In-situ observations of water vapor isotopes in near surface air over Lakes Superior and Michigan

    Science.gov (United States)

    Welp, L.; Meyer, A. L.; Griffis, T. J.

    2016-12-01

    The Laurentian Great Lakes play an important role in the climate of the midwestern to northeastern United States. Evaporation from the lakes is not well quantified, and the factors controlling lake evaporation are not fully understood. Two isotopic tracer methods have been used to study lake evaporation. The first is a lake water isotopic mass balance to solve for evaporation rates from precipitation and runoff inputs and the residual lake water. The second method is monitoring downwind precipitation and atmospheric water vapor for evidence of lake evaporation. Accurate estimates of the isotopic composition of evaporation from the lakes are critical inputs in both methods for modern and paleo studies. Traditionally, evaporation is assumed to follow the Craig-Gordon model of isotopic fractionation. To our knowledge, this model has not been tested on large lakes like the Great Lakes, whose evaporation flux strongly influences the moisture in the air above the lake. To test the Craig-Gordon model, we made measurements of the hydrogen and oxygen isotope ratios above the surface of Lakes Superior and Michigan during June 2016 during a 4-day cruise on the R/V Blue Heron research vessel that traveled from Duluth, MN to Milwaukee, WI. Air was sampled at 2 intakes, approximately 5 m and 15 m above the lake surface, using an LGR triple water vapor isotope analyzer. The isotopic composition of lake water became more enriched in the heavy isotopes from Lake Superior to Lake Michigan. The timing of these measurements in late spring is not an optimal time to observe evaporation off the lakes, because often the lake temperature is cooler than the air temperature, thereby suppressing the evaporation flux. At times, vertical gradients of water vapor mixing in the near surface air approached 2,000-3,000 ppm, with higher moisture at the lower intake than the upper intake. At night, we observed times when this gradient reversed, and there was higher moisture aloft compared to the

  11. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China

    Science.gov (United States)

    Wang, P.; Zhao, W.

    2008-08-01

    Volatile organic compounds (VOCs) are a major component of atmospheric pollutants in Nanjing, a large city in the east of China. Accordingly, 12-h diurnal monitoring for ten consecutive days was performed adjacent to major roads in five districts, ca.1.5 m above ground level, in April, July and October 2006, and January 2007. The most numerous species of VOCs (benzene, toluene, ethylbenzene, m/ p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, tetrachloromethane, trichloroethane and tetrachloroethane) were selected as the target pollutants for this field study of atmospheric distribution. The eleven VOCs were mostly found in gas phase due to their high vapor pressures. Gas-phase concentrations ranged between 0.6 and 67.9 μg m - 3 . Simultaneously, the levels of those VOCs measured near major roads were associated slightly with their regional background level. For all these areas, as expected, the high traffic area was the highest in terms of concentration. A positive correlation was also found between the VOC levels and traffic density. Our studies also provided VOC distribution, and vertical/horizontal profiles. The results show that traffic-related exposure to VOCs in major road microenvironments is higher than elsewhere and poses a potential threat to pedestrians, commuters, and traffic-exposed workers.

  12. The Vaporization Behavior of a Fuel Drop on a Hot Surface

    Science.gov (United States)

    1977-11-01

    evaporation behavior of fuel drops 99 Figure 36. Effect of surface cleanliness on drop evaporation lifetime .. ......... . 101 Figure 37. Effect of drop...C, CD 0 C) - -C) -H _______________C_ 100 procedures that were considered during the evaluation included the surface cleanliness , fuel drop size and...evaporating surface heating rate. The effect of the studied variables on the test results was found to be as follow: Surface Cleanliness As indicated

  13. Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition

    Science.gov (United States)

    Ishizaki, Takahiro; Sasagawa, Keisuke; Furukawa, Takuya; Kumagai, Sou; Yamamoto, Erina; Chiba, Satoshi; Kamiyama, Naosumi; Kiguchi, Takayoshi

    2016-08-01

    The surface wettability of the native Si oxide surfaces were tuned by chemical adsorption of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) molecules through thermal CVD method at different temperature. Water contact angle measurements revealed that the water contact angles of the TMCTS-modified Si oxide surfaces at the temperature of 333-373 K were found to be in the range of 92 ± 2-102 ± 2°. The advancing and receding water contact angle of the surface prepared at 333 K were found to be 97 ± 2/92 ± 2°, showing low contact angle hysteresis surface. The water contact angles of the surfaces prepared at the temperature of 373-413 K increased with an increase in the treatment temperature. When the treatment temperature was more than 423 K, the water contact angles of TMCTS-modified surfaces were found to become more than 150°, showing superhydrophobic surface. AFM study revealed that the surface roughness of the TMCTS-modified surface increased with an increase in the treatment temperature. This geometric morphology enhanced the surface hydrophobicity. The surface roughness could be fabricated due to the hydrolysis/condensation reactions in the gas phase during CVD process. The effect of the treatment temperature on the reactivity of the TMCTS molecules were also investigated using a thermogravimetric analyzer.

  14. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  15. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Yasar, M., E-mail: Muhammad.yasar@ieee.org [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  16. Catalytic Chemical Vapor Deposition Synthesis of Carbon Aerogels of High-Surface Area and Porosity

    Directory of Open Access Journals (Sweden)

    Armando Peña

    2012-01-01

    Full Text Available In this work carbon aerogels were synthesized by catalytic chemical vapor deposition method (CCVD. Ferrocene were employed as a source both of catalytic material (Fe and of carbon. Gaseous hydrogen and argon were used as reductant and carrier gas, respectively. The products of reaction were collected over alumina. The morphology and textural properties of the soot produced in the reaction chamber were investigated using Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, X-ray photoelectron spectroscopy, and N2 physisorption (BET and BHJ methods. After the evaluation of the porous structure of the synthesized products, 780 ± 20 m2/g of SBET and 0.55 ± 0.02 cm3/g of VBJH were found. The presence of iron carbide and the partial oxidation of carbon nanostructures were revealed by XPS.

  17. Experiments in the EMRP project KEY-VOCs: Adsorption/desorption effects of VOCs in different tubing materials and preparation and analysis of a zero gas

    Science.gov (United States)

    Englert, Jennifer; Claude, Anja; Kubistin, Dagmar; Tensing, Erasmus; Michl, Katja; Plass-Duelmer, Christian

    2017-04-01

    Atmospheric chemistry and composition are influenced by volatile organic compounds (VOCs) emitted from natural and anthropogenic sources. Due to their toxicity and their crucial role in ozone and aerosol formation VOCs impact air quality and climate change and high quality observations are demanded. The European Metrology Research Programme (EMRP) project KEY-VOCs has targeted the improvement of VOC measurement capabilities with the focus on VOCs relevant for indoor air as well as for air quality and climate monitoring programmes. One major uncertainty is the influence of surface effects of the measurement devices. By developing a test system the adsorption/desorption effects of certain VOCs can be systematically examined. Different tubing materials e.g. stainless steel and PFA were analysed with the oxygenated VOC methanol and results of these experiments will be presented. In air quality monitoring very low levels of VOCs have to be measured. Purified air or nitrogen is widely used as a zero gas to characterize measurement systems and procedures as well as for instrument calibration. A high quality zero gas is an important contributor to the quality of the measurements and generally achieved by using state-of-the-art purification technologies. The efficiency of several air purifiers was assessed and the results have been analysed.

  18. 低表面处理低VOC通用型环氧底漆的制备%Preparation of Universal Epoxy Primer of Low Surface Treatment and Low VOC

    Institute of Scientific and Technical Information of China (English)

    盛哗; 朱晓英

    2012-01-01

    This paper describes a preparation method of new universal epoxy primer, and discusses the selection of binder, curing agent, liquid phenolic resin and anti-rust pigments. It is showed that the primer is characterized by low VOC, all-weather application, low surface treatment, quick drying and re-coatable performance, and it can also be painted and cured under conditions of -10-40℃ temperature. It can be applied to ships, machinery, bridges and a series of steel structures as antirust primer and middle coat.%介绍了一种全新的通用型环氧底漆的制备方法,并对成膜物、固化剂、液体酚醛树脂、防锈颜料等原材料的选择进行了讨论。结果表明,该产品具有低VOC、全天候施工、低表面处理、快干、可复涂并能在-10-40℃下涂装和固化的特点。适用于船舶、机械、桥梁等钢结构作底漆和中间涂层。

  19. Adhesion of fibroblasts on micro- and nanostructured surfaces prepared by chemical vapor deposition and pulsed laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Veith, M; Aktas, O C; Ullah Wazir, H; Grobelsek, I [INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbruecken (Germany); Metzger, W; Sossong, D; Pohlemann, T; Oberringer, M [Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Strasse, Building 57, 66421 Homburg (Germany); Puetz, N; Wennemuth, G, E-mail: Michael.Veith@inm-gmbh.d [Department of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse, Building 61, 66421 Homburg (Germany)

    2010-09-15

    The development of micro- and nanostructured surfaces which improve the cell-substrate interaction is of great interest in today's implant applications. In this regard, Al/Al{sub 2}O{sub 3} bi-phasic nanowires were synthesized by chemical vapor deposition of the molecular precursor ({sup t}BuOAlH{sub 2}){sub 2}. Heat treatment of such bi-phasic nanowires with short laser pulses leads to micro- and nanostructured Al{sub 2}O{sub 3} surfaces. Such surfaces were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy and x-ray photoelectron spectroscopy. Following the detailed material characterization, the prepared surfaces were tested for their cell compatibility using normal human dermal fibroblasts. While the cells cultivated on Al/Al{sub 2}O{sub 3} bi-phasic nanowires showed an unusual morphology, cells cultivated on nanowires treated with one and two laser pulses exhibited morphologies similar to those observed on the control substrate. The highest cell density was observed on surfaces treated with one laser pulse. The interaction of the cells with the nano- and microstructures was investigated by SEM analysis in detail. Laser treatment of Al/Al{sub 2}O{sub 3} bi-phasic nanowires is a fast and easy method to fabricate nano- and microstructured Al{sub 2}O{sub 3}-surfaces for studying cell-surface interactions. It is our goal to develop a biocompatible Al{sub 2}O{sub 3}-surface which could be used as a coating material for medical implants exhibiting a cell selective response because of its specific physical landscape and especially because it promotes the adhesion of osteoblasts while minimizing the adhesion of fibroblasts.

  20. The effect of surface wettability on water vapor condensation in nanoscale

    Science.gov (United States)

    Niu, D.; Tang, G. H.

    2016-01-01

    The effect of surface wettability on condensation heat transfer in a nanochannel is studied with the molecular dynamics simulations. Different from the conventional size, the results show that the filmwise mode leads to more efficient heat transfer than the dropwise mode, which is attributed to a lower interfacial thermal resistance between the hydrophilic surface and the condensed water compared with the hydrophobic case. The observed temperature jump at the solid-liquid surface confirms that the hydrophilic properties of the solid surface can suppress the interfacial thermal resistance and improve the condensation heat transfer performance effectively.

  1. Unpredicted surface termination of α-Fe2O3(0001) film grown by mist chemical vapor deposition

    Science.gov (United States)

    Osaka, Shun; Kubo, Osamu; Takahashi, Kazuki; Oda, Masaya; Kaneko, Kentaro; Tabata, Hiroshi; Fujita, Shizuo; Katayama, Mitsuhiro

    2017-06-01

    We analyze the surface structure of an α-Fe2O3(0001) film grown on a c-plane sapphire substrate by mist chemical vapor deposition (CVD), which has been recently developed as a simple, safe, and cost-effective film growth method. Using coaxial impact-collision ion scattering spectroscopy, we found that the atomic-layer sequence of the surface termination of an α-Fe2O3(0001) film grown by mist CVD was Fe-O3-Fe- from the top layer. This surface termination is predicted to form in an oxygen-poor environment by density functional theory combined with a thermodynamical approach despite that the mist CVD process is performed with atmospheric-pressure air. The surface structure markedly changes after annealing above 600 °C in ultrahigh vacuum. We found that only a couple of layers from the top layer transform into Fe3O4(111) after 650 °C annealing, which would be so-called biphase reconstruction. Complete transformation into a Fe3O4(111) film occurs at 700 °C, whose atomic-layer sequence is determined to be Fe-O4-Fe3- from the top layer.

  2. TEOS-based SiO{sub 2} chemical vapor deposition: Reaction kinetics and related surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, M.E.; Moffat, H.K.

    1995-11-01

    We have developed a comprehensive understanding of thermal TEOS (tetracthylorthosificate, Si(OCH{sub 2}CH{sub 3}){sub 4}) surface chemistry at CVD (chemical vapor deposition) temperatures and pressures. This was accomplished by examining how TEOS reaction rate are influenced by factors critical to the heterogeneous reaction. This includes determining the TEOS pressure dependence, testing if reaction by-products inhibit TEOS decomposition, identifying reaction sites on the surface, and establishing the reaction sites coverage dependencies. We evaluated the pressure dependencies and by-product inhibition with GCMS. The experiments in a cold-wall research reactor revealed that the TEOS surface reaction at 1000K (1) was first-order with respect to TEOS pressure (0.10 to 1.50Torr) and (2) was not inhibited by surface reaction by-products (ethylene, ethanol, and water). Reactivities of surface sites and their coverage dependencies were compared with FTIR. Our experiments demonstrated that two-membered siloxane ((Si-O){sub 2}) rings on the SiO{sub 2} surface were consumed almost instantaneously when exposed to TEOS. Our FTIR experiments also revealed that TEOS decomposition was zero-order with respect to coverages of hydroxyl groups and (by indirect evidence) three-membered siloxane ((Si-O){sub 3}) rings. This type of site-independent reactivity is consistent with TEOS reacting with hydroxyl groups and (Si-O){sub 3} rings via a common rate-determining step at 1000K. With respect to deposition uniformity, our results predict that deposition rates will be insensitive to the relative coverages of (Si-O){sub 3} rings and hydroxyls on SiO{sub 2} as well as the re-adsorbed by-products of the surface reaction. Therefore, it is likely that nonuniform SiO{sub 2} depositions from TEOS reactions are due to depletion of TEOS in the gas-phase and/or thermal gradients.

  3. Biodegradation of mixture of VOC's in a biofilter

    Institute of Scientific and Technical Information of China (English)

    D. Arulneyam; T. Swaminathan

    2004-01-01

    Volatile organic compounds(VOC' s) in air have become major concem in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polystyrene particles using an acclimated mixed culture. The continuous performance of the biofilter was studied with different proportion of ethanol and methanol at different initial concentration and flow rates. The result showed significant removal for both ethanol and methanol, which were composition dependent.The presence of either compound in the mixture inhibited the biodegradation of the other.

  4. Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors

    Directory of Open Access Journals (Sweden)

    Hang Yang

    2017-02-01

    Full Text Available An increasingly common requirement in remote sensing is the integration of hyperspectral data collected simultaneously from different sensors (and fore-optics operating across different wavelength ranges. Data from one module are often relied on to correct information in the other, such as aerosol optical thickness (AOT and columnar water vapor (CWV. This paper describes problems associated with this process and recommends an improved strategy for processing remote sensing data, collected from both visible to near-infrared and shortwave infrared modules, to retrieve accurate AOT, CWV, and surface reflectance values. This strategy includes a workflow for radiometric and spatial cross-calibration and a method to retrieve atmospheric parameters and surface reflectance based on a radiative transfer function. This method was tested using data collected with the Compact Airborne Spectrographic Imager (CASI and SWIR Airborne Spectrographic Imager (SASI from a site in Huailai County, Hebei Province, China. Various methods for retrieving AOT and CWV specific to this region were assessed. The results showed that retrieving AOT from the remote sensing data required establishing empirical relationships between 465.6 nm/659 nm and 2105 nm, augmented by ground-based reflectance validation data, and minimizing the merit function based on AOT@550 nm optimization. The paper also extends the second-order difference algorithm (SODA method using Powell’s methods to optimize CWV retrieval. The resulting CWV image has fewer residual surface features compared with the standard methods. The derived remote sensing surface reflectance correlated significantly with the ground spectra of comparable vegetation, cement road and soil targets. Therefore, the method proposed in this paper is reliable enough for integrated atmospheric correction and surface reflectance retrieval from hyperspectral remote sensing data. This study provides a good reference for surface

  5. Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian; Chen, Yong; Li, Ying; Liu, Xingang; Hu, Min

    2014-07-01

    The impacts of emissions from industry, power plant, transportation, residential, and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study. The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model, CAMx. The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types. Additionally, the effectiveness of emission reduction scenarios was explored. The industry, power plant, and transportation emission source types were found to be the most important in terms of their individual effects on O3DM. The key contributor to high surface O3 was power plant emissions, with a peak individual effect of 40 ppbv in the southwestern BTH area. The individual effect from the biogenic emission category was quite low. The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation, while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted. The quadruple synergistic effects were positive only with the combination of power plant, transportation, residential, and biogenic sources, while the quintuple synergistic effect showed only minor impacts on O3DM concentrations. A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations, with a maximum decrease of 20 ppbv. These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.

  6. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  7. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

    Directory of Open Access Journals (Sweden)

    Olariu Tudor

    2015-01-01

    Full Text Available A quantitative structure - property relationship (QSPR modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes using the van der Waals (vdW surface area, SW/Å2, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1-C16, deemed as the training set, was successfully used for the prediction of the log (VP / Pa values of the 21 cycloalkanes, which was the external prediction (test subset. A QSPR model was also developed for a series composed of all 84 hydrocarbons. Both QSPR models were statistically tested for their ability to fit the data and for prediction. The results showed that the vdW molecular surface used as molecular descriptor (MD explains the variance of the majority of the log (VP / Pa values in this series of 84 hydrocarbons. This MD describes very well the intermolecular forces that hold neutral molecules together. The clear physical meaning of the molecular surface values, SW/Å2, could explain the success of the QSPR models obtained with a single structural molecular descriptor.

  8. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  9. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  10. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  11. Cross-linking and ultrathin grafted gradation of fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction.

    Science.gov (United States)

    Liu, Andong; Goktekin, Esma; Gleason, Karen K

    2014-12-02

    Poly(fluoroalkyl acrylate)s with long perfluorooctyl pendant groups have been found to lead to the release of biopersistent perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Those with no more than six perfluorinated carbons in pedant groups do not cause such problems. They, however, give poor dynamic water repellency due to extensive reorganization of surface fluorinated groups when exposed to the water interface. In this work, thin films exhibiting improved dynamic water repellency, as evidenced by water contact angle (WCA) measurements, were synthesized via substrate-independent initiated chemical vapor deposition (iCVD) from 1H,1H,2H,2H-perfluorooctyl acrylate (C6PFA) and divinylbenzene (DVB) using two methods: copolymerization and ultrathin grafted gradation. The copolymerization between C6PFA and the cross-linker, DVB, was confirmed by Fourier transform infrared (FTIR) spectroscopy. The cross-linking is concluded to hinder the reorganization of surface fluorinated groups. The grafted gradation, consisting of an ultrathin pC6PFA top layer and a pDVB base layer, was characterized by angle-resolved X-ray photoelectron spectroscopy (ARXPS) measurements, which indicated that the top layer of pC6PFA is water repellency. The outmost surface of this structure is fully covered by fluorinated groups, giving hydrophobicity. Concurrently, thanks to the interlayer grafting and the ultrathinness of the top layer, the fluorinated groups' tendency to migrate away from water interface is sterically blocked by the highly cross-linked pDVB base layer. The proposed approaches effectively reduced WCA hysteresis of C6PFA-based thin film to as low as 26.9° while maintaining sufficient hydrophobicity (advanced WCA of 119.6°). Due to the conformal and substrate-independent nature of iCVD technique, the films could be used to coat textured surfaces to generate superhydrophobicity.

  12. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Pomaska, M., E-mail: m.pomaksa@fz-juelich.de [Forschungszentrum Jülich, IEK5-Photovoltaics, Wilhelm-Johnen-Strasse, 52425 Jülich (Germany); Beyer, W. [Helmholtz-Zentrum Berlin für Materialien und Energie, Silicon Photovoltaics, Kekuléstrasse 5, 12489 Berlin (Germany); Neumann, E. [Forschungszentrum Jülich, PGI-8-PT, Wilhelm-Johnen-Strasse, 52425 Jülich (Germany); Finger, F.; Ding, K. [Forschungszentrum Jülich, IEK5-Photovoltaics, Wilhelm-Johnen-Strasse, 52425 Jülich (Germany)

    2015-11-30

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO{sub x}:H/intrinsic a-SiO{sub x}:H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO{sub x}:H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO{sub x}:H/a-SiO{sub x}:H stack a promising front layer configuration • Void expansion at a-SiO{sub x}:H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  13. On the determination of the crystal-vapor surface free energy, and why a Gaussian expression can be accurate for a system far from Gaussian

    Science.gov (United States)

    Modak, Viraj P.; Wyslouzil, Barbara E.; Singer, Sherwin J.

    2016-08-01

    The crystal-vapor surface free energy γ is an important physical parameter governing physical processes, such as wetting and adhesion. We explore exact and approximate routes to calculate γ based on cleaving an intact crystal into non-interacting sub-systems with crystal-vapor interfaces. We do this by turning off the interactions, ΔV, between the sub-systems. Using the soft-core scheme for turning off ΔV, we find that the free energy varies smoothly with the coupling parameter λ, and a single thermodynamic integration yields the exact γ. We generate another exact method, and a cumulant expansion for γ by expressing the surface free energy in terms of an average of e-βΔV in the intact crystal. The second cumulant, or Gaussian approximation for γ is surprisingly accurate in most situations, even though we find that the underlying probability distribution for ΔV is clearly not Gaussian. We account for this fact by developing a non-Gaussian theory for γ and find that the difference between the non-Gaussian and Gaussian expressions for γ consist of terms that are negligible in many situations. Exact and approximate methods are applied to the (111) surface of a Lennard-Jones crystal and are also tested for more complex molecular solids, the surface of octane and nonadecane. Alkane surfaces were chosen for study because their crystal-vapor surface free energy has been of particular interest for understanding surface freezing in these systems.

  14. Inactivating Influenza Viruses on Surfaces Using Hydrogen Peroxide or Triethylene Glycol at Low Vapor Concentrations

    Science.gov (United States)

    2009-04-01

    Inactvaton of avan nfluenza vruses by chemcal agents and physcal condtons: a revew. Zoonoses - Public - Health , 54(2), 51-68. EPA (2005a...Research Harvard School of Public Health Boston, MA 02115 April 2009 Final Report Inactivating Influenza Viruses on Surfaces Using Hydrogen Peroxide or...Transportation Center of Excellence for Airliner Cabin Environment Research Harvard School of Public Health 665 Huntington Avenue Boston, MA 02115 12

  15. Cavitands: Container Molecules for Surface Plasmon Resonance (SPR)-Based Chemical Vapor Detection

    Science.gov (United States)

    2005-01-01

    spin coated onto surface plasmon resonance substrates (50-nm thick gold-coated cover glass). Spin coating was performed at 4000 rpm for 60 s at...room temperature. Th e spin coating parameters gave a fi lm thickness (confi rmed using spectroscopic ellipsometry) of nearly 4 nm. For targets, a...fact that the polymer fi lms were about twice as thick as the cavitand fi lms obtained under identical spin - coating conditions. Th is clearly

  16. Low VOC drying of lumber and wood panel products. Progress report No. 4, annual summary

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, J.; Su, Wei; Yan, Hui [and others

    1997-07-01

    Heating softwood in a low-headspace environment draws out the VOCs from the wood, without removing the water. The VOCs can be collected from the headspace, and represent a valuable product. The VOC-depleted wood can then be dried conventionally with much reduced emissions. Heating can be accomplished through radiofrequency (RF) or steam. For lumber, steam is inefficient, but brief RF treatment under low-headspace conditions draws out 80% of the VOCs. The power used is quite low, since the RF energy is not used to remove water, but only to maintain the wood at a set temperature. The technology is now at the pre-pilot stage. Either steam or RF can be used for particle, OSB, and veneer, again under low-headspace conditions. Increasing steam temperature facilitates VOC removal. In order to understand the mechanism of VOC release in lumber, the transport of water and VOCs to the surface is being studied as a function of sample size and orientation. Characterization of the terpenes and resin/fatty acids from a control set of trees is underway in order to define the seasonal influence on VOCs.

  17. Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell

    CERN Document Server

    Laliotis, A; Todorov, P; Hamdi, I; Dutier, G; Yarovitski, A; Saltiel, S; Gorza, M P; Fichet, M; Ducloy, M; Bloch, D; Laliotis, Athanasdios; Maurin, Isabelle; Todorov, Petko; Hamdi, Ismah\\`{e}ne; Dutier, Gabriel; Yarovitski, Alexander; Saltiel, Solomon; Gorza, Marie-Pascale; Fichet, Mich\\`{e}le; Ducloy, Martial; Bloch, Daniel

    2007-01-01

    This paper presents our current measurements in a vapor nanocell aiming at a test of the distance-dependence of the atom-surface interaction, when simple asymptotic descriptions may turn to be not valid. A state-of-the-art of atom-surface interaction measurements is provided as an introduction, along with the comparison with the theory of the van der Waals (or Casimir-Polder) interaction; it is followed by a presentation of the most salient features of nanocell spectroscopy

  18. Field portable detection of VOCs using a SAW/GC system. Final report, June 21, 1994--September 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.; Staples, E.J.

    1998-06-01

    This report describes research on a fast GC vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center, whose mission, in addition to other goals, is the development of tools and methods for characterization, remediation, and monitoring of underground environmental conditions. The research tasks were to demonstrate detectability and specificity of a Surface Acoustic Wave Gas Chromatograph (SAW/GC) to a representative number of VOC materials followed by field demonstrations of the new technology at a DOE site. All tasks of the project were successfully carried out and a fast vapor analysis system based upon a new type of Surface Acoustic Wave detector technology was developed. The prototype analyzer has the ability to characterize organic contamination in soil and groundwater at the part per billion level in less than 10 seconds. The detector is unique because it utilized an uncoated quartz crystal, contrary to current developments of using coated crystals.

  19. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  20. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.

    Science.gov (United States)

    Boinovich, Ludmila; Emelyanenko, Alexandre M

    2014-10-28

    The study of the adhesion of solid and liquid aqueous phases to superhydrophobic surfaces has become an attractive topic for researchers in various fields as a vital step in the design of icephobic coatings. The analysis of the available results shows that the experimentally measured values of adhesion strength for superhydrophobic substrates, which in some cases are quite small, are still essentially higher than might be expected from the portion of the actual wetted area. In this study we have considered the peculiarities of the three-phase contact zone between sessile supercooled water or ice droplets and a superhydrophobic coating at negative temperatures (below 0 °C) and during the water-ice phase transition. Two types of superhydrophobic coatings with very different textures were used to analyze the evolution of shape parameters of a sessile water droplet during droplet cooling and freezing. It was shown that the evolution of the contact angle and droplet contact diameter of a water droplet deposited on a superhydrophobic surface does not undergo essential changes when the droplet is cooled simultaneously with the substrate and the surrounding environment, and the humidity is maintained close to 100% during the cooling process. However, the phase transition from supercooled water to ice droplets leads to the growth of a metastable iced meniscus and a frost halo in the vicinity of the three-phase contact zone. The meniscus effectively increases the area of adhesive contact between the droplet and the substrate. This phenomenon is intrinsically related to the release of the heat of crystallization and is responsible for the enhancement of adhesion to a superhydrophobic substrate upon droplet transition from supercooled water to ice. At the same time, it was shown that the metastable state of the above meniscus leads to its spontaneous sublimation during exposure at negative temperatures.

  1. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  2. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  3. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms.

    Science.gov (United States)

    Werner, Stephanie; Polle, Andrea; Brinkmann, Nicole

    2016-10-01

    We reviewed the impact of fungal volatile organic compounds (VOCs) on soil-inhabiting organisms and their physiological and molecular consequences for their targets. Because fungi can only move by growth to distinct directions, a main mechanism to protect themselves from enemies or to manipulate their surroundings is the secretion of exudates or VOCs. The importance of VOCs in this regard has been significantly underestimated. VOCs not only can be means of communication, but also signals that are able to specifically manipulate the recipient. VOCs can reprogram root architecture of symbiotic partner plants or increase plant growth leading to enlarged colonization surfaces. VOCs are also able to enhance plant resistance against pathogens by activating phytohormone-dependent signaling pathways. In some cases, they were phytotoxic. Because the response was specific to distinct species, fungal VOCs may contribute to regulate the competition of plant communities. Additionally, VOCs are used by the producing fungus to attack rivaling fungi or bacteria, thereby protecting the emitter or its nutrient sources. In addition, animals, like springtails, nematodes, and earthworms, which are important components of the soil food web, respond to fungal VOCs. Some VOCs are effective repellents for nematodes and, therefore, have applications as biocontrol agents. In conclusion, this review shows that fungal VOCs have a huge impact on soil fauna and flora, but the underlying mechanisms, how VOCs are perceived by the recipients, how they manipulate their targets and the resulting ecological consequences of VOCs in inter-kingdom signaling is only partly understood. These knowledge gaps are left to be filled by future studies.

  4. Field effect surface passivation of SiO{sub 2}/Si interfaces by heat treatment with high-pressure H{sub 2}O vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, K.; Asada, K.; Sameshima, T. [Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, 184-8588 Tokyo (Japan)

    2001-01-01

    We investigated a simple field effect passivation of the silicon surfaces using the high-pressure H{sub 2}O vapor heating. Heat treatment with 2.1x10{sup 6}Pa H{sub 2}O vapor at 260C for 3h reduced the surface recombination velocity from 405cm/s (before the heat treatment) to 38cm/s for the thermally evaporated SiO{sub x} film/Si. Additional deposition of 140nm-SiO{sub x} films (x<2) with a high density of fixed positive charges on the SiO{sub 2}/Si samples further decreased the surface recombination velocity to 22cm/s. We also demonstrated the field effect passivation for n-type silicon wafer coated with thermally grown SiO{sub 2}. Additional deposition of 210nm SiO{sub x} films on both the front and rear surfaces increased the effective lifetime from 1.4 to 4.6ms. Combination of thermal evaporation of SiO{sub x} film and the heat treatment with high-pressure H{sub 2}O vapor is effective for low-temperature passivation of the silicon surface.

  5. Anthropogenic VOC speciation in emission inventories: a method for improvement and evaluation

    Science.gov (United States)

    von Schneidemesser, E.; D'angiola, A.; Granier, C.; Monks, P. S.; Law, K.

    2011-12-01

    Volatile organic compounds (VOCs) are important precursor compounds for the formation of ozone and other secondary organic aerosols. Anthropogenic sources of VOCs are dominated by industrial usage and transportation sources, the latter being extremely important in urban areas. Megacities and large urban conglomerations are emission hot spots that exert disproportionately large adverse health effects on the population and surrounding environment, owing to their high population density and concentrated emission sources. Exceedances of ozone air quality standards are a problem in many urban areas. Improvements in the modelling of ozone precursors would benefit our understanding of the impact of changes in emissions and the effect of future legislation on air quality. As many VOCs are extremely reactive in the atmosphere and have high ozone forming potential, improved speciation of VOCs in models could lead to better predictions of ozone levels and secondary organic aerosol formation. Previously, VOC and carbon monoxide (CO) data from urban areas around the world were compared. Significant differences in VOC concentrations were observed, however, when normalized to CO, the VOC-CO ratios were similar for many locations and over time, even as emission reductions were implemented. The largest variation was found in the lighter alkanes due to the use of alternative transportation fuels in various world regions. These ratios were grouped by region and used to develop a new speciation for surface emissions of VOCs, by applying the regional observed VOC-CO ratios to the CO emissions for the urban areas. Urban areas were defined as 150 inhabitants per km2 or greater. Model simulations were performed using the MOZART-4 chemistry transport model to assess the improved speciation of the VOC emissions. The model outputs were compared to urban observational data where available. The impact of the new speciation of the distribution of CO, OH and ozone at the global scale will be

  6. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  7. 688 AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS ...

    African Journals Online (AJOL)

    Osondu

    The VOCs were classified thus: aromatics 41%, halogenated 42%, esters 3%, ketones 8%, ... and Industrial emission were identified as sources of VOCs in the studied industrial area with ... canisters, or by dynamic or diffusive adsorption .... The GC/FID was standardized and ... with CS2 was prepared from stock standard in.

  8. DEVELOPING A NO-VOC WOOD TOPCOAT

    Science.gov (United States)

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  9. T2VOC user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Falta, R.W. [Clemson Univ., Clemson, SC (United States). Dept. of Earth Sciences; Pruess, K.; Finsterle, S. [Lawrence Berkeley Lab., CA (United States); Battistelli, A. [AQUATER S.p.A., San Lorenzo in Campo, (Italy)

    1995-03-01

    T2VOC is a numerical simulator for three-phase, three-component, non-isothermal flow of water, air, and a volatile organic compound (VOC) in multidimensional heterogeneous porous media. Developed at the Lawrence Berkeley Laboratory, T2VOC is an extension of the TOUGH2 general-purpose simulation program. This report is a self-contained guide to application of T2VOC to subsurface contamination problems involving nonaqueous phase liquids (NAPLs). It gives a technical description of the T2VOC code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Detailed instructions for preparing input data are presented along with several illustrative sample problems.

  10. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected

  11. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    Science.gov (United States)

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  12. Vapor coating method using small-molecule organic surface modifiers to replace N-type metal oxide layers in inverted polymer solar cells.

    Science.gov (United States)

    Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Gi-Hwan; Kim, Jin Young

    2014-05-14

    We investigate a simple fabrication method for vapor coating small-molecule organic interlayers as replacements for metal oxide films. The interfacial layers, which serve both as both surface modifiers to reduce the substrate work function and electron selective layers, maximize light absorption within the active layer while improving electron transport and compatibility between the active layer and cathode, leading to a ∼22% enhancement in power conversion efficiency and similar air stability compared to devices using a ZnO layer.

  13. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface.

    Science.gov (United States)

    Gon Ryu, Sam; Wan Lee, Hae

    2015-01-01

    The nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) must be promptly eliminated following its release into the environment because it is extremely toxic, can cause death within a few minutes after exposure, acts through direct skin contact as well as inhalation, and persists in the environment for several weeks after release. A mixture of hydrogen peroxide vapor and ammonia gas was examined as a decontaminant for the removal of VX on solid surfaces at ambient temperature, and the reaction products were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectrometry (NMR). All the VX on glass wool filter disks was found to be eliminated after 2 h of exposure to the decontaminant mixtures, and the primary decomposition product was determined to be non-toxic ethyl methylphosphonic acid (EMPA); no toxic S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (EA-2192), which is usually produced in traditional basic hydrolysis systems, was found to be formed. However, other by-products, such as toxic O-ethyl S-vinyl methylphosphonothioate and (2-diisopropylaminoethyl) vinyl disulfide, were detected up to 150 min of exposure to the decontaminant mixture; these by-products disappeared after 3 h. The two detected vinyl byproducts were identified first in this study with the decontamination system of liquid VX on solid surfaces using a mixture of hydrogen peroxide vapor and ammonia gas. The detailed decontamination reaction networks of VX on solid surfaces produced by the mixture of hydrogen peroxide vapor and ammonia gas were suggested based on the reaction products. These findings suggest that the mixture of hydrogen peroxide vapor and ammonia gas investigated in this study is an efficient decontaminant mixture for the removal of VX on solid surfaces at ambient temperature despite the formation of a toxic by-product in the reaction process.

  14. Scanning transmission electron microscope analysis of amorphous-Si insertion layers prepared by catalytic chemical vapor deposition, causing low surface recombination velocities on crystalline silicon wafers

    OpenAIRE

    2012-01-01

    Microstructures of stacked silicon-nitride/amorphous-silicon/crystalline-silicon (SiN_x/a-Si/c-Si) layers prepared by catalytic chemical vapor deposition were investigated with scanning transmission electron microscopy to clarify the origin of the sensitive dependence of surface recombination velocities (SRVs) of the stacked structure on the thickness of the a-Si layer. Stacked structures with a-Si layers with thicknesses greater than 10 nm exhibit long effective carrier lifetimes, while thos...

  15. Vapor phase treatment–total reflection X-ray fluorescence for trace elemental analysis of silicon wafer surface

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Hikari, E-mail: hikari@rigaku.co.jp [Rigaku Corp., 14-8 Akaoji-cho, Takatsuki, Osaka 569-1146 (Japan); Mori, Yoshihiro [Horiba Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto 601-8510 (Japan); Shibata, Harumi [SUMCO Corporation, Seavance North, 1-2-1 Shibaura, Minato-ku, Tokyo 105-8634 (Japan); Shimazaki, Ayako [Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Shabani, Mohammad B. [Mitsubishi Material Corporation, 1-297, Kitabukuro-cho, Omiya-ku, Saitama 330-8508 (Japan); Yamagami, Motoyuki [Rigaku Corp., 14-8 Akaoji-cho, Takatsuki, Osaka 569-1146 (Japan); Yabumoto, Norikuni [Analysis Atelier Co., 4-36-4, Yoyogi, Shibuya-ku, Tokyo 151-0053 (Japan); Nishihagi, Kazuo [Horiba Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto 601-8510 (Japan); Gohshi, Yohichi [Tsukuba University, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2013-12-01

    Vapor phase treatment (VPT) was under investigation by the International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) to improve the detection limit of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis of silicon wafers. Round robin test results have confirmed that TXRF intensity increased by VPT for intentional contamination with 5 × 10{sup 9} and 5 × 10{sup 10} atoms/cm{sup 2} Fe and Ni. The magnification of intensity enhancement varied greatly (1.2–4.7 in VPT factor) among the participating laboratories, though reproducible results could be obtained for average of mapping measurement. SEM observation results showed that various features, sizes, and surface densities of particles formed on the wafer after VPT. The particle morphology seems to have some impact on the VPT efficiency. High resolution SEM observation revealed that a certain number of dots with SiO{sub 2}, silicate and/or carbon gathered to form a particle and heavy metals, Ni and Fe in this study were segregated on it. The amount and shape of the residue should be important to control VPT factor. - Highlights: • This paper presents a summary of study results of VPT–TXRF using ISO/TC201/WG2. • Our goal is to analyze the trace metallic contamination on silicon wafer with concentrations below 1 × 10{sup 10} atoms/cm{sup 2}. • The efficiency and mechanism of VPT are discussed under several round robin tests and systematic studies.

  16. Surface free energy and some other properties of a crystal-vapor interface: Molecular dynamics simulation of a Lennard-Jones system

    Science.gov (United States)

    Baidakov, V. G.; Tipeev, A. O.; Protsenko, K. R.

    2017-07-01

    The surface tension γ and surface energy u bar have been calculated in molecular dynamics simulation of an FCC crystal-vapor equilibrium in systems containing from 54000 to 108000 Lennard-Jones (LJ) particles with a cutoff radius of the potential rc = 6.78 d . The surface entropy s bar and the surface free energy σ along the sublimation line have been determined by the method of thermodynamic integration from the zero of temperature, where the classical entropy has been obtained from the dynamical theory of crystal lattice by data on γ (T) and u bar (T) . Calculations were made on the planes (1 0 0), (1 1 0) and (1 1 1) of an LJ crystal. The anisotropy of surface properties is considerable at low temperatures and smooths over at the approach of the triple point. At a temperature 1/3 lower than the melting temperature of the bulk phase changes are observed in the character of temperature dependences of the properties of a crystal-vapor interface, which are connected with surface premelting. The temperature of the beginning of surface premelting correlates with that at which the metastable extension of the melting line meets the spinodal of a stretched liquid.

  17. Photoelectron Imaging of OXIDE.VOC Clusters

    Science.gov (United States)

    Patros, Kellyn M.; Mann, Jennifer; Chick Jarrold, Caroline

    2016-06-01

    Perturbations of the bare O2- and O4- electronic structure arising from VOC (VOC = hexane, isoprene, benzene and benzene.D6) interactions are investigated using anion photoelectron imaging at 2.33 and 3.49 eV photon energies. Trends observed from comparing features in the spectra include VOC-identity-dependent electron affinities of the VOC complexes relative to the bare oxide clusters, due to enhance stability in the anion complex relative to the neutral. Autodetachment is observed in all O4-.VOC spectra and only isoprene with O2-. In addition, the intensities of transitions to states correlated with the singlet states of O2 neutral via detachment from the O2-.VOC anion complexes show dramatic VOC-identity variations. Most notably, benzene as a complex partner significantly enhances these transitions relative to O2- and O2-.hexane. A less significant enhancement is also observed in the O2-.isoprene complex. This enhancement may be due to the presence of low-lying triplet states in the complex partners.

  18. A Note on the Relationship Between Temperature and Water Vapor over Oceans, Including Sea Surface Temperature Effects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, Q (mm), and temperature, T (K), fields for the three tropical oceans (i.e., the Pacific, Atlantic and Indian Oceans) based on eleven GEOS-3 [Goddard Earth Observing System (EOS) Version-3] global re-analysis monthly products. A Q - T distribution analysis is also performed for the tropical and extra-tropical regions based on in-situ sounding data and numerical simulations [GEOS-3 and the Goddard Cumulus Ensemble (GCE) model]. A similar positively correlated Q - T distribution is found over the entire oceanic and tropical regions; however, Q increases faster with T for the former region. It is suspected that the tropical oceans may possess a moister boundary layer than the Tropics. The oceanic regime falls within the lower bound of the tropical regime embedded in a global, curvilinear Q - T relationship. A positive correlation is also found between T and sea surface temperature (SST); however, for one degree of increase in T, SST is found to increase 1.1 degrees for a warmer ocean, which is slightly less than an increase of 1.25 degrees for a colder ocean. This seemingly indicates that more (less) heat is needed for an open ocean to maintain an air mass above it with a same degree of temperature rise during a colder (warmer) season [or in a colder (warmer) region]. Q and SST are also found to be positively correlated. Relative humidity (RH) exhibits similar behaviors for oceanic and tropical regions. RH increases with increasing SST and T over oceans, while it increases with increasing T in the Tropics. RH, however, decreases with increasing temperature in the extratropics. It is suspected that the tropical and oceanic regions may possess a moister local boundary layer than the extratropics so that a faster moisture increase than a saturated moisture increase is favored for the former regions.T, Q, saturated water

  19. Detection of new VOC compounds with iCRDS

    Science.gov (United States)

    Huang, H.; Leen, J. B.; Gardner, A.; Gupta, M.; Baer, D. S.

    2015-12-01

    The instrument at Los Gatos Research (a member of ABB Inc.) which is based on incoherent cavity ringdown spectroscopy (iCRDS) that operates in the mid-infrared (bands from 860-1060 cm-1 or 970-1280 cm-1) is capable of detecting a broad range of VOCs, in situ, continuously and autonomously, for example, BTEX compounds (benzene, toluene, ethylbenzene, xylene), including differentiation of xylene isomers. Previously, we have demonstrated the measurement of trichloroethylene (TCE) in zero air with a precision of 0.17 ppb (1σ in 4 minutes), and the measurement of tetrachloroethylene (PCE) with a precision of 0.15 ppb (1σ in 4 minutes). Both of these measured precisions exceed the EPA's commercial building action limit, which for TCE is 0.92 ppb (5 µg/m3) and for PCE is 0.29 ppb (2 µg/m3). This ability has been fully demonstrated by the deployment of the instrument to the Superfund site at Moffett Naval Air Station in Mountain View, California where contaminated ground water results in vapor intrusion of TCE and PCE. For two weeks, the instrument operated continuously and autonomously, successfully measuring TCE and PCE concentrations in both the breathing zone and steam tunnel air, in excellent agreement with previous TO-15 data. In this poster, we present laboratory performance data targeting new toxic molecules with the same instrument. We have demonstrated the measurement of trichlorofluolomethane (Freon 11) in zero air with a precision of 1 ppb (3σ at 1075cm-1), and hexafluoropropene in zero air with a precision of about 0.3 ppb (3σ per spectrum). The iCRDS instrument has shown the ability to continuously and autonomously measure sub-ppb levels of toxic VOCs in the lab/field, offering an unprecedented picture of the short term dynamics associated with vapor intrusion and ground water pollution.

  20. EVALUATION OF LOW-VOC LATEX PAINTS

    Science.gov (United States)

    The paper gives results of an evaluation of four commercially available low-VOC (volatile organic compound) latex paints as substitutes for conventional latex paints by assessing both their emission characteristics and their performance as coatings. Bulk analysis indicated that ...

  1. Locating industrial VOC sources with aircraft observations.

    Science.gov (United States)

    Toscano, P; Gioli, B; Dugheri, S; Salvini, A; Matese, A; Bonacchi, A; Zaldei, A; Cupelli, V; Miglietta, F

    2011-05-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground.

  2. VOC emissions during outdoor ship painting and health-risk assessment

    Science.gov (United States)

    Malherbe, Laure; Mandin, Corinne

    Painting of ship external surfaces in building or repair shipyards generates significant emissions of volatile organic compounds (VOC) to the atmosphere. Such emissions have not been specifically regulated so far. The purpose of our study is therefore to evaluate the quantities and as far as possible the nature of the emitted VOC, to characterize the dispersion of these chemicals in the atmosphere and to assess the exposure and resulting health risks for surrounding populations. This study is focused on VOC emitted during outdoor work involving use of paints and solvents. VOC emissions are diffuse, since they come from the whole painted surfaces. A methodology for quantifying them is developed and tested, using information provided by ALSTOM—Chantiers de l'Atlantique and data found in paint technical sheets. Its reliability is checked against emission values established by ALSTOM or found in literature. Then, for two particular situations, construction on one hand, repair on the other hand, atmospheric dispersion of total VOC is simulated to assess the long-term impact (characterized by the plume extension and the annual mean concentrations) of these compounds. Finally, a health-risk assessment based on the estimates is carried out to evaluate the risks by inhalation for people living near the site. Considering the presumed composition of paints and the available reference toxicological values, total VOC are entirely assimilated to toluene. In both examples (construction and repair) and in the current state of knowledge, the calculated risk is not of health concern. Several ways for taking this study further are proposed: a more exhaustive collection of data relative to VOC and other substances contained in paints, on-site measurement of VOC in the ambient air, characterization of diffuse emissions related to other activities, such as purging or welding, and other pollutants, like particles.

  3. Low VOC Barrier Coating for Industrial Maintenance

    Science.gov (United States)

    2012-09-01

    Technology Certification Program HAP Hazardous Air Pollutant HW hazardous waste LVBC low VOC barrier coating MEK methyl ethyl ketone MIL-DTL...peeling, blistering , tape adhesion, pull-off adhesion, film thickness, and LVBC/ZVT patch test adhesion testing in an acceptable or better manner...significant reductions in the amount of hazardous waste generated by the Navy. The ZVT technology contains less than 5 g/l of VOC and the resulting

  4. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  5. Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-Latitude (Cfb) Climate

    Science.gov (United States)

    Forbes, Shari L.; Perrault, Katelynn A.; Stefanuto, Pierre-Hugues; Nizio, Katie D.; Focant, Jean-François

    2014-01-01

    The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for

  6. A mass transfer model for VOC emission from silage

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan

    2012-07-01

    Silage has been shown to be an important source of emissions of volatile organic compounds (VOCs), which contribute to the formation of ground-level ozone. Measurements have shown that environmental conditions and silage properties strongly influence emission rates, making it difficult to assess the contribution of silage in VOC emission inventories. In this work, we present an analytical convection-diffusion-dispersion model for predicting emission of VOCs from silage. It was necessary to incorporate empirical relationships from wind tunnel trials for the response of mass transfer parameters to surface air velocity and silage porosity. The resulting model was able to accurately predict the effect of temperature on ethanol emission in wind tunnel trials, but it over-predicted alcohol and aldehyde emission measured using a mass balance approach from corn silage samples outdoors and within barns. Mass balance results confirmed that emission is related to gas-phase porosity, but the response to air speed was not clear, which was contrary to wind tunnel results. Mass balance results indicate that alcohol emission from loose silage on farms may approach 50% of the initial mass over six hours, while relative losses of acetaldehyde will be greater.

  7. Evaluation of an on-line methodology for measuring volatile organic compounds (VOC) fluxes by eddy-covariance with a PTR-TOF-Qi-MS

    Science.gov (United States)

    Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier

    2017-04-01

    Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate , were w is the vertical component of the air velocity, Sp is the spectra, t is time, lag is the decorrelation lag time and denotes an average. The lag time was determined as the decorrelation time between w and the primary ion (at mass 21.022) which integrates the contribution of all reactions of VOC and water with the primary ion. Our algorithm was evaluated by comparing the exchange velocity of water vapor measured by an open path absorption spectroscopy instrument and the water cluster measured with the PTRQi-TOF-MS. The influence of the algorithm parameters and lag determination is discussed. This study was supported by the ADEME-CORTEA COV3ER project (http://www6.inra.fr/cov3er).

  8. Defect reduction and surface passivation of SiO{sub 2}/Si by heat treatment with high-pressure H{sub 2}O vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, T.; Sakamoto, K.; Asada, K. [Tokyo Univ. of Agriculture and Technol. (Japan)

    1999-08-01

    Heat treatment with high-pressure H{sub 2}O vapor was applied to improve interface properties of SiO{sub 2}/Si and passivate the silicon surface. Heat treatment at 180-420 C with high-pressure H{sub 2}O vapor changed SiO{sub x} films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO{sub 2} films with a Si-O-Si bonding network similar to that of thermally grown SiO{sub 2} films. Heat treatment at 130 C with 2.8 x 10{sup 5} Pa H{sub 2}O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiO{sub x}/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiO{sub x} films on the SiO{sub 2} films formed by heat treatment at 340 C with high-pressure H{sub 2}O vapor. The SiO{sub x} deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. (orig.) With 3 figs., 15 refs.

  9. Defect reduction and surface passivation of SiO2/Si by heat treatment with high-pressure H2O vapor

    Science.gov (United States)

    Sameshima, T.; Sakamoto, K.; Asada, K.

    Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180-420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s.

  10. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, Niels; Raoof, A.

    2014-01-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxi

  11. 3D Petrography - Serendipitous Discovery of Magmatic Vapor Deposition of Anhydrite at Mount Pinatubo by SEM Imaging of Outer Crystal Surfaces

    Science.gov (United States)

    Fournelle, J. H.; Jakubowski, R. T.; Welch, S.; Swope, R. J.

    2003-12-01

    A standard petrographic technique focuses upon examination of surfaces or planes cut through rock samples, with one approach studying chemical variations in a core to rim traverse using various microprobes, and more recently, another determining the distribution of crystal sizes to obtain information about nucleation and growth. We show that another mineral domain deserves petrographic attention: the outer surfaces of crystals, which are normally relegated to nearly invisible thin lines in a cut section. In studying anhydrite phenocrysts from the 1991 climactic eruption of Mt. Pinatubo, SEM examination of "raw" pumice fragments showed the existence of a Ca-sulfur-rich phase with hexagonal morphology residing upon plagioclase phenocryst surfaces in vesicles (Fournelle et al,1996, Fig 9). In 1992, Terry Gerlach suggested that the Pinatubo anhydrite phenocrysts should be evaluated with XRD to determine if they were indeed orthorhombic anhydrite (β -CaSO4), and not a lower temperature polymorph (i.e., α or γ ). In 1998, we recommenced this project, mounting several dozen 100-200 micron-size phenocrysts of the proper density fraction on tape (minerals had been separated from the pumices using standard techniques). They were examined by low resolution SEM with EDS to distinguish the anhydrite from apatite, prior to single-crystal XRD. We were surprised to find that many of the anhydrite surfaces were decorated with small mounds, which upon examination by high resolution SEM turned out to be micron and smaller pyramids, with some surfaces bearing hundreds. Single-crystal XRD verified that the phenocrysts were orthorhombic anhydrite, and EBSD verified that the small pyramids were the same. Eventually we found that these surface pyramids are common phenomena in experimental or industrial chemical vapor deposition processes when nucleation overwhelms growth. Textural relations were consistent with these pyramids being deposited in situ, within the Pinatubo magma chamber

  12. Estimation of the Total Atmospheric Water Vapor Content and Land Surface Temperature Based on AATSR Thermal Data

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2008-03-01

    Full Text Available The total atmospheric water vapor content (TAWV and land surfacetemperature (LST play important roles in meteorology, hydrology, ecology and some otherdisciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track ScanningRadiometer thermal data are used to estimate the TAWV and LST over the Loess Plateauin China by using a practical split window algorithm. The distribution of the TAWV isaccord with that of the MODIS TAWV products, which indicates that the estimation of thetotal atmospheric water vapor content is reliable. Validations of the LST by comparingwith the ground measurements indicate that the maximum absolute derivation, themaximum relative error and the average relative error is 4.0K, 11.8% and 5.0%respectively, which shows that the retrievals are believable; this algorithm can provide anew way to estimate the LST from AATSR data.

  13. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials.

    Science.gov (United States)

    Chapela, Gustavo A; del Río, Fernando; Alejandre, José

    2013-02-07

    The liquid-vapor phase diagrams of equal size diameter σ binary mixtures of screened potentials have been reported for several ranges of interaction using Monte Carlo simulation methods [J. B. Caballero, A. M. Puertas, A. Ferńandez-Barbero, F. J. de las Nieves, J. M. Romero-Enrique, and L. F. Rull, J. Chem. Phys. 124, 054909 (2006); A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006)]. Both works report controversial results about the stability of the phase diagram with the inverse Debye screening length κ. Caballero found stability for values of κσ up to 20 while Fortini reported stability for κσ up to 20 while Fortini reported stability for κσ ≤ 4. In this work a spinodal decomposition process where the liquid and vapor phases coexist through an interface in a slab geometry is used to obtain the phase equilibrium and surface properties using a discontinuous molecular dynamics simulations for mixtures of equal size particles carrying opposite charge and interacting with a mixture of attractive and repulsive Yukawa potentials at different values of κσ. An crude estimation of the triple point temperatures is also reported. The isothermal-isobaric method was also used to determine the phase stability using one phase simulations. We found that liquid-vapor coexistence is stable for values of κσ > 20 and that the critical temperatures have a maximum value at around κσ = 10, in agreement with Caballero et al. calculations. There also exists a controversy about the liquid-vapor envelope stability of the pure component attractive Yukawa model which is also discussed in the text. In addition, details about the equivalence between continuous and discontinuous molecular dynamics simulations are given, in the Appendix, for Yukawa and Lennard-Jones potentials.

  14. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials

    Science.gov (United States)

    Chapela, Gustavo A.; del Río, Fernando; Alejandre, José

    2013-02-01

    The liquid-vapor phase diagrams of equal size diameter σ binary mixtures of screened potentials have been reported for several ranges of interaction using Monte Carlo simulation methods [J. B. Caballero, A. M. Puertas, A. Ferńandez-Barbero, F. J. de las Nieves, J. M. Romero-Enrique, and L. F. Rull, J. Chem. Phys. 124, 054909 (2006), 10.1063/1.2159481; A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006), 10.1063/1.2335453]. Both works report controversial results about the stability of the phase diagram with the inverse Debye screening length κ. Caballero found stability for values of κσ up to 20 while Fortini reported stability for κσ up to 20 while Fortini reported stability for κσ ⩽ 4. In this work a spinodal decomposition process where the liquid and vapor phases coexist through an interface in a slab geometry is used to obtain the phase equilibrium and surface properties using a discontinuous molecular dynamics simulations for mixtures of equal size particles carrying opposite charge and interacting with a mixture of attractive and repulsive Yukawa potentials at different values of κσ. An crude estimation of the triple point temperatures is also reported. The isothermal-isobaric method was also used to determine the phase stability using one phase simulations. We found that liquid-vapor coexistence is stable for values of κσ > 20 and that the critical temperatures have a maximum value at around κσ = 10, in agreement with Caballero et al. calculations. There also exists a controversy about the liquid-vapor envelope stability of the pure component attractive Yukawa model which is also discussed in the text. In addition, details about the equivalence between continuous and discontinuous molecular dynamics simulations are given, in the Appendix, for Yukawa and Lennard-Jones potentials.

  15. POCP for individual VOC under European conditions

    Energy Technology Data Exchange (ETDEWEB)

    Altenstedt, J.; Pleijel, K.

    1998-09-01

    Ground level ozone has been recognised as one of the most important environmental threats on the regional scale in Europe. Ozone is today considered to be harmful to human health already at the relatively low concentrations present in southern Scandinavia. The fact that ozone has the potential to damage vegetation at these concentrations is already well known. Ozone also gives rise to degradation of materials and is one of the gases which adds to the greenhouse effect. Ground level ozone is formed from nitrogen oxides (NO{sub x}) and volatile organic compounds (VOC) in the presence of sunlight. The only way to reduce ozone is therefore to reduce the emissions of the precursors. Ranking individual VOC by their ozone formation potential can make emission reductions more environmentally efficient and save time and money. POCP values give a ranking of the ozone formation ability of an individual VOC relative to other VOC. A critical analysis of the POCP concept has been performed which shows that the background emissions of NO{sub x} and VOC affect the POCP values to a large extent. Based on the critical analysis, five scenarios with different background emissions of NO{sub x} and VOC were selected for calculation of POCP values. These scenarios were chosen because they reflect the variation in POCP values which arise in different environments within Europe. The range thus indicates POCP values which are intended to be applicable within Europe. POCP values for 83 different VOC are presented in the form of ranges in this report. 42 refs, 13 figs, 3 tabs

  16. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    Science.gov (United States)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  17. Transition between the 1 x 1 and ({radical}3 x 2{radical}3)R30{degree} surface structures of GaN in the vapor-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Munkholm, A.; Thompson, C.; Stephenson, G. B.; Eastman, J. A.; Auciello, O.; Fini, P.; Speck, J. S.; DenBaars, S. P.

    2000-01-12

    Out-of-plane structures of the GaN(0001) surface in the metal-organic chemical vapor deposition (MOCVD) environment have been determined using in situ grazing-incidence X-ray scattering. The authors measured 11{bar 2}{ell} crystal truncation rod intensities at a variety of temperatures and ammonia partial pressures on both sides of the 1 x 1 to ({radical}3 x 2{radical}3)R30{degree} surface phase transition. The out-of-plane structure of the ({radical}3 x 2{radical}3)R30{degree} phase appears to be nearly independent of temperature below the transition, while the structure of the 1 x 1 phase changes increase rapidly as the phase transition is approached from above. A model for the structure of the 1 x 1 phase with a partially-occupied top Ga layer agrees well with the data. The observed temperature dependence is consistent with a simple model of the equilibrium between the vapor phase and the surface coverage of Ga and N. In addition, the authors present results on the kinetics of reconstruction domain coarsening following a quench into the ({radical}3 x 2{radical}3)R30{degree} phase field.

  18. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    Science.gov (United States)

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  19. Ion-scattering study and Monte Carlo simulations of surface segregation in Pd-Pt nanoclusters obtained by laser vaporization of bulk alloys

    Science.gov (United States)

    Rousset, J. L.; Renouprez, A. J.; Cadrot, A. M.

    1998-07-01

    Bimetallic Pd-Pt clusters deposited on amorphous carbon have been produced by laser vaporization of various bulk alloys. Energy dispersive x-ray analysis and transmission electron microscopy show that they have a perfectly well-defined stoichiometry and a narrow range of size. They constitute ideal systems to investigate segregation processes in finite solids. It is shown that low-energy ion scattering allows the determination of surface concentration, which has been found to be different from the overall one. Monte Carlo simulations coupled with a recently developed energetical model, based on a tight-binding scheme that includes bond strength modifications at surfaces, account well for the experimental finding and give information on the surface distribution of the segregating Pd atoms.

  20. VOC removal by plasma-photocatalyst combination : comparison between a low and an atmospheric pressure plasma.

    Science.gov (United States)

    Rousseau, Antoine; Guaitella, Olivier; Gatilova, Lina; Thevenet, Frederic; Guillard, Chantal; Hannemann, Mario; Roepcke, Jurgen

    2004-09-01

    The combination of a non thermal plasma with a photo-catalyst is promising for VOC and odour abatement at room temperature and at a very low energy cost. In classical photocatalysis, UV photons generate an electron hole pair on the surface of the photo-catalyst (TiO2), which generates primary radicals responsible of VOC oxidation. In plasma-photocatalysis combination, activation mechanisms of the photocatalytic surface are not clearly identified to the day. Our strategy is to compare a pulsed DBD at atmospheric pressure containing TiO2 pellets, with a pulsed low pressure DC discharge in contact with a porous TiO2 surface. These two discharge are characterized electrically and the efficiency of VOC removal is performed using infrared laser absorption spectroscopy and gas chromatography.

  1. Locating industrial VOC sources with aircraft observations

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, P., E-mail: p.toscano@ibimet.cnr.it [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Gioli, B. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Dugheri, S. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Salvini, A. [Department of Organic Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence (Italy); Matese, A. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Bonacchi, A. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Zaldei, A. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Cupelli, V. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Miglietta, F. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Fondazione Edmund Mach, Via Mach 1, San Michele all' Adige, Trento (Italy)

    2011-05-15

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. - Highlights: > Flight plan aimed at sampling industrial area at various altitudes and locations. > SPME sampling strategy was based on plume detection by means of CO{sub 2}. > Concentrations obtained were lower than the limit values or below the detection limit. > Scan mode highlighted presence of {gamma}-butyrolactone (GBL) compound. > Gaussian dispersion modelling was used to estimate GBL source location and strength. - An integrated strategy based on atmospheric aircraft observations and dispersion modelling was developed, aimed at estimating spatial location and strength of VOC point source emissions in industrial areas.

  2. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documents the in- well vapor-stripping demonstration from a field perspective.

  3. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  4. Emission characteristics of VOCs from three fixed-roof p-xylene liquid storage tanks.

    Science.gov (United States)

    Lu, Chungsying; Huang, Hsiaoyun; Chang, Shenteng; Hsu, Shihchieh

    2013-08-01

    This study evaluates emission characteristics of volatile organic compounds (VOCs) caused by standing loss (L S) and working loss (L W) of three vertical fixed-roof p-xylene (p-X) liquid tanks during 1-year storage and filling operation. The annual net throughput of the tanks reached 70,446 t, resulting in 9,425 kg of p-X vapor emission including 5,046 kg of L S (53.54 %) and 4,379 kg of L W (46.46 %). The estimated L W of AP-42 displayed better agreement with the measured values of a VOC detector than the estimated L S of AP-42. The L S was best correlated with the liquid height of the tanks, while the L W was best correlated with the net throughput of the tanks. As a result, decreasing vapor space volume of the tanks and avoiding high net throughput of the tanks in a high ambient temperature period were considered as effective means to lessen VOC emission from the fixed-roof organic liquid storage tank.

  5. Reducing VOC Press Emission from OSB Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  6. Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes under Mitigated and Non-mitigated Conditions

    Science.gov (United States)

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...

  7. VOC methods and levels in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Bomboi, M.T. [Area de Contaminacion Atmosferica, Instituto de Salud Carlos III, Majadahonda (Spain)

    2004-07-01

    Ozone precursors began to be studied in the eighties in Spain, in order to know their levels and composition in areas, which had high concentrations of other atmospheric polluting agents. At the end of the eighties, VOC were incorporated into the air quality networks in urban areas in order to anticipate at the derived amendments of the entrance into force on the Directive 92/72/CEE of 1992 on air pollution by ozone. At the same time, field campaigns for VOC toxics were started in specific industrial areas and the zones with high traffic. More recently, the air quality networks have been orientated to non-urban areas, to cover the knowledge of VOC in semi-urban and rural areas. On the other hand, the role of the biogenic emissions and the role that their chemical and photochemical products play in atmospheric chemistry was becoming important in the nineties. Therefore some research projects, e.g. 'Biogenic Emissions in the Mediterranean Area (BEMA)', were developed in order to understand the vegetation emissions in the Mediterranean area in relation to anthropogenic compounds and to get information on their participation in tropospheric ozone formation. VOC have been sampled at European Monitoring and Evaluation Programme (EMEP) sites since 1999, based on recommendations from the EMEP Workshop on Measurements of Hydrocarbons/VOC in Lindau 1989. Collection of light hydrocarbons started in 1999, whereas measurements of carbonyls have just started in 2003. In this work, the most important sampling and analysis techniques to determine ozone precursors and to control VOC are shown, as well as the main results obtained in projects, networks and measurement campaigns performed with these methods.

  8. Silica deactivation of bead VOC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Libanati, C.; Pereira, C.J. [Research Division, W. R. Grace and Co., Columbia, MD (United States); Ullenius, D.A. [Grace TEC Systems, De Pere, WI (United States)

    1998-01-15

    Catalytic oxidation is a key technology for controlling the emissions of Volatile Organic Compounds (VOCs) from industrial plants. The present paper examines the deactivation by silica of bead VOC catalysts in a flexographic printing application. Post mortem analyses of field-aged catalysts suggest that organosilicon compounds contained in the printing ink diffuse into the catalyst and deposit as silica particles in the micropores. Laboratory activity evaluation of aged catalysts suggests that silica deposition is non-selective and that silica masks the noble metal active site

  9. Surface kinetics study of metal-organic vapor phase epitaxy of GaAs1-yBiy on offcut and mesa-patterned GaAs substrates

    Science.gov (United States)

    Guan, Yingxin; Forghani, Kamran; Kim, Honghyuk; Babcock, Susan E.; Mawst, Luke J.; Kuech, Thomas F.

    2017-04-01

    The influence of the surface step termination on the metal-organic vapor phase epitaxy of GaAs1-yBiy was explored by examining the epitaxial layer growth rate, composition, and morphology characteristics on the offcut and mesa-patterned (001) GaAs substrates. Vicinal surfaces offcut to (111)B with a high density of As-terminated steps ('B-steps') increased the GaAs1-yBiy layer growth rate as well as possessed the fastest lateral growth rate on mesa-patterned substrates at a growth temperature of 420 °C, indicating that B-steps enhanced the Ga incorporation. With Bi accumulation on the surface, the Ga incorporation rate was reduced by the Bi preferential presence at B-steps blocking the Ga incorporation. Vicinal surfaces offcut to (111)A, which generated Ga-terminated steps ('A-steps') enhanced the Bi incorporation rate during growth at 380 °C. This work reveals that the surface step termination plays an important role in the growth of the metastable alloy. Appropriate choices of both the substrate surface-step structure and other growth parameters could lead to an enhanced Bi incorporation.

  10. Release of VOCs and particles during use of nanofilm spray products.

    Science.gov (United States)

    Nørgaard, Asger W; Jensen, Keld A; Janfelt, Christian; Lauritsen, Frants R; Clausen, Per A; Wolkoff, Peder

    2009-10-15

    Here, we present emission data on VOCs and particles emitted during simulated use of four commercial nanofilm spray products (NFPs) used for making easy-to-clean or self-cleaning surfaces on floors, ceramic tiles, and windows. The aim was to characterize the emitted VOCs and to provide specific source strength data for VOCs and particles released to the airduring use of the products. Containers with NFP were mounted on a spray-stand inside a closed stainless steel chamber with no air exchange. NFPs were sprayed in amounts corresponding to 1 m2 surface toward a target plate at a distance of 35 cm. Released VOCs were measured by a combination of air sampling on Tenax TA adsorbent followed by thermal desorption GC/MS and GC/FID analysis and real time measurements using a miniature membrane inlet mass spectrometer. Particles were measured using a fast mobility particle sizer and an aerosol particle sizer. A number of VOCs were identified, including small alcohols, ketones and ethers, chlorinated acetones, a perfluorinated silane, limonene, and cyclic siloxanes. The number of generated particles was on the order of 3 x 10(8) to 2 x 10(10) particles/m3 per g sprayed NFP and were dominated by nanosize particles.

  11. Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs

    Directory of Open Access Journals (Sweden)

    Nobuaki Negishi

    2014-10-01

    Full Text Available We developed a photocatalytic solar tower reactor for the elimination of low concentrations of volatile organic compounds (VOCs typically emitted from small industrial establishments. The photocatalytic system can be installed in a narrow space, as the reactor is cylindrical-shaped. The photocatalytic reactor was placed vertically in the center of a cylindrical scattering mirror, and this vertical reactor was irradiated with scattered sunlight generated by the scattering mirror. About 5 ppm toluene vapor, used as representative VOC, was continuously photodegraded and converted to CO2 almost stoichiometrically under sunny conditions. Toluene removal depended only on the intensity of sunlight. The performance of the solar tower reactor did not decrease with half a year of operation, and the average toluene removal was 36% within this period.

  12. Photocatalytic solar tower reactor for the elimination of a low concentration of VOCs.

    Science.gov (United States)

    Negishi, Nobuaki; Sano, Taizo

    2014-01-01

    We developed a photocatalytic solar tower reactor for the elimination of low concentrations of volatile organic compounds (VOCs) typically emitted from small industrial establishments. The photocatalytic system can be installed in a narrow space, as the reactor is cylindrical-shaped. The photocatalytic reactor was placed vertically in the center of a cylindrical scattering mirror, and this vertical reactor was irradiated with scattered sunlight generated by the scattering mirror. About 5 ppm toluene vapor, used as representative VOC, was continuously photodegraded and converted to CO2 almost stoichiometrically under sunny conditions. Toluene removal depended only on the intensity of sunlight. The performance of the solar tower reactor did not decrease with half a year of operation, and the average toluene removal was 36% within this period.

  13. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    Science.gov (United States)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  14. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  15. World Calibration Center for VOC (WCC-VOC), a new Facility for the WMO-GAW-Programme

    Science.gov (United States)

    Rappenglueck, B.-

    2002-12-01

    Volatile organic compounds (VOC) are recognized to be important precursors of tropospheric ozone as well as other oxidants and organic aerosols. In order to design effective control measures for the reduction of photooxidants, photochemical processes have to be understood and the sources of the precursors known. Reliable and representative measurements of VOCs are necessary to describe the anthropogenic and biogenic sources, to follow the photochemical degradation of VOCs in the troposphere. Measurement of VOCs is of key importance for the understanding of tropospheric chemistry. Tropospheric VOCs have been one of the recommended measurements to be made within the GAW programme. The purpose will be to monitor their atmospheric abundance, to characterize the various compounds with regard to anthropogenic and biogenic sources and to evaluate their role in the tropospheric ozone formation process. An international WMO/GAW panel of experts for VOC measurements developed the rational and objectives for this GAW activity and recommended the configuration and required activities of the WCC-VOC. In reflection of the complexity of VOC measurements and the current status of measurement technology, a "staged" approach was adopted. Stage 1 measurements: C2-C9 hydrocarbons, including alkanes, alkenes, alkynes, dienes and monocyclics. (The WCC-VOC operates currently under this mode). Stage 2 measurements: C10-C14 hydrocarbons, including higher homologs of the Stage 1 set as well as biogenic hydrocarbon compounds. Stage 3 measurements: Oxygenated VOCs, including alcohols, carbonyls, carboxylic acids. The Quality Assurance/Science Activity Centre (QA/SAC) Germany currently has established the World Calibration Centre for VOC (WCC-VOC). The WCC-VOC has operated in the research mode und has become operational recently. From now on, the WCC-VOC conducts one round-robin calibration audit per year at all global stations that measure VOCs and assists other stations in setting up VOC

  16. GEIGER BRICKEL BENEFITS FROM LOW -VOC COATINGS

    Science.gov (United States)

    Midwest Research Institute, under a cooperative agreement with the U.S. Environmental Protection Agency (EPA), conducted a study to identify wood furniture manufacturing facilities that had converted to low-volatile organic compound (VOC)/hazardous air pollutant (HAP) wood furnit...

  17. Do time-averaged, whole-building, effective volatile organic compound (VOC) emissions depend on the air exchange rate? A statistical analysis of trends for 46 VOCs in U.S. offices.

    Science.gov (United States)

    Rackes, A; Waring, M S

    2016-08-01

    We used existing data to develop distributions of time-averaged air exchange rates (AER), whole-building 'effective' emission rates of volatile organic compounds (VOC), and other variables for use in Monte Carlo analyses of U.S. offices. With these, we explored whether long-term VOC emission rates were related to the AER over the sector, as has been observed in the short term for some VOCs in single buildings. We fit and compared two statistical models to the data. In the independent emissions model (IEM), emissions were unaffected by other variables, while in the dependent emissions model (DEM), emissions responded to the AER via coupling through a conceptual boundary layer between the air and a lumped emission source. For 20 of 46 VOCs, the DEM was preferable to the IEM and emission rates, though variable, were higher in buildings with higher AERs. Most oxygenated VOCs and some alkanes were well fit by the DEM, while nearly all aromatics and halocarbons were independent. Trends by vapor pressure suggested multiple mechanisms could be involved. The factors of temperature, relative humidity, and building age were almost never associated with effective emission rates. Our findings suggest that effective emissions in real commercial buildings will be difficult to predict from deterministic experiments or models.

  18. Airborne VOC measurements on board the Zeppelin NT during the PEGASOS campaigns in 2012 deploying the improvement Fast-GC-MSD system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Julia Elisabeth

    2014-04-01

    Volatile organic compounds (VOCs) comprise a large number of different species, estimated to 10{sup 4}-10{sup 6}. They are emitted on the Earth's surface from a variety of biogenic and anthropogenic sources. VOCs are removed by multiple pathways from the atmosphere, by oxidation and finally by dry or wet deposition. Most primary emitted VOCs are non-polar and therefore have a low solubility in water. Oxidation facilitates efficient VOC removal by wet deposition. In the atmosphere the main photochemical VOC oxidation agent is the OH radical. As a consequence the polarity of the VOCs is increased and they can be removed faster. The oxidation of VOCs proceeds in several steps until the VOCs are deposited or are eventually oxidized to carbon dioxide. A downside of the VOCs oxidation process lies in the production of significant amounts ozone if nitrogen oxide is present which is a serious health hazard. Most of the VOC oxidation takes place in lower part of the atmosphere between the altitudes of 100 to 1000 m, which is only sparsely analyzed. Therefore, fast VOCs measurements by GC-MSD on board the Zeppelin NT offered new important insights in the distribution of VOCs. The measurements were performed within the PEAGSOS campaigns in the Netherlands and in Italy in 2012. For the implementation of the GC-MSD system (HCG) on board the Zeppelin it was reconstructed to enhance its performance and to meet aviation requirements. The system was optimized to measure VOCs ranging from C4 to C10 as well as oxygenated VOCs (OVOCs) with a detection limit below 10 ppt. The analyzed VOCs for both parts of the campaigns showed low mean concentration below 5 ppb for all VOCs. Especially, the mixing ratios of the primary emitted VOCs were very low with mean values lower than 200 ppt. Higher concentrations could be observed for the OVOCs with mean concentrations up to 5 ppb. The most abundant OVOCs apart from formaldehyde were methanol, ethanol, acetone and acetaldehyde.

  19. Vapor intrusion from entrapped NAPL sources and groundwater plumes

    Science.gov (United States)

    Illangasekare, Tissa H.; Sakaki, Toshihiro; Christ, John; Petri, Bejamin; Sauck, Carolyn; Cihan, Abdullah

    2010-05-01

    Volatile organic compounds (VOC) are commonly found entrapped as non-aqueous phase liquids (NAPLs) in the soil pores or dissolved in groundwater at industrial waste sites and refineries. Vapors emitted from these contaminant sources readily disperse into the atmosphere, into air-filled void spaces within the soil, and migrate below surface structures, leading to the intrusion of contaminant vapors into indoor air through basements and other underground structures. This process referred to as vapor intrusion (VI) represents a potential threat to human health, and is a possible exposure pathway of concern to regulatory agencies. To assess whether this exposure pathway is present, remediation project managers often rely in part on highly simplified screening level models that do not take into consideration the complex flow dynamics controlled by subsurface heterogeneities and soil moisture conditions affected by the mass and heat flux boundary conditions at the land/atmospheric interface. A research study is under way to obtain an improved understanding of the processes and mechanisms controlling vapor generation from entrapped NAPL sources and groundwater plumes, their subsequent migration through the subsurface, and their attenuation in naturally heterogeneous vadose zones under various natural physical, climatic, and geochemical conditions. Experiments conducted at multiple scales will be integrated with analytical and numerical modeling and field data to test and validate existing VI theories and models. A set of preliminary experiments where the fundamental process of vapor generation from entrapped NAPL sources and dissolved plumes under fluctuating water were investigated in small cells and two-dimensional test tanks. In another task, intermediate scale experiments were conducted to generate quantitative data on how the heat and mass flux boundary conditions control the development of dynamic VI pathways. The data from the small cell and tank experiments were

  20. Catalyst screening for the VOC decomposition using adsorption and oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.H.; Ogata, A. [National Inst. of Advanced Industrial Science and Technology, Tokyo (Japan)

    2010-07-01

    Emissions of volatile organic compounds (VOCs) are directly related to the formation of photochemical smog and the secondary aerosol formation, particularly in urban areas. As such, VOC pollution control is a high priority in air quality management. Non-thermal plasmas (NTPs) have been considered for the abatement of VOCs, but 3 key factors must be addressed, notably improve the energy efficiency, have less NOx formation and acceptable material balance. A recent trend in the use of NTP for air pollution control is the combination of NTP with a catalyst. This combined process is subdivided into single-stage and two-stage depending on the position of the catalyst. Ozone-assisted catalysis is the two-stage system. This study focused on the decomposition of VOCs using a single-stage plasma-driven catalysis (PDC) system, and demonstrated the effectiveness of the PDC in terms of energy efficiency, product selectivity and carbon balance. The PDC reactor has a strong dependence on the oxygen content in the oxidation of VOCs. The potentials of various catalysts for cycled system were evaluated in terms of adsorption capability of VOC and enhancement factor (EF). The study focused on zeolites with a large surface area. Nanometer-sized active metals were also loaded on the zeolite surfaces, and their catalytic activity was tested. The metal nanoparticles supported on zeolites enhanced the catalytic activities considerably. ICCD camera observation of the discharge plasma on the surface of catalyst provided an important insight into the understanding of discharge plasma and catalyst. The area of discharge plasma expanded over a wide range by the metal nanoparticles. This physical influence was found to be closely related to the enhanced performance of the plasma-driven catalyst process. 15 refs., 5 figs.

  1. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Majid Hassanizadeh, S.; van Genuchten, Martinus Th.

    2017-01-01

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass cylinder filled with pure volatile organic compound (VOC). Results showed that air phase concentrations of both TCE and toluene increased relatively quickly to their maximum values and then became constant. We considered subsequent dissolution into both stirred and unstirred water reservoirs. Results of the stirred experiments showed a quick increase in the VOC concentrations with time up to their solubility limit in water. VOC vapor dissolution was found to be independent of pH. In contrast, salinity had a significant effect on the solubility of TCE and toluene vapors. VOC evaporation and vapor dissolution in the stirred water reservoirs followed first-order rate processes. Observed data could be described well using both simplified analytical solutions, which decoupled the VOC dynamics in the air and water phases, as well as using more complete coupled solutions. However, the estimated evaporation (ke) and dissolution (kd) rate constants differed by up to 70% between the coupled and uncoupled formulations. We also numerically investigated the effects of fluid withdrawal from the small water reservoir due to sampling. While decoupling the VOC air and water phase mass transfer processes produced unreliable estimates of kd, the effects of fluid withdrawal on the estimated rate constants were found to be less important. The unstirred experiments showed a much slower increase in the dissolved VOC concentrations versus time. Molecular diffusion of the VOCs within the aqueous phase became then the limiting factor for mass transfer from air to water. Fluid withdrawal during sampling likely caused some minor convection within the reservoir, which was simulated by increasing the

  2. VOC emission rates and emission factors for a sheetfed offset printing shop.

    Science.gov (United States)

    Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Javor, M; Keil, C B; Milz, S A

    1995-04-01

    Emission rates were determined during production for a sheetfed offset printing shop by combining the measured concentrations and ventilation rates with mass balance models that characterized the printing space. Air samples were collected simultaneously on charcoal tubes for 12 separate 1-hour periods at 6 locations. Air samples and cleaning solvents were analyzed by gas chromatography for total volatile organic compounds (VOC) and 13 hydrocarbons. The average VOC emission rate was 470 g/hr with a range of 160-1100 g/hr. These values were in good agreement with the amounts of VOC, hexane, toluene, and aromatic C9s determined from estimated solvent usage and measured solvent compositions. Comparison of the emission rates with source activities indicated an emission factor of 30-51 g VOC/press cleaning. Based on the test observations it was estimated that this typical small printing facility was likely to release 1-2 T VOC/year. The methodology also may be useful for the surface coating industry, as emission rates in this study were determined without recourse to a temporary total enclosure and without interfering with worker activities, increasing worker exposure, or increasing safety and explosion hazards.

  3. Lateral intermolecular forces in the physisorbed state: surface field polarization of benzene and n-hexane at the water/ and mercury/vapor interfaces.

    Science.gov (United States)

    Pethica, Brian A; Glasser, M Lawrence

    2005-02-01

    The available experimental data on the dependence of the surface tensions of water and mercury on the adsorption of benzene and hexane from the vapor phase are critically analyzed and interpreted to obtain the two-dimensional second virial coefficients [B(2)(T)] for these adsorbed nonpolar molecules. Calculations based on the unperturbed Lennard-Jones (L-J) 12-6 formalism for benzene and the related 12-5 Salem formalism for long chains in two dimensions for hexane require that B(2)(T) should be negative for both adsorbates. On water, the experimental data indicate that B(2)(T) for both molecules is less negative than expected from the unperturbed L-J and Salem estimates, and on mercury the B(2)(T) values from experiment are positive. These findings are analyzed first in terms of a possible reduction in the attractive component of the potential of mean force between physisorbed molecules arising from their frequency-dependent interaction with their electrostatic images in the bulk phases, as described by McLachlan. It is concluded that the McLachlan corrections are small for these molecules and surfaces. A second analysis considers the effect of an extra repulsion between the adsorbed molecules arising from the induction of dipoles normal to the interface by the surface electric field. Surface field polarization (SFP) accounts reasonably well for the experimental results, leading to estimates of the surface fields at the mercury and water surfaces which are consistent with estimates from contact potentials for mercury and computation from modeling the water surface. SFP may have a wide impact in determining the form of physisorption isotherms.

  4. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  5. CHARACTERIZATION OF LOW-VOC LATEX PAINTS: VOLATILE ORGANIC COMPOUND CONTENT, VOC AND ALDEHYDE EMISSIONS, AND PAINT PERFORMANCE

    Science.gov (United States)

    The report gives results of laboratory tests to evaluate commercially available latex paints advertised as "low-odor," "low-VOC (volatile organic compound)," or "no-VOC." Measurements were performed to quantify the total content of VOCs in the paints...

  6. Indium Corporation Introduces New Pb-Free VOC-Free Wave Solder Flux

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Indium Corporation of America has introduced WF-7742 Wave Solder Flux specifically designed to meet the process demands of Pb-Free manufacturing. WF-7742 is a VOC-Free material formulated for Pb-Free wave soldering of surface-mount, mixed-technology and through-holeelectronics assemblies.

  7. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    Science.gov (United States)

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  8. COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACOUES SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Radisav D. Vidic

    2002-05-01

    The first part of this study evaluated the application of a versatile optical technique to study the adsorption and desorption of model adsorbates representative of volatile polar (acetone) and non-polar (propane) organic compounds on a model carbonaceous surface under ultra high vacuum (UHV) conditions. The results showed the strong correlation between optical differential reflectance (ODR) and adsorbate coverage determined by temperature programmed desorption (TPD). ODR technique was proved to be a powerful tool to investigate surface adsorption and desorption from UHV to high pressure conditions. The effects of chemical functionality and surface morphology on the adsorption/desorption behavior of acetone, propane and mercury were investigated for two model carbonaceous surfaces, namely air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG. They can be removed by thermal treatment (> 500 K). The presence of these groups almost completely suppresses propane adsorption at 90K and removal of these groups leads to dramatic increase in adsorption capacity. The amount of acetone adsorbed is independent of surface heat treatment and depends only on total exposure. The effects of morphological heterogeneity is evident for plasma-oxidized HOPG as this substrate provides greater surface area, as well as higher energy binding sites. Mercury adsorption at 100 K on HOPG surfaces with and without chemical functionalities and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms, physisorption below 348 K and chemisorption above 348 K. No significant impact of oxygen functionalities was observed in the chemisorption region. The key findings of this study

  9. Hydride-vapor-phase epitaxial growth of highly pure GaN layers with smooth as-grown surfaces on freestanding GaN substrates

    Science.gov (United States)

    Fujikura, Hajime; Konno, Taichiro; Yoshida, Takehiro; Horikiri, Fumimasa

    2017-08-01

    Thick (20-30 µm) layers of highly pure GaN with device-quality smooth as-grown surfaces were prepared on freestanding GaN substrates by using our advanced hydride-vapor-phase epitaxy (HVPE) system. Removal of quartz parts from the HVPE system markedly reduced concentrations of residual impurities to below the limits of detection by secondary-ion mass spectrometry. Appropriate gas-flow management in the HVPE system realized device-quality, smooth, as-grown surfaces with an excellent uniformity of thickness. The undoped GaN layer showed insulating properties. By Si doping, the electron concentration could be controlled over a wide range, down to 2 × 1014 cm-3, with a maximum mobility of 1150 cm2·V-1·s-1. The concentration of residual deep levels in lightly Si-doped layers was in the 1014 cm-3 range or less throughout the entire 2-in. wafer surface. These achievements clearly demonstrate the potential of HVPE as a tool for epitaxial growth of power-device structures.

  10. [VOCs tax policy on China's economy development].

    Science.gov (United States)

    Liu, Chang-Xin; Wang, Yu-Fei; Wang, Hai-Lin; Hao, Zheng-Ping; Wang, Zheng

    2011-12-01

    In this paper, environmental tax was designed to control volatile organic compounds (VOCs) emissions. Computable general equilibrium (CGE) model was used to explore the impacts of environmental tax (in forms of indirect tax) on the macro-economy development at both national and sector levels. Different levels of tax were simulated to find out the proper tax rate. It is found out that imposing environmental tax on high emission sectors can cause the emission decreased immediately and can lead to negative impacts on macro-economy indicators, such as GDP (gross domestic products), total investment, total product and the whole consumption etc. However, only the government income increased. In addition, the higher the tax rate is, the more pollutants can be reduced and the worse economic effects can be caused. Consequently, it is suggested that, the main controlling policies of VOCs abatement should be mandatory orders, and low environmental tax can be implemented as a supplementary.

  11. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    Energy Technology Data Exchange (ETDEWEB)

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  12. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  13. Dynamic of the atmospheric boundary layer from the isotopic composition of surface water vapor at the Maïdo Observatory (La Réunion, Indian Ocean)

    Science.gov (United States)

    Guilpart, Etienne; Vimeux, Francoise; Metzger, Jean-Marc; Evan, Stephanie; Brioude, Jerome; Cattani, Olivier

    2016-04-01

    Projections of tropical and subtropical precipitation strongly differ from one climate model to another, both in sign and in amplitude. This is the case for example in some parts of the West Indian Ocean. The causes of those uncertainties are numerous and a better understanding of humid processes in the tropical atmosphere is needed. We propose to address this burning question by using water stables isotopes. We have been measuring the isotopic composition of surface water vapor at the atmospheric Observatory of Maïdo located at La Reunion Island (21°S, 55°E, 2200m a.s.l) since November 2014. Our results exhibit a strong diurnal cycle all over the year (except during cyclonic activity), with almost constant isotopic values during the day (around -13.5±0.6‰ for oxygen 18 from November 2014 to November 2015) and variable and very depleted isotopic values during the night (down to -35‰ for oxygen 18 over the same period) associated with low humidity levels. We will show in this presentation that the diurnal isotopic variations are associated to a strong air masses mixing. During the day, the isotopic composition of the vapor is typical of marine boundary layer (BL) moisture transported from the close Ocean and lifted up to the Maïdo station. During the night, the depleted values and the low humidity could trace free troposphere moisture, which is consistent with previous studies suggesting that the Maïdo Observatory is above the BL during the night. We will explore the influence of the daily BL development on our observations, using a set of atmospheric vertical profiles done on site in May 2015 during the BIOMAIDO campaign. At last, we will discuss the most isotopic depleted values recorded in our observations during the night as a possible consequence of regional strong subsidences.

  14. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  15. Surface Structure and Photocatalytic Properties of Bi2WO6 Nanolatelets Modified by Molybdena Islands from Chemical Vapor Deposition

    NARCIS (Netherlands)

    Dittmer, A.; Menze, J.; Mei, B.T.; Strunk, J.; Luftman, H.S.; Gutkowski, R.; Wachs, I.E.; Schuhmann, W.; Muhler, M.

    2016-01-01

    We report on a novel route of preparing molybdena-modified bismuth tungstates and their successful application in the photocatalytic oxygen evolution reaction and the oxidation of glycerol. Hierarchically assembled monocrystalline Bi2WO6 nanoplatelets with a specific surface area of 10 m2/g were obt

  16. Surface Structure and Photocatalytic Properties of Bi2WO6 Nanolatelets Modified by Molybdena Islands from Chemical Vapor Deposition

    NARCIS (Netherlands)

    Dittmer, A.; Menze, J.; Mei, Bastian Timo; Strunk, J.; Luftman, H.S.; Gutkowski, R.; Wachs, I.E.; Schuhmann, W.; Muhler, M.

    2016-01-01

    We report on a novel route of preparing molybdena-modified bismuth tungstates and their successful application in the photocatalytic oxygen evolution reaction and the oxidation of glycerol. Hierarchically assembled monocrystalline Bi2WO6 nanoplatelets with a specific surface area of 10 m2/g were

  17. Diffraction analysis of nonuniform stresses in surface layers : Application to cracked TiN coatings chemically vapor deposited on Mo

    NARCIS (Netherlands)

    Sloof, W.G.; Kooi, B.J.; Delhez, R.; Keijser, Th.H. de; Mittemeijer, E.J.

    1996-01-01

    Variations of residual stresses in layers on substrates can occur in directions parallel and perpendicular to the surface as a result of compositional inhomogeneity and/or porosity or cracks. Diffraction methods to evaluate such stress variations are presented. Comparison of the experimental value f

  18. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  19. Assessment of Personal Airborne Exposures and Surface Contamination from X-ray Vaporization of Beryllium Targets at the National Ignition Facility.

    Science.gov (United States)

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-02-28

    This study presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 μg/100 cm(2) and 27 results were above the analytical reporting limit of 0.01 μg/100 cm(2), for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  20. Nanocrystalline-Si-dot multi-layers fabrication by chemical vapor deposition with H-plasma surface treatment and evaluation of structure and quantum confinement effects

    Directory of Open Access Journals (Sweden)

    Daisuke Kosemura

    2014-01-01

    Full Text Available 100-nm-thick nanocrystalline silicon (nano-Si-dot multi-layers on a Si substrate were fabricated by the sequential repetition of H-plasma surface treatment, chemical vapor deposition, and surface oxidation, for over 120 times. The diameter of the nano-Si dots was 5–6 nm, as confirmed by both the transmission electron microscopy and X-ray diffraction analysis. The annealing process was important to improve the crystallinity of the nano-Si dot. We investigated quantum confinement effects by Raman spectroscopy and photoluminescence (PL measurements. Based on the experimental results, we simulated the Raman spectrum using a phenomenological model. Consequently, the strain induced in the nano-Si dots was estimated by comparing the experimental and simulated results. Taking the estimated strain value into consideration, the band gap modulation was measured, and the diameter of the nano-Si dots was calculated to be 5.6 nm by using PL. The relaxation of the q ∼ 0 selection rule model for the nano-Si dots is believed to be important to explain both the phenomena of peak broadening on the low-wavenumber side observed in Raman spectra and the blue shift observed in PL measurements.

  1. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.H. [Department of Information Management, St. John' s University, Tamsui, Taipei 251, Taiwan (China); Wu, J.D. [Department of Electronic Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Huang, Y.S., E-mail: ysh@mail.ntust.edu.tw [Department of Electronic Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Hsu, H.P. [Department of Electronic Engineering, Ming Chi University of Technology, Taishan, Taipei 243, Taiwan (China); Tiong, K.K. [Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Su, Y.K. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-12-01

    Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In{sub x}Ga{sub 1-x}As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 {<=} x {<=} 0.44) in the temperature range of 20 K {<=} T {<=} 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.

  2. Preparation of Carbazole Polymer Thin Films Chemically Bound to Substrate Surface by Physical Vapor Deposition Combined with Self-Assembled Monolayer

    Science.gov (United States)

    Katsuki, Kiyoi; Bekku, Hiroshi; Kawakami, Akira; Locklin, Jason; Patton, Derek; Tanaka, Kuniaki; Advincula, Rigoberto; Usui, Hiroaki

    2005-01-01

    Vinyl polymer thin films having carbazole units were prepared by a new method combining physical vapor deposition and self-assembled monolayer (SAM) techniques. 3-(N-carbazolyl)propyl acrylate monomer was evaporated onto a gold substrate that had a VAZO 56 (DuPont) initiator attached as a SAM. The VAZO initiator was activated by irradiating ultraviolet light after depositing the monomer. Although the polymerization reaction can proceed even without the surface initiator, the SAM was effective in improving the surface smoothness, thermal stability, and film-substrate adhesion as a consequence of the formation of covalent chemical bonds between the film and the substrate. Thermal activation of the initiator was examined for the deposition polymerization of 9-H-carbazole-9-ethylmethacryrate. Substrate heating during the evaporation was not effective for accumulating thin films. On the other hand, performing postdeposition annealing on the film after deposition at room temperature resulted in the formation of a polymer thin film chemically bound to the substrate.

  3. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  4. Temperature-stabilized silicon-based surface-acoustic-wave gas sensors for the detection of solvent vapors

    Science.gov (United States)

    Bender, Stefan; Mokwa, W.

    1998-12-01

    In the current paper a dual-delay-line- and a resonator- device based on CMOS-silicon-technology is presented. As a piezoelectric layer ZnO is used. The layer was deposited at room temperature in a RF magnetron sputter process. Using x- ray diffraction it could be shown that the crystals are mostly oriented with the c-axis (hexagonal structure) perpendicular to the surface which is necessary to conduct surface acoustic waves. Pt electrodes were designed for frequencies between 140 and 600 MHz and were deposited on top using a lift-off-process. A poly-silicon heating resistor was integrated as a sublayer for controlling and changing of the temperature of the SAW-device for studying the influence of temperature on the mass sensitive layer. A Pt thin film resistance served for temperature measurement. The performance of the devices were compared to standard quartz based SAWs.

  5. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  6. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    OpenAIRE

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture di...

  7. Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection

    Science.gov (United States)

    2007-06-04

    Flow Microfiltration ." Journal of Membrane Science 102(1-3): 31-42. 62 Hook, G. L., C. Jackson Lepage, et al. (2004). "Dynamic solid phase...Xia 2001) In another experiment, 1cm x 1cm and 1cm x 2cm sheets of thin PDMS membrane , with surface areas ~20 and ~40 times greater than a 100 μm...PDMS coated SPME fiber. The membranes were attached to a thin, deactivated stainless steel rod, in a configuration similar to a flag on a flagpole

  8. Formation of a pn junction on an anisotropically etched GaAs surface using metalorganic chemical vapor deposition

    Science.gov (United States)

    Leon, R. P.; Bailey, S. G.; Mazaris, G. A.; Williams, W. D.

    1986-01-01

    A continuous p-type GaAs epilayer has been deposited on an n-type sawtooth GaAs surface using MOCVD. A wet chemical etching process was used to expose the intersecting (111)Ga and (-1 -1 1)Ga planes with 6-micron periodicity. Charge-collection microscopy was used to verify the presence of the pn junction thus formed and to measure its depth. The ultimate goal of this work is to fabricate a V-groove GaAs cell with improved absorptivity, high short-circuit current, and tolerance to particle radiation.

  9. Raman scattering investigation of VOCs in interaction with ice particles

    Science.gov (United States)

    Facq, Sébastien; Oancea, Adriana; Focsa, Cristian; Chazallon, Bertrand

    2010-05-01

    Cirrus clouds that form in the Earth's upper troposphere (UT) are known to play a significant role in the radiation budget and climate [1]. These clouds that cover about 35% of the Earth's surface [2] are mainly composed of small ice particles that can provide surfaces for trace gas interactions [3]. Volatile Organic Compounds (VOCs) are present in relative high abundance in the UT [4][5]. They promote substantial sources of free OH radicals that are responsible for driving photochemical cycles in the atmosphere. Their presence can both influence the oxidizing capacity and the ozone budget of the atmosphere. VOCs can interact with ice particles via different trapping processes (adsorption, diffusion, freezing, and co-deposition, i.e., incorporation of trace gases during growing ice conditions) which can result in the perturbation of the chemistry and photochemistry of the UT. Knowledge of the incorporation processes of VOCs in ice particles is important in order to understand and predict their impact on the ice particles structure and reactivity and more generally on the cirrus cloud formation. This proceeds via the in-situ characterization of the ice condensed phase in a pressure and temperature range of the UT. An important mechanism of UT cirrus cloud formation is the heterogeneous ice freezing process. In this study, we examine and characterize the interaction of a VOC, i.e., ethanol (EtOH) with ice particles during freezing. Vibrational spectra of water O-H and EtOH C-H spectral regions are analysed using confocal micro-Raman spectroscopy. Information at the molecular level on the surface structure can be derived from accompanying changes observed in band shapes and vibrational mode frequencies. Depending of the EtOH content, different crystalline phases have been identified and compared to hydrates previously reported for the EtOH-water system. Particular attention is paid on the effect of EtOH aqueous solutions cooling rate and droplet sizes on the phases

  10. Pulsed Corona Discharges and Their Applications in Toxic VOCs Abatement

    Institute of Scientific and Technical Information of China (English)

    MuhammadArifMalik; SalmanAkbarMalik

    1999-01-01

    plasma processes are among the emerging technologies for volatile organic compounds (VOCs) sbatoment. Both thermal plasmas and non-equil[brimn plasmas (cold plasmas) are being developed for VOCs clesnup. Particularly, pulsed corona discharges offer several edvantages over conventional VOCs abatement tochniqvee, To optimize the existing technology and to developit further, there is need to understand the mechanlsms involved in plasma chemical reacticms, Furthermore, it is strongly desirable to be able to predict the behavior of new VOCs in non-equillbrlum plasma enviromuent from the data known for a few representative oompounds, Pulsed corona discharge technique is introduced here with dtafion of refevant literature, Fundamental principfes,useful for predicting the VOCs' decomposition behavior, have been worked out from the published literature. Latest developments in the area, targeted to minimize the enersy losses, improve the VOCs destruction efficiency and reduce the generation of unwanted organic and inorganic by-products, are presented.

  11. Wearable real-time direct reading naphthalene and VOC personal exposure monitor

    Science.gov (United States)

    Hug, W. F.; Bhartia, R.; Reid, R. D.; Reid, M. R.; Oswal, P.; Lane, A. L.; Sijapati, K.; Sullivan, K.; Hulla, J. E.; Snawder, J.; Proctor, S. P.

    2012-06-01

    Naphthalene has been identified by the National Research Council as a serious health hazard for personnel working with jet fuels and oil-based sealants containing naphthalene. We are developing a family of miniature, self-contained, direct reading personal exposure monitors (PEMs) to detect, differentiate, quantify, and log naphthalene and other volatile organic compounds (VOCs) in the breathing zone of the wearer or in the hands of an industrial hygienist with limits of detection in the low parts per billion (ppb) range. The VOC Dosimeter (VOCDos) described here is a PEM that provides real-time detection and data logging of exposure as well as accumulated dose, with alarms addressing long term and immediate exposure limits. We will describe the sensor, which employs optical methods with a unique excitation source and rapidly refreshable vapor concentrator. This paper addresses the rapidly increasing awareness of the health risks of inhaling jet fuel vapors by Department of Defense (DOD) personnel engaged in or around jet fueling operations. Naphthalene is a one to three percent component of the 5 billion gallons of jet fuels used annually by DOD. Naphthalene is also a component of many other petroleum products such as asphalt and other oil-based sealants. The DOD is the single largest user of petroleum fuels in the United States (20% of all petroleum fuel used). The VOCDos wearable sensor provides real-time detection and data logging of exposure as well as accumulated dose. We will describe the sensor, which employs endogenous fluorescence from VOCs accumulated on a unique, rapidly refreshable, patent-pending concentrator, excited by a unique deep ultraviolet excitation source.

  12. Simple, Efficient, and Rapid Methods to Determine the Potential for Vapor Intrusion into the Home: Temporal Trends, Vapor Intrusion Forecasting, Sampling Strategies, and Contaminant Migration Routes

    Science.gov (United States)

    Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements of volatile organic compound (VOC) concentrations in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evide...

  13. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    OpenAIRE

    Bennett, Joan W.; Arati A. Inamdar

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpe...

  14. Outdoor, indoor, and personal exposure to VOCs in children.

    Science.gov (United States)

    Adgate, John L; Church, Timothy R; Ryan, Andrew D; Ramachandran, Gurumurthy; Fredrickson, Ann L; Stock, Thomas H; Morandi, Maria T; Sexton, Ken

    2004-10-01

    We measured volatile organic compound (VOC) exposures in multiple locations for a diverse population of children who attended two inner-city schools in Minneapolis, Minnesota. Fifteen common VOCs were measured at four locations: outdoors (O), indoors at school (S), indoors at home (H), and in personal samples (P). Concentrations of most VOCs followed the general pattern O approximately equal to S long-term health risks from children's exposure to these compounds.

  15. Hexagonal boron nitride hollow capsules with collapsed surfaces: Chemical vapor deposition with single-source precursor ammonium fluoroborate

    Science.gov (United States)

    Xiaopeng, Li; Jun, Zhang; Chao, Yu; Xiaoxi, Liu; Saleem, Abbas; Jie, Li; Yanming, Xue; Chengchun, Tang

    2016-07-01

    SBA-15 (mesoporous SiO2) is used to stabilize and transfer F- in the NH4BF4 CVD reaction for the first time, and a large-scale crystalline h-BN phase can be prepared. We successfully fabricate hollow h-BN capsules with collapsed surfaces in our designed NH4BF4 CVD system. Optimum temperature conditions are obtained, and a detailed formation mechanism is further proposed. The successful SBA-15-assisted NH4BF4 CVD route is of importance and enriches the engineering technology in the h-BN single-source CVD reaction. Project supported by the National Natural Science Foundation of China (Grant Nos. 51332005, 51372066, 51172060, 51202055, and 21103056).

  16. Use of mass spectrometric methods for field screening of VOC`s

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.

    1994-11-01

    While mass spectrometric (MS) methods of chemical analysis, particularly gas chromatography-mass spectrometry (GC/MS), have been the mainstay of environmental organic analytical techniques in the laboratory through the use of EPA and other standard methods, field implementation is relatively rare. Instrumentation and methods now exist for utilizing MS and GC/MS techniques in the field for analysis of VOC`s in gas phase, aqueous, and soil media. Examples of field investigations utilizing HP 5971A and Viking SpectraTrak systems for analysis of VOC`s in all three media will be presented. Mass spectral methods were found to offer significant advantages in terms of speed of analysis and reliability of compound identification over field gas chromatography (GC) methods while preserving adequate levels of detection sensitivity. The soil method in particular provides a method for rapid in-field analysis of methanol preserved samples thus minimizing the problem of volatiles loss which typically occurs with routine use of the EPA methods and remote analysis. The high cost of MS instrumentation remains a major obstacle to more widespread use.

  17. Performances of electrically heated microgroove vaporizers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An electrically heated microgroove vaporizer was proposed. The vaporizer mainly comprised an outer tube, an inner tube and an electrical heater cartridge. Microgrooves were fabricated on the external surface of the inner tube by micro-cutting method,which formed the flow passage for fluid between the external surface of the inner tube and the internal surface of the outer tube.Experiments related to the temperature rise response of water and the thermal conversion efficiency of vaporizer were done to estimate the influences of microgroove's direction, feed flow rate and input voltage on the performances of the vaporizer. The results indicate that the microgroove's direction dominates the vaporizer performance at a lower input voltage. The longitudina lmicrogroove vaporizer exhibits the best performances for the temperature rise response of water and thermal conversion efficiency of vaporizer. For a moderate input voltage, the microgroove's direction and the feed flow rate of water together govern the vaporizer performances. The input voltage becomes the key influencing factor when the vaporizer works at a high input voltage, resulting in the similar performances of longitudinal, oblique and latitudinal microgroove vaporizers.

  18. Direct Growth Graphene on Cu Nanoparticles by Chemical Vapor Deposition as Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine

    CERN Document Server

    Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Liu, Hanping

    2015-01-01

    We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped around a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based...

  19. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  20. Emission inventory of evaporative emissions of VOCs in four metro cities in India.

    Science.gov (United States)

    Srivastava, Anjali; née Som Majumdar, Dipanjali

    2010-01-01

    High concentrations of volatile organic compounds (VOCs) in ambient air of urban areas stress the need for the control of VOC emissions due to the toxic and carcinogenic nature of many VOCs commonly encountered in urban air. Emission inventories are an essential tool in the management of local air quality, which provide a listing of sources of air pollutant emissions within a specific area over a specified period of time. This study intended to provide a level IV emission inventory as par the United States Environmental Protection Agency (USEPA) definition for evaporative VOC emissions in the metro cities of India namely Delhi, Mumbai, Chennai, and Kolkata. The vehicular evaporative emissions are found to be the largest contributor to the total evaporative emissions of hydrocarbons followed by evaporative losses related to petrol loading and unloading activities. Besides vehicle-related activities, other major sources contributing to evaporative emissions of hydrocarbons are surface coating, dry cleaning, graphical art applications, printing (newspaper and computer), and the use of consumer products. Various specific preventive measures are also recommended for reducing the emissions.

  1. Analysis of Sidestream Smoke VOCs and Characterization of their Odor Profiles by VOC Preconcentrator-GC-O Techniques

    Directory of Open Access Journals (Sweden)

    Higashi N

    2014-12-01

    Full Text Available Various techniques have been employed in the analysis of volatile organic compounds (VOCs. However, these techniques are insufficient for the precise analysis of tobacco smoke VOCs because of the complexity of the operating system, system instability, or poor sensitivity. To overcome these problems, a combined system of VOC preconcentrator, gas chromatograph, and olfactometer has been developed. The performance of this new system was evaluated in the analysis of VOCs in tobacco smoke and applied to the odor profiling of sidestream smoke (SSS that has not been sufficiently investigated in the past.

  2. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  3. Determining Adequate Averaging Periods and Reference Coordinates for Eddy Covariance Measurements of Surface Heat and Water Vapor Fluxes over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen Ming-Hsu Li

    2012-01-01

    Full Text Available Two coordinate rotation approaches (double and planar-fit rotations and no rotation, in association with averaging periods of 15 - 480 min, were applied to compute surface heat and water vapor fluxes using the eddy covariance approach. Measurements were conducted in an experimental watershed, the Lien-Hua-Chih (LHC watershed, located in central Taiwan. For no rotation and double rotation approaches, an adequate averaging period of 15 or 30 min was suggested for better energy closure and small variations on energy closure fractions. For the planar-fit rotation approach, an adequate averaging period of 60 or 120 min was recommended, and a typical averaging period of 30 min is not superior to that of 60 or 120 min in terms of better energy closure and small variations on energy closure fractions. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours at LHC site. Seasonal variations of daily energy closure fractions, high in dry season and low in wet season, were found to be associated with the surface dryness and strength of turbulent development. The mismatching of flux footprint areas among flux sensors was suggested as the cause of larger CF variations during the dry seasons as that indicated by the footprint analysis showing scattered source areas. During the wet season, the underestimation of turbulent fluxes by EC observations at the LHC site was attributed to weak turbulence developments as the source area identified by the footprint analysis was closer to the flux tower than those scattered in dry season.

  4. Nanopatterning on fragile or 3D surfaces with sterol-based vapor-deposited electron beam resist

    Science.gov (United States)

    Legario, Ron R.; Kelkar, Prasad S.; Beauvais, Jacques; Lavallee, Eric; Drouin, Dominique; Cloutier, Melanie; Turcotte, David; Yang, Pan; Mun, Lau K.; Awad, Yousef; Lafrance, Pierre J.

    2004-05-01

    A novel and effective approach to nano-fabrication lithography is the vapour deposition of the negative tone electron beam resists QSR-5 and QSR-15 (Quantiscript"s sterol based resist) onto a substrate. Vapour deposition is especially conducive for patterning thin delicate membranes (e.g. advanced masks for X-ray lithography - XRL, and Low Energy Electron Proximity Projection Lithography - LEEPL), that are susceptible to breakage during the spin coating process. With the capability for depositing highly uniform thin layers (optical fibre with the goal of improving the coupling of diode laser emission into the fiber. This application clearly shows the capabilities of this process for producing nano-scale patterns on very small area surfaces that are completely unsuitable for spin-coating of the resist. A second demonstration of the resist's capabilities is the patterning of optical diffractive elements directly on the facet of a semiconductor laser. This opens the way to direct patterning on laser diode facets in order to control the emission profile from the device. It has also proven capabilities in the manufacture of delicate photo masks. In their natural state, QSR-5 and QSR-15 are solids at room temperature and are sterol based heterocyclic compounds, with unsaturated bonding capable of cross linking. On their own merit, QSR-5 and QSR-15 are capable of cross linking under electron beam exposure and are comparable in certain properties to conventional spin-coated resists such as PMMA. When cross linked, their heterocyclic structure gives it excellent selective resistance to solvent based developers (such as alcohols and ketones) for pattern formation. They have also been shown to be highly resistant to etching solutions, even when working with thin high resolution layers on the order of 30 nm. They are highly stable and have a relatively long shelf life, greater than one year. Compared to conventional resists utilizing complex, toxic, and expensive resin systems

  5. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.

    Science.gov (United States)

    Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.

  6. Effect of band alignment on photoluminescence and carrier escape from InP surface quantum dots grown by metalorganic chemical vapor deposition on Si

    Science.gov (United States)

    Halder, Nripendra N.; Biswas, Pranab; Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S.; Biswas, D.; Banerji, P.

    2014-01-01

    A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 10-80 K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19 meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e1) to the heavy hole band (hh1). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of the PL intensity

  7. SUBSTRATE EFFECTS ON VOC EMISSIONS FROM A LATEX PAINT

    Science.gov (United States)

    The effects of two substrates -- a stainless steel plate and a gypsum board -- on the volatile organic compound (VOC) emissions from a latex paint were evaluated by environmental chamber tests. It was found that the amount of VOCs emitted from the painted stainless steel was 2 to...

  8. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    Science.gov (United States)

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  9. Direct measurement of VOC diffusivities in tree tissues

    DEFF Research Database (Denmark)

    Baduru, K.K.; Trapp, Stefan; Burken, Joel G.

    2008-01-01

    fundamental terminal fate processes for VOCs that have been translocated from contaminated soil or groundwater, and diffusion constitutes the mass transfer mechanism to the plant−atmosphere interface. Therefore, VOC diffusion through woody plant tissues, that is, xylem, has a direct impact on contaminant fate...

  10. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-22

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  11. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  12. Vertical profiles of ozone, VOCs and meteorological parameters in within and outside of Mexico City during the MILAGRO field Campaign

    Science.gov (United States)

    Marquez, C.; Greenberg, J.; Bueno, E.; Bernabe, R.; Aguilar, J.; Blanco, S.; Wöhrnschimmel, H.; Guenther, A.; Cardenas, B.; Turnipseed, A.

    2007-05-01

    days, VOC concentrations at T0 were compared with measurements done at surface levels in the southeast of Mexico City. Vertical profiles measured in the city at T0 were also compared with VOC and ozone concentrations measured at heights up to 700m using a tethered balloon system deployed at the T1 site north of Mexico City.

  13. 浸润度对低温下气膜产生的影响%Effect of Wettability on the Vapor Film Formation on the Solid Surface at a Low Temperature

    Institute of Scientific and Technical Information of China (English)

    白岗; 答元

    2014-01-01

    With the low thermal conductivity of the vapor film in boling and its ability to reduce the fluid flow resistance ,the formation of the vapor film was simulated by the method of molecular dynamics (MD) under the NPT (isothermal and isotonic system ) ensemble ,with the vapor film obtained at the lower temperature .The effect of the contact angle of the solid surface on the vapor films formation on the solid surface was investigated because it can change the wettability of the solid-liquid surface .The results show that the superhydrophobic solid surface can significantly enhance the film formation .At the lower temperature ,vapor films can not form on the normal hydrophobic surface but can form on the superhydrophobic surface in a short time , not only reducing the fluid flow resistance , but also preventing the device surface from burning out because of too high temperature .%针对气膜在沸腾过程中的低热导率以及能够降低流体流动阻力的特点,应用分子动力学模拟的方法在等温等压系综下模拟了气膜的形成过程,在较低的温度下得到了气膜。通过改变固液界面的接触角来改变固液界面的浸润度,进一步影响气膜的形成。结果表明,超疏水性固体壁面明显能够增强气膜形成,在较低温度下,一般的疏水性界面不能形成气膜,而超疏水性界面能够在较短时间内形成气膜,既可以减小流体流动阻力,又可以防止器件表面温度过高而烧坏。

  14. Nieuwsgaring in Batavia tijdens de VOC

    Directory of Open Access Journals (Sweden)

    Adrienne Zuiderweg

    2010-12-01

    Full Text Available  The board members of the Dutch East India Company (1602-1795, the Heren Zeventien, promulgated various decrees in which they forbade to bring out information regarding their colonies in the Dutch East Indies and Batavia in letters, manuscripts and printed matter. But in Batavia some inventive Company servants and even staff members got around these regulations, as did some printers in Holland. They published newspapers like Bataviase Nouvelles and Vendu-Nieuws, and also the specialized journal Verhandelingen van het Bataviaasch Genootschap. The initiators of this journal joined hands with the Dutch world of learning and its journals. This article provides an overview of early journalism in the Dutch East Indies and thus contributes to the reconstruction of the literary and cultural climate in Batavia at the time of the VOC.

  15. High-temperature degradation in plasma-enhanced chemical vapor deposition Al{sub 2}O{sub 3} surface passivation layers on crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kühnhold, Saskia [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, D-79110 Freiburg (Germany); Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 21 (Germany); Saint-Cast, Pierre; Kafle, Bishal; Hofmann, Marc [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, D-79110 Freiburg (Germany); Colonna, Francesco [Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 21 (Germany); Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Zacharias, Margit [Department of Microsystems Engineering IMTEK, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

    2014-08-07

    In this publication, the activation and degradation of the passivation quality of plasma-enhanced chemical vapor deposited aluminum oxide (Al{sub 2}O{sub 3}) layers with different thicknesses (10 nm, 20 nm, and 110 nm) on crystalline silicon (c-Si) during long and high temperature treatments are investigated. As indicated by Fourier Transform Infrared Spectroscopy, the concentration of tetrahedral and octahedral sites within the Al{sub 2}O{sub 3} layer changes during temperature treatments and correlates with the amount of negative fixed charges at the Si/Al{sub 2}O{sub 3} interface, which was detected by Corona Oxide Characterization of Semiconductors. Furthermore, during a temperature treatment at 820 °C for 30 min, the initial amorphous Al{sub 2}O{sub 3} layer crystallize into the γ-Al{sub 2}O{sub 3} structure and was enhanced by additional oxygen as was proven by x-ray diffraction measurements and underlined by Density Functional Theory simulations. The crystallization correlates with the increase of the optical density up to 20% while the final Al{sub 2}O{sub 3} layer thickness decreases at the same time up to 26%. All observations described above were detected to be Al{sub 2}O{sub 3} layer thickness dependent. These observations reveal novel aspects to explain the temperature induced passivation and degradation mechanisms of Al{sub 2}O{sub 3} layers at a molecular level like the origin of the negative fixe charges at the Si/SiO{sub x}/Al{sub 2}O{sub 3} interface or the phenomena of blistering. Moreover, the crystal phase of Al{sub 2}O{sub 3} does not deliver good surface passivation due to a high concentration of octahedral sites leading to a lower concentration of negative fixed charges at the interface.

  16. Modeling of tropospheric integrated water vapor content using GPS, radiosonde, radiometer, rain gauge, and surface meteorological data in a tropical region (French Polynesia)

    Science.gov (United States)

    Serafini, Jonathan; Barriot, Jean-Pierre; Hopuare, Marania; Sichoix, Lydie; Fadil, Abdelali

    2012-11-01

    The integrated precipitable water vapor (IPW) is characterized by strong spatial and temporal variability, especially over tropical regions where the troposhere is not purely in hydrostatic equilibrium (convection). As an evidence, the survey of water vapor distibution as permanently as possible is an important issue and should serve as inputs for tropical climate modelling. In this paper, we present an estimation of the IPV from ground­ ba,.sed GPS receivers, which we compare to radiosondes and microwave radiometer. The data used here were collected in the vicinity of French Polynesia University site, during eight years from 2001 to 2008. In addition, we also include the IPW calculated using Era-Interim reanalyses (ECMWF). The main purpose of this paper is to highlight precision, qualities and limitations of each method available on the Island of Tahiti. During wet periods, the radiosondes vertical profiles of water vapor show an efficient mixing of water vapor between the the boundary layer (below trade winds inversion at Tahiti) and the free troposphere. Thus the rainy event detection allows to better constrain the validity range of a model of the vertical distribution of water vapor, which is based on a pseudo-adiabatic saturated evolution of the temperature.

  17. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  18. 水平表面水-酒精混合蒸气Marangoni瞬态凝结过程的凝结液形态%Characteristics of Marangoni dynamic condensation modes for water-ethanol mixture vapors on horizontal surface

    Institute of Scientific and Technical Information of China (English)

    陈娜娜; 王进仕; 李勇; 夏凯; 严俊杰

    2016-01-01

    设计搭建了水平表面上凝结实验系统,利用高速摄像机对水-酒精混合蒸气Marangoni瞬态凝结过程的凝结形态进行观察记录,获得了初始过冷度、酒精蒸气浓度及蒸气流速对凝结形态的影响规律。采用图像边缘提取技术对凝结图像进行处理,统计得到了作为定量表征Marangoni凝结形态参数之一的最大液珠半径的变化规律。研究结果表明:凝结开始的一段时间内凝结形态变化剧烈,液珠经历形成、合并及逐渐长大的过程,最终凝结形态基本保持不变,液珠成长时间数量级约为10 s。在凝结的初始阶段,当过冷度较大时,膜状凝结与珠状凝结同时存在于凝结表面;随着过冷度降低,小液珠数目增多;过冷度继续降低,凝结面全部被大量小液珠所覆盖。随着初始过冷度降低、酒精蒸气浓度增高,凝结液珠成长时间增长,液珠的生长速度变慢。蒸气流速对液珠的成长过程影响相对不明显。随着凝结进行,最大液珠半径从2 mm增大到10 mm的数量级;同一凝结时刻,随着初始过冷度增加、酒精蒸气浓度降低,最大液珠半径逐渐增大。%An experimental system was designed and built for condensation on a horizontal surface. Using the high-speed camera, the characteristics of Marangoni dynamic condensation modes for water-ethanol mixture vapors was investigated. The influence of initial vapor-to-surface temperature, ethanol vapor concentration and vapor velocity on the condensation modes was obtained. Using the method of edge detection to process the condensation pictures, the variation of maximum droplet radius, which was considered as an important parameter for quantitatively expressing Marangoni condensation modes, was obtained. The results showed that the condensation modes altered dramatically as condensation started. Then, the generation, merging and growing process of droplets could be observed

  19. Analysis and evaluation of VOC removal technologies demonstrated at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Chesnut, D.A.; Wagoner, J.; Nitao, J.J.; Boyd, S.; Shaffer, R.J.; Kansa, E.J.; Buscheck, T.A. [Lawrence Livermore National Lab., CA (United States); Pruess, K. [Lawrence Berkeley Lab., CA (United States); Falta, R.W. [Clemson Univ., SC (United States)

    1993-09-01

    Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C{sub 2}HCl{sub 3}, or TCE) and Tetrachloroethylene (C{sub 2}Cl{sub 4}, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2{times}10{sup 6} pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer.

  20. The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere

    Science.gov (United States)

    Karl, T.; Harley, P.; Guenther, A.; Rasmussen, R.; Baker, B.; Jardine, K.; Nemitz, E.

    2005-11-01

    Using new in-situ field observations of the most abundant oxygenated VOCs (methanol, acetaldehyde, acetone, C3/C4 carbonyls, MVK+MAC and acetic acid) we were able to constrain emission and deposition patterns above and within a loblolly pine (Pinus taeda) plantation with a sweetgum (Liquidambar styraciflua) understory. During the day canopy scale measurements showed significant emission of methanol and acetone, while methyl vinyl ketone and methacrolein, acetaldehyde and acetic acid were mainly deposited during the day. All oxygenated compounds exhibited strong losses during the night that could not be explained by conventional dry deposition parameterizations. Accompanying leaf level measurements indicated substantial methanol and acetone emissions from loblolly pine. The exchange of acetaldehyde was more complex. Laboratory measurements made on loblolly pine needles indicated that acetaldehyde may be either emitted or taken up depending on ambient concentrations, with the compensation point increasing exponentially with temperature, and that mature needles tended to emit more acetaldehyde than younger needles. Canopy scale measurements suggested mostly deposition. Short-term (approx. 2 h) ozone fumigation in the laboratory had no detectable impact on post-exposure emissions of methanol and acetone, but decreased the exchange rates of acetaldehyde. The emission of a variety of oxygenated compounds (e.g. carbonyls and alcohols) was triggered or significantly enhanced during laboratory ozone fumigation experiments. These results suggest that higher ambient ozone levels in the future might enhance the biogenic contribution of some oxygenated compounds. Those with sufficiently low vapor pressures may potentially influence secondary organic aerosol growth. Compounds recently hypothesized to be primarily produced in the canopy atmosphere via ozone plus terpenoid-type reactions can also originate from the oxidation reaction of ozone with leaf surfaces and inside the leaf

  1. Investigation of the behavior of VOCs in ground water across fine- and coarse-grained geological contacts using a medium-scale physical model

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, F.; Chiarappa, M.L.

    1998-03-01

    One of the serious impediments to the remediation of ground water contaminated with volatile organic compounds (VOCs) is that the VOCs are retarded with respect to the movement of the ground water. Although the processes that result in VOC retardation are poorly understood, we have developed a conceptual model that includes several retarding mechanisms. These include adsorption to inorganic surfaces, absorption to organic carbon, and diffusion into areas of immobile waters. This project was designed to evaluate the relative contributions of these mechanisms; by improving our understanding, we hope to inspire new remediation technologies or approaches. Our project consisted of a series of column experiments designed to measure the retardation, in different geological media, of four common ground water VOCs (chloroform, carbon tetrachloride, trichloroethylene, and tetrachloroethylene) which have differing physical and chemical characteristics. It also included a series of diffusion parameters that constrain the model, we compared the data from these experiments to the output of a computational model.

  2. Lipophilic super-absorbent polymer gels as surface cleaners for oil and grease

    Science.gov (United States)

    Increasingly stringent environmental regulations on volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) demand the development of disruptive technologies for cleaning weapons systems and platforms. Currently employed techniques such as vapor degreasing, solvent, aqueous, or blast ...

  3. Approaches to improve the Voc of CDTE devices: Device modeling and thinner devices, alternative back contacts

    Science.gov (United States)

    Walkons, Curtis J.

    An existing commercial process to develop thin film CdTe superstrate cells with a lifetime tau=1-3 ns results in Voc= 810-850 mV which is 350 mV lower than expected for CdTe with a bandgap EG = 1.5 eV. Voc is limited by 1.) SRH recombination in the space charge region; and 2.) the Cu2Te back contact to CdTe, which, assuming a 0.3 eV CdTe/Cu2Te barrier, exhibits a work function of phi Cu2Te= 5.5 eV compared to the CdTe valence band of Ev,CdTe=5.8 eV. Proposed solutions to develop CdTe devices with increased Voc are: 1.) reduce SRH recombination by thinning the CdTe layer to ≤ 1 mum; and 2.) develop an ohmic contact back contact using a material with phi BC≥5.8 eV. This is consistent with simulations using 1DSCAPS modeling of CdTe/CdS superstrate cells under AM 1.5 conditions. Two types of CdTe devices are presented. The first type of CdTe device utilizes a window/CdTe stack device with an initial 3-9 mum CdTe layer which is then chemically thinned resulting in regions of the CdTe film with thickness less than 1 mum. The CdTe surface was contacted with a liquid junction quinhydrone-Pt (QH-Pt) probe which enables rapid repeatable Voc measurements on CdTe before and after thinning. In four separate experiments, the window/CdTe stack devices with thinned CdTe exhibited a Voc increase of 30-170 mV, which if implemented using a solid state contact could cut the Voc deficit in half. The second type of CdTe device utilizes C61 PCBM as a back contact to the CdTe, selected since PCBM has a valence band maximum energy (VBM) of 5.8 eV. The PCBM films were grown by two different chemistries and the characterization of the film properties and device results are discussed. The device results show that PCBM exhibits a blocking contact with a 0.6 eV Schottky barrier and possible work function of phiPCBM = 5.2 eV.

  4. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  5. Measurement of VOCs in vehicle exhaust by extractive FTIR spectroscopy

    Science.gov (United States)

    Lechner, Bernhard; Paar, H.; Sturm, Peter J.

    2001-02-01

    12 The detection of benzene and other organic compounds in vehicle exhaust by FT-IR-spectroscopy is seriously limited by the strong interference of carbon dioxide and the rather weak absorption coefficient of the gases. Therefore, a measurement device was developed which separates the components of interest (mostly VOCs) from carbon dioxide, water and nitric oxide. In addition the VOCs have to be pre- concentrated. To avoid condensation of VOCs the measurements have to take place at higher temperatures. The vehicle exhaust was led through an activated charcoal tube where the organic compounds were adsorbed. Afterwards, the charcoal tube was heated in a furnace, the VOCs were desorbed thermically and were carried by (heated) nitrogen into a gas cell with a path-length of 10 m where the concentration of the different species was measured. With the help of this measurement device a lot of VOC- components like benzene, toluene, and xylene were detected successfully. Measurements were performed on an engine test bed and a chassis dynamometer for heavy duty vehicles. The detection limit of most of the VOCs was about 2 to 3 ppb for a sampling time of 20 min. Calibration measurements showed an accuracy of 15%.

  6. Investigation Methods to Distinguish Between Vapor Intrusion and Indoor Sources of VOCS

    Science.gov (United States)

    2010-12-01

    Tomasz Kuder and Paul Philp , University of Oklahoma Kyle Gorder, Hill AFB Ignacio Rivera and Bart Chadwick, Navy SPAWAR Stephanie Fiorenza, BP America...Erica Becvar, AFCEE Erik Dettenmaier, Hill AFB Lisa Molofsky, Danny Bailey, Roberto Landazuri, GSI Env. Inc. Paul Johnson’s Research Team, Arizona State University Beacon Environmental

  7. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  8. A Novel Methodology to Evaluate Health Impacts Caused by VOC Exposures Using Real-Time VOC and Holter Monitors

    Directory of Open Access Journals (Sweden)

    Hiroaki Kumano

    2010-11-01

    Full Text Available While various volatile organic compounds (VOCs are known to show neurotoxic effects, the detailed mechanisms of the action of VOCs on the autonomic nervous system are not fully understood, partially because objective and quantitative measures to indicate neural abnormalities are still under development. Nevertheless, heart rate variability (HRV has been recently proposed as an indicative measure of the autonomic effects. In this study, we used HRV as an indicative measure of the autonomic effrects to relate their values to the personal concentrations of VOCs measured by a real-time VOC monitor. The measurements were conducted for 24 hours on seven healthy subjects under usual daily life conditions. The results showed HF powers were significantly decreased for six subjects when the changes of total volatile organic compound (TVOC concentrations were large, indicating a suppression of parasympathetic nervous activity induced by the exposure to VOCs. The present study indicated these real-time monitoring was useful to characterize the trends of VOC exposures and their effects on autonomic nervous system.

  9. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    Science.gov (United States)

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  10. Development, validation and application of a process for the generation of long-term stable VOC gas mixtures; Entwicklung, Validierung und Anwendung eines Verfahrens zur Erzeugung langzeitstabiler VOC-Gasgemische

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Matthias

    2010-07-01

    The development as well as the validation of a gas mixing system (GMS) that enables dynamic and traceable production of stable long-term VOC gas mixtures within the range between a few {mu}g/m{sup 3} and a few 100 {mu}g/m{sup 3}, is discussed. In this method pure liquid substances that are filled into stainless steel bottles are kept separately at a constant temperature, evaporated according to their vapour pressure and removed by a small inert gas flow. They are finally united in a gas mixing chamber. The carrier gas must be as small as possible so that the quasi-equilibrium between the gas space and the liquid phase in the substance bottles will not be disturbed. The carrier gas is assumed to be saturated with substance gas due to a long residence time in the bottles and a fast phase transition. Any concentration level of the gas mixture can be generated by a combination of vaporization temperature, carrier and dilution gas flows. With the GMS a mixture of 25 VOCs was prepared. For 16 compounds stable and reproducible gas concentrations were realized. Due to not completely removed leakage of some substance bottles and the tubing respectively, variation of the concentration of the remaining compounds was found. A sink effect as another reason for this variation could be expelled and the chemical stability of the vaporized substances proved with the exception of some aldehydes. The procedure was successfully applied in a round robin test and a material test. In the latter adsorption of VOCs on building products was scrutinized. In this way the applicability of the GMS could be shown. (orig.)

  11. Biodegradation of methanol vapor in a biofilter

    Institute of Scientific and Technical Information of China (English)

    Durai Arulneyam; T. Swaminathan

    2003-01-01

    Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m3.h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.

  12. Biological anoxic treatment of O{sub 2}-free VOC emissions from the petrochemical industry: A proof of concept study

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Raúl; Souza, Theo S.O. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Glittmann, Lina [Ostfalia University of Applied Sciences, Department of Supply Engineering, Wolfenbüttel (Germany); Pérez, Rebeca [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Quijano, Guillermo, E-mail: gquijano@iq.uva.es [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain)

    2013-09-15

    Highlights: • The treatment of O{sub 2}-free VOC emissions can be done by means of denitrifying processes. •Toluene vapors were successfully removed under anoxic denitrifying conditions. • A high bacterial diversity was observed. • Actinobacteria and Proteobacteria were the predominant phyla. • The nature and number of metabolites accumulated varied with the toluene load -- Abstract: An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O{sub 2} supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m{sup −3} h{sup −1} (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m{sup −3} h{sup −1}. However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m{sup −3} h{sup −1}, while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m{sup −3} (which entailed a loading rate increase from 3 to 6 g m{sup −3} h{sup −1}), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.

  13. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes

    Science.gov (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-11-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129 g m-3) with increasing puff velocity (0.05 to 1 L min-1). A strong correlation existed between sampling volume and consumed solution mass (R2 = 0.9972 ± 0.0021 (n = 4)). In the EC solution, acetic acid was considerably high (25.8 μg mL-1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24 ± 0.15 μg mL-1 (n = 4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138 ± 250 μg m-3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL-1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid).

  14. Laboratory testing of the in-well vapor-stripping system

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, T.J.; Francois, O.

    1996-03-01

    The Volatile organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) was implemented by the US Department of Energy`s (DOE`s) Office of Technology Development to develop and test new technologies for the remediation of organic chemicals in the subsurface. One of the technologies being tested under the VOC-Arid ID is the in-well vapor-stripping system. The in-well vapor-stripping concept was initially proposed by researchers at Stanford University and is currently under development through a collaboration between workers at Stanford University and DOE`s Pacific Northwest National Laboratory. The project to demonstrate the in-well vapor-stripping technology is divided into three phases: (1) conceptual model and computer simulation, (2) laboratory testing, and (3) field demonstration. This report provides the methods and results of the laboratory testing in which a full-scale replica was constructed and tested above ground in a test facility located at DOE`s Hanford Site, Washington. The system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase.

  15. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping [Xi' an Jiaotong University, State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an (China)

    2007-11-15

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m{sup 2} K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity. (orig.)

  16. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    Science.gov (United States)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping

    2007-11-01

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m2 K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity.

  17. Water-Air Volatilization Factors to Determine Volatile Organic Compound (VOC Reference Levels in Water

    Directory of Open Access Journals (Sweden)

    Vicenç Martí

    2014-06-01

    Full Text Available The goal of this work is the modeling and calculation of volatilization factors (VFs from water to air for volatile organic compounds (VOCs in order to perform human health risk-based reference levels (RLs for the safe use of water. The VF models have been developed starting from the overall mass-transfer coefficients (Koverall concept from air to water for two interaction geometries (flat surface and spherical droplets in indoor and outdoor scenarios. For a case study with five groups of risk scenarios and thirty VOCs, theoretical VFs have been calculated by using the developed models. Results showed that Koverall values for flat and spherical surface geometries were close to the mass transfer coefficient for water (KL when Henry’s law constant (KH was high. In the case of spherical drop geometry, the fraction of volatilization (fV was asymptotical when increasing KH with fV values also limited due to Koverall. VFs for flat surfaces were calculated from the emission flux of VOCs, and results showed values close to 1000KH for the most conservative indoor scenarios and almost constant values for outdoor scenarios. VFs for spherical geometry in indoor scenarios followed also constant VFs and were far from 1000KH. The highest calculated VF values corresponded to the E2A, E2B, E3A and E5A scenarios and were compared with experimental and real results in order to check the goodness of flat and sphere geometry models. Results showed an overestimation of calculated values for the E2A and E2B scenarios and an underestimation for the E3A and E5A scenarios. In both cases, most of the calculated VFs were from 0.1- to 10-times higher than experimental/real values.

  18. The experimental and numerical investigation of a grooved vapor chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Liu Zhongliang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)], E-mail: liuzhl@bjut.edu.cn; Ma Guoyuan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-02-15

    An effective thermal spreader can achieve more uniform heat flux distribution and thus enhance heat dissipation of heat sinks. Vapor chamber is one of highly effective thermal spreaders. In this paper, a novel grooved vapor chamber was designed. The grooved structure of the vapor chamber can improve its axial and radial heat transfer and also can form the capillary loop between condensation and evaporation surfaces. The effect of heat flux, filling amount and gravity to the performance of this vapor chamber is studied by experiment. From experiment, we also obtained the best filling amount of this grooved vapor chamber. By comparing the thermal resistance of a solid copper plate with that of the vapor chamber, it is suggested that the critical heat flux condition should be maintained to use vapor chamber as efficient thermal spreaders for electronics cooling. A two-dimensional heat and mass transfer model for the grooved vapor chamber is developed. The numerical simulation results show the thickness distribution of liquid film in the grooves is not uniform. The temperature and velocity field in vapor chamber are obtained. The thickness of the liquid film in groove is mainly influenced by pressure of vapor and liquid beside liquid-vapor interface. The thin liquid film in heat source region can enhance the performance of vapor chamber, but if the starting point of liquid film is backward beyond the heat source region, the vapor chamber will dry out easily. The optimal filling ratio should maintain steady thin liquid film in heat source region of vapor chamber. The vapor condenses on whole condensation surface, so that the condensation surface achieves great uniform temperature distribution. By comparing the experimental results with numerical simulation results, the reliability of the numerical model can be verified.

  19. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors; Funcionalizacao superficial seletiva de poliestireno induzida por radiacao sincrotron ou ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Felipe; Kuhn, Sidiney; Weibel, Daniel E., E-mail: felipekessler@gmail.co [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil) Inst. de Quimica. Dept. de Fisico-Quimica

    2009-07-01

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O{sub 2} was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O{sub 2} or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O{sub 2} at specific transitions such us C 1s {yields}{sigma}{sup *}{sub C-C} excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  20. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China

    Science.gov (United States)

    Li, Bowei; Ho, Steven Sai Hang; Xue, Yonggang; Huang, Yu; Wang, Liqin; Cheng, Yan; Dai, Wenting; Zhong, Haobin; Cao, Junji; Lee, Shuncheng

    2017-07-01

    Vehicular emission (VE) is one of the important anthropogenic sources for ground-level volatile organic compounds (VOCs) in both urban and suburban areas. A first comprehensive campaign was conducted at an urban roadside in Xi'an, China in summer, 2016. A total of 57 VOCs, as known as critical surface ozone (O3) precursors, and other trace gases were measured simultaneously during the sampling period. Iso-pentane, a tracer of gasoline evaporation, was the most abundant VOC in the roadside samples, followed by isobutane and benzene, attributed to the largest composition (∼70%) of gasoline-fueled vehicles on the road. The molar ratio of toluene/benzene (T/B) in our study (0.36) is far lower than the range reported in other cities, indicating the stronger contributions from diesel emissions. The results of source apportionment achieved with positive matrix factorization (PMF) receptor model were highly consistent with the vehicles compositions, strongly evidenced that the precise characterization of the VE sources from those marker species. The degrees of individual compound contributed to O3 production were weighed by ozone formation potential (OFP). Propylene (20%), 1-butene (11%) and iso-pentane(10%) were the top three contributors at the roadside. The information of this study complements the VOCs database regarding to the VE sources in Northwestern China.

  1. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    Science.gov (United States)

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  2. Impacts of light illumination on monocrystalline silicon surfaces passivated by atomic layer deposited Al2O3 capped with plasma-enhanced chemical vapor deposited SiN x

    Science.gov (United States)

    Lin, Fen; Toh, Mei Gi; Thway, Maung; Li, Xinhang; Nandakumar, Naomi; Gay, Xavier; Dielissen, Bas; Raj, Samuel; Aberle, Armin G.

    2017-08-01

    In this work, we investigate the impact of light illumination on crystalline silicon surfaces passivated with inline atomic layer deposited aluminum oxide capped with plasma-enhanced chemical vapor deposited silicon nitride. It is found that, for dedicated n-type lifetime samples under illumination, there is no light induced degradation (LID) but enhanced passivation. The lifetime increase happened with a much faster speed compared to the lifetime decay during dark storage, resulting in the overall lifetime enhancement for actual field application scenarios (sunshine during the day and darkness during the night). In addition, it was found that the lifetime enhancement is spectrally dependent and mainly associated with the visible part of the solar spectrum. Hence, it has negligible impact for such interfaces applied on the rear of the solar cells, for example p-type aluminum local back surface field (Al-LBSF) cells.

  3. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  4. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  5. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures.

    Science.gov (United States)

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo

    2014-09-01

    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.

  6. Low VOC drying of lumber and wood panel products. Progress report No. 8

    Energy Technology Data Exchange (ETDEWEB)

    Su, W.; Yan, H.; Hooda, U.; Wild, M.P.; Banerjee, S. [Inst. of Paper Science and Technology, Atlanta, GA (United States); Shmulsky, R.; Thompson, A.; Ingram, L.; Conners, T. [Mississippi State Univ., MS (United States)

    1998-07-01

    This study was initiated by an Institute of Paper Science and Technology finding that heating softwood in a low-headspace environment removed much of the VOCs without removing the water. This offered the possibility of removing VOCs from wet wood, capturing them as a product, and then drying the VOC-depleted wood conventionally with little or no VOC controls. Two means of low-headspace heating were explored: steam and radiofrequency (RF). It was found in the previous year, that while both steam and RF were able to drive out VOCs, steam was impracticably slow for lumber. Hence the effect of RF or microwave on wood was the principal focus of the work reported here. Finally, in order to understand the mechanism of VOC release, the transport of the VOCs in wood was studied, together with the seasonal effects that influence VOC concentration in trees.

  7. VocVille - A Casual Social Game for Learning Vocabulary

    OpenAIRE

    Jensen, Michel

    2012-01-01

    The document introduces VocVille, a causal online game for learning vocabularies. This application is created for the author's diploma thesis of his career as a Computervisualist (computer vision) for the University of Koblenz-Landau, which he terminated as an exchange student at the University of Cádiz, in which he developed this diploma thesis.

  8. Assessment of Industrial VOC Gas-Scrubber Performance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H

    2004-02-13

    Gas scrubbers for air-pollution control of volatile organic compounds (VOC) cover a wide range of technologies. In this review, we have attempted to evaluate the single-pass scrubber destruction and removal efficiencies (DREs) for a range of gas-scrubber technologies. We have focused primarily on typical industrial DREs for the various technologies, typical problems, and any DRE-related experiential information available. The very limited literature citations found suggest significant differences between actual versus design performance in some technologies. The potentially significant role of maintenance in maintaining DREs was also investigated for those technologies. An in-depth portrayal of the entire gas scrubbing industry is elusive. Available literature sources suggest significant differences between actual versus design performance in some technologies. Lack of scrubber system maintenance can contribute to even larger variances. ''Typical'' industrial single-pass performance of commonly used VOC gas scrubbers generally ranged from {approx}80 to 99%. Imperfect solid and/or liquid particulates capture (possibly as low as 95% despite design for 99+% capture efficiency) can also lead to VOC releases. Changing the VOC composition in the gas stream without modifying scrubber equipment or operating conditions could also lead to significant deterioration in attainable destruction and removal efficiencies.

  9. EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT

    Science.gov (United States)

    The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...

  10. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    Science.gov (United States)

    The report gives results of a study in which wood furniture manufacturing facilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous Air pollutant (HAP) wood furniture coatings: high-solids, water...

  11. RESEARCH AND PRODUCT DEVELOPMENT OF LOW-VOC WOOD COATINGS

    Science.gov (United States)

    The report discusses a project, cofunded by the South Coast Air Quality Management District (SCAQMD) and the U.S. EPA, to develop a new, low volatile organic compound (VOC) wood coating. Traditional wood furniture coating technologies contain organic solvents which become air pol...

  12. Solid-phase microextraction and the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Emma Dixon

    Full Text Available The diagnostic potential and health implications of volatile organic compounds (VOCs present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.

  13. DEVELOPMENT OF AEROBIC BIOFILTER DESIGN CRITERIA FOR TREATING VOCS

    Science.gov (United States)

    This paper reports preliminary results on the use of trickle bed biofilters with monolithic ceramic channelized microbial support structures for the treatment of VOCs typical of landfill leachate stripping. Toluene was used for the purpose of characterizing the trickle bed biofi...

  14. Accuracy of seven vapour intrusion algorithms for VOC in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Provoost, Jeroen; Bronders, Jan; Seuntjens, Piet [Flemish Inst. for Technological Research (VITO), Mol (Belgium); Reijnders, Lucas [Dept. of Science, Open Univ. Netherlands (OU NL), Heerlen (Netherlands); Swartjes, Frank; Lijzen, Johannes [National Inst. for Public Health and the Environment (RIVM), Bilthoven (Netherlands)

    2009-02-15

    During the last decade, soil contamination with volatile organic contaminants (VOC) received special attention because of their potential to cause indoor air problems. Moreover, research has shown that people spend 64% to 94% of there time indoors; therefore, the indoor air quality is of a primary importance for exposure to VOC. Human health risks to VOC-in cases of soil contamination-are often dominated by the exposure route 'inhalation of indoor air'. Exposure is often a result of vapour transport from the soil or groundwater to the indoor air of the building. Within human health risk assessments, a variety of algorithms are available that calculate transfer of soil gas to the indoor air. These algorithms suffer from a relatively high uncertainty due to a lack of representation of spatial and temporal variability. For such an application, these algorithms need to be further verified empirically against field observations so that they can be sufficiently reliable for regulatory purposes. This paper presents the accuracy for seven algorithms by using observed and predicted soil and indoor air concentrations from three sites, where the groundwater had been contaminated with aromatic and chlorinated VOC. (orig.)

  15. DEVELOPMENT OF AEROBIC BIOFILTER DESIGN CRITERIA FOR TREATING VOCS

    Science.gov (United States)

    This paper reports preliminary results on the use of trickle bed biofilters with monolithic ceramic channelized microbial support structures for the treatment of VOCs typical of landfill leachate stripping. Toluene was used for the purpose of characterizing the trickle bed biofi...

  16. Accuracy of seven vapour intrusion algorithms for VOC in groundwater

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Swartjes, F.; Bronders, J.; Seuntjens, P.; Lijzen, J.

    2009-01-01

    Background, aim and scope: During the last decade, soil contamination with volatile organic contaminants (VOC) received special attention because of their potential to cause indoor air problems. Moreover, research has shown that people spend 64% to 94% of there time indoors; therefore, the indoor ai

  17. VOC signatures from North American oil and gas sources (Invited)

    Science.gov (United States)

    Simpson, I. J.; Marrero, J.; Blake, N. J.; Barletta, B.; Hartt, G.; Meinardi, S.; Schroeder, J.; Apel, E. C.; Hornbrook, R. S.; Blake, D. R.

    2013-12-01

    Between 2008 and 2013 UC Irvine has used its whole air sampling (WAS) technique to investigate VOC source signatures from a range of oil and gas sources in North America, including five separate field campaigns at the Alberta oil sands (1 airborne, 4 ground-based); the 2010 Deepwater Horizon oil spill (airborne and ship-based); the 2012 airborne Deep Convective Clouds and Chemistry Project (DC3) mission over oil and gas wells in Colorado, Texas and Oklahoma; and the 2013 ground-based Barnett Shale Campaign in Texas. Each campaign has characterized more than 80 individual C1-C10 VOCs including alkanes, alkenes and aromatics. For example, oil sands are an extra-heavy, unconventional crude oil that is blended with diluent in order to flow, and upgraded into synthetic crude oil. The VOC signature at the oil sands mining and upgrading facilities is alkane-rich, and the fuel gas associated with these operations has an i-butane/n-butane ratio similar to that of liquefied petroleum gas (LPG). In addition to light alkanes, enhanced levels of benzene were observed over US oil and natural gas wells during DC3, likely because of its use in hydrofracking fluid. A series of VOC emission ratios from North American petrochemical sources will be presented and compared, including oil sands, conventional oil and hydrofracking operations.

  18. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2013-10-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The "open field" soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database.

  19. Increasing competitiveness of wine producers in strategic alliances VOC

    Directory of Open Access Journals (Sweden)

    Martin Prokeš

    2012-01-01

    Full Text Available The paper describes the main reasons for the formation of new regional association of wineries, based on a different origin for wines in the wine region of Moravia in the southeast part of the Czech Republic. This research aim is to create a plan for new development of such strategic alliances on the basis of results of localization factors. There coefficient of localization is used for identification of cluster. Results are compared with already operating on associations for the appellation in Austria DAC. They were traced changes in consumer preferences in the Czech wine market. Consumers are placing more emphasis on the selection of wine on its descent from a particular area, growing community and the individual grower. This paper specifically introduces new associations for appellation system VOC. This alliance is described in the context of the establishment, operation, development and expansion, respectively the possibility of involvement of additional organizations suppliers and research institutions. The application of the results of research was a plan for the establishment of new alliance VOC Modré Hory, where are associated 30 wine producers of wine in 5 villages around the center Velké Pavlovice. Based on the experience of newly emerging VOC system of appellations was setting up a plan of formation association with the proposed methodological approach. Open cooperation between associations VOC appellation and other entities involving suppliers, customers, research institutions and universities has the possibility of creating an institutionalized wine cluster. The plan to create a wine cluster was proposed to establish cooperation between the newly emerging associations of VOC at three sub-regions of South Moravia, in order to achieve competitive advantage.

  20. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    Science.gov (United States)

    Ogawa, Fumio; Masuda, Chitoshi

    2015-01-01

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites.

  1. Ozone production and its sensitivity to NOx and VOCs: results from the DISCOVER-AQ field experiment, Houston 2013

    Science.gov (United States)

    Mazzuca, Gina M.; Ren, Xinrong; Loughner, Christopher P.; Estes, Mark; Crawford, James H.; Pickering, Kenneth E.; Weinheimer, Andrew J.; Dickerson, Russell R.

    2016-11-01

    An observation-constrained box model based on the Carbon Bond mechanism, version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and volatile organic compounds (VOCs) were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlations of these results with other parameters, such as radical sources and NOx mixing ratio, were also evaluated. It was generally found that O3 production tends to be more VOC-sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx-sensitive with some exceptions. O3 production near major emissions sources such as Deer Park was mostly VOC-sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC-sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx-sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston but has led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide

  2. Field portable detection of VOCs using a SAW/GC system

    Energy Technology Data Exchange (ETDEWEB)

    Staples, E.J. [Amerasia Technology, Inc., Westlake Village, CA (United States)

    1995-10-01

    This paper describes research on a fast gas chromatography (GC) vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center. The instrument was field tested at the Savannah River Plant.

  3. Low temperature vapor phase digestion of graphite

    Science.gov (United States)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  4. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  5. Explosive vapor detection payload for small robots

    Science.gov (United States)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  6. Data on comparison between FLEC and CLIMPAQ methods used for fast sorption measurements of VOCs on building materials

    Directory of Open Access Journals (Sweden)

    Malak Rizk

    2016-06-01

    Full Text Available A test emission chamber called CLIMPAQ has been coupled to a chromatography analyzer GC to measure volatile organic compounds (VOC concentration during a sorption experiments (Fast sorption measurements of VOCs on building materials: Part 2 – Comparison between FLEC and CLIMPAQ methods, (Rizk et al., In press [1]. The equations used to calculate the mass transfer coefficient and the thickness of the boundary layer developed on the surface of a material are presented. In addition, the experimental profiles obtained using the CLIMPAQ chamber is also presented in the presence and the absence of a building material. Finally, the impact of chamber size on the obtained concentration profile using different chambers is shown using 3 types of chambers having different volumes, 1 m3, 30 m3 and a micro chamber of 40 mL.

  7. Surface chemistry of the preferred (111) and (220) crystal oriented microcrystalline Si films by radio-frequency plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Daisuke; Koshino, Hideto; Tang, Zeguo; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Sakura (Japan)

    2011-10-15

    The surface chemistry of the preferentially (111) and (220) crystal orientated chlorinated hydrogenated microcrystalline silicon ({mu}c-Si:H:Cl) films was studied using a rf PE-CVD of a dichlorosilane (SiH{sub 2}Cl{sub 2}) and H{sub 2} mixture. The growing surface for the preferentially (220) crystal oriented {mu}c-Si:H:Cl films included much voids and dangling bonds, whereas the growing surface with the preferential (111) crystal orientation was chemically stable relatively. These findings suggest that the sticking process of deposition precursors and/or the reconstruction of Si clusters within the sub-surface determine the preferential crystal orientation. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Ab initio study of GaAs(100) surface stability over As2, H2 and N2 as a model for vapor-phase epitaxy of GaAs1-xNx

    Science.gov (United States)

    Valencia, Hubert; Kangawa, Yoshihiro; Kakimoto, Koichi

    2015-12-01

    GaAs(100) c(4×4) surfaces were examined by ab initio calculations, under As2, H2 and N2 gas mixed conditions as a model for GaAs1-xNx vapor-phase epitaxy (VPE) on GaAs(100). Using a simple model consisting of As2 and H2 molecules adsorptions and As/N atom substitutions, it was shown to be possible to examine the crystal growth behavior considering the relative stability of the resulting surfaces against the chemical potential of As2, H2 and N2 gases. Such simple model allows us to draw a picture of the temperature and pressure stability domains for each surfaces that can be linked to specific growth conditions, directly. We found that, using this simple model, it is possible to explain the different N-incorporation regimes observed experimentally at different temperatures, and to predict the transition temperature between these regimes. Additionally, a rational explanation of N-incorporation ratio for each of these regimes is provided. Our model should then lead to a better comprehension and control of the experimental conditions needed to realize a high quality VPE of GaAs1-xNx.

  9. Modeling unsteady-state VOC transport in simulated waste drums. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG&G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured.

  10. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  11. PREPARATION OF CUO/γ-Al2O3 CATALYSTS FOR CATALYTIC COMBUSTION VOCS VIA PLASMA

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    CuO/γ-Al2O3 catalysts were prepared by plasma treatment and conventional impregnation methods. The catalytic combustion of two kinds of volatile organic compounds (VOCs), toluene and benzene, were carried out over these CuO/γ-Al2O3 catalysts. The surface properties of these catalysts were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The experimental results showed that in catalytic combustion the activity of the CuO/γ-Al2O3 catalyst prepared via plasma was much higher than that of the CuO/γ-Al2O3 catalyst prepared by conventional impregnation method. XRD results showed that an enhanced dispersion had been achieved with the plasma treatment. SEM results indicated that the size became much smaller and the surface became more uniform with the plasma treatment.

  12. Tungsten chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kiichi; Takeda, Nobuo.

    1993-07-13

    A tungsten chemical vapor deposition method is described, comprising: a first step of selectively growing a first thin tungsten film of a predetermined thickness in a desired region on the surface of a silicon substrate by reduction of a WF[sub 6] gas introduced into an atmosphere of a predetermined temperature containing said silicon substrate; and a second step of selectively growing a second tungsten film of a predetermined thickness on said first thin tungsten film by reduction of said WF[sub 6] with a silane gas further introduced into said atmosphere, wherein the surface state of said substrate is monitored by a pyrometer and the switching from said first step to said second step is performed when the emissivity of infrared light from the substrate surfaces reaches a predetermined value.

  13. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  14. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  15. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  16. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  17. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  18. VOC and air toxics control using biofiltration: 2 full-scale system case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fucich, W.J.; Togna, A.P.; Loudon, R.E. [Envirogen, Inc., Lawrenceville, NJ (United States)] [and others

    1997-12-31

    Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely and efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.

  19. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  20. Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak-hornbeam forest

    Science.gov (United States)

    Schallhart, Simon; Rantala, Pekka; Nemitz, Eiko; Taipale, Ditte; Tillmann, Ralf; Mentel, Thomas F.; Loubet, Benjamin; Gerosa, Giacomo; Finco, Angelo; Rinne, Janne; Ruuskanen, Taina M.

    2016-06-01

    Recently, the number and amount of biogenically emitted volatile organic compounds (VOCs) has been discussed in great detail. Depending on the ecosystem, the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak-hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF) mass spectrometer and calculated using the eddy covariance (EC) method. Detectable fluxes were observed for up to 29 compounds, dominated by isoprene, which comprised over 60 % of the total upward flux (on a molar basis). The daily average of the total VOC upward flux was 10.4 nmol m-2 s-1. Methanol had the highest concentration and accounted for the largest downward flux. Methanol seemed to be deposited to dew, as the downward flux happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature.We estimated that up to 30 % of the upward flux of methyl vinyl ketone (MVK) and methacrolein (MACR) originated from atmospheric oxidation of isoprene. A comparison between two methods for the flux detection (manual and automated) was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results.

  1. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal

    Institute of Scientific and Technical Information of China (English)

    COLMAN-LERNER Esteban; PELUSO Miguel Andrs; SAMBETH Jorge; THOMAS Horacio

    2016-01-01

    Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds (VOC) (ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter (PM) combustion. The characterization results indicated that Ce was in the form of Ce4+ and Ce3+, and Mn existed in the form of Mn4+and Mn3+on the surface of the Mn/AC sample and in the form of Mn4+ in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO2 (Ce/AC) and MnOx (Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductiv-ity and the reducibility of the oxides.

  2. Probing Ternary Solvent Effect in High V(oc) Polymer Solar Cells Using Advanced AFM Techniques.

    Science.gov (United States)

    Li, Chao; Ding, Yi; Soliman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton V; Gesquiere, Andre J; Tetard, Laurene; Thomas, Jayan

    2016-02-01

    This work describes a simple method to develop a high V(oc) low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with V(oc) more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor-acceptor phases in the active layer of the PSCs. Finally, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.

  3. Aromatic VOCs global influence in the ozone production

    Science.gov (United States)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  4. Ensurdecimento vocálico em Zo’é

    Directory of Open Access Journals (Sweden)

    Ana Suelly Arruda Câmara Cabral

    2012-11-01

    Full Text Available Neste trabalho apresentamos uma descrição do fenômeno deensurdecimento vocálico na língua Zo’é (Tupi-Guarani. Sãoapresentadas ainda hipóteses acerca das restrições sincrônicas ativasno condicionamento deste fenômeno, além de uma hipótese acercada origem histórica do mesmo.

  5. Determination of VOC emission rates and compositions for offset printing.

    Science.gov (United States)

    Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Keil, C B

    1995-07-01

    The release rates of volatile organic compounds (VOC) as fugitive emissions from offset printing are difficult to quantify, and the compositions are usually not known. Tests were conducted at three offset printing shops that varied in size and by process. In each case, the building shell served as the test "enclosure," and air flow and concentration measurements were made at each air entry and exit point. Emission rates and VOC composition were determined during production for (1) a small shop containing three sheetfed presses and two spirit duplicators (36,700 sheets, 47,240 envelopes and letterheads), (2) a medium-size industrial in-house shop with two webfed and three sheetfed presses, and one spirit duplicator (315,130 total sheets), and (3) one print room of a large commercial concern containing three webfed, heatset operations (1.16 x 10(6) ft) served by catalytic air pollution control devices. Each test consisted of 12 one-hour periods over two days. Air samples were collected simultaneously during each period at 7-14 specified locations within each space. The samples were analyzed by gas chromatography (GC) for total VOC and for 13-19 individual organics. Samples of solvents used at each shop were also analyzed by GC. Average VOC emission rates were 4.7-6.1 kg/day for the small sheetfed printing shop, 0.4-0.9 kg/day for the industrial shop, and 79-82 kg/day for the commercial print room. Emission compositions were similar and included benzene, toluene, xylenes, ethylbenzene, and hexane. Comparison of the emission rates with mass balance estimates based on solvent usage and composition were quite consistent.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Biofiltration for control of volatile organic compounds (VOCS)

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

  7. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  8. A demonstration of biofiltration for VOC removal in petrochemical industries.

    Science.gov (United States)

    Zhao, Lan; Huang, Shaobin; Wei, Zongmin

    2014-05-01

    A biotrickling filter demo has been set up in a petrochemical factory in Sinopec Group for about 10 months with a maximum inlet gas flow rate of 3000 m3 h(-1). The purpose of this project is to assess the ability of the biotrickling filter to remove hardly biodegradable VOCs such as benzene, toluene and xylene which are recalcitrant and poorly water soluble and commonly found in petrochemical factories. Light-weight hollow ceramic balls (Φ 5-8 cm) were used as the packing media treated with large amounts of circulating water (2.4 m3 m(-2) h(-1)) added with bacterial species. The controlled empty bed retention time (EBRT) of 240 s is a key parameter for reaching a removal efficiency of 95% for benzene, toluene, xylene, and 90% for total hydrocarbons. The demo has been successfully adopted and practically applied in waste air treatments in many petrochemical industries for about two years. The net inlet concentrations of benzene, toluene and xylene were varied from 0.5 to 3 g m(-3). The biofiltration process is highly efficient for the removal of hydrophobic and recalcitrant VOCs with various concentrations from the petrochemical factories. The SEM analysis of the bacterial community in the BTF during VOC removal showed that Pseudomonas putida and Klebsiella sp. phylum were dominant and shutdown periods could play a role in forming the community structural differences and leading to the changes of removal efficiencies.

  9. Barometric pumping with a twist: VOC containment and remediation without boreholes. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The majority of the planned remediation sites within the DOE complex are contaminated with volatile organic compounds (VOCs). In many instances the contamination has not reached the water table, does not pose an immediate threat, and is not considered a high priority problem. These sites will ultimately require remediation of some type, either by active vapor extraction, bioremediation, or excavation and ex-situ soil treatment. The cost of remediating these sites can range from $50 K to more than $150 K, depending on site characteristics, contaminants, and remediation method. Additionally, for many remediated sites, residual contamination exists which could not practically be removed by the applied remediation technology. These circumstances result in modest sites with contamination of limited risk, but by regulation they must still be controlled. A remediation solution being developed by Science and Engineering Associates, Inc. (SEA) for the Department of Energy serves as an in-situ containment and extraction methodology for sites where most or all of the contamination resides in the vadose zone soil. The approach capitalizes on the advective soil gas movement resulting from barometric pressure oscillations.

  10. 46 CFR 154.438 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A are...

  11. 46 CFR 154.445 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B are...

  12. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  13. Primary VOC emissions from Commercial Aircraft Jet Engines

    Science.gov (United States)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  14. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  15. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

    Science.gov (United States)

    Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2014-04-01

    A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry.

  16. Surface functionalization of PET fabric with atmospheric pressure plasma enhanced chemical vapor deposition%常压等离子体增强化学气相沉积法表面功能化聚酯织物

    Institute of Scientific and Technical Information of China (English)

    K. H. Kale; S. S. Palaskar; 刘鹏(译); 罗艳(校)

    2012-01-01

    Plasma technology is emerging as a novel and environmentally friendly technology for surface modification of textile materials. It is possible to deposit very thin film with specific functional properties on the surface of textiles. The current study describes a novel approach for surface modification of 100% polyester textiles with plasma enhanced chemical vapor deposition (PECVD). The chemical and structural nature of plasma polymers deposited at the surface of the samples with respect to discharge power was studied with FTIR spectroscopy. The functional property i. e. water repellency imparted was determined with spray test and contact angle measurement.%对于纺织材料的表面改性来说,等离子体技术正成为一种新兴且环境友好的技术。等离子体技术在纺织品表面可沉积具有特殊功能的薄膜。阐述了一种常压等离子体增强化学气相沉积法表面改性100%聚酯织物的新型方法。通过傅里叶变换红外光谱研究了沉积于样品表面上相对于放电功率的等离子体聚合物化学和结构性质。采用雾化试验和接触角测量赋予织物诸如疏水等的功能特性。

  17. Matrix effect on the performance of headspace solid phase microextraction method for the analysis of target volatile organic compounds (VOCs) in environmental samples.

    Science.gov (United States)

    Higashikawa, Fábio S; Cayuela, Maria Luz; Roig, Asunción; Silva, Carlos A; Sánchez-Monedero, Miguel A

    2013-11-01

    Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g(-1) for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g(-1)). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass.

  18. Volatile Organic Compound (VOC measurements in the Pearl River Delta (PRD region, China

    Directory of Open Access Journals (Sweden)

    Chih-chung Chang

    2008-03-01

    Full Text Available We measured levels of ambient volatile organic compounds (VOCs at seven sites in the Pearl River Delta (PRD region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ and Xinken (XK, were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40% in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%. Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles; those at XK were influenced by both local emissions and transportation of air mass from upwind areas.

  19. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    Science.gov (United States)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  20. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  1. Drag Reduction by Leidenfrost Vapor Layers

    Science.gov (United States)

    Vakarelski, Ivan U.; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2011-05-01

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  2. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  3. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  4. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    Science.gov (United States)

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation.

  5. The predictable influence of soil temperature and barometric pressure changes on vapor intrusion

    Science.gov (United States)

    Barnes, David L.; McRae, Mary F.

    2017-02-01

    Intrusion of volatile organic compounds in the gas phase has impacted many buildings in many different locations. Various building and environmental factors such as buoyancy of heated air and changes in barometric pressure can influence indoor air concentrations due to vapor intrusion in these buildings resulting in seasonal and daily variability. One environmental factor that previous research has not adequately addressed is soil temperature. In this study we present two northern region study sites where the seasonal trends in indoor air VOC concentrations positively correlate with soil temperature, and short-term (days) variations are associated with barometric pressure changes. We present simple and multivariate linear relationships of indoor air concentrations as a function of soil temperature and barometric pressure. Results from this study show that small changes in soil temperature can result in relatively large changes in indoor air VOC concentrations where the gas phase VOCs are sourced from non-aqueous phase liquids contained in the soil. We use the results from this study to show that a five degree Celsius increase in soil temperature, a variation in soil temperature that is possible in many climatic regions, results in a two-fold increase in indoor air VOC concentrations. Additionally, analysis provides insight into how building ventilation, diffusion, and the relative rate of soil-gas flow across the slab both from the subsurface into the building and from the building into the subsurface impact short term variations in concentrations. With these results we are able to provide monitoring recommendations for practitioners.

  6. Validation of adsorbents for sample preconcentration in compound-specific isotope analysis of common vapor intrusion pollutants.

    Science.gov (United States)

    Klisch, Monika; Kuder, Tomasz; Philp, R Paul; McHugh, Thomas E

    2012-12-28

    Isotope ratios of volatile organic compounds (VOCs) in the environment are often of interest in contaminant fate studies. Adsorbent preconcentration-thermal desorption of VOCs can be used to collect environmental vapor samples for compound-specific isotope analysis (CSIA). While active adsorbent samplers offer logistic benefits in handling large volumes of air, their performance in preserving VOCs isotope ratios was not previously tested under sampling conditions corresponding to typical indoor air sampling conditions. In this study, the performance of selected adsorbents was tested for preconcentration of TCE (for determination of C and Cl isotope ratios), PCE (C and Cl) and benzene (C and H). The key objective of the study was to identify the adsorbent(s) permitting preconcentration of the target VOCs present in air at low μg/m(3) concentrations, without significant alteration of their isotope ratios. Carboxen 1016 was found to perform well for the full range of tested parameters. Carboxen 1016 can be recommended for sampling of TCE, PCE and benzene, for CSIA, from air volumes up to 100 L. Variable extent of isotope ratio alteration was observed in the preconcentration of the target VOCs on Carbopack B and Carbopack X, resulting from partial analyte loss via adsorbent bed breakthrough and (possibly) via incomplete desorption. The results from testing the Carbopack B and Carbopack X highlight the need of adsorbent performance validation at conditions fully representative of actual sample collection conditions, and caution against extrapolation of performance data toward more challenging sampling conditions.

  7. Soil vapor extraction and bioventing: Applications, limitations, and future research directions

    Science.gov (United States)

    Rathfelder, K.; Lang, J. R.; Abriola, L. M.

    1995-07-01

    Soil vapor extraction (SVE) has evolved over the past decade as an attractive in situ remediation method for unsaturated soils contaminated with volatile organic compounds (VOCs). SVE involves the generation of air flow through the pores of the contaminated soil to induce transfer of VOCs to the air stream. Air flow is established by pumping from vadose zone wells through which contaminant vapors are collected and transported above ground where they are treated, if required, and discharged to the atmosphere. The popularity of SVE technologies stems from their proven effectiveness for removing large quantities of VOCs from the soil, their cost competitiveness, and their relatively simple non-intrusive implementation. Widespread field application of SVE has occurred following the success of early laboratory and field scale feasibility studies [Texas Research Institute, 1980, 1984; Thornton and Wootan, 1982; Marley and Hoag, 1984; Crow et al., 1985, 1987]. As many as 18% of Superfund sites employ SVE remediation technologies [Travis and Macinnis, 1992] and numerous articles and reports have documented the application of SVE [e.g. Hutzler et al., 1989; Downey and Elliott, 1990; U.S. EPA, 1991; Sanderson et al, 1993; Gerbasi and Menoli, 1994; McCann et al., 1994;].

  8. Theoretical study of simultaneous water and VOCs adsorption and desorption in a silica gel rotor

    DEFF Research Database (Denmark)

    Zhang, G.; Zhang, Y.F.; Fang, Lei

    2008-01-01

    One-dimensional partial differential equations were used to model the simultaneous water and VOC (Volatile Organic Compound) adsorption and desorption in a silica gel rotor which was recommended for indoor air cleaning. The interaction among VOCs and moisture in the adsorption and desorption...... by the temperatures of the rotor and the air stream. The VOC transfer equations were solved by discretizing them into explicit up-wind finite differential equations. The model was validated with experimental data. The calculated results suggested that the regeneration time designed for dehumidification may...... process was neglected in the model as the concentrations of VOC pollutants in typical indoor environment were much lower than that of moisture and the adsorbed VOCs occupied only a minor portion of adsorption capacity of the rotor. Consequently VOC transfer was coupled with heat and moisture transfer only...

  9. Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A theoretical approach and laboratory practice of determining the alpha factors of volatile organic compound (VOC) liquid-phase mass transfer coefficients are present in this study.Using Purge Trap Concentrator, VOC spiked water samples are purged by high-purity nitrogen in the laboratory, the VOC liquid-phase mass transfer rate constants under the laboratory conditions are then obtained by observing the variation of VOCs purged out of the water with the purge time.The alpha factors of VOC liquid-phase mass transfer coefficients are calculated as the ratios of the liquid-phase mass transfer rate constants in real water samples to their counterparts in pure water under the same experimental conditions. This direct and fast approach is easy to control in the laboratory, and would benefit mutual comparison among researchers, so might be useful for thestudy of VOC mass transfer across the liquid-gas interface.

  10. Major reactive species of ambient volatile organic compounds (VOCs) and their sources in Beijing

    Institute of Scientific and Technical Information of China (English)

    SHAO; Min; FU; Linlin; LIU; Ying; LU; Sihua; ZHANG; Yuanhan

    2005-01-01

    Volatile organic compounds (VOCs) are important precursors of atmospheric chemical processes. As a whole mixture, the ambient VOCs show very strong chemical reactivity. Based on OH radical loss rates in the air, the chemical reactivity of VOCs in Beijing was calculated. The results revealed that alkenes, accounting for only about 15% in the mixing ratio of VOCs, provide nearly 75% of the reactivity of ambient VOCs and the C4 to C5 alkenes were the major reactive species among the alkenes. The study of emission characteristics of various VOCs sources indicated that these alkenes are mainly from vehicle exhaust and gasoline evaporation. The reduction of alkene species in these two sources will be effective in photochemical pollution control in Beijing.

  11. [Study on the chemical compositions of VOCs emitted by cooking oils based on GC-MS].

    Science.gov (United States)

    He, Wan-Qing; Nie, Lei; Tian, Gang; Li, Jing; Shao, Xia; Wang, Min-Yan

    2013-12-01

    Volatile organic compounds (VOCs) are key precursors of ozone and secondary organic aerosols in air, and the differences in the compositions of VOCs lead to their different contribution to atmospheric reaction. Cooking oil fume is one of the important sources of atmospheric VOCs, and its chemical compositions are distinct under different conditions of oil types, food types, cooking methods and heating temperatures etc. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the chemical compositions of VOCs. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. According to spectral library search and map analysis, using area normalized semi-quantitative method, preliminary qualitative and quantitative tests were conducted for the specific components of VOCs under different conditions.

  12. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  13. Effects of Satellite Spectral Resolution and Atmospheric Water Vapor on Retrieval of Near-Ground Temperatures

    Science.gov (United States)

    1993-04-28

    alternate low-level water vapor profile was considered. This " dry " water vapor profile (dashed in Fig. I) was specified to be equal to the "basic...the dry water vapor profile for the night situation. As expected, the unresolvable perturbations of surface temperature were smaller for the dry

  14. Refraction of microwave signals by water vapor

    Science.gov (United States)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  15. Characteristics of Ambient Volatile Organic Compounds (VOCs Measured in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Guang-Qiang Zhou

    2010-08-01

    Full Text Available To better understand the characteristics of ambient abundance of volatile organic compounds (VOCs in Shanghai, one of the biggest metropolis of China, VOCs were measured with a gas chromatography system equipped with a mass-selective detector (GC/MSD from July 2006 to February 2010. An intensive measurement campaign was conducted (eight samples per day with a 3 hour interval during May 2009. The comparison of ambient VOCs collected in different regions of Shanghai shows that the concentrations are slightly higher in the busy commercial area (28.9 ppbv at Xujiaui than in the urban administrative area (24.3 ppbv at Pudong. However, during the intensive measurement period, the concentrations in the large steel industrial area (28.7 ppbv at Baoshan were much higher than in the urban administrative area (18 ppbv at Pudong, especially for alkanes, alkenes, and toluene. The seasonal variations of ambient VOC concentrations measured at the Xujiahui sampling site indicate that the VOC concentrations are significantly affected by meteorological conditions (such as wind direction and precipitation. In addition, although alkanes are the most abundant VOCs at the Xujiahui measurement site, the most important VOCs contributing to ozone formation potential (OFP are aromatics, accounting for 57% of the total OFP. The diurnal variations of VOC concentrations show that VOC concentrations are higher on weekdays than in weekends at the Xujiahui sampling site, suggesting that traffic condition and human activities have important impacts on VOC emissions in Shanghai. The evidence also shows that the major sources of isoprene are mainly resulted from gasoline evaporation at a particular time (06:00–09:00 in the busy commercial area. The results gained from this study provide useful information for better understanding the characteristics of ambient VOCs and the sources of VOCs in Shanghai.

  16. Effects of pulsed and oscillatory flow on water vapor removal from a laboratory soil column. Final report, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, K.E.

    1993-05-01

    Subsurface contamination by volatile organic contaminants (VOC`s) in the vadose zone and groundwater is primarily due to leaking underground storage tanks and industrial spills. Soil vapor extraction is a technique that is being used successfully to remove VOC`s from the subsurface. A flow of air is established through the soil to remove the vapor phase component of the contaminant. Soil vapor extraction will initially remove high levels of contaminant that is already present in the macropores. The concentration will start to decline as the removal from the soil matrix becomes limited by diffusion of contaminant from regions away from the air flow paths. This study examines potential methods of overcoming the diffusion limitation by adding an oscillatory component to the steady air flow and by pulsed flow, which involves turning air flow on and off at predetermined intervals. The study considered only the removal of water from the soil to try to establish general vapor behavior in the soil under the imposed conditions. Based on a statistical analysis, both the oscillatory and pulsed flow showed an improved water removal rate over the steady state flow. The effect of oscillatory flow was only examined at higher frequencies. The literature indicates that oscillations at lower frequencies may be more effective. Pulsed flow showed the most efficient removal of water compared to steady state conditions. The pulsed flow was most efficient because rather than reducing the diffusion limitation, the system would shut down and wait for diffusion to occur. This optimizes energy consumption, but does not reduce treatment time. The oscillatory flow actually reduced the diffusion limitation within the column which could result in a shorter treatment time.

  17. Time-activity relationships to VOC personal exposure factors

    Science.gov (United States)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  18. Low HAP/VOC Compliant Resins for Military Applications

    Science.gov (United States)

    2011-09-01

    on lauric acid FAVE-O fatty acid vinyl ester resin system based on octanoic acid FTIR Fourier transform infrared GIC Mode 1 fracture energy...temperature and could potentially produce smog-promoting ozone as well as long-term and acute health effects. VOC/HAPs are emitted during all phases of...Viscosity ា cP at 25 °C (MOct) Unreacted epoxy FTIR *, NMR* No epoxy present None detected Correct reactant ratios NMR Methacrylate to FA ratio of 1:1

  19. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  20. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    LIXiang; LIZhong; 等

    2001-01-01

    Desorption of volatile organic compounds(VOCs) from polymeric adsorbents by microwave was investigated experimentally.Two kinds of organic compounds.benzene and toluene.were separately used as adsorbates in this work Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration,but also make the temperatures of the fixed beds much lower than that when using the heat regeneration the weaker the polarity of a polymericadsorbent,the easier its regeneration was.

  1. VoCS : Sistema de almacenamiento voluntario en la nube

    OpenAIRE

    Schiavón Raineri, Ignacio Nicolás

    2012-01-01

    La computación en la nube responde a las necesidades del aumento de dispositivos conectados a Internet y el creciente volumen de datos manejados, ofreciendo acceso ubicuo y transparente a la información de forma segura. Esto ha tenido como consecuencia la apertura del mercado, ofreciendo muchas aplicaciones basadas en la nube como SkyDrive, Google Drive o Dropbox. VoCS (Volunteer Cloud Storage) es un sistema de almacenamiento voluntario en la nube de código abierto y seguro, que pretende ofre...

  2. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    Science.gov (United States)

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  3. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    Science.gov (United States)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  4. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    Science.gov (United States)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  5. Implementation of VOC source reduction practices in a manufactured house and in school classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, A.T.; Apte, M.G.; Shendell, D.G.; Beal, D.; McIlvaine, J.E.R.

    2002-01-01

    Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

  6. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  7. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  8. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    S. Ebersviller

    2012-03-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM.

    In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the

  9. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  10. Comparison of disinfection effect of different material surface after using hydrogen peroxide vapor%汽化过氧化氢对不同材料表面的消毒效果比较

    Institute of Scientific and Technical Information of China (English)

    蔡冉; 陆烨; 李晔; 陆龙喜; 赵振波; 胡国庆

    2016-01-01

    目的 研究汽化过氧化氢对不同材料物体表面受污染后的消毒效果,为对不同内环境的室内空间的消毒控制提供参考.方法 采用5种材料制备染菌载体,定量杀灭枯草杆菌黑色变种芽孢和嗜热脂肪杆菌芽孢,观察过氧化氢气体在不同时间内对5种材质菌片的消毒效果.结果 在30 m3密闭空间内用汽化过氧化氢对菌片进行10、20、30、40、60 min处理.以枯草杆菌黑色变种(ATCC 9372)芽孢为试验菌时,作用30 min对塑料载体上芽孢的杀灭对数值>6.00;作用60 min对棉布、印刷纸、不锈钢和玻璃载体上芽孢的杀灭对数值均>6.00.以嗜热脂肪杆菌(ATCC 7953)芽孢为试验菌时,作用30 min对不锈钢、玻璃和塑料载体上芽孢的杀灭对数值均>6.00,作用60 min对棉布和印刷纸载体上芽孢的杀灭对数值均>6.00.结论 在设定的程序下,汽化过氧化氢对表面无孔无渗透材料的消毒效果显著好于表面多孔渗透性材料.%Objective To reaserch the disinfection effect of hydrogen peroxide vapor in different material surface contaminated with pathogens,and to provide the basis for disinfection and sterilization in interior space with a variety of environment.Methods Five materials were used to prepare for biological indicator,the spore of Bacillus subtilis (ATCC 9372) and Bacillus stearoshermophilus(ATCC 7953)were used in quantitative germicidal test by hydrogen peroxide vapor in different time.Results After sterilization in the 30 m3 confined space in 1O min,20 min,30 min,40 min and 60 min,The killing logarithms value of the spore of Bacillus subtilis on plastic carrier for 30min was above 6.00.The killing logarithms value of the spore of Bacillus subtilis on the carrier of cotton,printing paper,stainless steel and glass for 60min were all above 6.00.As for the spore of Bacillus stearoshermophilus,the killing logarithms of the spore on the carrier of stainless steel,glass and plastic for 30min

  11. Limited recovery of soil microbial activity after transient exposure to gasoline vapors

    DEFF Research Database (Denmark)

    Modrzyński, Jakub J.; Christensen, Jan H.; Mayer, Philipp

    2016-01-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial...... functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial...... microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient...

  12. Alcohol induced alterations to the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Robin D Couch

    Full Text Available Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis. However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1 an elevation in the oxidative stress biomarker tetradecane; (2 a decrease in five fatty alcohols with anti-oxidant property; (3 a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4 a decrease in alcohol consumption natural suppressant caryophyllene; (5 a decrease in natural product and hepatic steatosis attenuator camphene; and (6 decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  13. Oxygenated VOC and monoterpene emissions from a boreal coniferous forest

    Science.gov (United States)

    Taipale, R.; Rantala, P.; Kajos, M. K.; Patokoski, J.; Ruuskanen, T. M.; Aalto, J.; Kolari, P.; Bäck, J.; Hari, P.; Kulmala, M.; Rinne, J.

    2012-04-01

    Compared with terpenoids, emissions of oxygenated volatile organic compounds (VOCs) from boreal ecosystems have been poorly characterized. We measured ecosystem scale emissions of three oxygenated compounds (methanol, acetaldehyde, and acetone) and monoterpenes from a Scots pine dominated forest in southern Finland during the summers 2006-2008. The measurements were conducted using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The contribution of the three oxygenated compounds to the measured total emissions was 40-60 %. The highest oxygenated VOC emissions were those of methanol, comprising 20-30 % of the total, followed by acetone with a share of 10-20 %. The acetaldehyde emissions were 5-10 % of the total. This emission composition will be compared with that obtained from shoot enclosure measurements. Methanol showed deposition during some periods although its overall flux was towards the atmosphere. The monoterpene emissions had a light dependent component, suggesting that part of the emissions originated directly from monoterpene biosynthesis. Diurnal, seasonal, and inter-annual variations in the emissions, along with temperature and light dependencies, will be discussed.

  14. O sistema vocálico alemão

    Directory of Open Access Journals (Sweden)

    Carine Haupt

    2007-11-01

    Full Text Available 0 presente trabalho explica, de forma simplificada, o sistema vocálico alemão através dos traços de duração, abertura e recuo. Na discussão sobre o assunto, é feita uma abordagem sobre a relação de dependência entre a duração e os traços de abertura, além de discutir a relevância de manter a duração em todo o sistema. Através do modelo de Fonologia Autossegmental, é possível verificar que a estrutura silábica das vogais longas e breves é diferente, além de verificar em que contextos silábicos elas podem ocorrer (especificamente em posição tônica. Já em posição átona, ocorre o schwa, uma variante da vogal lei, que fará parte do sistema vocálico alemão, constituído, então, de 15 vogais em posição tônica e uma variante átona.

  15. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  16. oVOC production from tropospheric alkyne oxidation and contribution to aerosol formation and growth

    Science.gov (United States)

    Goodall, Iain

    2013-04-01

    Ethyne (C2H2) is one of the simplest volatile organic compounds (VOC) and is predominantly emitted via anthropogenic processes and reacts with nitrogen oxides (NOx) in the presence of sunlight to form tropospheric ozone (O3). The dominant oxidation product of ethyne is the dicarbonyl species glyoxal (CHOCHO), which is thought to be a significant contributor to secondary organic aerosol (SOA) formation via irreversible oligomerisation reactions upon the surface of hydrated aerosol particulates and within cloud droplets. A series of chamber experiments were performed at the EUPHORE facility (Valencia, Spain) to study the atmospheric oxidation of ethyne, to determine oxidation product yields and to monitor SOA formation and growth by dicarbonyl oligomerisation. A Proton Transfer Reaction-Time of Flight- Mass Spectrometer (PTR-ToF-MS) was deployed by the University of Leicester to monitor precursor decay and the subsequent evolution of any gas-phase oxidised volatile organic compounds (oVOC). This was further complemented by a Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) for specific dicarbonyl and NO2 measurements. Aqueous extracts of chamber SOA were taken from filters collected during the experiments and subsequently analysed offline. The work explores the yields of low molecular weight products of ethyne oxidation for light and dark reactions, with varying levels of NOx and OH. Novel experiments were performed under atmospherically relevant conditions utilising natural lighting rather than artificial lighting. Reaction yields have been assessed with the aim of contributing to the ethyne and glyoxal mechanisms in the Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM), and have been compared with previously reported values determined from experiments performed under artificial lighting conditions.

  17. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    Science.gov (United States)

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  18. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings. PMID:27618045

  19. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  20. Electrical properties of carbon nanotubes in flowing vapor

    Institute of Scientific and Technical Information of China (English)

    XIAO Peng; WANG Xin-qiang; ZHANG Yun-huai

    2006-01-01

    Electric potentials were generated from carbon nanotubes immersed in flowing vapors.The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders.These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water,ethanol and KCl.The potentials generated from these samples were measured by a voltmeter.Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes,and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors.The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors.This property of MWCNTs can advantage their application to nanoscale sensors,detectors and power cells.

  1. Vaporization characteristics of carbon heat shields under radiative heating.

    Science.gov (United States)

    Davy, W. C.; Bar-Nun, A.

    1972-01-01

    Study of the vaporization characteristics of samples of ATJ graphite, a material that has been considered for use on a Jovian probe. These samples were subjected to radiative heating loads of approximately 2 kW/sq cm in argon atmospheres of pressures from 0.00046 to 1 atm. Surface temperatures, mass loss rates, and spatially resolved emission spectral data were recorded. These data are analyzed to determine carbon vapor pressure as a function of temperature and are compared with current models for the vapor pressure of carbon. The effects of finite vaporization (i.e., nonequilibrium) rates are considered and compared with experiment. Estimates of the heat of vaporization from an energy balance are also presented.

  2. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  3. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives

    Science.gov (United States)

    2007-08-01

    23 Table 4. Results from the holding- time study with...the opposite order. First Holding- Time Study for VOCs The purpose of this study was to determine whether analyte concentra- tions of samples... Study for VOCs The procedure for this study was the same as for the previous holding- time study except that that the Snap Samplers were equilibrated

  4. POLLUTION PREVENTION CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    Science.gov (United States)

    This article provides a brief profile of the wood furniture industry, discusses pollution prevention activities typically implemented, describes the four low-VOC/HAP coating technologies studied. and summarizes one case study for each of the low-VOC/HAP coating yechnologies inves...

  5. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection.

    Science.gov (United States)

    Liu, Lei; Zhang, Diming; Zhang, Qian; Chen, Xing; Xu, Gang; Lu, Yanli; Liu, Qingjun

    2017-07-15

    Volatile organic compounds (VOCs) detection is in high demand for clinic treatment, environment monitoring, and food quality control. Especially, VOCs from human exhaled breath can serve as significant biomarkers of some diseases, such as lung cancer and diabetes. In this study, a smartphone-based sensing system was developed for real-time VOCs monitoring using alternative current (AC) impedance measurement. The interdigital electrodes modified with zinc oxide (ZnO), graphene, and nitrocellulose were used as sensors to produce impedance responses to VOCs. The responses could be detected by a hand-held device, sent out to a smartphone by Bluetooth, and reported with concentration on an android program of the smartphone. The smartphone-based system was demonstrated to detect acetone at concentrations as low as 1.56ppm, while AC impedance spectroscopy was used to distinguish acetone from other VOCs. Finally, measurements of the exhalations from human being were carried out to obtain the concentration of acetone in exhaled breath before and after exercise. The results proved that the smartphone-based system could be applied on the detection of VOCs in real settings for healthcare diagnosis. Thus, the smartphone-based system for VOCs detection provided a convenient, portable and efficient approach to monitor VOCs in exhaled breath and possibly allowed for early diagnosis of some diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  7. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.

    Science.gov (United States)

    Abdullah, Ahmad Zuhairi; Bakar, Mohamad Zailani Abu; Bhatia, Subhash

    2006-02-28

    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.

  8. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  9. Efficient control of odors and VOC emissions via activated carbon technology.

    Science.gov (United States)

    Mohamed, Farhana; Kim, James; Huang, Ruey; Nu, Huong Ton; Lorenzo, Vlad

    2014-07-01

    This research study was undertaken to enhance the efficiency and economy of carbon scrubbers in controlling odors and volatile organic compounds (VOCs) at the wastewater collection and treatment facilities of the Bureau of Sanitation, City of Los Angeles. The butane activity and hydrogen sulfide breakthrough capacity of activated carbon were assessed. Air streams were measured for odorous gases and VOCs and removal efficiency (RE) determined. Carbon towers showed average to excellent removal of odorous compounds, VOCs, and siloxanes; whereas, wet scrubbers demonstrated good removal of odorous compounds but low to negative removal of VOCs. It was observed that the relative humidity and empty bed contact time are one of the most important operating parameters of carbon towers impacting the pollutant RE. Regular monitoring of activated carbon and VOCs has resulted in useful information on carbon change-out frequency, packing recommendations, and means to improve performance of carbon towers.

  10. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  11. New mobile Raman lidar for measurement of tropospheric water vapor

    Institute of Scientific and Technical Information of China (English)

    XIE Chenbo; ZHOU Jun; YUE Guming; QI Fudi; FAN Aiyuan

    2007-01-01

    The content of water vapor in atmosphere is very little and the ratio of volume of moisture to air is about 0.1%-3%,but water vapor is the most active molecule in atmosphere.There are many absorption bands in infrared(IR)wavelength for water vapor,and water vapor is also an important factor in cloud formation and precipitation,therefore it takes a significant position in the global radiation budget and climatic changes.Because of the advantages of the high resolution,wide range,and highly automatic operation,the Raman lidar has become a new-style and useful tool to measure water vapor.In this paper,first,the new mobile Raman lidar's structure and specifications were introduced.Second,the process method of lidar data was described.Finally,the practical and comparative experiments were made over Hefei City in China.The results of measurement show that this lidar has the ability to gain profiles of ratio of water vapor mixing ratio from surface to a height of about 8 km at night.Mean-while,the measurement of water vapor in daytime has been taken,and the profiles of water vapor mixing ratio at ground level have been detected.

  12. Identification and quantification of the antimicrobial components of a citrus essential oil vapor.

    Science.gov (United States)

    Phillips, Carol A; Gkatzionis, Konstantinos; Laird, Katie; Score, Jodie; Kant, Avinash; Fielder, Mark D

    2012-01-01

    The anti-bacterial components of a citrus essential oil vapor were identified as linalool, citral and beta-pinene using a bioautography method and quantified by GC-MS. Essential oil vapor release, monitored in real-time with Atmospheric Pressure Chemical Ionization - MS (APCI-MS), showed differences in the vapor release profile oflimonene, beta-pinene and linalool over 24 hours, while Solid Phase Micro-extraction (SPME) GC-MS demonstrated changes in composition of the vapor at 35 degrees C. Fourteen isolates were tested in vitro for their susceptibility to the EO vapor and to linalool, citral and beta-pinene vapors, both separately and in a mixture containing the three components in the amounts at which they occur in the EO vapor. All eleven Gram-positive strains tested were susceptible to the EO vapor, linalool, citral and beta-pinene vapors separately and the mixture with zones of inhibition of 4.34 cm, 5.32 cm, 5.58 cm, 4.86 cm and 4.68 cm, respectively. Of the three Gram-negative strains tested, Pseudomonas aeruginosa 10145 was resistant to all the vapors. When bacteria inoculated onto stainless steel surfaces were exposed to either the EO vapor or a linalool/citral/beta-pinene vapor mixture there was no significant difference in reduction for the Gram-positive isolates, while the Gram-negative isolates were resistant to both EO vapor and the linalool/citral/beta-pinene mixture.

  13. Assessment of Volatile Organic Compounds (VOCs) in indooor parking facilities at Houston, Texas

    Science.gov (United States)

    Kristanto, Gabriel Andari

    This dissertation identified the types, magnitudes, sources, and assessed risk exposure of VOCs in different types of indoor parking facilities. VOCs are ones of major pollutants emitted from automobiles. The indoor parking facilities included were attached garages, grounds, and underground parking. Modification of method TO15 by EPA had been applied for identifying types and magnitudes of VOCs. Results of these identifications are presented. Eight most abundant VOCs could be identified in every sampling location with toluene as the most abundant compound followed by m,p-xylene, ethylbenzene and benzene. Compare to ground and underground parking, attached garages have the highest concentration of TVOCs. For sources identification, BTEX, m,p-xylene and benzene, and toluene and benzene ratios are calculated. BTEX ratios for ground and underground parking are similar compare to attached garage due to the similar pattern of driving speed and the content of gasoline fuel. On the other hand the ratios of m,p-xylene and benzene and toluene and benzene in attached garage are higher compare to the same ratios for ground and underground parking due to other significant contributor of VOCs such as solvent, household cleanings stored. Cancer and noncancer risk assessment were also calculated. Results showed that cancer and noncancer risk due human exposures to VOC in indoor parking facilities were relatively low. However the risk of the human exposure to VOCs from indoor parking facilities has to be considered as a part of total risks of VOC exposures on human during their daily activities. When people in Houston have already exposed to high VOC concentrations from outdoor environment activities such as traffic and refineries and petrochemical facilities, additional activities causing VOC exposures will add the risk significantly.

  14. Vapor-phase heat-transport system

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.

    1983-01-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  15. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  16. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  17. Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance

    Science.gov (United States)

    Hu, Mingke; Zhao, Bin; Ao, Xianze; Pei, Gang

    2017-05-01

    A radiative cooler based on aluminum-evaporated polyvinyl-fluoride surface was employed to investigate the effect of precipitable water vapor amount on its radiative cooling performance. A mathematic model of steady heat transfer that considers the spectral radiant distribution of the sky, the transparent cover and the collecting surface was established. The results indicate that the amount of precipitable water vapor shows a remarkable and negative effect on radiative cooling performance of the radiative cooler. Both the temperature difference between the cooler and surroundings and the net radiative cooling power decrease as the precipitable water vapor amount increases. The net radiative cooling power drops by about 41.0% as the the precipitable water vapor amount changes from 1.0 cm to 7.0 cm. Besides, the radiative cooler shows better cooling performance in winter than in summer. The net radiative cooling power in summer of Hefei is about 82.2% of that in winter.

  18. Polypropylene nonwoven surface modified through introducing porous microspheres: Preparation, characterization and adsorption

    Science.gov (United States)

    Du, Xiao; Wei, Junfu; Liu, Wei; Zhou, Xiangyu; Dai, Danyang

    2016-01-01

    A new porous fabric adsorbent (PM/PP nonwoven) was prepared by hydrogen bonding self-assembly method, in which poly(divinylbenzene-co-4-vinylpyridine) microspheres were introduced onto the surface of PP-g-AA (polypropylene grafted acrylic acid) nonwoven. The effects of the main conditions for self-assembly reaction such as mass ratio of microsphere to nonwoven, pH and the grafting degree of acrylic acid were studied. In addition, the adsorption mechanisms and interactions for three VOCs (styrene, cyclohexane, acetone) were systematically elucidated. The resulting 28.2% PM/PP nonwoven obtained a higher adsorption amount (52.8 mg/g) of styrene vapor, which was 88 times greater than that of original PP nonwoven. Meanwhile, the kinetic studies suggested that the Yoon and Nelson model is suitable to describe the adsorption mechanism of styrene over the modified nonwovens. Adsorption and pressure drop data showed that PM/PP nonwoven had good adsorption ability and air permeability due to its abundant functional groups and porous structures. Taken together, it is expected that PM/PP nonwoven would be a promising adsorbent for removal of VOCs from the gas streams.

  19. 水蒸气分子在金属钚表面吸附的量子力学计算%Adsorption Study of Water Vapor Molecule on Metal Pu Surface by Quantum Mechanism Computation

    Institute of Scientific and Technical Information of China (English)

    陈军; 蒙大桥; 孙希媛; 杜际广; 蒋刚

    2012-01-01

    Employing density functional method (B3LYP) with the relativistic effective core potential (RECP) for Pu atom and all-electron basis set aug-cc-pVTZ for O and H atoms, the equilibrium geometrical structures of PuO2 molecule were optimized. In addition, four structures for Pu-water were proposed and studied. The results indicate that water molecule tends to dissociate to form more stable structure with Pu. Due to the lager difference of electronegativity for Pu and O atoms, the stable structure is from the interaction of Pu and O atoms. The thermodynamic functions of adsorption and dissociation reactions of Pu and H2O were calculated according to electronic-vibration approximation. The results show that the water vapor molecule can't adsorb on Pu surface even at low temperature, in contrast, dissociation reactions of H2O on Pu surface can occur spontaneously.%采用密度泛函理论(B3LYP)方法,钚原子采用相对论有效原子实势(RECP) SDD基组,氢、氧原子采用aug-cc-pVTZ全电子基组,优化了PuO2的分子结构,得到了相应的平衡几何构型.同时优化了Pu-H2O的4个稳定异构体.比较能量发现水分子易于解离,从而与Pu形成更稳定的结构.由于Pu与O原子的电负性相差很大易发生电荷转移,分子的稳定性主要源于Pu-O之间的相互作用.根据电子-振动近似理论,计算了不同温度下金属Pu与H2O吸附与解离反应的生成热力学函数.计算表明,即使在低温下,H2O蒸汽分子也无法在金属钚表面形成分子吸附,相反,在金属钚表面水分子的解离可自发进行.

  20. Thermal response and recyclability of poly(stearylacrylate-co-ethylene glycol dimethacrylate) gel as a VOCs absorbent

    Science.gov (United States)

    The development of absorbent materials for volatile organic compounds (VOCs) is in demand for a variety of environmental applications including protective barriers for VOCs point sources. One of the challenges for the currently available VOCs absorbents is their recyclability. In this study, we syn...

  1. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity. Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells. We observed that, even if the gas-phase pollutants

  2. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-02-01

    Full Text Available This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity. Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells – even if the gas-phase pollutants are not

  3. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  4. VOC flux measurements using a novel Relaxed Eddy Accumulation GC-FID system in urban Houston, Texas

    Science.gov (United States)

    Park, C.; Schade, G.; Boedeker, I.

    2008-12-01

    Houston experiences higher ozone production rates than most other major cities in the US, which is related to high anthropogenic VOC emissions from both area/mobile sources (car traffic) and a large number of petrochemical facilities. The EPA forecasts that Houston is likely to still violate the new 8-h NAAQS in 2020. To monitor neighborhood scale pollutant fluxes, we established a tall flux tower installation a few kilometers north of downtown Houston. We measure energy and trace gas fluxes, including VOCs from both anthropogenic and biogenic emission sources in the urban surface layer using eddy covariance and related techniques. Here, we describe a Relaxed Eddy Accumulation (REA) system combined with a dual-channel GC-FID used for VOC flux measurements, including first results. Ambient air is sampled at approximately 15 L min-1 through a 9.5 mm OD PFA line from 60 m above ground next to a sonic anemometer. Subsamples of this air stream are extracted through an ozone scrubber and pushed into two Teflon bag reservoirs, from which they are transferred to the GC pre-concentration units consisting of carbon-based adsorption traps encapsulated in heater blocks for thermal desorption. We discuss the performance of our system and selected measurement results from the 2008 spring and summer seasons in Houston. We present diurnal variations of the fluxes of the traffic tracers benzene, toluene, ethylbenzene, and xylenes (BTEX) during different study periods. Typical BTEX fluxes ranged from -0.36 to 3.10 mg m-2 h-1 for benzene, and -0.47 to 5.04 mg m-2 h-1 for toluene, and exhibited diurnal cycles with two dominant peaks related to rush-hour traffic. A footprint analysis overlaid onto a geographic information system (GIS) will be presented to reveal the dominant emission sources and patterns in the study area.

  5. Initial Analysis of VOCs Speciation in CREATE Emissions Inventory using the MAPS-Seoul Aircraft Field Campaign

    Science.gov (United States)

    Bu, C.; Woo, J. H.; Lee, Y.; Kim, J.; Choi, K. C.; Kim, Y.; Kim, J.; Jang, Y. K.; Kim, S.

    2016-12-01

    As the first international cooperative air quality field study, the MAPS-Seoul (Megacity Air Pollution Studies-Seoul) aircraft mission was conducted in May - June 2016 over the South Korea, to understand of climate and atmospheric environment. The aircraft carried observation instruments for measurements of GHGs, ozone and its precursors, aerosols, and chemical tracers. The CREATE (Comprehensive Regional Emissions inventory for Atmospheric Environment) emissions inventory and SMOKE-Asia emission processing system were used to support chemical forecasting and to serve as a priori for evaluation. Initial results of comparison studies show large discrepancies in VOC species over the South Korea - especially over urban regions. Several VOC species observed high near megacities and petro-chemical plants but under-predicted by chemical transport models (CTMs) - possibly due to relatively low emissions. The chemical speciation profiles and emissions inventory for each emission sources, therefore, have to be re-visited to improve emissions information. In this study, we have; 1) re-examined our emissions inventory and emission speciation processes, 2) and tried to find possible missing sources and alternative chemical speciation profiles, to improve our modelling emissions inventory. Initial review of the mapping and classification profiles, the original US chemical speciation profiles were found to be low in partitioning painting and surface coating sources, although they are the very significant contributors. Unlike other major national cities in China, Shanghai's VOC emissions fraction seems very similar to that of Seoul. Continuous analysis of major urban and industrial areas of the country will be presented at site.Acknowledgements : This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment

  6. Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2013-10-01

    Full Text Available Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO2, Fe2O3, CeO2, etc.. Recently, mesoporous silica materials (such as SBA-15, MCM-41, MCM-48 and HMS possessing ordered channel structures and suitable pore diameters, large internal surface areas, thermal stabilities and excellent mechanical properties, have been investigated as suitable hosts for gold nanoparticles. In this review we highlight the development of novel mesoporous silica based gold catalysts based on examples, mostly from recently reported results. Several synthesis methods are described herein. In detail we report: the modification of silica with organic functional groups; the one-pot synthesis with the incorporation of both gold and coupling agent containing functionality for the synthesis of mesoporous silica; the use of cationic gold complexes; the synthesis of silica in the presence of gold colloids or the dispersion of gold colloids protected by ligands or polymers onto silica; the modification of silica by other metal oxides; other conventional preparation methods to form mesoporous silica based gold catalysts. The gold based catalysts prepared as such demonstrate good potential for use in oxidation of CO and VOCs at low temperatures. From the wide family of VOCs, the oxidation of methanol and dimethyldisulfide has been addressed in the present review.

  7. Use of Compound Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2012-01-01

    chlorinated hydrocarbons . The full list of the compounds included (weight %): ethanol – 69 % n-decane – 4 % p-xylene – 9 % MEK – 10 % n-pentane – 5...biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation . Organic Geochem. 1999, 30, 813-820. 9) SIGMA-ALDRICH

  8. Use of On-Site GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2013-11-01

    71DE Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives , paints, gasoline Bonide Tree Sprays and...ay be less ef adhesives . H products con ion include ces of the e to its abil f indoor air h stakehold y interprete ncern, a fou samples ra rounds...Bonder, Radio Shack Anti Static Foaming Cleaner Chloroform Dry cleaned clothes, fire extinguishers, adhesive remover, chlorinated drinking water

  9. ELI/SBP'S UVB (VACUUM VAPORIZATION WELL) SYSTEM FOR TREATMENT OF VOC-CONTAMINATED SOILS; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies (IEG) and licensed in the eastern United States by Environmental Laboratories, Inc. (ELI) and SBP Technologies (SBP). This evaluation was cond...

  10. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2013-11-01

    the hole and covered with approximately 3-4 inches of 20/40 sand. The remainder of the hole was sealed with a combination of hydrated bentonite clay ...Shallow stratigraphy consists of glacial lake sediments (e.g., clays and silts) overlying a sedimentary bedrock. In the vicinity of Building 1533...shallow soils are predominantly sand and gravel fill. Underlying the fill is a clay layer approximately 30- 40 feet thick (AMEC, 2010). Depth

  11. Workshop: Addressing Regulatory Challenges In Vapor Intrusion: A State-of-the Science Update Focusing On Chlorinated VOCs

    Science.gov (United States)

    The U.S. Environmental Protection Agency's (EPA's) Offices of Research and Devevlopment and Solid Waste and Emergency Response continue to collaborate on providing technical assistance and support to EPA regional offices, other federal agencies, state regulators, and other intere...

  12. Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC

    Science.gov (United States)

    2013-12-01

    Program GC gas chromatography GSI GSI Environmental GW groundwater HC hydrocarbons IRMS isotope ratio mass spectrometer µg/L micrograms per...per thousand PHC petroleum hydrocarbons pp positive pressure ppbV parts per billion by volume QA quality assurance sq ft square feet TCE...environmental samples can be used to 1) distinguish between different sources of the contaminants, and 2) understand biodegradation and other

  13. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    Science.gov (United States)

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  14. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  15. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    Science.gov (United States)

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  16. Indoor contaminants from Hardcopy Devices: Characteristics of VOCs in photocopy centers

    Science.gov (United States)

    Sarkhosh, Maryam; Mahvi, Amir Hossein; Zare, Mohammad Reza; Fakhri, Yadolah; Shamsolahi, Hamid Reza

    2012-12-01

    Indoor air pollution in working places is widely recognized as one of the most serious potential environment risks to human health. Mean volatile organic compound (VOC) concentrations of 144 samples from four copy centers in Tehran, Iran in two seasons were monitored for the purpose of quantifying the various VOCs in these areas. Area samples were collected in thermal desorption tubes and were analyzed using gas chromatography/mass selective detector. Real-time personal total volatile organic compounds were measured using a data-logging photo-ionization detector. Simultaneously, BTEX (benzene, toluene, ethylbenzene, xylenes) outdoor measurements were performed in the same manner as were the indoor measurements. Nineteen different VOCs were detected in the area samples. The results show that in all photocopy centers, the indoor levels of toluene were much higher than the outdoor levels. During business hours, the VOC levels increased, especially toluene indoor concentration. The ventilation decreased the indoor VOC concentrations. The background and indoor VOC concentrations were higher in winter than in spring. The minimum ratio of the indoor to outdoor concentration of BTEX was estimated to be more than 42. This value proved that buildings with photocopiers can be a site of VOC accumulation.

  17. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  18. Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean

    Science.gov (United States)

    Kaltsonoudis, Christos; Kostenidou, Evangelia; Florou, Kalliopi; Psichoudaki, Magda; Pandis, Spyros N.

    2016-11-01

    During the summer of 2012 volatile organic compounds (VOCs) were monitored by proton transfer reaction mass spectrometry (PTR-MS) in urban sites, in Athens and Patras, two of the largest cities in Greece. Also, during the winter of 2013, PTR-MS measurements were conducted in the center of the city of Athens. Positive matrix factorization (PMF) was applied to the VOC measurements to gain insights about their sources. In summer most of the measured VOCs were due to biogenic and traffic emissions. Isoprene, monoterpenes, and several oxygenated VOCs (oVOCs) originated mainly from vegetation either directly or as oxidation products. Isoprene average concentrations in Patras and Athens were 1 and 0.7 ppb respectively, while the monoterpene concentrations were 0.3 and 0.9 ppb respectively. Traffic was the main source of aromatic compounds during summer. For Patras and Athens the average concentrations of benzene were 0.1 and 0.2 ppb, of toluene 0.3 and 0.8 ppb, and of the xylenes 0.3 and 0.7 ppb respectively. Winter measurements in Athens revealed that biomass burning used for residential heating was a major VOC source contributing both aromatic VOCs and biogenic compounds such as monoterpenes. Several episodes related to biomass burning were identified and emission ratios (ERs) and emission factors (EFs) were estimated.

  19. VOCs in industrial, urban and suburban neighborhoods—Part 2: Factors affecting indoor and outdoor concentrations

    Science.gov (United States)

    Jia, Chunrong; Batterman, Stuart; Godwin, Christopher

    Many microenvironmental and behavioral factors can affect concentrations of and exposures to volatile organic compounds (VOCs). Identifying these determinants is important to understand exposures and risks, and also to design policies and strategies that minimize concentrations. This study is aimed at determining factors associated with VOC concentrations found indoors in residences and outdoors in ambient air. It utilizes results from a comprehensive field study in which 98 VOCs were measured both inside and outside of 159 residences in three communities in southeast Michigan, USA. Additional measurements included indoor CO 2 concentrations, temperature, relative humidity, building and neighborhood characteristics, and occupant activities, assessed using a questionnaire and comprehensive walkthrough investigation. Factors potentially affecting concentrations were identified using bivariate and multivariate analyses. Outdoors, seasonal and community effects were observed. Indoors, seasonal effects were limited to the urban and industrial communities, largely due to changes in ambient levels. Elevated indoor VOC concentrations were associated with eight sources or activities: the presence of an attached garage; recent renovations; older residences; indoor smoking; less frequent window or door opening; higher CO 2 concentrations; and lower ventilation rates. VOC levels were uninfluenced by building materials (wood vs. brick), flooring type (carpeting vs. wood), stove type (gas or electric), number of occupants, air freshener use, and hobbies involving arts and crafts. Factor analyses identified up to five factors for the ambient VOC measurements, and up to 10 factors for the indoor measurements, which further helped to explain the variability of concentrations and associations between VOCs.

  20. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  1. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  2. Vapor-liquid equilibrium in electric field gradients.

    Science.gov (United States)

    Samin, Sela; Tsori, Yoav

    2011-01-13

    We investigate the vapor-liquid coexistence of polar and nonpolar fluids in the presence of a nonuniform electric field. We find that a large enough electric field can nucleate a gas bubble from the liquid phase or a liquid droplet from the vapor phase. The surface tension of the vapor-liquid interface is determined within squared-gradient theory. When the surface potential (charge) is controlled, the surface tension increases (decreases) compared to the zero-field interface. The effect of the electric field on the fluid phase diagram depends strongly on the constitutive relation for the dielectric constant. Finally, we show that gas bubbles can be nucleated far from the bounding surfaces.

  3. Use of GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - Standardized Protocol for On-Site Evaluation of Vapor Intrusion

    Science.gov (United States)

    2014-07-01

    Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives , paints, gasoline Bonide Tree Sprays and... adhesives . However, carbon tetrachloride and chloroform are also associated with household cleaning products containing chlorine bleach (Odabasi, 2008...Radio Shack Anti Static Foaming Cleaner Chloroform Dry cleaned clothes, fire extinguishers, adhesive remover, chlorinated drinking water Time Mist

  4. 国内外 VOCs 排放标准体系研究%Study of Emission Standards System of VOCs at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    罗斌; 蒋燕; 王斌

    2014-01-01

    It had important significance to develop VOCs emission standards for controlling VOCs emissions, improving air quality, and protecting human health and ecological environment. The characteristics of emission standards system of VOCs at home and abroad were analyzed, and some suggestions on the development of VOCs emission standards were proposed that toxicity and emissions of pollutants, particular pollutants of key industries should be considered when developing standards, and establishing emission standards system of VOCs giving priority to industry standards.%制定VOCs排放标准对于控制VOCs排放量,改善环境空气质量,保护人体健康和生态环境有重要意义。分析了国内外VOCs排放标准体系的特点,提出我国制定VOCs排放标准的几点建议,即标准制定过程中应考虑污染物毒性和排放量大小,考虑控制重点行业的特征污染物,并建立以行业排放标准为主的VOCs排放标准体系。

  5. Water vapor feedback in the tropics deduced from SSM/T-2 water vapor and MSU temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.W. [NASA Marshall Space Flight Center, Huntsville, AL (United States); Braswell, W.D. [Nichols Research Corp., Huntsville, AL (United States)

    1996-12-31

    In simulations of the atmospheric response to increases in surface temperature or radiative forcing by CO{sub 2}, water vapor is usually found to produce a large positive feedback. In studies using the NCAR Community Climate Model (CCM2), it was found that the dependence of clear sky outgoing longwave radiation on sea surface temperature (SST) was almost a factor of two less with water vapor feedback included. However, other studies have provided negative vapor feedback results. Because the outgoing longwave radiation can be computed given tropospheric temperature and water vapor profiles and surface temperature, it is proposed to use satellite measurements that are primarily sensitive to these quantities. This paper discusses the method and preliminary results obtains from four satellite instrument types used to gather data on tropical SSTs between 1992 and 1995. So far, evidence from the new microwave water vapor retrievals indicates that most of the tropical upper troposphere is quite dry, with the most frequently occurring relative humidity near 10%. The hypersensitivity of clear sky outgoing longwave radiation to humidity changes at low relative humidity suggests that the tropical subsidence zones could have a controlling influence on water vapor feedback. 16 refs., 3 figs.

  6. Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer.

    Science.gov (United States)

    Kumar, Sacheen; Huang, Juzheng; Cushnir, Julia R; Španěl, Patrik; Smith, David; Hanna, George B

    2012-11-01

    Gastric content is a complex biofluid within the human stomach which has an important role in digestive processes. It is believed that gastric content may be a contributory factor in the development of upper gastro-intestinal diseases. In this work, selected ion flow tube mass spectrometry (SIFT-MS) has been applied to the quantification of volatile organic compounds (VOCs) in the headspace vapor of gastric content samples, which were retrieved from three groups of patients, including those with gastro-esophageal cancer, noncancer diseases of the upper gastro-intestinal tract, and a healthy cohort. Twelve VOCs have been investigated in this study; the following 7 VOCs, acetone, formaldehyde, acetaldehyde, hexanoic acid, hydrogen sulphide, hydrogen cyanide, and methyl phenol, were found to be significantly different between cancer and healthy groups by the Mann-Whitney U test. Receiver operating characteristics (ROC) analysis was applied for the combined VOCs of acetaldehyde, formaldehyde, hydrogen sulphide, and methyl phenol to discriminate cancer patients from healthy controls. The area under the curve (AUC) was 0.9. This result raises the prospect that a VOC profile rather than a single biomarker may be preferable in the molecular-orientated diagnosis of gastro-oseophageal cancer, and this warrants further investigation to assess its potential application as a new diagnostic test.

  7. Distribution of Water Vapor in Molecular Clouds

    CERN Document Server

    Melnick, Gary J; Snell, Ronald L; Bergin, Edwin A; Hollenbach, David J; Kaufman, Michael J; Li, Di; Neufeld, David A

    2010-01-01

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J =5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to Av < 15 mag., the ratio of H2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large Av. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations...

  8. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    Science.gov (United States)

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  9. Biotreatment of air containing triethylamine (TEA vapor in biotrickling filter

    Directory of Open Access Journals (Sweden)

    A. Safari Variani

    2015-08-01

    Full Text Available Background: Treatment of waste air containing volatile organic compounds (VOCs using cheap and environmentally friendly methods is one of active fields in air pollution control. Objective: The aim of this study was to treat air containing triethylamine (TEA vapor using biotrickling filter inoculated with microbial species decomposing TEA. Methods: This experimental study was conducted in the School of Health affiliated to Qazvin University of Medical Sciences in 2014. Biotreatment was performed with biotrickling filter inoculated with microbial species decomposing TEA for two months. The biotrickling filter was set up with air containing TEA as the sole source of carbon, at Empty Bed Residence Times (EBRT of 36 sec, and inlet concentration of 84 ppm. Data were analyzed using descriptive statistics. Findings: Treatment of TEA contaminated air was made after an adaptation period of 11 days. Despite an increase in mass loading to 111 g/m3/h, TEA was eliminated with 109 g/m3/h capacity and 94-100% removal efficiency by zero order kinetics.Elimination capacity and removal efficiency were close to each other and confirmed109 g/m3/h as loading region with critical elimination capacity. Conclusion: With regards to the results, it is possible to treat air containing TEA vapor in biotrickling filter.

  10. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  11. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  12. Atomic vapor spectroscopy in integrated photonic structures

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  13. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  14. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  15. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs

    Institute of Scientific and Technical Information of China (English)

    唐文翔; 武晓峰; 刘刚; 李双德; 李东艳; 李文辉; 陈运法

    2015-01-01

    Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipita-tion/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs (benzene, toluene and ethyl ace-tate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), en-ergy dispersive X-ray spectroscopy (EDX), hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spec-troscopy (XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method (Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds (VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxy-gen species which resulted in the enhancement of catalytic abilities.

  16. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  17. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-05-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as onboard aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, i.e. the instantaneous permeation rate can be ascribed via a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts. The uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1 %. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  18. [Comparison Analysis of Economic and Engineering Control of Industrial VOCs].

    Science.gov (United States)

    Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng

    2015-04-01

    Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.

  19. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-10-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts to ~30 mK h−1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  20. Measurements of VOCs in Mexico City during the MILAGRO Campaign

    Science.gov (United States)

    Baker, A. K.; Beyersdorf, A. J.; Blake, N. J.; Meinardi, S.; Atlas, E.; Rowland, F.; Blake, D. R.

    2006-12-01

    During March of 2006 we participated in MILAGRO (Megacities Initiative: Local and Global Research Observations), a multi-platform campaign to measure pollutants in and in outflow from the Mexico City metropolitan area. As part of MILAGRO we collected whole air canister samples at two Mexico City ground sites: the Instituto Mexicano del Petroleo, located in the city, northeast of the center, and the Universidad Technologica de Tecamac, a suburban site approximately 50 km northeast of the city center. Samples were also collected in various other locations throughout Mexico City. Over 300 whole air samples were collected and analyzed for a wide range of volatile organic compounds (VOCs) including methane, carbon monoxide, nonmethane hydrocarbons (NMHCs) and halocarbons. Propane was the most abundant NMHC at both the urban and suburban locations, with mixing ratios frequently in excess of 10 parts per billion at both locations. This is likely the result of the widespread use of liquefied petroleum gas (LPG) of which propane is the major component. For most species, median mixing ratios at the urban sites were significantly greater than at the suburban site. Here we compare results from both urban and suburban locations and also examine the influence of transport on the composition of outflow from Mexico City.

  1. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  2. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  3. Reactivity of ambient volatile organic compounds (VOCs) in summer of 2004 in Beijing

    Institute of Scientific and Technical Information of China (English)

    Shan Huang; Min Shao; Sihua Lu; Ying Liu

    2008-01-01

    Ambient volatile organic compounds (VOCs) were sampled at six sites in Beijing in the summer of 2004 and analyzed byGCMS. The chemical reactivities of 73 quantified VOCs species were evaluated by OH loss rates (L<,OH) and ozone formationpotentials (OFPs). Top 15 reactive species, mainly alkenes and aromatics, were identified by these two methods, and accounted formore than 70% of total reactivity of VOCs. In urban areas, isoprene was the most reactive species in term of OH loss rate,contributing 11.4% to the Loft of VOCs. While toluene, accounting for 9.4% of OFPs, appeared to have a long-time role in thephotochemical processes. Tongzhou site is obviously influenced by local chemical industry, but the other five sites showed typicalurban features influenced mainly by vehicular emissions.2008 Min Shao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  4. An analytical solution for VOCs emission from multiple sources/sinks in buildings

    Institute of Scientific and Technical Information of China (English)

    DENG BaoQing; YU Bo; Chang Nyung KIM

    2008-01-01

    An analytical solution is presented to describe the emission/sorption of volatile organic compounds (VOCs) from/on multiple single-layer materials coexisting in buildings. The diffusion of VOCs within each material is described by a transient diffusion equation. All diffusion equations are coupled with each other through the equation of mass conservation in the air. The analytical solution is validated by the experimental data in literature, Compared to the one-material case, the coexistence of multiple materials may decrease the emission rate of VOCs from each material. The smaller the diffusion coef-ficient is, the more the emission rate decreases. Whether a material is a source or a sink in the case of multiple materials coexisting is not affected by the diffusion coefficient. For the case of multiple mate-rials with different partition coefficients, a material with a high partition coefficient may become a sink. This may promote the emission of VOCs from other materials.

  5. EVALUATION AND PERFORMANCE ASSESSMENT OF INNOVATIVE LOW-VOC CONTACT ADHESIVES IN WOOD LAMINATING OPERATIONS

    Science.gov (United States)

    The report gives results of an evaluation and assessment of the perfor-mance, economics, and emission reduction potential upon application of low-volatile organic compound (VOC) waterborne contact adhesive formulations specifically ina manual laminating operation for assembling s...

  6. VocMat projekt - uudsed e-õppe võimalused turismiasjalistele / Heli Tooman

    Index Scriptorium Estoniae

    Tooman, Heli, 1949-

    2008-01-01

    Turismivaldkonna spetsialistidele mõeldud koolitusprojektist VocMat (Vocational Management Training for the Tourism Industry). Projekti partneriteks Eestis on Ettevõtluse Arendamise Sihtasutuse Turismiarenduskeskus ja Tartu Ülikooli Pärnu kolledzh. Lisa: Kokkuvõte

  7. VocMat projekt - uudsed e-õppe võimalused turismiasjalistele / Heli Tooman

    Index Scriptorium Estoniae

    Tooman, Heli, 1949-

    2008-01-01

    Turismivaldkonna spetsialistidele mõeldud koolitusprojektist VocMat (Vocational Management Training for the Tourism Industry). Projekti partneriteks Eestis on Ettevõtluse Arendamise Sihtasutuse Turismiarenduskeskus ja Tartu Ülikooli Pärnu kolledzh. Lisa: Kokkuvõte

  8. Leaf level VOC emissions of single plants from Amazonian and Mediterranean ecosystems: Ontogeny and flooding as stress factor for VOC emissions

    OpenAIRE

    Bracho Nunez, Araceli

    2010-01-01

    Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken betei...

  9. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  10. Rapid and fully automated Measurement of Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, E