WorldWideScience

Sample records for surface viscoelastic properties

  1. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  2. Viscoelastic Surface Waves

    Science.gov (United States)

    Borcherdt, R. D.

    2007-12-01

    General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.

  3. Effect of Surface Modification of Nanosilica on the Viscoelastic Properties of Its Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Mortezaei

    2008-12-01

    Full Text Available The preparation and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. Also the surface tension of polystyrene, native (hydrophilic silica and silane-modified (hydrophobic silica were determined. Two kinds of polystyrene/silica (treated and non-treated nanocomposites were prepared with different filler loadings by solution method. Their viscoelastic properties were studied by dynamic stress controlled rotary shear rheometer. Solid-like response of polystyrene/native silica nanocomposites were observed in the terminal zone. Solid inclusionsincrease the storage modulus more than the loss modulus, hence decrease the material damping. By increasing filler volume fraction, the particles tend to agglomerate and build clusters. The presence of clusters increases the viscosity, the moduli and the viscoelastic non-linearity of the composites.Treating the filler surface reduces its tendency to agglomerate as well as the adhesion between the particles and the polystyrene, leading to lower viscosity and interfacial slippage. Also the loss modulus peak is affected significantly by the particle surface area and its surface property in silica-filled polystyrene, which corresponds to its glass transition.

  4. Studies of the viscoelastic properties of water confined between surfaces of specified chemical nature.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Grest, Gary Stephen; Moore, Nathan W.; Feibelman, Peter J.

    2010-09-01

    This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 10-0973 of the same title. Understanding the molecular origin of the no-slip boundary condition remains vitally important for understanding molecular transport in biological, environmental and energy-related processes, with broad technological implications. Moreover, the viscoelastic properties of fluids in nanoconfinement or near surfaces are not well-understood. We have critically reviewed progress in this area, evaluated key experimental and theoretical methods, and made unique and important discoveries addressing these and related scientific questions. Thematically, the discoveries include insight into the orientation of water molecules on metal surfaces, the premelting of ice, the nucleation of water and alcohol vapors between surface asperities and the lubricity of these molecules when confined inside nanopores, the influence of water nucleation on adhesion to salts and silicates, and the growth and superplasticity of NaCl nanowires.

  5. Impact of the Ageing on Viscoelastic Properties of Bitumen with the Liquid Surface Active Agent at Operating Temperatures

    Science.gov (United States)

    Iwański, Marek; Cholewińska, Malgorzata; Mazurek, Grzegorz

    2017-10-01

    The paper presents the influence of the ageing on viscoelastic properties of the bitumen at road pavement operating temperatures. The ageing process of bituminous binders causes changes in physical and mechanical properties of the bitumen. This phenomenon takes place in all stages of bituminous mixtures manufacturing, namely: mixing, storage, transport, placing. Nevertheless, during the service life it occurs the increase in stiffness of asphalt binder that is caused by the physical hardening of bitumen as well as the influence of oxidation. Therefore, it is important to identify the binder properties at a high and low operating temperatures of asphalt pavement after simulation of an ageing process. In the experiment as a reference bitumen, the polymer modified bitumen PMB 45/80-65 was used. The liquid surface active agent FA (fatty amine) was used as a bitumen viscosity-reducing modifier. It was added in the amount of 0,2%, 0,4% and 0,6% by the bitumen mass. All binder properties have been determined before ageing (NEAT) and after long-term ageing simulated by the Pressure Ageing Vessel method (PAV). To determine the binder properties at high temperatures the dynamic viscosity at 60°C was tested. On the basis of test results coming from the dynamic viscosity test it was calculated the binder hardening index. The properties at a low temperature were determined by measuring the creep modulus using Bending Beam Rheometer (BBR) at four temperatures: -10°C, -16°C, -22°C and -28°C. The stiffness creep modulus “S” and parameter “m” were determined. On the basis of dynamic viscosity test it was found that the ageing process caused a slight decrease in a dynamic viscosity. The level of a hardening index considerably increased at 0.6% fatty amine content. The long-term ageing process had a minor effect on stiffening of a polymer modified bitumen with FA additive regardless of a low temperature and an amount of fatty amine content.

  6. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  7. Dilational viscoelastic properties of fluid interfaces - III mixed surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Djabbarah, N.F.; Wasan, D.T.

    1982-01-01

    The surface viscosity and elasticity of solutions of mixed surfactants were determined using the longitudinal wave technique combined with tracer particle measurements. The recent analysis of Maru et al., which was restricted to insoluble monolayers and to monolayers adsorbed from a single surfactant solution, has now been extended to multicomponent solutions. This analysis can be used not only to estimate the ''net'' viscoelastic properties at gas-liquid interfaces but also to estimate the composition as well as the intrinsic viscoelastic properties. Furthermore, when accompanied by separate measurements of shear viscoelastic properties, the above analysis can be used for the determination of dilational viscosity and elasticity. Surface viscoelasticity measurements were conducted on aqueous solutions of sodium lauryl sulfate and sodium lauryl sulfate-lauryl alcohol. Net surface viscosity and elasticity of sodium lauryl sulfate solutions increased with bulk concentration and reached a maximum at a concentration in the neighborhood of the critical micelle concentration. The presence of small amount of lauryl alcohol caused almost an order of magnitude increase in intrinsic surface viscosity and a similar increase in compositional surface elasticity. A comparison between the values of intrinsic surface viscosity and those of surface shear viscosity indicated that surface dilational viscosity exceeds surface shear viscosity by at least two orders of magnitude. These appear to be the first set of data presented hitherto for the surface dilational properties in addition to surface shear properties for the same mixed surfactant systems.

  8. Viscoelastic Properties of Human Tracheal Tissues.

    Science.gov (United States)

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  9. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  10. Viscoelastic properties of cellular polypropylene ferroelectrets

    Czech Academy of Sciences Publication Activity Database

    Gaal, M.; Bovtun, Viktor; Stark, W.; Erhard, A.; Yakymenko, Y.; Kreutzbruck, M.

    2016-01-01

    Roč. 119, č. 12 (2016), s. 1-12, č. článku 125101. ISSN 0021-8979 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : ferroelectrets * viscoelastic properties * ultrasonic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  11. Viscoelastic property identification from waveform reconstruction

    Science.gov (United States)

    Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.

    2002-05-01

    An inverse method is proposed for the determination of the viscoelastic properties of material plates from the plane-wave transmitted acoustic field. Innovations lie in a two-step inversion scheme based on the well-known maximum-likelihood principle with an analytic signal formulation. In addition, establishing the analytical formulations of the plate transmission coefficient we implement an efficient and slightly noise-sensitive process suited to both very thin plates and strongly dispersive media.

  12. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  13. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Kjær Bastholm, Sara; Becher, Naja; Stubbe, Peter Reimer

    2013-01-01

    The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated...... with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics...

  14. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory...

  15. An Analytical Model of Nanometer Scale Viscoelastic Properties of Polymer Surfaces Measured Using an Atomic Force Microscope

    Science.gov (United States)

    2011-03-01

    have been developed ranging from measuring surface details to modifying surface structures . This chapter focuses on aspects of AFM modeling the- ory and...how far apart they are. An example of a poten- tial function is the Lennard-Jones potential, which is also called the 6-12 potential. It can be...γ1 + γ2 + γ12, (31) where γ1 and γ2 are the surface energies of the two adhering spheres, and γ12 is the interfacial energy between the two spheres

  16. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara K.; Becher, Naja; Stubbe, Peter Reimer

    2014-01-01

    labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus (G), viscous modulus (G......ObjectiveTo characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. DesignExperimental research. SettingDepartment of Obstetrics and Gynecology, Aarhus University Hospital, Denmark. Population/SampleSpontaneously shed CMPs from 18 healthy women in active...

  17. Surface loading of a viscoelastic earth-I. General theory

    Science.gov (United States)

    Tromp, Jeroen; Mitrovica, Jerry X.

    1999-06-01

    We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.

  18. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    Science.gov (United States)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  19. Linear viscoelastic properties of aging suspensions

    NARCIS (Netherlands)

    Purnomo, E.H.; Purnomo, E.H; van den Ende, Henricus T.M.; Mellema, J.; Mugele, Friedrich Gunther

    2006-01-01

    We have examined the linear viscoelastic behavior of poly-N-isopropylacrylamide (PNIPAM) microgel suspensions in order to obtain insight in the aging processes in these densely packed suspensions at various temperatures below the volume transition temperature. The system is found to display a strong

  20. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    Science.gov (United States)

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  1. Viscoelastic properties of doped-ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo

    2014-01-01

    The viscoelastic properties of gadolinium-doped ceria (CGO) powder compacts are characterized during sintering and cooling under reduced oxygen partial pressure and compared with conventional sintering in air. Highly defective doped ceria in reducing conditions shows peculiar viscoelastic...

  2. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    Science.gov (United States)

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-06

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.

  3. Viscoelasticity and diffusional properties of colloidal model dispersions

    CERN Document Server

    Naegele, G

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles.

  4. Viscoelasticity and diffusional properties of colloidal model dispersions

    International Nuclear Information System (INIS)

    Naegele, Gerhard

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles

  5. Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM.

    Science.gov (United States)

    Ganser, Christian; Czibula, Caterina; Tscharnuter, Daniel; Schöberl, Thomas; Teichert, Christian; Hirn, Ulrich

    2017-12-20

    Viscoelastic properties are often measured using probe based techniques such as nanoindentation (NI) and atomic force microscopy (AFM). Rarely, however, are these methods verified. In this article, we present a method that combines contact mechanics with a viscoelastic model (VEM) composed of springs and dashpots. We further show how to use this model to determine viscoelastic properties from creep curves recorded by a probe based technique. We focus on using the standard linear solid model and the generalized Maxwell model of order 2. The method operates in the range of 0.01 Hz to 1 Hz. Our approach is suitable for rough surfaces by providing a defined contact area using plastic pre-deformation of the material. The very same procedure is used to evaluate AFM based measurements as well as NI measurements performed on polymer samples made from poly(methyl methacrylate) and polycarbonate. The results of these measurements are then compared to those obtained by tensile creep tests also performed on the same samples. It is found that the tensile test results differ considerably from the results obtained by AFM and NI methods. The similarity between the AFM results and NI results suggests that the proposed method is capable of yielding results comparable to NI but with the advantage of the imaging possibilities of AFM. Furthermore, all three methods allowed a clear distinction between PC and PMMA by means of their respective viscoelastic properties.

  6. The dynamic deformation of a layered viscoelastic medium under surface excitation

    International Nuclear Information System (INIS)

    Aglyamov, Salavat R; Karpiouk, Andrei B; Emelianov, Stanislav Y; Wang, Shang; Li, Jiasong; Larin, Kirill V; Twa, Michael

    2015-01-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. (paper)

  7. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  8. Viscoelastic and dynamic properties of embryonic stem cells

    DEFF Research Database (Denmark)

    Ritter, Christine

    Stem cells are often referred to as the ‘holy grail’ of regenerative medicine, because they possessthe ability to develop into any cell type. The use of stem cells within medicine is currently limited bythe effectivity of differentiation and cell reprogramming protocols, making it therefore...... imperative tounderstand stem cells’ differentiation mechanisms better. Studies have shown that mechanical cuescan have an influence on stem cell fate decision. However, in order to understand the reaction of stemcells to mechanical input, one should first investigate and understand the mechanical properties...... ofthe cells themselves. In this thesis, the viscoelastic properties of mouse embryonic stem cells primedeither toward the epiblast (Epi) or the primitive endoderm (PrE) lineage were investigated.Optical tweezers were used to measure the fluctuations of endogenous lipid granules and therebydraw...

  9. Postseismic viscoelastic surface deformation and stress. Part 1: Theoretical considerations, displacement and strain calculations

    Science.gov (United States)

    Cohen, S. C.

    1979-01-01

    A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.

  10. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  11. Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins

    NARCIS (Netherlands)

    Erickson, D.P.; Renzetti, S.; Jurgens, A.; Campanella, O.H.; Hamaker, B.R.

    2014-01-01

    Viscoelastic properties have been observed in maize zein above its glass transition temperature; however, current understanding of how these viscoelastic polymers can be further manipulated for optimal performance is limited. Using resins formed via precipitation from aqueous ethanolic environments,

  12. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    Science.gov (United States)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  13. Viscoelastic and thermal properties of woven sisal fabric reinforced natural rubber biocomposites

    CSIR Research Space (South Africa)

    John, MJ

    2009-01-01

    Full Text Available This study explores the dynamic mechanical behavior of woven sisal fabric reinforced natural rubber composites. The influence of chemical modification on the viscoelastic properties has also been determined. Moreover, the effect of frequency...

  14. Estimation of piezoelastic and viscoelastic properties in laminated structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Soares, C. M. Mota; Herskovits, J.

    2009-01-01

    An inverse method for material parameter estimation of elastic, piezoelectric and viscoelastic laminated plate structures is presented. The method uses a gradient based optimization technique in order to solve the inverse problem, through minimization of an error functional which expresses...... the difference between experimental free vibration data and corresponding numerical data produced by a finite element model. The complex modulus approach is used to model the viscoelastic material behavior, assuming hysteretic type damping. Applications that illustrate the influence of adhesive material...

  15. Comparative study of viscoelastic properties using virgin yogurt

    International Nuclear Information System (INIS)

    Dimonte, G.; Nelson, D.; Weaver, S.; Schneider, M.; Flower-Maudlin, E.; Gore, R.; Baumgardner, J.R.; Sahota, M.S.

    1998-01-01

    We describe six different tests used to obtain a consistent set of viscoelastic properties for yogurt. Prior to yield, the shear modulus μ and viscosity η are measured nondestructively using the speed and damping of elastic waves. Although new to foodstuffs, this technique has been applied to diverse materials from metals to the earth's crust. The resultant shear modulus agrees with μ∼E/3 for incompressible materials, where the Young's modulus E is obtained from a stress - strain curve in compression. The tensile yield stress τ o is measured in compression and tension, with good agreement. The conventional vane and cone/plate rheometers measured a shear stress yield τ os ∼τ o /√ (3) , as expected theoretically, but the inferred 'apparent' viscosity from the cone/plate rheometer is much larger than the wave measurement due to the finite yield (τ os ≠0). Finally, we inverted an open container of yogurt for 10 6 s>η/μ and observed no motion. This demonstrates unequivocally that yogurt possesses a finite yield stress rather than a large viscosity. We present a constitutive model with a pre-yield viscosity to describe the damping of the elastic waves and use a simulation code to describe yielding in complex geometry. copyright 1998 Society of Rheology

  16. Viscoelastic properties of graphene-based epoxy resins

    Science.gov (United States)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  17. Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys).

    Science.gov (United States)

    McConney, Michael E; Schaber, Clemens F; Julian, Michael D; Barth, Friedrich G; Tsukruk, Vladimir V

    2007-12-22

    Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curves obtained indicate the presence of a soft, liquid-like epicuticular layer (20-40 nm thick) above the pad material, which has much higher stiffness. The Young modulus of the pad material is close to 15 MPa at low frequencies, but increases rapidly with increasing frequencies approximately above 30 Hz to approximately 70 MPa at 112 Hz. The adhesive forces drop sharply by about 40% in the same frequency range. The strong frequency dependence of the elastic modulus indicates the viscoelastic nature of the pad material, its glass transition temperature being close to room temperature (25 +/- 2 degrees C) and, therefore, to its maximized energy absorption from low-frequency mechanical stimuli. These viscoelastic properties of the cuticular pad are suggested to be at least partly responsible for the high-pass characteristics of the vibration sensor's physiological properties demonstrated earlier.

  18. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    Directory of Open Access Journals (Sweden)

    Aoythip Chunglok

    2016-01-01

    Full Text Available We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the surface has been proven to effectively repel even highly adhesive liquid. Practically, this high-level hierarchical structure can be achieved through fractal-like structures of silica aggregates induced by siloxane oligomer interparticle bridges. The induced aggregation and surface functionalization of the silica particles can be performed simultaneously within a single reaction step, by utilizing trifunctional fluoroalkylsilane precursors that largely form a disordered fluoroalkylsiloxane grafting layer under the presence of sufficient native moisture preadsorbed at the silica surface. Spray-coating deposition of a particle surface layer on a precoated primer layer ensures facile processability and scalability of the fabrication method. The resulting low-surface-energy multiscale roughness exhibits outstanding liquid repellent properties, generating equivalent lotus effect for highly viscous and adhesive natural latex concentrate, with apparent contact angles greater than 160°, and very small roll-off angles of less than 3°.

  19. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    Science.gov (United States)

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue.

    Science.gov (United States)

    Peña, Estefania; Calvo, B; Martínez, M A; Martins, P; Mascarenhas, T; Jorge, R M N; Ferreira, A; Doblaré, M

    2010-02-01

    In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.

  1. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    Science.gov (United States)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  2. Viscoelastic properties of poly(butylene succinate)-co-adipate) nanocomposites

    CSIR Research Space (South Africa)

    Al-Thabaiti, SA

    2015-03-01

    Full Text Available and melt-state viscoelastic properties of neat PBSA and various nanocomposites were studied in detail. The dynamic mechanical studies demonstrated an increase in the storage modulus of PBSA matrix with organoclay loading. Melt-state rheological properties...

  3. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Bastholm, Sara Kjær; Samson, Mie Hesselund; Becher, Naja

    2017-01-01

    The viscoelastic properties of the cervical mucus plug are considered essential for the occlusion of the cervical canal and thereby for protection against ascending infections during pregnancy. Factors controlling this property are virtually unknown. This study explores a possible role of trefoil...

  4. Changes in the texture and viscoelastic properties of bread containing rice porridge during storage.

    Science.gov (United States)

    Tsai, Chia-Ling; Sugiyama, Junichi; Shibata, Mario; Kokawa, Mito; Fujita, Kaori; Tsuta, Mizuki; Nabetani, Hiroshi; Araki, Tetsuya

    2012-01-01

    The objective of this study was to investigate the effects of rice porridge on the texture and viscoelastic properties of bread during storage. Three types of bread, wheat flour bread, 15% rice flour bread, and 15% rice porridge bread, were prepared. After baking and storing the bread for 24 h, 48 h, and 72 h at room temperature, we measured the texture and viscoelastic properties of the bread crumbs by texture profile analysis (TPA) and creep test. The 15% rice porridge bread showed a significantly higher specific volume and maintained softer crumbs than the other two types (pbread crumbs during storage.

  5. A New Method to Simulate Free Surface Flows for Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2015-01-01

    Full Text Available Free surface flows arise in a variety of engineering applications. To predict the dynamic characteristics of such problems, specific numerical methods are required to accurately capture the shape of free surface. This paper proposed a new method which combined the Arbitrary Lagrangian-Eulerian (ALE technique with the Finite Volume Method (FVM to simulate the time-dependent viscoelastic free surface flows. Based on an open source CFD toolbox called OpenFOAM, we designed an ALE-FVM free surface simulation platform. In the meantime, the die-swell flow had been investigated with our proposed platform to make a further analysis of free surface phenomenon. The results validated the correctness and effectiveness of the proposed method for free surface simulation in both Newtonian fluid and viscoelastic fluid.

  6. Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole

    Vibrations, if undamped, might be annoying or even dangerous. Most often some kind of damping mechanism is applied in order to limit the vibration level. Vibration insulators, for instance of rubber material, have favorable damping characteristics but lack the structural stiffness often needed...... in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...

  7. Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions.

    Science.gov (United States)

    Canetta, Elisabetta; Duperray, Alain; Leyrat, Anne; Verdier, Claude

    2005-01-01

    Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell.

  8. Effect of long-time immersion of soft denture liners in water on viscoelastic properties.

    Science.gov (United States)

    Iwasaki, Naohiko; Yamaki, Chisato; Takahashi, Hidekazu; Oki, Meiko; Suzuki, Tetsuya

    2017-09-26

    Aim of this study was to investigate the effect of long-time immersion of soft denture liners in 37°C water on viscoelastic properties. Six silicone-based and two acrylic resin-based soft denture liners were selected. Cylindrical specimens were stored in distilled water at 37°C for 6 months. Viscoelastic properties, which were instantaneous and delayed elastic displacements, viscous flow, and residual displacement, were determined using a creep meter, and analyzed with 2-way analysis of variance and Tukey's comparison (α=0.05). Viscoelastic properties and their time-dependent changes were varied among materials examined. The observed viscoelastic properties of three from six silicone-based liners did not significantly change after 6-month immersion, but those of two acrylic resin-based liners significantly changed with the increase of immersion time. However, the sum of initial instantaneous elastic displacement and delayed elastic displacement of two acrylic resin-based liners during 6-month immersion changed less than 10%, which might indicate clinically sufficient elastic performance.

  9. Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee

    Institute of Scientific and Technical Information of China (English)

    DUAN Wang-ping; SUN Zhen-wei; LI Qi; LI Chun-jiang; WANG Li; CHEN Wei-yi; Jennifer Tickner; ZHENG Ming-hao; WEI Xiao-chun

    2012-01-01

    Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint.The pericellular matrix,cellular membrane of the chondrocytes,and their cytoskeletal structures are key elements in the mechanical environment.The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties.Methods Three age groups of rabbit knees were evaluated:(1) young (2 months,n=10);(2) adult (8 months,n=10);and (3) old (31 months,n=10).Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods.Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation.The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining.Results In response to an applied constant 0.3-0.4 kPa of negative pressure,all chondrocytes exhibited standard linear viscoelastic solid properties.Model predictions of the creep data showed that the average equilibrium modulus (E∞),instantaneous modulus (E0).and apparent viscosity (μ) of old chondrocytes was significantly lower than the young and adult chondrocytes (P<0.001);however,no difference was found between young and adult chondrocytes (P>0.05).The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells.The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1kPa) without the deformation seen in the old chondrons.The viscoelastic properties (E∞,E0,and u) of young and adult chondrons were significantly greater than that observed

  10. Damping analysis of cylindrical composite structures with enhanced viscoelastic properties

    DEFF Research Database (Denmark)

    Kliem, Mathias; Høgsberg, Jan Becker; Vanwalleghem, Joachim

    2018-01-01

    is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross...... section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate...... in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure....

  11. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.

    Science.gov (United States)

    Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X

    2016-05-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    Science.gov (United States)

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  13. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    Science.gov (United States)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  14. Calculation of viscoelastic properties of edible films: application of three models

    Directory of Open Access Journals (Sweden)

    CHANDRA Prabir K.

    2000-01-01

    Full Text Available The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.

  15. Visco-Elastic Properties of Sodium Hyaluronate Solutions

    Science.gov (United States)

    Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek

    2008-07-01

    Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0viscoelastic behavior. We therefore present in this contribution the results of a comprehensive investigation of the viscous and elastic material functions of different NaHA samples. This includes, besides shear flow and oscillatory experiments, the performance of rheo-optical measurements in order to determine the elastic component in the range of low shear rates and low concentrations.

  16. Nonlinear viscoelastic properties of tissue assessed by ultrasound.

    Science.gov (United States)

    Sinkus, Ralph; Bercoff, Jeremy; Tanter, Mickaël; Gennisson, Jean-Luc; El-Khoury, Carl; Servois, Vincent; Tardivon, Anne; Fink, Mathias

    2006-11-01

    A technique to assess qualitatively the presence of higher-order viscoelastic parameters is presented. Low-frequency, monochromatic elastic waves are emitted into the material via an external vibrator. The resulting steady-state motion is detected in real time via an ultra fast ultrasound system using classical, one-dimensional (1-D) ultrasound speckle correlation for motion estimation. Total data acquisition lasts only for about 250 ms. The spectrum of the temporal displacement data at each image point is used for analysis. The presence of nonlinear effects is detected by inspection of the ratio of the second harmonics amplitude with respect to the total amplitude summed up to the second harmonic. Results from a polyacrylamide-based phantom indicate a linear response (i.e., the absence of higher harmonics) for this type of material at 65 Hz mechanical vibration frequency and about 100 microm amplitude. A lesion, artificially created by injection of glutaraldehyde into a beef specimen, shows the development of higher harmonics at the location of injection as a function of time. The presence of upper harmonics is clearly evident at the location of a malignant lesion within a mastectomy.

  17. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    Science.gov (United States)

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains

    KAUST Repository

    Molchanov, Vyacheslav S.; Philippova, Olga E.

    2013-01-01

    Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very

  19. Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction

    NARCIS (Netherlands)

    Willemsen, K.L.D.D.; Panozzo, A.; Moelants, K.; Debon, S.J.J.; Desmet, C.; Cardinaels, R.M.; Moldenaers, P.; Wallecan, J.; Hendrickx, M.E.G.

    2017-01-01

    The viscoelastic properties of high pressure homogenized lemon peel cell wall fiber suspensions, obtained after sequential selective pectin extraction, were investigated in the current study. For comparison, a general pectin extraction was additionally performed on lemon peel under acid thermal

  20. Measurement of Viscoelastic Properties of Condensed Matter using Magnetic Resonance Elastography

    Science.gov (United States)

    Gruwel, Marco L. H.; Latta, Peter; Matwiy, Brendon; Sboto-Frankenstein, Uta; Gervai, Patricia; Tomanek, Boguslaw

    2010-01-01

    Magnetic resonance elastography (MRE) is a phase contrast technique that provides a non-invasive means of evaluating the viscoelastic properties of soft condensed matter. This has a profound bio-medical significance as it allows for the virtual palpation of areas of the body usually not accessible to the hands of a medical practitioner, such as the brain. Applications of MRE are not restricted to bio-medical applications, however, the viscoelastic properties of prepackaged food products can also non-invasively be determined. Here we describe the design and use of a modular MRE acoustic actuator that can be used for experiments ranging from the human brain to pre-packaged food products. The unique feature of the used actuator design is its simplicity and flexibility, which allows easy reconfiguration.

  1. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.

    Science.gov (United States)

    Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G

    2015-12-16

    The evaluation of viscoelastic properties of human medial patello-femoral ligament is fundamental to understand its physiological function and contribution as stabilizer for the selection of the methods of repair and reconstruction and for the development of scaffolds with adequate mechanical properties. In this work, 12 human specimens were tested to evaluate the time- and history-dependent non linear viscoelastic properties of human medial patello-femoral ligament using the quasi-linear viscoelastic (QLV) theory formulated by Fung et al. (1972) and modified by Abramowitch and Woo (2004). The five constant of the QLV theory, used to describe the instantaneous elastic response and the reduced relaxation function on stress relaxation experiments, were successfully evaluated. It was found that the constant A was 1.21±0.96MPa and the dimensionless constant B was 26.03±4.16. The magnitude of viscous response, the constant C, was 0.11±0.02 and the initial and late relaxation time constants τ1 and τ2 were 6.32±1.76s and 903.47±504.73s respectively. The total stress relaxation was 32.7±4.7%. To validate our results, the obtained constants were used to evaluate peak stresses from a cyclic stress relaxation test on three different specimens. The theoretically predicted values fit the experimental ones demonstrating that the QLV theory could be used to evaluate the viscoelastic properties of the human medial patello-femoral ligament. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  3. Effect of annealing conditions on the molecular properties and wetting of viscoelastic bitumen substrates by liquids

    Directory of Open Access Journals (Sweden)

    Salomé dos Santos

    2017-01-01

    Full Text Available Typically, in the production of asphalt concrete, bitumen and mineral aggregates are heated and mixed at temperatures above 100 °C. After the mixing process bitumen ideally coats the mineral aggregates and remains in the form of thin films. Because bitumen is highly temperature sensitive, the study of its properties in terms of chemistry, microstructure and rheology as a function of different annealing conditions is very relevant. The resultant molecular properties have a direct correlation to bitumen macroscopic response to liquids such as water, which is of extreme relevance to the understanding of the detrimental effect of water on asphalt pavements. The wetting characteristics play a crucial role on the extension of detachment of bitumen from the mineral aggregates when asphalt is exposed to wet conditions. Therefore, in this work, the effect of the annealing temperature and cooling history on the chemistry, microstructure and wetting of bitumen films was studied. Crystalline microstructures were identified in bulk and on the surface of the bitumen films. Larger crystals presenting higher crystallinity degree were identified when the annealed bitumen films were cooled slowly. Moreover, higher annealing temperatures increased the oxidation level. The change of the rheological properties due to the alterations of the annealing conditions produced changes in the wetting characteristics. For instance, the advancing motion of a liquid drop on the viscoelastic bitumen substrate presented an intermittent behaviour due to the deformation of bitumen at the liquid-bitumen-air contact line. Consequently, changes in the contact angles were also observed. Keywords: Bitumen, Crystallization, Oxidation, Advancing contact angle, Wetting

  4. The formation and deformation of protein structures with viscoelastic properties

    NARCIS (Netherlands)

    Riemsdijk, van L.E.

    2011-01-01

    This study describes the formation of a gluten substitute.

    Chapter 1 describes the properties that are necessary to obtain a gluten substitute.

    Chapter 2 describes the formation and properties of protein particle suspensions. Two proteins with different

  5. Evaluation of Heating and Shearing on the Viscoelastic Properties of Calcium Hydroxyapatite Used in Injection Laryngoplasty.

    Science.gov (United States)

    Mahboubi, Hossein; Mohraz, Ali; Verma, Sunil P

    2016-03-01

    To compare the viscoelastic properties of calcium hydroxyapatite (CaHA) to carboxymethylcellulose (CMC) injectables used for injection laryngoplasty and determine if they are affected by heating and shearing. Experimental. University laboratory. Vocal fold injection laryngoplasty with CaHA is oftentimes challenging due to the amount of pressure necessary to push the injectate through a needle. Anecdotal techniques, such as heating the product, have been suggested to facilitate injection. The viscoelastic properties of CaHA and CMC were measured with a rheometer. The effects of heating and shearing on sample viscoelasticity were recorded. CaHA was 9.5 times more viscous than CMC (43,100 vs 4540 Pa·s). Heating temporarily decreased the viscosity of CaHA by 32%. However, it also caused the viscosity to subsequently increase after time. Shearing of CaHA reduced its viscosity by 26%. Heating and shearing together temporarily reduced the viscosity of CaHA by 52%. A combination of heating and shearing had a more profound effect than heating or shearing alone on the viscosity of CaHA, potentially making it easier to inject temporarily. Long-term and in vivo studies are required to further analyze the effect of heating and shearing on CaHA injectables. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  6. Viscoelastic properties of tablets from Osborne fractions, pentosans, flour and bread evaluated by creep tests

    Science.gov (United States)

    Escalante-Aburto, Anayansi; de Dios Figueroa-Cárdenas, Juan; Véles-Medina, José Juan; Ponce-García, Néstor; Hernández-Estrada, Zorba Josué; Rayas-Duarte, Patricia; Simsek, Senay

    2017-07-01

    Little attention has been given to the influence of non-gluten components on the viscoelastic properties of wheat flour dough, bread making process and their products. The aim of this study was to evaluate by creep tests the viscoelastic properties of tablets manufactured from Osborne solubility fractions (globulins, gliadins, glutenins, albumins and residue), pentosans, flour and bread. Hard and soft wheat cultivars were used to prepare the reconstituted tablets. Sintered tablets (except flour and bread) showed similar values to those obtained from the sum of the regression coefficients of the fractions. Gliadins and albumins accounted for about 54% of the total elasticity. Gliadins contributed with almost half of the total viscosity (45.7%), and showed the highest value for the viscosity coefficient of the viscous element. When the effect of dilution was evaluated, the residue showed the highest instantaneous elastic modulus (788.2 MPa). Retardation times of the first element (λ1 3.5 s) were about 10 times lower than the second element (λ2 39.3 s). The analysis of compliance of data corrected by protein content in flour showed that the residue fraction presented the highest values. An important contribution of non-gluten components (starch, albumins and globulins) on the viscoelastic performance of sintered tablets from Osborne fractions, flour and bread was found.

  7. Impact of polymer modification on mechanical and viscoelastic properties.

    Science.gov (United States)

    2015-10-01

    This study was initiated with the aim of evaluating the relative impact of different cross-linking agents : on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To : complete this objective, two cross-linking ag...

  8. Postseismic Deformations of the Aceh, Nias and Benkulu Earthquakes and the Viscoelastic Properties of the Mantle

    Science.gov (United States)

    Fleitout, L.; Garaud, J.; Cailletaud, G.; Vigny, C.; Simons, W. J.; Ambrosius, B. A.; Trisirisatayawong, I.; Satirapod, C.; Geotecdi Song

    2011-12-01

    The giant seism of Aceh (december 2004),followed by the Nias and Bengkulu earthquakes, broke a large portion of the boundary between the Indian ocean and the Sunda block. For the first time in history, the deformations associated with a very large earthquake can be followed by GPS, in particular by the SEAMERGE (far-field) and SUGAR (near-field) GPS networks. A 3D finite element code (Zebulon-Zset) is used to model both the cosismic and the postseismic deformations. The modeled zone is a large portion of spherical shell around Sumatra extanding over more than 60 degrees in latitude and longitude and from the Earth's surface to the core-mantle boundary. The mesh is refined close to the subduction zone. First, the inverted cosismic displacements on the subduction plane are inverted for and provide a very good fit to the GPS data for the three seisms. The observed postseismic displacements, non-dimensionalized by the cosismic displacements, present three very different patterns as function of time: For GPS stations in the far-field, the total horizontal post-seismic displacement after 4 years is as large as the cosismic displacement. The velocities vary slowly over 4 years. A large subsidence affects Thailand and Malaysia. In the near-field, the postseismic displacement reaches only some 15% of the cosismic displacement and it levels off after 2 years. In the middle-field (south-west coast of Sumatra), the postseismic displacement also levels-off with time but more slowly and it reaches more than 30% of the cosismic displacement after four years. In order to fit these three distinct displacement patterns, we need to invoke both viscoelastic deformation in the asthenosphere and a low-viscosity wedge: Neither the vertical subsidence nor the amplitude of the far-field horizontal velocities could be explained by postseismic sliding on the subduction interface. The low viscosity wedge permits to explain the large middle-field velocities. The viscoelastic properties of the

  9. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.

    Science.gov (United States)

    Erisken, Cevat; Kalyon, Dilhan M; Zhou, Jian; Kim, Sahng G; Mao, Jeremy J

    2015-10-01

    A critical step in biomaterial selection effort is the determination of material as well as the biological properties of the target tissue. Previously, the selection of biomaterials and carriers for dental pulp regeneration has been solely based on empirical experience. In this study, first, the linear viscoelastic material functions and compressive properties of miniature pig dental pulp were characterized using small-amplitude oscillatory shear and uniaxial compression at a constant rate. They were then compared with the properties of hydrogels (ie, agarose, alginate, and collagen) that are widely used in tissue regeneration. The comparisons of the linear viscoelastic material functions of the native pulp tissue with those of the 3 hydrogels revealed the gel-like behavior of the pulp tissue over a relatively large range of time scales (ie, over the frequency range of 0.1-100 rps). At the constant gelation agent concentration of 2%, the dynamic properties (ie, storage and loss moduli and the tanδ) of the collagen-based gel approached those of the native tissue. Under uniaxial compression, the peak normal stresses and compressive moduli of the agarose gel were similar to those of the native tissue, whereas alginate and collagen exhibited significantly lower compressive properties. The linear viscoelastic and uniaxial compressive properties of the dental pulp tissue reported here should enable the more appropriate selection of biogels for dental pulp regeneration via the better tailoring of gelation agents and their concentrations to better mimic the dynamic and compressive properties of native pulp tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    Science.gov (United States)

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of temperature on viscoelastic properties of semisolid dairy desserts

    OpenAIRE

    Tárrega, Amparo; Durán, Luis; Costell, Elvira

    2003-01-01

    The “natillas”, semisolid dairy dessert of wide consumption in Spain, is composed of milk, starch, hydrocolloids, sugars, colorants and aromas. The particular characteristics of some ingredients, like fat content of milk, type of starch, and/or type and concentration of hydrocolloids, and their crossed interactions, will be reflected in notable differences in their rheological and sensory properties. Little information is available on the differences to be found in commercial samples of this ...

  12. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.

    Science.gov (United States)

    Even-Tzur, Nurit; Weisz, Ety; Hirsch-Falk, Yifat; Gefen, Amit

    2006-01-01

    Modern sport shoes are designed to attenuate mechanical stress waves, mainly through deformation of the viscoelastic midsole which is typically made of ethylene vinyl acetate (EVA) foam. Shock absorption is obtained by flow of air through interconnected air cells in the EVA during shoe deformation under body-weight. However, when the shoe is overused and air cells collapse or thickness of the EVA is reduced, shock absorption capacity may be affected, and this may contribute to running injuries. Using lumped system and finite element models, we studied heel pad stresses and strains during heel-strike in running, considering the viscoelastic constitutive behavior of both the heel pad and EVA midsole. In particular, we simulated wear cases of the EVA, manifested in the modeling by reduced foam thickness, increased elastic stiffness, and shorter stress relaxation with respect to new shoe conditions. Simulations showed that heel pad stresses and strains were sensitive to viscous damping of the EVA. Wear of the EVA consistently increased heel pad stresses, and reduced EVA thickness was the most influential factor, e.g., for a 50% reduction in thickness, peak heel pad stress increased by 19%. We conclude that modeling of the heel-shoe interaction should consider the viscoelastic properties of the tissue and shoe components, and the age of the studied shoe.

  13. Effects of a Pseudophysiological Environment on the Elastic and Viscoelastic Properties of Collagen Gels

    Science.gov (United States)

    Meghezi, Sébastien; Couet, Frédéric; Chevallier, Pascale; Mantovani, Diego

    2012-01-01

    Vascular tissue engineering focuses on the replacement of diseased small-diameter blood vessels with a diameter less than 6 mm for which adequate substitutes still do not exist. One approach to vascular tissue engineering is to culture vascular cells on a scaffold in a bioreactor. The bioreactor establishes pseudophysiological conditions for culture (medium culture, 37°C, mechanical stimulation). Collagen gels are widely used as scaffolds for tissue regeneration due to their biological properties; however, they exhibit low mechanical properties. Mechanical characterization of these scaffolds requires establishing the conditions of testing in regard to the conditions set in the bioreactor. The effects of different parameters used during mechanical testing on the collagen gels were evaluated in terms of mechanical and viscoelastic properties. Thus, a factorial experiment was adopted, and three relevant factors were considered: temperature (23°C or 37°C), hydration (aqueous saline solution or air), and mechanical preconditioning (with or without). Statistical analyses showed significant effects of these factors on the mechanical properties which were assessed by tensile tests as well as stress relaxation tests. The last tests provide a more consistent understanding of the gels' viscoelastic properties. Therefore, performing mechanical analyses on hydrogels requires setting an adequate environment in terms of temperature and aqueous saline solution as well as choosing the adequate test. PMID:22844285

  14. Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.

    Science.gov (United States)

    Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky

    2018-05-01

    Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Viscoelastic properties of sweet potato complementary porridges as influenced by endogenous amylases.

    Science.gov (United States)

    Nabubuya, Agnes; Namutebi, Agnes; Byaruhanga, Yusuf; Schuller, Reidar B; Narvhus, Judith; Wicklund, Trude

    2017-11-01

    Sweet potato ( Ipomoea batatas L.) roots contain amylolytic enzymes, which hydrolyze starch thus having the potential to affect the viscosity of sweet potato porridges provided the appropriate working conditions for the enzymes are attained. In this study, the effect of sweet potato variety, postharvest handling conditions, freshly harvested and room/ambient stored roots (3 weeks), and slurry solids content on the viscoelastic properties of complementary porridges prepared using amylase enzyme activation technique were investigated. Five temperatures (55°C, 65°C, 70°C, 75°C, and 80°C) were used to activate sweet potato amylases and the optimum temperature was found to be 75°C. Stored sweet potato roots had higher soluble solids (⁰Brix) content in the pastes compared to fresh roots. In all samples, activation of amylases at 75°C caused changes in the viscoelastic parameters: phase angle (tan δ) and complex viscosity (η * ). Postharvest handling conditions and slurry solids content significantly affected the viscoelastic properties of the porridges with flours from stored roots yielding viscous (liquid-like) porridges and fresh roots producing elastic (solid-like) porridges. Increase in slurry solids content caused reduction in the phase angle values and increase in the viscosity of the sweet potato porridges. The viscosity of the porridges decreased with storage of sweet potato roots. These results provide a possibility for exploiting sweet potato endogenous amylases in the preparation of complementary porridges with both drinkable viscosities and appropriate energy and nutrient densities for children with varying energy needs.

  16. Relation between EPS adherence, viscoelastic properties, and MBR operation: Biofouling study with QCM-D.

    Science.gov (United States)

    Sweity, Amer; Ying, Wang; Ali-Shtayeh, Mohammed S; Yang, Fei; Bick, Amos; Oron, Gideon; Herzberg, Moshe

    2011-12-01

    Membrane fouling is one of the main constraints of the wide use of membrane bioreactor (MBR) technology. The biomass in MBR systems includes extracellular polymeric substances (EPS), metabolic products of active microbial secretion that adversely affect the membrane performance. Solids retention time (SRT) in the MBR is one of the most important parameters affecting membrane fouling in MBR systems, where fouling is minimized at optimal SRT. Among the operating parameters in MBR systems, SRT is known to strongly influence the ratio of proteins to polysaccharides in the EPS matrix. In this study, we have direct evidence for changes in EPS adherence and viscoelastic properties due to changes in the sludge removal rate that strongly correlate with the membrane fouling rate and EPS composition. EPS were extracted from a UF membrane in a hybrid growth MBR operated at sludge removal rates of 59, 35.4, 17.7, and 5.9 L day(-1) (corresponding SRT of 3, 5, 10, and 30 days, respectively). The EPS adherence and adsorption kinetics were carried out in a quartz crystal microbalance with dissipation monitoring (QCM-D) technology in several adsorption measurements to a gold sensor coated with Polyvinylidene Fluoride (PVDF). EPS adsorption to the sensor surface is characterized by a decrease of the oscillation frequency and an increase in the dissipation energy of the sensor during parallel flow of aqueous media, supplemented with EPS, above the sensor surface. The results from these experiments were further modeled using the Voigt based model, in which the thickness, shear modulus, and shear viscosity values of the adsorbed EPS layers on the PVDF crystal were calculated. The observations in the QCM-D suggested that the elevated fouling of the UF membrane is due to higher adherence of the EPS as well as reduction in viscosity and elasticity of the EPS adsorbed layer and elevation of the EPS fluidity. These results corroborate with confocal laser scanning microscopy (CLSM) image

  17. Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2015-01-01

    In this paper, the viscoelastic behavior of asphalt mixture was studied by using discrete element method. The dynamic properties of asphalt mixture were captured by implementing Burger’s contact model. Different ways of taking into account of the normal and shear material properties of asphalt mi...

  18. Statistical mapping of the effect of knee extension on thigh muscle viscoelastic properties using magnetic resonance elastography

    International Nuclear Information System (INIS)

    Barnhill, Eric; Kennedy, Paul; Van Beek, Edwin J R; Roberts, Neil; Hammer, Steven; Brown, Colin

    2013-01-01

    Skeletal muscle viscoelastic properties reflect muscle microstructure and neuromuscular activation. Elastographic methods, including magnetic resonance elastography, have been used to characterize muscle viscoelastic properties in terms of region of interest (ROI) measurements. The present study extended this approach to create thresholded pixel-by-pixel maps of viscoelastic properties of skeletal muscle during rest and knee extension in eleven subjects. ROI measurements were taken for individual quadricep muscles and the quadriceps region as a whole, and the viscoelastic parameter map pixels were statistically tested at positive false discovery rate q ⩽ 0.25. ROI measurements showed significant (p ⩽ 0.05) increase in storage modulus (G′) and loss modulus (G″), with G″ increasing more than G′, in agreement with previous findings. The q-value maps further identified the vastus intermedius as the primary driver of this change, with greater G″/G′ increase than surrounding regions. Additionally, a cluster of significant decrease in G″/G′ was found in the region of vastus lateralis below the fulcrum point of the lift. Viscoelastic parameter mapping of contracted muscle allows new insight into the relationship between physiology, neuromuscular activation, and human performance. (paper)

  19. The effect of rework content addition on the microstructure and viscoelastic properties of processed cheese.

    Science.gov (United States)

    Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Popková, Romana; Buňka, František

    2018-04-01

    The aim of this work was to add various amounts of rework (0.0 to 20.0% wt/wt) to processed cheeses with a dry matter content of 36% (wt/wt) and fat with a dry matter content of 45% (wt/wt). The effect of the rework addition on the viscoelastic properties and microstructure of the processed cheeses was observed. The addition of rework (in this case, to processed cheese with a spreadable consistency) in the amounts of 2.5, 5.0, and 10.0% (wt/wt) increased the firmness of the processed cheese. With the further addition of rework, the consistency of the processed cheeses no longer differed significantly. The conclusions obtained by the measurement of viscoelastic properties were supported by cryo-scanning electron microscopy, where fat droplets in samples with added rework of over 10.0% (wt/wt) were smaller than fat droplets in processed cheeses with lower additions of rework. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Viscoelastic properties of PLA/PCL blends compatibilized with different methods

    Science.gov (United States)

    Shin, Boo Young; Han, Do Hung

    2017-11-01

    The aim of this study was to observe changes in the viscoelastic properties of PLA/PCL (80/20) blends produced using different compatibilization methods. Reactive extrusion and high-energy radiation methods were used for blend compatibilization. Storage and loss moduli, complex viscosity, transient stress relaxation modulus, and tan δ of blends were analyzed and blend morphologies were examined. All compatibilized PLA/PCL blends had smaller dispersed particle sizes than the non-compatibilized blend, and well compatibilized blends had finer morphologies than poorly compatibilized blends. Viscoelastic properties differentiated well compatibilized and poorly compatibilized blends. Well compatibilized blends had higher storage and loss moduli and complex viscosities than those calculated by the log-additive mixing rule due to strong interfacial adhesion, whereas poorly compatibilized blends showed negative deviations due to weak interfacial adhesion. Moreover, well compatibilized blends had much slower stress relaxation than poorly compatibilized blends and didn't show tan δ plateau region caused by slippage at the interface between continuous and dispersed phases.

  1. Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages.

    Science.gov (United States)

    Kant, Ravi; Rayaprolu, Vamseedhar; McDonald, Kaitlyn; Bothner, Brian

    2018-06-01

    The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.

  2. A mixed-effects model approach for the statistical analysis of vocal fold viscoelastic shear properties.

    Science.gov (United States)

    Xu, Chet C; Chan, Roger W; Sun, Han; Zhan, Xiaowei

    2017-11-01

    A mixed-effects model approach was introduced in this study for the statistical analysis of rheological data of vocal fold tissues, in order to account for the data correlation caused by multiple measurements of each tissue sample across the test frequency range. Such data correlation had often been overlooked in previous studies in the past decades. The viscoelastic shear properties of the vocal fold lamina propria of two commonly used laryngeal research animal species (i.e. rabbit, porcine) were measured by a linear, controlled-strain simple-shear rheometer. Along with published canine and human rheological data, the vocal fold viscoelastic shear moduli of these animal species were compared to those of human over a frequency range of 1-250Hz using the mixed-effects models. Our results indicated that tissues of the rabbit, canine and porcine vocal fold lamina propria were significantly stiffer and more viscous than those of human. Mixed-effects models were shown to be able to more accurately analyze rheological data generated from repeated measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.

    Science.gov (United States)

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L

    2011-12-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.

  4. Influence of Nanodisperse Metal Fillers on the Viscoelastic Properties and Processes of Mechanical Relaxation of Polymer Systems

    Science.gov (United States)

    Kolupav, B. B.; Kolupaev, B. S.; Levchuk, V. V.; Maksimtsev, Yu. R.; Sidletskii, V. A.

    2017-05-01

    The results of research into the viscoelastic properties and processes of mechanical relaxation of polyvinylchloride (PVC) containing Cu nanoparticles obtained by means of electroerosion crushing and electrohydraulic destruction of agglomerates of disperse Cu in the presence of an ultrasonic field are presented. It is shown that, in the case of longitudinal shear deformation at a frequency of 0.4 × 106 s-1 over a wide range of temperatures and content of ingredients, viscoelastic phenomena depending on structural changes in the PVC system occur. An analysis of quantitative results of the elastic and viscoelastic deformation of a body is carried out taking into account the energy and entropy components of interaction of the polymer and filler at their interface.

  5. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.

    Science.gov (United States)

    Beckmann, Agnes; Heider, Yousef; Stoffel, Marcus; Markert, Bernd

    2018-06-01

    The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Visco-elastic controlled-source full waveform inversion without surface waves

    Science.gov (United States)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  7. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint.

    Science.gov (United States)

    Gutman, Shawn; Kim, Daniel; Tarafder, Solaiman; Velez, Sergio; Jeong, Julia; Lee, Chang H

    2018-02-01

    To determine the regionally variant quality of collagen alignment in human TMJ discs and its statistical correlation with viscoelastic properties. For quantitative analysis of the quality of collagen alignment, horizontal sections of human TMJ discs with Pricrosirius Red staining were imaged under circularly polarized microscopy. Mean angle and angular deviation of collagen fibers in each region were analyzed using a well-established automated image-processing for angular gradient. Instantaneous and relaxation moduli of each disc region were measured under stress-relaxation test both in tensile and compression. Then Spearman correlation analysis was performed between the angular deviation and the moduli. To understand the effect of glycosaminoglycans on the correlation, TMJ disc samples were treated by chondroitinase ABC (C-ABC). Our imaging processing analysis showed the region-variant direction of collagen alignment, consistently with previous findings. Interestingly, the quality of collagen alignment, not only the directions, was significantly different in between the regions. The angular deviation of fiber alignment in the anterior and intermediate regions were significantly smaller than the posterior region. Medial and lateral regions showed significantly bigger angular deviation than all the other regions. The regionally variant angular deviation values showed statistically significant correlation with the tensile instantaneous modulus and the relaxation modulus, partially dependent on C-ABC treatment. Our findings suggest the region-variant degree of collagen fiber alignment is likely attributed to the heterogeneous viscoelastic properties of TMJ disc that may have significant implications in development of regenerative therapy for TMJ disc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release.

    Science.gov (United States)

    Hamed, Rania; Al Baraghthi, Tamadur; Sunoqrot, Suhair

    2016-11-21

    Drug release from hydroxypropyl methylcellulose (HPMC) hydrophilic matrix tablets is controlled by drug diffusion through the gel layer of the matrix-forming polymer upon hydration, matrix erosion or combination of diffusion and erosion mechanisms. In this study, the relationship between viscoelastic properties of the gel layer of swollen intact matrix tablets and drug release was investigated. Two sets of quetiapine fumarate (QF) matrix tablets were prepared using the high viscosity grade HPMC K4M at low (70 mg/tablet) and high (170 mg/tablet) polymer concentrations. Viscoelastic studies using a controlled stress rheometer were performed on swollen matrices following hydration in the dissolution medium for predetermined time intervals. The gel layer of swollen tablets exhibited predominantly elastic behavior. Results from the in vitro release study showed that drug release was strongly influenced by the viscoelastic properties of the gel layer of K4M tablets, which was further corroborated by results from water uptake studies conducted on intact tablets. The results provide evidence that the viscoelastic properties of the gel layer can be exploited to guide the selection of an appropriate matrix-forming polymer, to better understand the rate of drug release from matrix tablets in vitro and to develop hydrophilic controlled-release formulations.

  9. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    Science.gov (United States)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  10. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    Science.gov (United States)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  11. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    Science.gov (United States)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  12. How preservation time changes the linear viscoelastic properties of porcine liver.

    Science.gov (United States)

    Wex, C; Stoll, A; Fröhlich, M; Arndt, S; Lippert, H

    2013-01-01

    The preservation time of a liver graft is one of the crucial factors for the success of a liver transplantation. Grafts are kept in a preservation solution to delay cell destruction and cellular edema and to maximize organ function after transplantation. However, longer preservation times are not always avoidable. In this paper we focus on the mechanical changes of porcine liver with increasing preservation time, in order to establish an indicator for the quality of a liver graft dependent on preservation time. A time interval of 26 h was covered and the rheological properties of liver tissue studied using a stress-controlled rheometer. For samples of 1 h preservation time 0.8% strain was found as the limit of linear viscoelasticity. With increasing preservation time a decrease in the complex shear modulus as an indicator for stiffness was observed for the frequency range from 0.1 to 10 Hz. A simple fractional derivative representation of the Kelvin Voigt model was applied to gain further information about the changes of the mechanical properties of liver with increasing preservation time. Within the small shear rate interval of 0.0001-0.01 s⁻¹ the liver showed Newtonian-like flow behavior.

  13. Effects of Wheat Flour Dough’s Viscoelastic Level by Adding Glucose Oxidase on its Dynamic Shear Properties whatever the Strain Modes

    Directory of Open Access Journals (Sweden)

    Jean Didier Koffi Kouassi

    2014-05-01

    Full Text Available The objective of this work was to study the effects of wheat flour dough’s viscoelastic level by adding glucose oxidase (Gox on its rheological properties at dynamic shear strain mode to predict the final product quality. Dough does display a linear viscoelastic domain. Glucose oxidase (Gox was added to dough in order to enhance its viscoelasticity and to take into account the possible effects of this viscoelasticity on the results. Whatever the types of dough strain used G’ increased, tan δ decreased and led to less sticky dough. Wheat flour dough, an increase in G’ with extension may be associated to a strain-hardening phenomenon but the role of dough viscoelasticity is discussed.

  14. Viscoelastic properties of orthodontic adhesives used for lingual fixed retainer bonding.

    Science.gov (United States)

    Papadogiannis, D; Iliadi, A; Bradley, T G; Silikas, N; Eliades, G; Eliades, T

    2017-01-01

    To evaluate the viscoelastic properties of two experimental BPA-free and one BisGMA-based orthodontic resin composite adhesives for bonding fixed retainers. A commercially available BisGMA-based (TXA: Transbond LR) and two bisphenol A-free experimental adhesives (EXA and EXB) were included in the study. The viscoelastic behavior of the adhesives was evaluated under static and dynamic conditions at dry and wet states and at various temperatures (21, 37, 50°C). The parameters determined were shear modulus (G), Young's modulus (E) under static testing and storage modulus (G 1 ), loss tangent (tanδ) and dynamic viscosity (n*) under dynamic testing. Statistical analysis was performed by 2-way ANOVA and Bonferroni post-hoc tests (α=0.05). For static testing, a significant difference was found within material and storage condition variables and a significant interaction between the two independent variables (p<0.001 for G and E). EXA demonstrated the highest G and E values at 21°C/dry group. Dry specimens showed the highest G and E values, but with no significant difference from 21°C/wet specimens, except EXA in G. Wet storage at higher temperatures (37°C and 50°C) adversely affected all the materials to a degree ranging from 40 to 60% (p<0.001). For dynamic testing, a significant difference was also found in material and testing condition groups, with a significant interaction between the two independent variables (p<0.001 for G 1 and n*, p<0.01 for tanδ). Reduction in G 1 , and n* values, and increase in tanδ values were encountered at increased water temperatures. The apparent detrimental effect of high temperature on the reduction of properties of adhesives may contribute to the loss of stiffness of the fixed retainer configuration under ordinary clinical conditions with unfavorable effects on tooth position and stability of the orthodontic treatment result. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  15. Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours

    International Nuclear Information System (INIS)

    Ricaud, J.M.; Masson, R.; Masson, R.

    2009-01-01

    The Laplace-Carson transform classically used for homogenization of linear viscoelastic heterogeneous media yields integral formulations of effective behaviours. These are far less convenient than internal variables formulations with respect to computational aspects as well as to theoretical extensions to closely related problems such as ageing viscoelasticity. Noticing that the collocation method is usually adopted to invert the Laplace-Carson transforms, we first remark that this approximation is equivalent to an internal variables formulation which is exact in some specific situations. This result is illustrated for a two-phase composite with phases obeying a compressible Maxwellian behaviour. Next, an incremental formulation allows to extend at each time step the previous general framework to ageing viscoelasticity. Finally, with the help of a creep test of a porous viscoelastic matrix reinforced with elastic inclusions, it is shown that the method yields accurate predictions (comparing to reference results provided by periodic cell finite element computations). (authors)

  16. The effect of addition of selected carrageenans on viscoelastic properties of model processed cheese spreads

    Directory of Open Access Journals (Sweden)

    Michaela Černíková

    2007-01-01

    Full Text Available The effect of 0.25% w/w κ-carrageenan and ι‑carrageenan on viscoelastic properties of processed cheese were studied using model samples containing 40% w/w dry matter and 45 and 50% w/w fat in dry matter. Experimental samples of processed cheese were evaluated after 14 days of storage at the temperature of 6 ± 2 °C. Basic parameters of processed cheese samples under study (i.e. their dry matter content and pH were not different (P ≥ 0.05. There were no statistically significant differences in values of storage modulus G´ [Pa], loss modulus G'' [Pa] and tangent of phase shift angle tan δ [-] for the reference frequency of 1 Hz between processed cheese with κ‑carrageenan applied in the form of powder and in the form of aqueous dispersion (P ≥ 0.05. The addition of 0.25% w/w κ‑carrageenan and ι‑carrageenan (in the powder form resulted in an increase in storage (G´ and loss (G'' moduli and a decrease in values of tan δ (P < 0.05. As compared with control (i.e. without added carrageenans, samples of processed cheese became firmer. Iota-carrageenan added in the powder form in concentration of 0.25% w/w showed a more intensive effect on the increase in firmness of processed cheese under study than κ‑carrageenan (P < 0.05.

  17. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside

    Directory of Open Access Journals (Sweden)

    Linyu Nian

    2018-05-01

    Full Text Available The physical, rheological, structural and functional properties of cod bone gelatin (CBG with various concentrations (0, 2, 4, 6, 10, and 15% of low-calorie sweeteners [xylitol (X and stevioside (S] to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S's high molecular mass. The viscoelasticity (G′ and G′′, foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  18. Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon

    Science.gov (United States)

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Brickson, Stacey; Akins, Tiffany L.; Diffee, Gary; Aiken, Judd; Vanderby, Ray; Lakes, Roderic S.

    2013-01-01

    Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress). PMID:23549897

  19. Viscoelastic characteristics and phytochemical properties of purple-rice drinks following ultrahigh pressure and pasteurization

    Science.gov (United States)

    Worametrachanon, Srivilai; Apichartsrangkoon, Arunee

    2014-10-01

    This study investigated how pressure (500, 600 MPa/20 min) altered the viscoelastic characteristics and phytochemical properties of germinated and non-germinated purple-rice drinks in comparison with pasteurization. Accordingly, color parameters, storage and loss moduli, anthocyanin content, γ-oryzanol, γ-aminobutyric acid (GABA), total phenolic compounds and 2,2-diphenyl-1-picrylthydrazyl (DPPH) capacity of the processed drinks were determined. The finding showed that germinated and pressurized rice drink had lower Browning Index than the non-germinated and pasteurized rice drink. The plots of storage and loss moduli for processed rice drinks indicated that time of pressurization had greater impact on gel structural modification than the level of pressure used. The phytochemicals, including total phenolics, and DPPH capacity in pressurized rice drinks retained higher quantity than those in pasteurized drink, despite less treatment effects on anthocyanin. On the contrary, both γ-oryzanol and GABA were found in high amounts in germinated rice drink with little variation among processing effects.

  20. Viscoelastic Properties of Hyaluronan in Physiological Conditions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Mary K. Cowman

    2015-08-01

    Full Text Available Hyaluronan (HA is a high molecular weight glycosaminoglycan of the extracellular matrix (ECM, which is particularly abundant in soft connective tissues. Solutions of HA can be highly viscous with non-Newtonian flow properties. These properties affect the movement of HA-containing fluid layers within and underlying the deep fascia. Changes in the concentration, molecular weight, or even covalent modification of HA in inflammatory conditions, as well as changes in binding interactions with other macromolecules, can have dramatic effects on the sliding movement of fascia. The high molecular weight and the semi-flexible chain of HA are key factors leading to the high viscosity of dilute solutions, and real HA solutions show additional nonideality and greatly increased viscosity due to mutual macromolecular crowding. The shear rate dependence of the viscosity, and the viscoelasticity of HA solutions, depend on the relaxation time of the molecule, which in turn depends on the HA concentration and molecular weight. Temperature can also have an effect on these properties. High viscosity can additionally affect the lubricating function of HA solutions. Immobility can increase the concentration of HA, increase the viscosity, and reduce lubrication and gliding of the layers of connective tissue and muscle. Over time, these changes can alter both muscle structure and function. Inflammation can further increase the viscosity of HA-containing fluids if the HA is modified via covalent attachment of heavy chains derived from Inter-α-Inhibitor. Hyaluronidase hydrolyzes HA, thus reducing its molecular weight, lowering the viscosity of the extracellular matrix fluid and making outflow easier. It can also disrupt any aggregates or gel-like structures that result from HA being modified. Hyaluronidase is used medically primarily as a dispersion agent, but may also be useful in conditions where altered viscosity of the fascia is desired, such as in the treatment of

  1. Effect of ionizing radiation on visco-elastic properties of polymethyl-methacrylate and poly-4-methylpentene-1

    International Nuclear Information System (INIS)

    Perepechko, I.I.; Mar'yasin, B.Ya.

    1978-01-01

    The effect of γ radiation on visco-elastic properties of polymethylmethacrylate (PMMA) and poly-4-methylpentene-1 (P4MPI) has been investigated by the method of the forced resonance oscillations of a cantilevered specimen. It has been shown, that the variation of the dynamic elasticity modulus of amorphous polymer when the irradiation dose increases, considerable depends on the polymer physical state during the measurement. The irradiated polymer is a binary mixture of radiolysis low-molecular products and polymer itself. The value of elasticity modulus in such a mixture is defined by the modules of different components. More complex than in PMMA in the effect of γ-radiation upon the P4MPI visco-elastic behaviour. During the P4MPI irradiation, the rebuilding of polymer supermolecular structure takes place, which results in the variation of the dynamic elasticity modulus values and in the intensity of peaks of mechanical losses

  2. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    Science.gov (United States)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  3. Assisted heterogeneous multinucleation and bubble growth in semicrystalline ethylene-vinyl acetate copolymer/expanded graphite nanocomposite foams: Control of morphology and viscoelastic properties

    Directory of Open Access Journals (Sweden)

    O. Yousefzade

    2015-10-01

    Full Text Available Nanocomposite foams of ethylene-vinyl acetate copolymer (EVA reinforced by expanded graphite (EG were prepared using supercritical nitrogen in batch foaming process. Effects of EG particle size, crosslinking of EVA chains and foaming temperature on the cell morphology and foam viscoelastic properties were investigated. EG sheet surface interestingly provide multiple heterogeneous nucleation sites for bubbles. This role is considerably intensified by incorporating lower loadings of EG with higher aspect ratio. The amorphous and non-crosslinked domains of EVA matrix constitute denser bubble areas. Higher void fraction and more uniform cell structure is achieved for non-crosslinked EVA/EG nanocomposites foamed at higher temperatures. With regard to the structural variation, the void fraction of foam samples decreases with increasing the EG content. Storage and loss moduli were analyzed to study the viscoelastic properties of nanocomposite foams. Surprisingly, the foaming process of EVA results in a drastic reduction in loss and storage moduli regardless of whether the thermoplastic matrix contains EG nanofiller or not. For the EVA/EG foams with the same composition, the nanocomposite having higher void fraction shows relatively lower loss modulus and more restricted molecular movements. The study findings have verified that the dynamics of polymer chains varies after foaming EVA matrix in the presence of EG.

  4. Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines

    Science.gov (United States)

    Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine

    2017-10-01

    Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.

  5. Identifying Mechanical Properties of Viscoelastic Materials in Time Domain Using the Fractional Zener Model

    Directory of Open Access Journals (Sweden)

    Ana Paula Delowski Ciniello

    Full Text Available Abstract The present paper aims at presenting a methodology for characterizing viscoelastic materials in time domain, taking into account the fractional Zener constitutive model and the influence of temperature through Williams, Landel, and Ferry’s model. To that effect, a set of points obtained experimentally through uniaxial tensile tests with different constant strain rates is considered. The approach is based on the minimization of the quadratic relative distance between the experimental stress-strain curves and the corresponding ones given by the theoretical model. In order to avoid the local minima in the process of optimization, a hybrid technique based on genetic algorithms and non-linear programming techniques is used. The methodology is applied in the characterization of two different commercial viscoelastic materials. The results indicate that the proposed methodology is effective in identifying thermorheologically simple viscoelastic materials.

  6. Application of Linear Viscoelastic Properties in Semianalytical Finite Element Method with Recursive Time Integration to Analyze Asphalt Pavement Structure

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2018-01-01

    Full Text Available Traditionally, asphalt pavements are considered as linear elastic materials in finite element (FE method to save computational time for engineering design. However, asphalt mixture exhibits linear viscoelasticity at small strain and low temperature. Therefore, the results derived from the elastic analysis will inevitably lead to discrepancies from reality. Currently, several FE programs have already adopted viscoelasticity, but the high hardware demands and long execution times render them suitable primarily for research purposes. Semianalytical finite element method (SAFEM was proposed to solve the abovementioned problem. The SAFEM is a three-dimensional FE algorithm that only requires a two-dimensional mesh by incorporating the Fourier series in the third dimension, which can significantly reduce the computational time. This paper describes the development of SAFEM to capture the viscoelastic property of asphalt pavements by using a recursive formulation. The formulation is verified by comparison with the commercial FE software ABAQUS. An application example is presented for simulations of creep deformation of the asphalt pavement. The investigation shows that the SAFEM is an efficient tool for pavement engineers to fast and reliably predict asphalt pavement responses; furthermore, the SAFEM provides a flexible, robust platform for the future development in the numerical simulation of asphalt pavements.

  7. Order, viscoelastic, and dielectric properties of symmetric and asymmetric alkyl[1]benzothieno[3,2-b][1]benzothiophenes.

    Science.gov (United States)

    Grigoriadis, Christos; Niebel, Claude; Ruzié, Christian; Geerts, Yves H; Floudas, George

    2014-02-06

    The morphology, the viscoelastic, the dielectric properties and the dynamics of phase transformation are studied in symmetrically and asymmetrically substituted alkyl[1]benzothieno[3,2-b][1]benzothiophenes (C8-BTBT) by X-ray scattering, rheology, and dielectric spectroscopy. The interlayer spacing reflects the molecular and supramolecular ordering, respectively, in the symmetrically and asymmetrically substituted BTBTs. In the asymmetric BTBT, the core layer is double in size with a broader network of intermolecular interactions though the increased S-S contacts that is prerequisite for the development of high performance OFET devices. Two crystal states with elastic and viscoelastic responses were identified in the symmetric compound. In contrast, the SmA phase in the asymmetric compound is a viscoelastic solid. A path-dependent dielectric environment with a switchable dielectric permittivity was found in both compounds by cooling below 0 °C with possible implications to charge transport. The kinetics of phase transformation to the crystalline and SmA phases revealed a nucleation and growth mechanism with rates dominated by the low activation barriers.

  8. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes.

    Science.gov (United States)

    Trajkovski, Branko; Jaunich, Matthias; Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza

    2018-01-30

    The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone ® ), synthetic (maxresorb ® ), and allograft (maxgraft ® , Puros ® ) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone ® and maxresorb ® blocks showed a slight height decrease in wet state, whereas both maxgraft ® and Puros ® had an almost identical height increase. In addition, cerabone ® and maxresorb ® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft ® and Puros ® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone ® , Bio-Oss ® , NuOss ® , SIC ® nature graft) and synthetic DBGS granules (maxresorb ® , BoneCeramic ® , NanoBone ® , Ceros ® ). The highest level of hydrophilicity was detected in cerabone ® and maxresorb ® , while Bio-Oss ® and BoneCeramic ® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this

  9. Average nuclear surface properties

    International Nuclear Information System (INIS)

    Groote, H. von.

    1979-01-01

    The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)

  10. SYNTHESIS OF VISCOELASTIC MATERIAL MODELS (SCHEMES

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2014-10-01

    Full Text Available The principles of structural viscoelastic schemes construction for materials with linear viscoelastic properties in accordance with the given experimental data on creep tests are analyzed. It is shown that there can be only four types of materials with linear visco-elastic properties.

  11. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    Science.gov (United States)

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  12. Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer

    International Nuclear Information System (INIS)

    Liu, Jiansheng; Wang, Lijun; Lu, Yanyan; He, Shitang

    2013-01-01

    A theoretical method is developed for analyzing Love waves in a structure with a viscoelastic guiding layer bounded on a piezoelectric substrate. The dispersion equation previously derived for piezoelectric Love waves propagating in the layered structure with an elastic layer is adopted for analyzing a structure with a viscoelastic layer. A Maxwell–Weichert model is introduced to describe the shear stiffness of a polymeric material. Newton’s method is employed for the numerical calculation. The dispersion equation for piezoelectric–elastic Love waves is proved suitable for solving a structure with a viscoelastic layer on a piezoelectric substrate. The theoretical results indicate that the propagation velocity of the Love wave is mainly decided by the shear stiffness of the guiding layer, whereas the propagation loss is approximately proportional to its viscosity. A detailed experimental study was conducted on a Love wave delay line fabricated on an ST-90° X quartz substrate and overlaid with various thicknesses of SU-8 guiding layers. A tail-raising caused by the viscosity of the guiding layer existed in both the calculated and the measured propagation velocities. The calculated insertion loss of the Love wave delay lines was in good agreement with the measured results. The method and the results presented in this paper are beneficial to the design of Love wave sensors with a viscoelastic guiding layer. (paper)

  13. Extensional rheometer based on viscoelastic catastrophes outline

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according ...... to the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....

  14. Influence of Structure and Composition on Dynamic Viscoelastic Property of Cartilaginous Tissue: Criteria for Classification between Hyaline Cartilage and Fibrocartilage Based on Mechanical Function

    Science.gov (United States)

    Miyata, Shogo; Tateishi, Tetsuya; Furukawa, Katsuko; Ushida, Takashi

    Recently, many types of methodologies have been developed to regenerate articular cartilage. It is important to assess whether the reconstructed cartilaginous tissue has the appropriate mechanical functions to qualify as hyaline (articular) cartilage. In some cases, the reconstructed tissue may become fibrocartilage and not hyaline cartilage. In this study, we determined the dynamic viscoelastic properties of these two types of cartilage by using compression and shear tests, respectively. Hyaline cartilage specimens were harvested from the articular surface of bovine knee joints and fibrocartilage specimens were harvested from the meniscus tissue of the same. The results of this study revealed that the compressive energy dissipation of hyaline cartilage showed a strong dependence on testing frequency at low frequencies, while that of fibrocartilage did not. Therefore, the compressive energy dissipation that is indicated by the loss tangent could become the criterion for the in vitro assessment of the mechanical function of regenerated cartilage.

  15. Quantitative evaluation of the viscoelastic properties of the ankle joint complex in patients suffering from ankle sprain by the anterior drawer test.

    Science.gov (United States)

    Lin, Che-Yu; Shau, Yio-Wha; Wang, Chung-Li; Chai, Huei-Ming; Kang, Jiunn-Horng

    2013-06-01

    Biological tissues such as ligaments exhibit viscoelastic behaviours. Injury to the ligament may induce changes of these viscoelastic properties, and these changes could serve as biomarkers to detect the injury. In the present study, a novel instrument was developed to non-invasive quantify the viscoelastic properties of the ankle in vivo by the anterior drawer test. The purpose of the study was to investigate the reliability of the instrument and to compare the viscoelastic properties of the ankle between patients suffering from ankle sprain and controls. Eight patients and eight controls participated in the present study. The reliability test was performed on three randomly chosen subjects. In patient and control test, both ankles of each subject were tested to evaluate the viscoelastic properties of the ankle. The viscosity index was defined for quantitatively evaluating the viscosity of the ankle. Greater viscosity index was associated with lower viscosity. Injured and uninjured ankles of patient and both ankles of controls were compared. The instrument exhibited excellent test-retest reliability (r > 0.9). Injured ankles exhibited significantly less viscosity than uninjured ankles, since injured ankles of patients had significantly higher viscosity index (8,148 ± 5,266) compared with uninjured ankles of patients (948 ± 617; p = 0.008) and controls (1,326 ± 613; p ankle can serve as sensitive and useful clinical biomarkers to differentiate between injured and uninjured ankles. The method may provide a clinical examination for objectively evaluating lateral ankle ligament injuries.

  16. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2015-01-01

    Full Text Available The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as embryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C 6 root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C 6 brachial plexus injury site (1 × 10 6 cells/mL, 3 μL/injection, 25 injections immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C 6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also significantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effectively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.

  17. Lecithin-based emulsions for potential use as saliva substitutes in patients with xerostomia--viscoelastic properties.

    Science.gov (United States)

    Hanning, Sara M; Yu, Tao; Jones, David S; Andrews, Gavin P; Kieser, Jules A; Medlicott, Natalie J

    2013-11-18

    The purpose of the present study was to investigate lecithin-rice bran oil rheological properties with the view to consider these as potential saliva substitutes in patients with severe xerostomia and salivary hypofunction. Pseudo-ternary phase diagrams of rice bran oil, lecithin and water mixtures were constructed and characterised using polarising light microscopy. Viscoelastic properties, which we hypothesise are important determinants in product performance, were analysed using both flow and oscillatory rheology. Rheological properties were influenced by composition, frequency and shear stress. Frequency-dependent viscoelasticity was observed in some formulations where viscosity dominated (tanδ>1) at frequencies under 5 Hz and elasticity dominated (tanδ<1) at higher frequencies. Threshold frequencies were determined for each formulation, where a peak in loss tangent was observed, coinciding with a reduction in the storage modulus and increase in loss modulus. The frequency-dependent behaviour of emulsions are of interest because these combinations exhibit viscous behaviour at low frequencies, which may improve lubrication of the oral cavity at rest, whereas increased elasticity at higher frequencies may improve retention during higher-shear tasks such as swallowing and speaking. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  19. MEASUREMENT OF THE VISCOELASTIC PROPERTIES OF WATER-SATURATED CLAY SEDIMENTS.

    Science.gov (United States)

    The complex shear modulus of both kaolin -water and bentonite-water mixtures has been determined in the laboratory. The method involved measuring the...range two to forty-three kHz. Dispersed sediments behaved like Newtonian liquids. Undispersed sediments, however, were viscoelastic in character, and...their shear moduli exhibited no dependence on frequency. For undispersed kaolin mixtures, a typical result is (21.6 + i 1.2) x 1,000 dynes per square

  20. Unsteady Magnetized Flow and Heat Transfer of a Viscoelastic fluid over a Stretching Surface

    Science.gov (United States)

    Ghosh, Sushil Kumar

    2017-12-01

    This paper is to study the flow of heated ferro-fluid over a stretching sheet under the influence of magnetic field. The fluid considered in the present investigation is a mixture of blood as well as fluid-dispersed magnetic nano particles and under this context blood is found to be the appropriate choice of viscoelastic, Walter's B fluid. The objective of the present work is to study the effect of various parameters found in the mathematical analysis. Taking into account the blood has zero electrical conductivity, magnetization effect has been considered in the governing equation of the present study with the use of ferro-fluid dynamics principle. By introducing appropriate non-dimensional variables into the governing equations of unsteady two-dimensional flow of viscoelastic fluid with heat transfer are converted to a set of ordinary differential equations with appropriate boundary conditions. Newton's linearization technique has been employed for the solution of non-linear ordinary differential equations. Important results found in the present investigation are the substantial influence of ferro-magnetic parameter, Prandlt number and the parameter associated with the thermal conductivity on the flow and heat transfer. It is observed that the presence of magnetic dipole essentially reduces the flow velocity in the vertical direction and that helps to damage the cancer cells in the tumor region.

  1. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains

    KAUST Repository

    Molchanov, Vyacheslav S.

    2013-03-01

    Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very pronounced drop of viscosity by four orders of magnitude was observed at heating from 20 to 78 °C both in the presence and in the absence of polymer indicating that the wormlike micelles are mainly responsible for this effect. The highly thermosensitive behavior was attributed to the shortening of micellar chains induced by heating. Although the decrease in viscosity is almost the same for both surfactant and surfactant/polymer systems, the absolute values of the viscosity in the presence of polymer are by few orders of magnitude higher, which is due to the formation of a common network of entangled polymer and micellar chains. As a result, the added polymer allows one to get highly temperature responsive system that keeps viscoelastic properties in a much wider range of temperatures, which makes it very promising for various practical applications. © 2012 Elsevier Inc.

  2. Engineering viscoelasticity

    CERN Document Server

    Gutierrez-Lemini, Danton

    2014-01-01

    Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the advanced, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. The book examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications. This book also: ·         Facilitates conceptual understanding by progressing in each chapter from elementary to challenging material ·         Examines in detail both differential and integral constitutive equations, devoting full chapters to each type and using both forms in ...

  3. UV and gamma irradiation effects on surface properties of polyurethane derivative from castor oil

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Nascimento, Eduardo M.; Chierice, Gilberto O.; Claro Neto, Salvador

    2013-01-01

    Gamma and ultraviolet radiation effects on hardness, elastic modulus and viscoelastic properties of polyurethane derived from castor oil (PU) were investigated by nanoindentation tests. Modifications on surface morphology, induce by radiation, were observed by atomic force microscopy. The polyurethane derivative from castor oil shows good resistance to gamma radiation, with only small changes in hardness, elastic modulus, viscoelastic properties and contact angle. The hardness of PY increases at the near surface region due to UVA radiation and decreases after UVC radiation. The contact angle for water drop decreases after UVC radiation, by not after gamma radiation, despite a significant increase in roughness. Such results are attributed to different responses from polyurethane to radiation energy. Increase in hardness due to UVA is attributed to a higher crosslinking at shallow depths, while a decrease in mechanical properties may be attributed to chain scission. These results are consistent with the modifications on viscoelastic properties. Shore D hardness did not show the same trend as observed by nanoindentation results. Hardness, viscoelastic properties and contact angle of castor oil polyurethane are more severely influenced by UVC radiation, while gamma radiation does not have a significant effect. (author)

  4. UV and gamma irradiation effects on surface properties of polyurethane derivative from castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Elaine C.; Nascimento, Eduardo M., E-mail: helunica@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Chierice, Gilberto O.; Claro Neto, Salvador [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Lepienski, Carlos M. [Universidade Federal do Parana (UFPR), Curitiba (Brazil)

    2013-07-01

    Gamma and ultraviolet radiation effects on hardness, elastic modulus and viscoelastic properties of polyurethane derived from castor oil (PU) were investigated by nanoindentation tests. Modifications on surface morphology, induce by radiation, were observed by atomic force microscopy. The polyurethane derivative from castor oil shows good resistance to gamma radiation, with only small changes in hardness, elastic modulus, viscoelastic properties and contact angle. The hardness of PY increases at the near surface region due to UVA radiation and decreases after UVC radiation. The contact angle for water drop decreases after UVC radiation, by not after gamma radiation, despite a significant increase in roughness. Such results are attributed to different responses from polyurethane to radiation energy. Increase in hardness due to UVA is attributed to a higher crosslinking at shallow depths, while a decrease in mechanical properties may be attributed to chain scission. These results are consistent with the modifications on viscoelastic properties. Shore D hardness did not show the same trend as observed by nanoindentation results. Hardness, viscoelastic properties and contact angle of castor oil polyurethane are more severely influenced by UVC radiation, while gamma radiation does not have a significant effect. (author)

  5. 5B.05: MARFAN SYNDROME: ASSESSMENT OF AORTIC DISSECTION RISK BY ANALYSIS OF AORTIC VISCOELASTIC PROPERTIES.

    Science.gov (United States)

    Grillo, A; Pini, A; Marelli, S; Gan, L; Giuliano, A; Trifirò, G; Santini, F; Salvi, L; Salvi, P; Viecca, F; Carretta, R; Parati, G

    2015-06-01

    Marfan syndrome is an autosomal dominant genetic disorder characterized by an abnormal fibrillin-1 synthesis. Aortic root dilation and dissection are the main problems affecting patients prognosis in these patients. Their pharmacological prophylaxis with losartan or with a beta-blocker counteracts the aortic root dilation, but a close follow-up is required to assess therapeutic response rate and to identify non-responders. Unfortunately genotype-phenotype studies do not allow to determine the exact risk profile in these patients and there is no reliable method to accurately predict their risk of aortic dissection. Aim of this study was to evaluate non-invasive markers for identification of Marfan patients at higher risk of aortic complications. We studied 187 Marfan patients (identified according to 2010 Revised Ghent Criteria and positive genetic analysis), age 32.3 ± 16.5 yrs (mean ± SD). 52 patients (27.8%) had undergone surgical ascending aorta replacement (David or Bentall procedure). Central pressure curves were recorded by PulsePen tonometer, and the aortic viscoelastic aortic properties were studied by determination of carotid-femoral pulse wave velocity (PWV). With reference to the age related distribution of PWV values in a normal population, defined according to Arterial-Stiffness-Collaboration, PWV mean values in Marfan patients corresponded to 60th percentile in non- operated patients and to the 67th percentile in those operated. Adult Marfan patients (n = 146) generally displayed a low blood pressure, because of the pharmacological prophylaxis, and were compared with a population of 189 adult healthy subjects (81 males), matched by age (38 ± 13 vs 38 ± 16 yrs.), heart rate (64 ± 9 bpm vs 64 ± 11 bpm) and blood pressure (mean BP = 78 ± 9 mmHg vs 79 ± 4 mmHg) values. Average PWV value was higher than in healthy controls (PWV = 7.0 ± 1.7) both in not operated (PWV = 7.6 ± 1.6; p = 0

  6. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)

    2015-08-15

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  7. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    International Nuclear Information System (INIS)

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  8. Effect of pH and salts on microstructure and viscoelastic properties of lemon peel acid insoluble fiber suspensions upon high pressure homogenization

    NARCIS (Netherlands)

    Willemsen, Katleen L.D.D.; Panozzo, Agnese; Moelants, Katlijn; Cardinaels, Ruth; Wallecan, Joël; Moldenaers, Paula; Hendrickx, Marc

    2018-01-01

    In the present paper the effect of pH and salts on microstructural and viscoelastic properties of lemon peel acid insoluble fiber residue (AR) suspensions upon mild and intense shearing was investigated. To this aim, AR suspensions were adjusted to a pH of 2.5 (as is), 4.5, 5.5, 7 or 10 prior to or

  9. Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys)

    OpenAIRE

    McConney, Michael E; Schaber, Clemens F; Julian, Michael D; Barth, Friedrich G; Tsukruk, Vladimir V

    2007-01-01

    Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curve...

  10. Computational Viscoelasticity

    CERN Document Server

    Marques, Severino P C

    2012-01-01

    This text is a guide how to solve problems in which viscoelasticity is present using existing commercial computational codes. The book gives information on codes’ structure and use, data preparation  and output interpretation and verification. The first part of the book introduces the reader to the subject, and to provide the models, equations and notation to be used in the computational applications. The second part shows the most important Computational techniques: Finite elements formulation, Boundary elements formulation, and presents the solutions of Viscoelastic problems with Abaqus.

  11. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    Science.gov (United States)

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  13. Viscoelastic material properties' identification using high speed full field measurements on vibrating plates

    Science.gov (United States)

    Giraudeau, A.; Pierron, F.

    2010-06-01

    The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  14. A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete

    International Nuclear Information System (INIS)

    Pasa Dutra, V.F.; Maghous, S.; Campos Filho, A.; Pacheco, A.R.

    2010-01-01

    Some aspects of the constitutive behavior of fiber reinforced concrete (FRC) are investigated within a micromechanical framework. Special emphasis is put on the prediction of creep of such materials. The linear elastic behavior is first examined by implementation of a Mori-Tanaka homogenization scheme. The micromechanical predictions for the overall stiffness prove to be very close to finite element solutions obtained from the numerical analysis of a representative elementary volume of FRC modeled as a randomly heterogeneous medium. The validation of the micromechanical concepts based on comparison with a set of experiments, shows remarkable predictive capabilities of the micromechanical representation. The second part of the paper is devoted to non-ageing viscoelasticity of FRC. Adopting a Zener model for the behavior of the concrete matrix and making use of the correspondence principle, the homogenized relaxation moduli are derived analytically. The validity of the model is established by mean of comparison with available experiment measurements of creep strain of steel fiber reinforced concrete under compressive load. Finally, the model predictions are compared to those derived from analytical models formulated within a one-dimensional setting.

  15. Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties.

    Science.gov (United States)

    Takahashi, Toru; Sakata, Takashi

    2002-05-01

    The viscosity of gut contents should influence digestion and absorption. Earlier investigators measured the viscosity of intestinal contents after the removal of solid particles. However, we previously found that removal of solid particles from pig cecal contents dramatically lowered the viscosity of the contents. Accordingly, we examined the contribution of large solid particles to viscoelastic parameters of gut contents in the present study. We removed large particles from pig cecal contents by filtration through surgical gauze. Then, we reconstructed the cecal contents by returning all, one half or none of the original amount of the large particles to the filtrate. We measured the viscosity, shear stress and shear rate of these reconstructed cecal contents using a tube-flow viscometer. The coefficient of viscosity was larger when the large-particle content was higher (P Bingham plastic nature irrespective of large-particle content. We calculated the yield stress of these fluids assuming that the fluids behave as Bingham plastic. The yield stress of the cecal contents was greater (P Bingham plastic characteristics to pig cecal contents.

  16. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    Science.gov (United States)

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015

  17. Effect of viscoelastic properties of plantar soft tissues on plantar pressures at the first metatarsal head in diabetics with peripheral neuropathy

    International Nuclear Information System (INIS)

    Jan, Yih-Kuen; Rong, Daqian; Lung, Chi-Wen; Cuaderes, Elena; Boyce, Kari

    2013-01-01

    Diabetic foot ulcers are one of the most serious complications associated with diabetes mellitus. Current research studies have demonstrated that biomechanical alterations of the diabetic foot contribute to the development of foot ulcers. However, the changes of soft tissue biomechanical properties associated with diabetes and its influences on the development of diabetic foot ulcers have not been investigated. The purpose of this study was to investigate the effect of diabetes on the biomechanical properties of plantar soft tissues and the relationship between biomechanical properties and plantar pressure distributions. We used the ultrasound indentation tests to measure force-deformation relationships of plantar soft tissues and calculate the effective Young's modulus and quasi-linear viscoelastic parameters to quantify biomechanical properties of plantar soft tissues. We also measured plantar pressures to calculate peak plantar pressure and plantar pressure gradient. Our results showed that diabetics had a significantly greater effective Young's modulus and initial modulus of quasi-linear viscoelasticity compared to non-diabetics. The plantar pressure gradient and biomechanical properties were significantly correlated. Our findings indicate that diabetes is linked to an increase in viscoelasticity of plantar soft tissues that may contribute to a higher peak plantar pressure and plantar pressure gradient in the diabetic foot. (paper)

  18. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    Science.gov (United States)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  19. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  20. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    International Nuclear Information System (INIS)

    Dobos, Vera; Turner, Edwin L.

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat

  1. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  2. A review on melt-state viscoelastic properties of polymer nanocomposites

    CSIR Research Space (South Africa)

    Hyoung, JC

    2011-10-01

    Full Text Available The mixing of polymer matrices with nanoparticles to form composite materials has been an area of great research interest. The mechanical and rheological properties of such composite materials are directly related to the properties of the matrix...

  3. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes

    Directory of Open Access Journals (Sweden)

    Branko Trajkovski

    2018-01-01

    Full Text Available The indication-oriented Dental Bone Graft Substitutes (DBGS selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA of xenograft (cerabone®, synthetic (maxresorb®, and allograft (maxgraft®, Puros® blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®. The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new

  4. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  5. Studies on Solid Wood. II. The Influence of Chemical Modifications on Viscoelastic Properties

    DEFF Research Database (Denmark)

    Bjørkmann, Anders; Salmén, Lennart

    2000-01-01

    The relation between the properties of wood polymers and those of the composite material of wood is a subject that has been of interest for a long time. In order to increase oar knowledge in this matter, changes of wood properties have been studied on samples of spruce and birch, subjected to var...

  6. Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles: DSPC versus DPPC

    NARCIS (Netherlands)

    van Rooij, T.; Luan, Y.; Renaud, G.; van der Steen, A.F.W.; Versluis, Michel; de Jong, N.; Kooiman, K.

    2015-01-01

    For successful in vivo contrast-enhanced ultrasound imaging (CEUS) and ultrasound molecular imaging, detailed knowledge of stability and acoustical properties of the microbubbles is essential. Here, we compare these aspects of lipid-coated microbubbles that have either

  7. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  8. Age-dependent effects of systemic administration of oxytetracycline on the viscoelastic properties of rat tail tendons as a mechanistic basis for pharmacological treatment of flexural limb deformities in foals.

    Science.gov (United States)

    Wintz, Leslie R; Lavagnino, Michael; Gardner, Keri L; Sedlak, Aleksa M; Arnoczky, Steven P

    2012-12-01

    To describe the effect of systemically administered oxytetracycline on the viscoelastic properties of rat tail tendon fascicles (TTfs) to provide a mechanistic rationale for pharmacological treatment of flexural limb deformities in foals. TTfs from ten 1-month-old and ten 6-month-old male Sprague-Dawley rats. 5 rats in each age group were administered oxytetracycline (50 mg/kg, IP, q 24 h) for 4 days. The remaining 5 rats in each age group served as untreated controls. Five days after initiation of oxytetracycline treatment, TTfs were collected and their viscoelastic properties were evaluated via a stress-relaxation protocol. Maximum modulus and equilibrium modulus were compared via a 2-way ANOVA. Collagen fibril size, density, and orientation in TTfs were compared between treated and control rats. Viscoelastic properties were significantly decreased in TTfs from 1-month-old oxytetracycline-treated rats, compared with those in TTfs from 1-month-old control rats. Oxytetracycline had no effect on the viscoelastic properties of TTfs from 6-month-old rats. Collagen fibril size, density, and orientation in TTfs from 1-month-old rats did not differ between oxytetracycline-treated and control rats. Results confirmed that systemically administered oxytetracycline decreased the viscoelastic properties of TTfs from 1-month-old rats but not those of TTfs from 6-month-old rats. The decrease in viscoelastic properties associated with oxytetracycline treatment does not appear to be caused by altered collagen fibril diameter or organization. The age-dependent effect of oxytetracycline on the viscoelastic properties of tendons may be related to its effect on the maturation of the extracellular matrix of developing tendons.

  9. Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling.

    Science.gov (United States)

    De Greef, Daniel; Aernouts, Jef; Aerts, Johan; Cheng, Jeffrey Tao; Horwitz, Rachelle; Rosowski, John J; Dirckx, Joris J J

    2014-06-01

    A new anatomically-accurate Finite Element (FE) model of the tympanic membrane (TM) and malleus was combined with measurements of the sound-induced motion of the TM surface and the bony manubrium, in an isolated TM-malleus preparation. Using the results, we were able to address two issues related to how sound is coupled to the ossicular chain: (i) Estimate the viscous damping within the tympanic membrane itself, the presence of which may help smooth the broadband response of a potentially highly resonant TM, and (ii) Investigate the function of a peculiar feature of human middle-ear anatomy, the thin mucosal epithelial fold that couples the mid part of the human manubrium to the TM. Sound induced motions of the surface of ex vivo human eardrums and mallei were measured with stroboscopic holography, which yields maps of the amplitude and phase of the displacement of the entire membrane surface at selected frequencies. The results of these measurements were similar, but not identical to measurements made in intact ears. The holography measurements were complemented by laser-Doppler vibrometer measurements of sound-induced umbo velocity, which were made with fine-frequency resolution. Comparisons of these measurements to predictions from a new anatomically accurate FE model with varied membrane characteristics suggest the TM contains viscous elements, which provide relatively low damping, and that the epithelial fold that connects the central section of the human manubrium to the TM only loosely couples the TM to the manubrium. The laser-Doppler measurements in two preparations also suggested the presence of significant variation in the complex modulus of the TM between specimens. Some animations illustrating the model results are available at our website (www.uantwerp.be/en/rg/bimef/downloads/tympanic-membrane-motion). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Anisotropic viscoelastic properties of quartz and quartzite in the vicinity of the α- β phase transition

    Science.gov (United States)

    Klumbach, Steffen; Schilling, Frank R.

    2017-10-01

    In this study we performed high-temperature, dynamic (i.e. sinusoidal), three-point bending experiments of quartz single crystals and quartzite samples within the frequency range of seismic surveys (i.e. 0.1-20 Hz). At constant temperature close to the α- β phase transition we observed a unique complex elastic behaviour of both quartz and quartzite. We find a frequency dependence of the complex Young's modulus of α-quartz, including a dissipation maximum at ≈1 Hz supposedly related to the formation and variation of Dauphiné twin domains. Based on our experimental results for different crystallographic directions and additional modelling, we are able to describe the complex Young's modulus of quartz at its α- β phase transition in a 3D diagram. We derive a frequency-dependent elasticity tensor, using a three-element equivalent circuit, composed of two springs E 1 and E 2 as well as a dashpot η. E 1 and η are connected parallel to each other, E 2 is added in series. Compliance coefficients yield ( S 11) E 1 = 572 GPa, E 2 = 70.0 GPa, η = 64.6 GPa·s, ( S 33) E 1 = 127 GPa, E 2 = 52.1 GPa, η = 22.9 GPa·s, ( S 44) E 1 = 204 GPa, E 2 = 37.5 GPa, η = 26.4 GPa·s, ( S 12) E 1 = 612 GPa, E 2 = 106.7 GPa, η = 78.5 GPa·s, ( S 13) E 1 = 1546 GPa, E 2 = 284 GPa, η = 200 GPa·s; S 14 ≈-0.0024 GPa-1. We use the derived direction-dependent coefficients to predict the frequency-dependent complex elastic properties of isotropic polycrystalline quartz. These predictions agree well with the experimental results of the investigated quartzite. Finally, we explore the potential of using the anomalous frequency-dependent complex elastic properties of quartz at the α- β phase transition that we observed as an in situ temperature probe for seismic studies of the Earth's continental crust.

  11. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin.

    Directory of Open Access Journals (Sweden)

    Timo Maier

    Full Text Available Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.

  12. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.

  13. DIFFERENTIAL EQUATION SIMULATION IN CALCULATION OF LATERAL AND TRANSVERSE-LONGITUDINAL BENDING OF FRAME STRUCTURES WITHOUT AND WITH DUE ACCOUNT OF VISCOELASTIC MATERIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. M. Ovsianko

    2012-01-01

    Full Text Available The paper reveals a brand-new direction in simulation of frame and continual structures while calculating static and dynamic loads and stability.  An electronic model has been synthesized  for an investigated object and then it has been analyzed not with the help of  specialized analog computing techniques but by means of high-performance software package for electronic circuit calculation using a personal computer.The given paper contains exact algebraic equations corresponding to differential equations for lateral bending calculation of frame structures without and with due account of viscoelastic material properties in compliance with the Kelvin model.The exact algebraic equation for a beam on elastic supports (or elastic Winkler foundation has been derived for quartic differential equation.The paper presents a number of exact algebraic equations which are equivalent to differential equations for transverse-longitudinal bending calculation of frame structures without and with due account of viscoelastic material properties when lateral and longitudinal loads are applied in the form of  impulses with any periods of their duration and any interchangeability. 

  14. Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.

    Science.gov (United States)

    Kumar, P Arun; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Simha, H V Vikram; Nath, B Surendra

    2016-10-01

    The influence of enzymatic hydrolysis of starch on the pasting properties of barnyard millet was studied using a rheometer. The effects of blending hydrolyzed barnyard millet wort with milk at different ratios (0:1, 1:1, 1:1.5 and 1:2) on flow and viscoelastic behavior were investigated. From the pasting curves, it was evident that enzymatically-hydrolyzed starch did not exhibit typical pasting characteristics expected of normal starch. The Herschel-Bulkley model fitted well to the flow behaviour data, with coefficient of determination (R(2)) ranging from 0.942 to 0.988. All milk-wort blends demonstrated varying degree of shear thinning with flow behavior index (n) ranging from 0.252 to 0.647. Stress-strain data revealed that 1:1 blend of milk to wort had the highest storage modulus (7.09-20.06Pa) and an elastically-dominant behavior (phase angle <45°) over the tested frequency range. The crossover point of G' and G" shifted to higher frequencies with increasing wort content. From the flow and viscoelastic behavior, it was concluded that the 1:1 blend of milk to wort would have least phase separation and better flowability during spray drying. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity

    International Nuclear Information System (INIS)

    Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J

    2008-01-01

    A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle

  16. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    Science.gov (United States)

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  17. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime

    Science.gov (United States)

    Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.

    2011-10-01

    Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.

  18. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    Science.gov (United States)

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P

  19. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  20. Viscoelastic response of hydrogel materials at finite strains

    OpenAIRE

    Skovly, Martin Johannessen

    2015-01-01

    Hydrogel materials are very soft materials consisting of polymer networks and solvent molecules. The materials may exhibit large volume changes depending on its external chemical and mechanical environment and have viscoelastic properties which is common for many polymeric materials. In order to model the material response with the finite element method, a hydrogel constitutive model have been combined with finite viscoelastic theory and the resulting viscoelastic hydrogel constitutive model ...

  1. Influence of Chemical Extraction on Rheological Behavior, Viscoelastic Properties and Functional Characteristics of Natural Heteropolysaccharide/Protein Polymer from Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-11-01

    Full Text Available In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05 effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05 effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like behavior compared to the viscous (liquid like behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.

  2. Implementation of viscoelastic Hopkinson bars

    Directory of Open Access Journals (Sweden)

    Govender R.

    2012-08-01

    Full Text Available Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s−1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  3. Temperature dependence of nuclear surface properties

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1982-01-01

    Thermal properties of nuclear surface are investigated in a semi-infinite medium. Explicit analytical expression are given for the temperature dependence of surface thickness, surface energy and surface free energy. In this model the temperature effects depend critically on the nuclear incompressibility and on the shape of the effective mass at the surface. To illustrate the relevance of these effects we made an estimate of the temperature dependence of the fission barrier height. (orig.)

  4. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  5. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  6. Rough viscoelastic sliding contact: Theory and experiments

    Science.gov (United States)

    Carbone, G.; Putignano, C.

    2014-03-01

    In this paper, we show how the numerical theory introduced by the authors [Carbone and Putignano, J. Mech. Phys. Solids 61, 1822 (2013), 10.1016/j.jmps.2013.03.005] can be effectively employed to study the contact between viscoelastic rough solids. The huge numerical complexity is successfully faced up by employing the adaptive nonuniform mesh developed by the authors in Putignano et al. [J. Mech. Phys. Solids 60, 973 (2012), 10.1016/j.jmps.2012.01.006]. Results mark the importance of accounting for viscoelastic effects to correctly simulate the sliding rough contact. In detail, attention is, first, paid to evaluate the viscoelastic dissipation, i.e., the viscoelastic friction. Fixed the sliding speed and the normal load, friction is completely determined. Furthermore, since the methodology employed in the work allows to study contact between real materials, a comparison between experimental outcomes and numerical prediction in terms of viscoelastic friction is shown. The good agreement seems to validate—at least partially—the presented methodology. Finally, it is shown that viscoelasticity entails not only the dissipative effects previously outlined, but is also strictly related to the anisotropy of the contact solution. Indeed, a marked anisotropy is present in the contact region, which results stretched in the direction perpendicular to the sliding speed. In the paper, the anisotropy of the deformed surface and of the contact area is investigated and quantified.

  7. Use of high-temperature, high-torque rheometry to study the viscoelastic properties of coal during carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.C.; Duffy, J.J.; Snape, C.E.; Steel, K.M. [University of Nottingham, Nottingham (United Kingdom)

    2007-09-15

    When coal is heated in the absence of oxygen it softens at approximately 400 degrees C, becomes viscoelastic, and volatiles are driven off. With further heating, the viscous mass reaches a minimum viscosity in the range of 10{sup 3}-10{sup 5} Pa s and then begins to resolidify. A high-torque, high-temperature, controlled-strain rheometer with parallel plates has been used to study the theology during this process. Under shear, the viscosity of the softening mass decreases with increasing shear rate. During resolidification, the viscosity increases as C-C bond formation and physical interactions gives rise to an aromatic network, but, under shear, the network breaks apart and flows. This is viewed as a yielding of the structure. The higher the shear rate, the earlier the yielding occurs, such that if the shear rate is low enough, the structure is able to build. Also, further into resolidification lower shear rates are able to break the structure. It is proposed that resolidification occurs through the formation of aromatic clusters that grow and become crosslinked by non-covalent interactions. As the clusters grow, the amount of liquid surrounding them decreases and it is thought that the non-covalent interactions between clusters and liquid could decrease and the ability of growing clusters to move past each other increases, which would explain the weakening of the structure under shear. This work is part of a program of work aimed at attaining a greater understanding of microstructural changes taking place during carbonization for different coals, in order to understand the mechanisms that give rise to good quality cokes and coke oven problems such as excessive wall pressure.

  8. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  9. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  10. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  11. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Stumpf, R.; Hannon, J.B.

    1994-01-01

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  12. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  13. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  14. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  15. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    International Nuclear Information System (INIS)

    Awada, Houssein; Noel, Olivier; Hamieh, Tayssir; Kazzi, Yolla; Brogly, Maurice

    2011-01-01

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  16. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    Science.gov (United States)

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  17. The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, Alexander P. [Aerospace Engineering Department, University of Glasgow, University Avenue, Glasgow, Lanarkshire (United Kingdom); Merrett, Craig G. [Mechanical and Aerospace Engineering Department, Carleton Univ., 1125 Col. By Dr., Ottawa, ON (Canada); Hilton, Harry H. [Aerospace Engineering Department in the College of Engineering and Private Sector Program Division at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-12-10

    The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at

  18. The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives

    International Nuclear Information System (INIS)

    Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.

    2014-01-01

    The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V REV E ). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V REV< ≧ V REV E , but furthermore does so in time at 0 < t REV ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place

  19. 3D Viscoelastic Traction Force Microscopy

    Science.gov (United States)

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M.; Henann, David L.; Franck, Christian

    2014-01-01

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels. PMID:25170569

  20. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene; Hassenkam, Tue; P, Hansen

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  1. Experimental Viscoelastic Characterization of Corn Cob Composited ...

    African Journals Online (AJOL)

    The nature of viscoelasticity in biomateria1s and the techniques for characterizing their rheological properties were reviewed. Relaxation tests were performed with cylindrical samples of corn cob composites which were initially subjected to radial compression. It was found that a Maxwell model composed of two simple ...

  2. Topology optimization of viscoelastic rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2012-01-01

    An approach for the design of microfluidic viscoelastic rectifiers is presented based on a combination of a viscoelastic model and the method of topology optimization. This presumption free approach yields a material layout topologically different from experimentally realized rectifiers...

  3. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  4. The viscoelastic properties of the protein-rich materials from the fermented hard wheat, soft wheat and barley flours

    Science.gov (United States)

    The linear and non-linear rheological properties of the suspensions for the hard red spring wheat (HRS) flour, soft wheat (Pastry) flour, barley flour, as well as the remain residues of HRS flour, Pastry flour, and barley flour after fermentation were investigated. The linear and non-linear rheologi...

  5. Effect of Sodium Salicylate on the Viscoelastic Properties and Stability of Polyacrylate-Based Hydrogels for Medical Applications

    Directory of Open Access Journals (Sweden)

    Zuzana Kolarova Raskova

    2016-01-01

    Full Text Available Investigation was made into the effect exerted by the presence of sodium salicylate (0–2 wt.%, in Carbomer-based hydrogel systems, on processing conditions, rheological and antimicrobial properties in tests against Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacterial strains, and examples of yeast (Candida albicans and mould (Aspergillus niger. In addition, the work presents an examination of long-term stability by means of aging over one year the given hydrogels at 8°C and 25°C. The results show that 0.5 wt.% NaSal demonstrated a noticeable effect on the hydrogel neutralization process, viscosity, and antimicrobial properties against all of the tested microorganisms. The long-term stability studies revealed that hydrogels can maintain antimicrobial activity as well as viscosity to a degree that would be sufficient for practical use.

  6. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  7. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    M REZA

    2017-11-09

    Nov 9, 2017 ... MS received 15 August 2016; revised 26 February 2017; accepted 15 March 2017; published online 9 ... surface has several engineering applications within, for ... viscoelastic fluids in several industrial manufacturing pro-.

  8. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    Science.gov (United States)

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-10-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.

  9. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  10. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  11. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  12. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.

    Science.gov (United States)

    Liu, Chao; Moreira, Pedro; Zemiti, Nabil; Poignet, Philippe

    2011-01-01

    Current cardiac surgery faces the challenging problem of heart beating motion even with the help of mechanical stabilizer which makes delicate operation on the heart surface difficult. Motion compensation methods for robotic-assisted beating heart surgery have been proposed recently in literature, but research on force control for such kind of surgery has hardly been reported. Moreover, the viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In this work, we present a three-dimensional force control method for robotic-assisted beating heart surgery taking into consideration of the viscoelastic interaction property. Performance studies based on our D2M2 robot and 3D heart beating motion information obtained through Da Vinci™ system are provided.

  13. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.

    Science.gov (United States)

    Esparza, Yussef; Bandara, Nandika; Ullah, Aman; Wu, Jianping

    2018-09-01

    Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers.

    Science.gov (United States)

    Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M

    2016-02-01

    Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.

  15. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  16. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  17. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  18. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  19. Viscoelastic gravel-pack carrier fluid

    International Nuclear Information System (INIS)

    Nehmer, W.L.

    1988-01-01

    The ability of a fluid to flow adequately into the formation during gravel-pack treatments is critical to achieving a good pack. Recent studies have indicated ''fish-eyes'' and/or ''microgels'' present in many polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage. Intensive manipulation of the polymer gelled fluid using shear and filter devices will help remove the particles, but it adds to the cost of the treatment in terms of equipment and manpower. Excessive shear will degrade the polymer leading to poor gravel suspension, while too little shear will cause filtration problems. A gelled carried fluid using a viscoelastic surfactant system has been found to leak off very efficiently to the formation, and cause no formation damage, without the use of shear/filter devices. Viscoelastic surfactant-base gelled fluids develop viscosity because of the association of surfactant moloecules into large rod-shaped aggregates. There is no hydration of polymer involved, so fish-eyes and microgels will not be formed in the viscoelastic fluid. A surfactant-base system having a yield point allows the gravel carrying properties to be much better than fluids gelled with conventional polymer systems (hydroxyethylcellulose [HEC]). For example, a gravel carried fluid gelled with 80 lb HEC/1,000 gal has a viscosity of about 400 cp at 170 sec/sup -1/; a viscoelastic surfactant-base system having only one-half the viscosity still flows into cores about four times more efficiently than the HEC-base fluid. The rheology, leakoff, formation damage and mixing properties of a viscoelastic, surfactant-base, gravel-pack carrier fluid are discussed

  20. Impact load time histories for viscoelastic missiles

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1977-01-01

    Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. Examples are given for bricks with viscoelastic materials as missiles against a rigid target. (Auth.)

  1. Non linear viscoelastic models

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2011-01-01

    Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....

  2. On the stabilization of viscoelastic laminated beams with interfacial slip

    Science.gov (United States)

    Mustafa, Muhammad I.

    2018-04-01

    In this paper, we consider a viscoelastic laminated beam model. This structure is given by two identical uniform layers on top of each other, taking into account that an adhesive of small thickness is bonding the two surfaces and produces an interfacial slip. We use viscoelastic damping with general assumptions on the relaxation function and establish explicit energy decay result from which we can recover the optimal exponential and polynomial rates. Our result generalizes the earlier related results in the literature.

  3. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Science.gov (United States)

    Gaume, Laurence; Forterre, Yoel

    2007-11-21

    The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  4. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Directory of Open Access Journals (Sweden)

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  5. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  6. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  7. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  8. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  9. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    Science.gov (United States)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  10. Investigation of transient cavitating flow in viscoelastic pipes

    International Nuclear Information System (INIS)

    Keramat, A; Tijsseling, A S; Ahmadi, A

    2010-01-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  11. Investigation of transient cavitating flow in viscoelastic pipes

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Ahmadi, A.

    2010-08-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  12. Surface and conductivity properties of imidazoles solutions

    International Nuclear Information System (INIS)

    Rogalski, Marek; Domanska, Urszula; Czyrny, Dagmara; Dyczko, Dagmara

    2002-01-01

    The surface tension, σ, of the solutions of benzimidazole, 2-phenylimidazole and 2,4,5-triphenylimidazole in water, or water + 10 mol% of acetonitrile, or in other solvents as well as the solubilities and conductivity of benzimidazole and 2-phenylimidazole in water in function of concentration at 298.15 K were measured. The enthalpy of fusion, or solid-solid phase transition and the melting temperatures were determined for the substances under study by the scanning calorimetry (DSC). These solutions exhibit, in a wide range of concentrations, the normal linear, or parabolic decreasing dependencies and the maximum of surface tension at very low concentrations and show the S-shaped dependencies, being in function of the initial sample, never reported before. The results were confirmed by the conductivity measurements. The results were interpreted in terms of the changing structure of the interface. It was concluded that the observed phenomena were caused by an induced nucleation of benzimidazole, 2-phenylimidazole and especially by 2,4,5-triphenylimidazole by columnar discotic structures due to the initial concentration. The surface properties of these solutions reflect the interactions of hydrophobic parts of the guest molecules adsorbed at the interface, as a result of the hydrogen bonded structure of the solution

  13. Numerical simulation of viscoelastic free‐surface flows using a streamfunction/log‐conformation formulation and the volume‐of‐fluid method

    DEFF Research Database (Denmark)

    Comminal, Raphael Benjamin

    materials, where viscoelastic effects cause dynamical instabilities, despite the very simple geometry. This thesis reviews the popular differential constitutive models derived from molecular theories of dilute polymer solutions, polymer networks, and entangled polymer melts, as well as the inelastic...... streamfunction formulation is formally more accurate than the velocity–pressure decoupled method, because it is immune of decoupling errors. Moreover, the absence of decoupling enhances the stability of the calculation. The governing equations (conservation laws and constitutive models) are discretized......–linear–interface–construction technique. In addition, a new Cellwise Conservative Unsplit (CCU) advection scheme is presented. The CCU scheme updates the liquid volume fractions based on cellwise backward‐tracking of the liquid volumes. The algorithm calculates non‐overlapping and conforming adjacent donating regions, which ensures...

  14. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  15. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  16. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  17. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    Science.gov (United States)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  18. Nanoscale mechanical and tribological properties of fluorocarbon films grafted onto plasma-treated low-density polyethylene surfaces

    International Nuclear Information System (INIS)

    Cheng, Q; Komvopoulos, K

    2012-01-01

    Fluorocarbon (FC) films were grafted onto Ar plasma-treated low-density polyethylene (LDPE) surfaces by plasma polymerization and deposition. The evolution of the surface morphology of the grafted FC films was investigated at different scales with an atomic force microscope. Nanoscale sliding experiments performed with a surface force microscope provided insight into the nanotribological properties of Ar plasma-treated LDPE, with and without grafted FC films, in terms of applied normal load and number of sliding cycles. The observed trends are explained in the context of microstructure models accounting for morphological and structure changes at the LDPE surface due to the effects of plasma treatment (e.g., selective etching of amorphous phase, chain crosslinking and FC film grafting) and surface sliding (e.g., crystalline lamellae alignment along the sliding direction). Nanoindentation experiments elucidated the effect of plasma treatment on surface viscoelasticity and global contact stiffness. The results of this study demonstrate that plasma-assisted grafting of FC films is an effective surface modification method for tuning the nanomechanical/tribological properties of polymers. (paper)

  19. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  20. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran; Muliana, Anastasia Hanifah

    2012-01-01

    the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling

  1. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull

    Science.gov (United States)

    Pichardo, Samuel; Moreno-Hernández, Carlos; Drainville, Robert Andrew; Sin, Vivian; Curiel, Laura; Hynynen, Kullervo

    2017-09-01

    A better understanding of ultrasound transmission through the human skull is fundamental to develop optimal imaging and therapeutic applications. In this study, we present global attenuation values and functions that correlate apparent density calculated from computed tomography scans to shear speed of sound. For this purpose, we used a model for sound propagation based on the viscoelastic wave equation (VWE) assuming isotropic conditions. The model was validated using a series of measurements with plates of different plastic materials and angles of incidence of 0°, 15° and 50°. The optimal functions for transcranial ultrasound propagation were established using the VWE, scan measurements of transcranial propagation with an angle of incidence of 40° and a genetic optimization algorithm. Ten (10) locations over three (3) skulls were used for ultrasound frequencies of 270 kHz and 836 kHz. Results with plastic materials demonstrated that the viscoelastic modeling predicted both longitudinal and shear propagation with an average (±s.d.) error of 9(±7)% of the wavelength in the predicted delay and an error of 6.7(±5)% in the estimation of transmitted power. Using the new optimal functions of speed of sound and global attenuation for the human skull, the proposed model predicted the transcranial ultrasound transmission for a frequency of 270 kHz with an expected error in the predicted delay of 5(±2.7)% of the wavelength. The sound propagation model predicted accurately the sound propagation regardless of either shear or longitudinal sound transmission dominated. For 836 kHz, the model predicted accurately in average with an error in the predicted delay of 17(±16)% of the wavelength. Results indicated the importance of the specificity of the information at a voxel level to better understand ultrasound transmission through the skull. These results and new model will be very valuable tools for the future development of transcranial applications of

  2. Theory of viscoelasticity an introduction

    CERN Document Server

    Christensen, R

    1982-01-01

    Theory of Viscoelasticity: An Introduction, Second Edition discusses the integral form of stress strain constitutive relations. The book presents the formulation of the boundary value problem and demonstrates the separation of variables condition.The text describes the mathematical framework to predict material behavior. It discusses the problems to which integral transform methods do not apply. Another topic of interest is the thermoviscoelastic stress analysis. The section that follows describes the heat conduction, glass transition criterion, viscoelastic Rayleigh waves, optimal str

  3. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    Science.gov (United States)

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  4. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    Directory of Open Access Journals (Sweden)

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  5. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2017-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated

  6. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  7. Pearling Instabilities of a Viscoelastic Thread

    Science.gov (United States)

    Deblais, A.; Velikov, K. P.; Bonn, D.

    2018-05-01

    Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.

  8. Direct and inverse scattering for viscoelastic media

    International Nuclear Information System (INIS)

    Ammicht, E.; Corones, J.P.; Krueger, R.J.

    1987-01-01

    A time domain approach to direct and inverse scattering problems for one-dimensional viscoelastic media is presented. Such media can be characterized as having a constitutive relation between stress and strain which involves the past history of the strain through a memory function, the relaxation modulus. In the approach in this article, the relaxation modulus of a material is shown to be related to the reflection properties of the material. This relation provides a constructive algorithm for direct and inverse scattering problems. A numerical implementation of this algorithm is tested on several problems involving realistic relaxation moduli

  9. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon...... saline, cyclic testing was performed in the pre-yield region at different strain rates, and the elastic response was determined by a stepwise stress relaxation test. The elastic stress-strain response corresponded to a second-order polynomial fit, while the viscous response showed a linear dependence...

  10. Impact load time histories for viscoelastic missiles

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1977-01-01

    Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load time history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. The target structure may be composed of different materials with different components. Concrete and steel structural components have inherently different viscous friction damping properties. Hence, the equivalent modal damping depends on the degree of participation of these components in the modal response. An approximate rule for determining damping in any vibration mode by weighting the damping of each component according to the modal energy stored in each component is considered

  11. Seismic Wave Propagation in Layered Viscoelastic Media

    Science.gov (United States)

    Borcherdt, R. D.

    2008-12-01

    Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.

  12. Cutting edge science: Laser surgery illuminates viscoelasticity of merotelic kinetochores.

    Science.gov (United States)

    Cabello, Simon; Gachet, Yannick; Tournier, Sylvie

    2016-03-28

    Increasing evidence in eukaryotic cells suggests that mechanical forces are essential for building a robust mitotic apparatus and correcting inappropriate chromosome attachments. In this issue, Cojoc et al. (2016. J. Cell Biol., http://dx.doi.org/10.1083/jcb.201506011) use laser microsurgery in vivo to measure and study the viscoelastic properties of kinetochores. © 2016 Cabello.

  13. Understanding the viscoelastic behavior of silica filled rubber

    NARCIS (Netherlands)

    de Castro, J.G.

    2014-01-01

    This thesis focuses on the understanding the viscoelastic behavior of silica filled Nitrile Butadiene Rubber (NBR) using different sizes/surface areas in three different regions of deformation that will be developed in 3 chapters. The characterization of the samples used in this work is described in

  14. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  15. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  16. SURFACE PROPERTIES AND CATALYTIC PERFORMANCE OF Pt ...

    African Journals Online (AJOL)

    various temperatures of precipitates obtained from aqueous solutions in the ... The oxidation reactivity of VOCs is in the following order: alcohols > aldheydes > aromatics ... Specific surface areas (SSA) were calculated by the BET method from ...

  17. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  18. Antifouling polymer brushes displaying antithrombogenic surface properties

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Sheikh, S.; Blaszykowski, C.; Pop-Georgievski, Ognen; Fedorov, K.; Thompson, M.; Rodriguez-Emmenegger, Cesar

    2016-01-01

    Roč. 17, č. 3 (2016), s. 1179-1185 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polymer brushes * surface characterization * antifouling surfaces Subject RIV: BO - Biophysics Impact factor: 5.246, year: 2016

  19. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  20. Calibration of trapping force and response function of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Berg-Sørensen, Kirstine

    2007-01-01

    , 594) is not possible as the viscoelastic properties of the bio-active medium are a priori unknown. Here, we present an approach that neither requires explicit assumptions about the size of the trapped particle nor about the viscoelastic properties of the medium. Instead, the interaction between...... the medium and the trapped particle is described in a general manner, through velocity and acceleration memory. Our method is applicable to general, at least locally homogeneous, viscoelastic media. The procedure combines active and passive approaches by the application of Onsager's regression hypothesis...

  1. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  2. Local linear viscoelasticity of confined fluids.

    Science.gov (United States)

    Hansen, J S; Daivis, P J; Todd, B D

    2007-04-14

    In this paper the authors propose a novel method to study the local linear viscoelasticity of fluids confined between two walls. The method is based on the linear constitutive equation and provides details about the real and imaginary parts of the local complex viscosity. They apply the method to a simple atomic fluid undergoing zero mean oscillatory flow using nonequilibrium molecular dynamics simulations. The method shows that the viscoelastic properties of the fluid exhibit dramatic spatial changes near the wall-fluid boundary due to the high density in this region. It is also shown that the real part of the viscosity converges to the frequency dependent local shear viscosity sufficiently far away from the wall. This also provides valuable information about the transport properties in the fluid, in general. The viscosity is compared with predictions from the local average density model. The two methods disagree in that the local average density model predicts larger viscosity variations near the wall-fluid boundary than what is observed through the method presented here.

  3. Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression

    KAUST Repository

    Xu, Yangguang

    2018-05-03

    Describing nonlinear viscoelastic properties of polymeric composites when subjected to dynamic loading is essential for development of practical applications of such materials. An efficient and easy method to analyze nonlinear viscoelasticity remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis, to quantitatively characterize the nonlinear viscoelasticity of a pre-compressed layered polymeric composite under oscillatory compression. We discuss the influences of pre-compression, dynamic loading, and the inner structure of polymeric composite on the nonlinear viscoelasticity. Furthermore, we reveal the nonlinear viscoelastic mechanism by combining with other experimental results from quasi-static compressive tests and microstructural analysis. From a methodology standpoint, it is proved that both Fourier transform and geometrical nonlinear analysis are efficient tools for analyzing the nonlinear viscoelasticity of a layered polymeric composite. From a material standpoint, we consequently posit that the dynamic nonlinear viscoelasticity of polymeric composites with complicated inner structures can also be well characterized using these methods.

  4. Experimental Characterization of Innovative Viscoelastic Foams

    Directory of Open Access Journals (Sweden)

    Massimo Viscardi

    2016-05-01

    Full Text Available The evolutionary trend in the automotive industry has produced over time numerous performance and aesthetic innovations, however, the exponential development related to transportation technologies also introduced new requirements concerning the environmental impact [1]. The awareness of ecological issues has led to a reorganization of the evaluations and the vehicle design, currently aimed at reducing the problems that have emerged in empirical investigations and the parallel increase in environmental solutions. The vehicle renewal process involves targeted technical mutations both to observance of ecology as to the safety and comfort of the driver. New recyclable materials and more resistant have been developed in order to minimize the environmental impact of the vehicle even at the end of the operating life of its components, as well as solutions relating to the reduction of noise pollution generated as a response to the requirements of comfort. Modern research programs on a global scale have set themselves the objective of exploiting the potentiality of innovative technologies in the optimization of vehicles efficiency, the noise reduction and in the consequent reduction of fuel burn. One of the crucial topics in the greening of the new generation automotive sector is therefore the use and development of high vibro-acoustic performance materials. The goal of this research is properly focused on the analysis of viscoelastic materials appointed to increase the damping of the vibrations generated in a vehicle. The use of a viscoelastic material in this context is due to its high property to convert vibrational energy into heat, providing a significant dissipation of the vibrations. Trade-off analyses are performed in order define the stiffness and damping capacity of several viscoelastic foams with different thickness and density.

  5. Tuning antimicrobial properties of biomimetic nanopatterned surfaces.

    Science.gov (United States)

    Michalska, Martyna; Gambacorta, Francesca; Divan, Ralu; Aranson, Igor S; Sokolov, Andrey; Noirot, Philippe; Laible, Philip D

    2018-04-05

    Nature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species. Using a combination of microscopies, the mechanisms by which bacteria are killed are demonstrated, emphasizing the dependence upon pillar density and tip geometry. Additionally, real-time imaging reveals how cells are immobilized and killed rapidly. Generic or selective protection from microbial colonization could be conferred to surfaces [for, e.g., internal medicine, implants (joint, dental, and cosmetic), food preparation, and the agricultural industry] patterned with these materials as coatings.

  6. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  7. Composition and physical properties of Enceladus' surface

    Science.gov (United States)

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  8. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  9. Surface properties of semi-infinite Fermi systems

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1979-10-01

    A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy

  10. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  11. Adsorption Properties of the Cu(115) Surface

    DEFF Research Database (Denmark)

    Godowski, P. J.; Groso, A.; Hoffmann, S. V.

    2010-01-01

    The interfaces: K/Cu(115) and CO/Cu(115) have been characterized using surface sensitive techniques, including low energy electron diffraction and photoelectron spectroscopy. K adatoms show tendency to occupy the sites close to the step edges. At low temperature (near 125 K), after completion of ...

  12. Wetting Properties of Molecularly Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-01-01

    Roč. 143, č. 10 (2015), s. 104701 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : contant-angle * solid-surface * dynamics Subject RIV: BJ - Thermodynamics Impact factor: 2.894, year: 2015

  13. Viscoelastic characterization and self-heating behavior of laminated fiber composite driveshafts

    International Nuclear Information System (INIS)

    Henry, Todd C.; Bakis, Charles E.; Smith, Edward C.

    2015-01-01

    Highlights: • Carbon fiber composites with different matrix moduli were manufactured. • The composites are of interest for flexible driveshaft applications. • The composites are viscoelastically characterized using dynamic mechanical analysis. • The viscoelastic properties are used to predict self-heating in spinning shafts. • Measured and predicted temperatures of shafts agreed within 0.7 °C. - Abstract: The high cyclic strain capacity of fiber reinforced polymeric composites presents an opportunity to design driveshafts that can transmit high power under imperfect alignment conditions without the use of flexible couplers. In weight sensitive applications such as rotorcraft, the design of highly optimized driveshafts requires a general modeling capability that can predict a number of shaft performance characteristics—one of which is self-heating due to dynamic loading conditions. The current investigation developed three new flexible matrix composite materials of intermediate matrix modulus that, together with previously developed composites, cover the full range of material properties that are of potential interest in driveshaft design. An analytical model for the self-heating of spinning, misaligned, laminated composite shafts was refined to suit the full range of materials. Inputs to the model include ply-level dynamic material properties of the composite, cyclic strain amplitude and frequency, and various heat transfer constants related to conduction, radiation, and convection. Predictions of the surface temperature of spinning shafts correspond well with experimental measurements for bending strains of up to 2000 με, which encompasses the range of strains expected in rotorcraft driveshaft applications

  14. Dynamical problem of micropolar viscoelasticity

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    gen (1964) and Tomar and Kumar (1999) discussed different types of problems in micropolar elastic medium. Eringen (1967) extended the theory of micropolar elasticity to obtain linear constitutive theory for micropolar material possessing inter- nal friction. A problem on micropolar viscoelastic waves has been discussed by ...

  15. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  16. Viscoelastic behavior of rubbery materials

    CERN Document Server

    Roland, C M

    2011-01-01

    The gigantic size of polymer molecules makes them viscoelastic - their behavior changes depending on how fast and for how long the material is used. This book looks at the latest discoveries in the field from a fundamental molecular perspective, in order to guide the development of better and new applications for soft materials.

  17. Sputtering properties of tungsten 'fuzzy' surfaces

    International Nuclear Information System (INIS)

    Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Yu, J.H.

    2011-01-01

    Sputtering yields of He-induced W 'fuzzy' surfaces bombarded by Ar have been measured in the linear divertor plasma simulator PISCES-B. It is found that the sputtering yield of a fuzzy surface, Y fuzzy , decreases with increasing fuzzy layer thickness, L, and saturates at ∼10% of that of a smooth surface, Y smooth , at L > 1 μm. The reduction in the sputtering yield is suspected to be due mainly to the porous structure of fuzz, since the ratio, Y fuzzy /Y smooth follows (1 - p fuzz ), where p fuzz is the fuzz porosity. Further, Y fuzzy /Y smooth is observed to increase with incident ion energy, E i . This may be explained by an energy dependent change in the angular distribution of sputtered W atoms, since at lower E i , the angular distribution is observed to become more butterfly-shaped. That is, a larger fraction of sputtered W atoms can line-of-sight deposit/stick onto neighboring fuzz nanostructures for lower E i butterfly distributions, resulting in lower ratio of Y fuzzy /Y smooth .

  18. Low temperature self-cleaning properties of superhydrophobic surfaces

    Science.gov (United States)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  19. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    5

    electrical properties of RF sputtered ITO thin films deposited onto Si(100). .... scanning electron microscopy (SEM) surface images are shown along with the cross- ..... annealing effect”, J. of Alloys and Compounds 509, (2011) 6072-6076.

  20. Pseudopotentials for calculating the bulk and surface properties of solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1983-01-01

    A survey is presented describing research in condensed matter physics using pseudopotentials to calculate electronic, structural, and vibrational properties of solids. Semiconductors are emphasized, and both bulk and surface calculations are discussed. (author) [pt

  1. Constitution-specific features of perspiration and skin visco-elasticity in SCM.

    Science.gov (United States)

    Kim, Young-Min; Ku, Boncho; Jung, Chang Jin; Kim, Jaeuk U; Jeon, Young Ju; Kim, Keun Ho; Kim, Jong Yeol

    2014-01-15

    Human skin properties have been used as an important diagnostic component in traditional medicine as they change with health conditions. Sasang constitutional medicine (SCM) puts emphasis on the recognition of the constitution-specific skin features prior to the diagnostic decision of health. In this work, in search of skin-characteristics effectively reflecting SCM features, we compared several skin properties such as perspiration, visco-elasticity, elasticity, and elasticity hysteresis, in several candidate body parts. We conducted a clinical study in which a total of 111 healthy females aged 50 - 70 years participated with their Sasang constitution (SC) types determined objectively by the Sasang constitutional analytic tool. Perspiration on the skin surface was estimated by using a capacitance sensor to measure the amount of moisture on the palm, forehead, and philtrum before and after a heating stimulus. We acquired the visco-elasticity, elasticity, and elasticity hysteresis at the forearm by Dermalab's elasticity sensing device. An analysis of covariance (ANCOVA) was conducted to evaluate the effect of SC on the nine skin features acquired. The visco-elasticity of the forearm of the Soeum-in (SE) group was significantly lower than that of the Taeeum-in (TE) group (F = 68.867, p elasticity hysteresis of the SE group was higher than that of the TE group (F = 10.364, p elasticity, elasticity hysteresis, perspiration on the forehead and philtrum. Our findings are based on a novel interpretation of the SCM literature and will contribute to developing the constitutional health status evaluation system in SCM.

  2. Viscoelastic Flow Modelling for Polymer Flooding

    Science.gov (United States)

    de, Shauvik; Padding, Johan; Peters, Frank; Kuipers, Hans; Multi-scale Modelling of Multi-phase Flows Team

    2015-11-01

    Polymer liquids are used in the oil industry to improve the volumetric sweep and displacement efficiency of oil from a reservoir. Surprisingly, it is not only the viscosity but also the elasticity of the displacing fluid that determine the displacement efficiency. The main aim of our work is to obtain a fundamental understanding of the effect of fluid elasticity, by developing an advanced computer simulation methodology for the flow of non-Newtonian fluids through porous media. We simulate a 3D unsteady viscoelastic flow through a converging diverging geometry of realistic pore dimension using computational fluid dynamics (CFD).The primitive variables velocity, pressure and extra stresses are used in the formulation of models. The viscoelastic stress part is formulated using a FENE-P type of constitutive equation, which can predict both shear and elongational stress properties during this flow. A Direct Numerical Simulation (DNS) approach using Finite volume method (FVM) with staggered grid has been applied. A novel second order Immersed boundary method (IBM) has been incorporated to mimic porous media. The effect of rheological parameters on flow characteristics has also been studied. The simulations provide an insight into 3D flow asymmetry at higher Deborah numbers. Micro-Particle Image Velocimetry experiments are carried out to obtain further insights. These simulations present, for the first time, a detailed computational study of the effects of fluid elasticity on the imbibition of an oil phase.

  3. Viscoelastic effect on acoustic band gaps in polymer-fluid composites

    International Nuclear Information System (INIS)

    Merheb, B; Deymier, P A; Muralidharan, K; Bucay, J; Jain, M; Aloshyna-Lesuffleur, M; Mohanty, S; Berker, A; Greger, R W

    2009-01-01

    In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals

  4. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  5. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  6. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  7. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  8. A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.

    Science.gov (United States)

    Freed, Alan D.; Leonov, Arkady I.

    2002-01-01

    The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.

  9. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    International Nuclear Information System (INIS)

    Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Tamburri, E.; Lucci, M.; Davoli, I.; Berezina, S.

    2009-01-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  10. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)

    2009-11-15

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  11. Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties

    Science.gov (United States)

    Nagpal, Prashant; Singh, Vivek; Ding, Yuchen

    2014-03-01

    Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.

  12. Oleophobic properties of the step-and-terrace sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical–mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of the surface. The results are analyzed using the Ventsel–Deryagin homogeneous wetting model.

  13. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  14. Analysis of asphalt mix surface-tread rubber interaction by using finite element method

    NARCIS (Netherlands)

    Srirangam, S.K.; Anupam, K.; Kasbergen, C.; Scarpas, Athanasios

    2017-01-01

    The surface texture of the pavement plays a very important role in driving the frictional properties at the tire rubber-pavement interface. Particularly, the hysteretic friction due to viscoelastic deformations of rubber depends mainly on the pavement surface texture. In the present paper, the

  15. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  16. Sensitivity Analysis of Viscoelastic Structures

    Directory of Open Access Journals (Sweden)

    A.M.G. de Lima

    2006-01-01

    Full Text Available In the context of control of sound and vibration of mechanical systems, the use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications. Numerical models based on finite element discretization have been frequently used in the analysis and design of complex structural systems incorporating viscoelastic materials. Such models must account for the typical dependence of the viscoelastic characteristics on operational and environmental parameters, such as frequency and temperature. In many applications, including optimal design and model updating, sensitivity analysis based on numerical models is a very usefull tool. In this paper, the formulation of first-order sensitivity analysis of complex frequency response functions is developed for plates treated with passive constraining damping layers, considering geometrical characteristics, such as the thicknesses of the multi-layer components, as design variables. Also, the sensitivity of the frequency response functions with respect to temperature is introduced. As an example, response derivatives are calculated for a three-layer sandwich plate and the results obtained are compared with first-order finite-difference approximations.

  17. Viscoelastic characterization of soft biological materials

    Science.gov (United States)

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly

  18. Silica-filled tire tread compounds: an investigation into the viscoelastic properties of the rubber compounds and their relation to tire performance

    NARCIS (Netherlands)

    Maghami, S.

    2016-01-01

    With increasing the global concern for fossil fuel consumption, automotive industry moves toward more efficient vehicles. Tires are of great importance in this respect, as the tire compound material in contact with the road surface and under the cyclic deformation dissipates energy due to its

  19. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  20. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  1. Investigation of the surface adsorption and biotribological properties of mucins

    DEFF Research Database (Denmark)

    Madsen, Jan Busk

    to a surface. However, in other instances the inverse properties are desirable. Mucins are found on epithelial surfaces throughout the body and are a key component of the mucus barrier. Here, they facilitate friction reduction, thus lowering the impact of physical abrasions, but they also act as a physical...... charge due to the oligosaccharides being capped by negatively charged species such as sialic acid or sulphate groups. Mucins display phenotypic diversion according to their expression site. This is most pronounced in the oligosaccharide composition of the central domains. The amphiphilic nature of mucins...... and their aqueous lubrication properties have led to them being proposed as possible biocompatible lubricants. In this thesis, we investigate the biotribological properties of two commercially available mucins on the soft, elastomeric and hydrophobic surface of PDMS under different conditions. Due to the presence...

  2. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  3. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  4. Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth

    International Nuclear Information System (INIS)

    Rundle, J.B.

    1982-01-01

    Previous papers in this series have been concerned with developing the numerical techniques required for the evaluation of vertical displacements which are the result of thrust faulting in a layered, elastic-gravitational earth model. This paper extends these methods to the calculation of fully time-dependent vertical surface deformation from a rectangular, dipping thrust fault in an elastic-gravitational layer over a viscoelastic-gravitational half space. The elastic-gravitational solutions are used together with the correspondence principle of linear viscoelasticity to give the solution in the Laplace transform domain. The technique used here to invert the displacements into the time domain is the Prony series technique, wherein the transformed solution is fit to the transformed representation of a truncated series of decaying exponentials. Purely viscoelastic results obtained are checked against results found previously using a different inverse transform method, and agreement is excellent. A series of results are obtained for a rectangular, 30 0 dipping thrust fault in an elastic-gravitational layer over viscoelastic-gravitational half space. Time-dependent displacements are calculated out to 50 half space relaxation times tau/sub a/, or 100 Maxwell times 2tau/sub m/ = tau/sub a/. Significant effects due to gravity are shown to exist in the solutions as early as several tau/sub a/. The difference between the purely viscoelastic solution and the viscoelastic-gravitational solutions grows as time progresses. Typically, the solutions with gravity reach an equilibrium value after 10--20 relaxation times, when the purely viscoelastic solutions are still changing significantly. Additionally, the length scaling which was apparent in the purely viscoelastic problem breaks down in the viscoelastic-gravitational problem

  5. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  6. Parametric surface and properties defined on parallelogrammic domain

    OpenAIRE

    Shuqian Fan; Jinsong Zou; Mingquan Shi

    2014-01-01

    Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not b...

  7. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  8. Influence of surface roughness on the friction property of textured surface

    OpenAIRE

    Yuankai Zhou; Hua Zhu; Wenqian Zhang; Xue Zuo; Yan Li; Jianhua Yang

    2015-01-01

    In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in ...

  9. Effect of mechanical damage and wound healing on the viscoelastic properties of stems of flax cultivars (Linum usitatissimum L. cv. Eden and cv. Drakkar).

    Science.gov (United States)

    Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique; Speck, Olga

    2017-01-01

    As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield.

  10. Characterization and Analysis of Viscoelastically Loaded Thin Film Piezoelectric Resonators Incorporated in AN Oscillator Microsensing System.

    Science.gov (United States)

    O'Toole, Ronald Patrick

    1994-01-01

    In the recent advancement of piezoelectric resonator technology, there has been a large growth in the application of these devices for chemical sensing. These sensors operate by detecting changes in their environment which perturb the electrical - acoustic operation and in turn can be harnessed by means of supporting electronics and signal processing to monitor various processes. Examples include remote environmental monitoring, chemical process control, and commercial gas phase detectors. In this dissertation, the chemical sensing theory and properties of piezoelectric resonators such as the bulk-acoustic wave thin-film resonator (TFR) and the quartz crystal microbalance (QCM) are developed. This analysis concentrates on characterizing the resonance behavior of thickness mode resonators based upon the physical properties at the electrode interface which include interfacial mass density, elasticity, viscosity, and thickness of the composite device consisting of the piezoelectric material, the electrodes, and any deposited layer on the electrode surface in contact with the surrounding medium. In this work, no approximation is made as to the stress or particle displacement variation across the visco-elastic film which allows a complete study of the perturbational mechanical variations on the electrical and resonance properties of the composite resonator. The derivation and verification of equivalent circuit models based on the physical properties of the piezoelectric resonator and visco-elastic sensing film are presented. The results and models from this research will be beneficial to surface chemistry studies and also have application to fabrication techniques and electrical modeling. The use of this theory is employed in a study of a QCM coated with a commercially developed negative resist. Photo-polymerization of the resist results in induced visco-elastic structural changes which can be monitored and characterized using the full admittance theory of the composite

  11. Viscoelastic and thermal behavior of structural concrete with reference to containment vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1981-01-01

    A method of numerical viscoelastic stress analysis is described suitable for concrete structures operating at elevated temperatures. The paper describes how approximate numerical methods of elastic analysis of the finite element type can be extended to incorporate the viscoelastic behavior of structural concrete of the quasi-static type. A new eight parameter viscoelastic model is proposed to represent concrete behavior in the loaded and unloaded stage. The deformational expressions for the proposed viscoelastic analogue are also developed. Finally, as a result of courve-fitting procedures, the evaluation of the creep law coefficients are obtained for creep laws appropriate to a test regime. The proposed method is of general application providing that the properties of concrete are assessed reasonably well. The analytical predictions are compared with experimental results obtained on concrete model specimens loaded for 3 1/2 months, at a temperature of 80 0 C. (author)

  12. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  13. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  14. Surface properties of CNTs and their interaction with silica.

    Science.gov (United States)

    Sobolkina, Anastasia; Mechtcherine, Viktor; Bellmann, Cornelia; Khavrus, Vyacheslav; Oswald, Steffen; Hampel, Silke; Leonhardt, Albrecht

    2014-01-01

    In order to improve the embedding of carbon nanotubes (CNTs) in cement-based matrices, silica was deposited on the sidewall of CNTs by a sol-gel method. Knowledge of the conditions of CNTs' surfaces is a key issue in understanding the corresponding interaction mechanisms. In this study various types of CNTs synthesized using acetonitrile, cyclohexane, and methane were investigated with regard to their physicochemical surface properties. Significant differences in surface polarity as well as in the wetting properties of the CNTs, depending on the precursors used, were revealed by combining electro-kinetic potential and contact angle measurements. The hydrophobicity of CNTs decreases by utilising the carbon sources in the following order: cyclohexane, methane, and finally acetonitrile. The XPS analysis, applied to estimate the chemical composition at the CNT surface, showed nitrogen atoms incorporated into the tube structure by using acetonitrile as a carbon source. It was found that the simultaneous presence of nitrogen- and/or oxygen-containing sites with different acid-base properties increased the surface polarity of the CNTs, imparting amphoteric characteristics to them and improving their wetting behaviour. Regarding the silica deposition, strong differences in adsorption capacity of the CNTs were observed. The mechanism of silica adsorption through interfacial bond formation was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  16. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  17. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  18. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...

  19. The visco-elastic multilayer program VEROAD

    NARCIS (Netherlands)

    Hopman, P.C.

    1996-01-01

    The mathematical principles and derivation of a linear visco-elastic multilayer computer program are described. The mathematical derivation is based on Fourier Transformation. The program is called VEROAD, which is an acronym for Visco-Elastic ROad Analysis Delft. The program allows calculation of

  20. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  1. Parametric surface and properties defined on parallelogrammic domain

    Directory of Open Access Journals (Sweden)

    Shuqian Fan

    2014-01-01

    Full Text Available Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-bility (and its limitation in logarithmic spiral bevel gears is analyzed using precision forging and multi-axis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-axis freeform milling also need to be solved in a further study.

  2. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  3. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  4. Process-induced viscoelastic stress in composite laminates

    International Nuclear Information System (INIS)

    Stango, R.J.

    1985-01-01

    In recent years, considerable interest has developed in evaluating the stress response of composite laminates which is associated with cooling the material system from the cure temperature to room temperature. This research examines the fundamental nature of time-dependent residual-thermal stresses in composite laminates which are caused by the extreme temperature reduction encountered during the fabrication process. Viscoelastic stress in finite-width, symmetric composite laminates is examined on the basis of a formulation that employs an incremental hereditary integral approach in conjunction with a quasi-three dimensional finite element analysis. A consistent methodology is developed and employed for the characterization of lamina material properties. Special attention is given to the time-dependent stress response at ply-interface locations near the free-edge. In addition, the influence of cooling path on stress history is examined. Recently published material property data for graphite-epoxy lamina is employed in the analysis. Results of the investigation generally indicate that nominal differences between the thermoelastic and viscoelastic solutions are obtained. Slight changes of the final stress state are observed to result when different cooling paths are selected for the temperature history. The methodology employed is demonstrated to result in an accurate, efficient, and consistent approach for the viscoelastic analysis of advanced composite laminates

  5. Magnetic and viscoelastic response of elastomers with hard magnetic filler

    International Nuclear Information System (INIS)

    Kramarenko, E Yu; Chertovich, A V; Semisalova, A S; Makarova, L A; Perov, N S; Khokhlov, A R; Stepanov, G V

    2015-01-01

    Magnetic elastomers (MEs) based on a silicone matrix and magnetically hard NdFeB particles have been synthesized and their magnetic and viscoelastic properties have been studied depending on the size and concentration of magnetic particles and the magnetizing field. It has been shown that magnetic particles can rotate in soft polymer matrix under applied magnetic field, this fact leading to some features in both magnetic and viscoelastic properties. In the maximum magnetic field used magnetization of MEs with smaller particles is larger while the coercivity is smaller due to higher mobility of the particles within the polymer matrix. Viscoelastic behavior is characterized by long relaxation times due to restructuring of the magnetic filler under the influence of an applied mechanical force and magnetic interactions. The storage and loss moduli of magnetically hard elastomers grow significantly with magnetizing field. The magnetic response of the magnetized samples depends on the mutual orientation of the external magnetic field and the internal sample magnetization. Due to the particle rotation within the polymer matrix, the loss factor increases abruptly when the magnetic field is turned on in the opposite direction to the sample magnetization, further decreasing with time. Moduli versus field dependences have minimum at non-zero field and are characterized by a high asymmetry with respect to the field direction. (paper)

  6. Anisotropy in the viscoelastic response of knee meniscus cartilage.

    Science.gov (United States)

    Coluccino, Luca; Peres, Chiara; Gottardi, Riccardo; Bianchini, Paolo; Diaspro, Alberto; Ceseracciu, Luca

    2017-01-26

    The knee meniscus is instrumental to stability, shock absorption, load transmission and stress distribution within the knee joint. Such functions are mechanically demanding, and replacement constructs used in meniscus repair often fail because of a poor match with the surrounding tissue. This study focused on the native structure-mechanics relationships and on their anisotropic behavior in meniscus, to define the target biomechanical viscoelastic properties required by scaffolds upon loading. To show regional orientation of the collagen fibers and their viscoelastic behavior, bovine lateral menisci were characterized by second harmonic generation microscopy and through time-dependent mechanical tests. Furthermore, their dynamic viscoelastic response was analyzed over a wide range of frequencies. Multilevel characterization aims to expand the biomimetic approach from the structure itself, to include the mechanical characteristics that give the meniscus its peculiar properties, thus providing tools for the design of novel, effective scaffolds. An example of modeling of anisotropic open-cell porous material tailored to fulfill the measured requirements is presented, leading to a definition of additional parameters for a better understanding of the load transmission mechanism and for better scaffold functionality.

  7. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Edson Cocchieri; Costa, Michelle Leali; Braga, Carlos Isidoro, E-mail: ebotelho@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia; Burkhart, Thomas [Institut fuer Verbundwerkstoffe GmbH, Kaiserslautern, (Germany); Lauke, Bernd [Leibniz-Institut fuer Polymerforschung, Dresden (Germany)

    2013-11-01

    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process. (author)

  8. On flows of viscoelastic fluids under threshold-slip boundary conditions

    Science.gov (United States)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  9. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  10. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  11. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  12. Interfacial aspects in the production of advanced viscoelastic composites

    International Nuclear Information System (INIS)

    Khan, M.B.

    1997-01-01

    The integrity and morphology of the interfacial junction often dictate the mechanical and thermal response of multiphase engineering materials. The production of materials with synergistic properties requires the effective generation and consolidation of material interfaces. The paper examines this theme in viscoelastic systems, comprising polymer alloys, reactive composites, electrical insulation and reinforced commodity polymers. Processing protocol is identified through TEM/SEM for the nylon/ABS composite material that alloys optimum utilization of reactive comptabilizers. Comparative results show that both reactive and miscibility are crucial for a compatibilizer to provide sufficient dispersion and adequate interfacial adhesion between the two phases. In discrete system, interfacial coupling is normally accomplished by bonding agents which form chemical bridges across the particle-matrix interface. A recent technique, however, utilizer a lateral modulus gradient across the material interface to increase fracture energy (Mechanical approach), Micro morphology of a convectional composite sans bonding agent is compared with the latter modified via the mechanical approach, Cryo-fracture surfaces of these composites reveal good particle-matrix adhesion in the modified composite, as opposed to visible particle pull-out observed in the other composite. A third approach toward interfacial coupling relies on the suitable modification of the particle surface to promote interaction between the particle and the polymer chains. This strategy is examined with particular reference to electoral cable sheathing and synthetic window profile, by using composite particles produced in the author's processing facility. ESCA spectrum of these particles is discussed, along with impact and TGA/DTA data for the modified PVC/EPDM composites. The impact strength of rigid PVC improved over a range of temperature, including the important region of zero degree centigrade and below. TGGA

  13. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  15. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  16. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  17. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    OpenAIRE

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The opti...

  18. Correlation properties of surface and percolation transfer of electrons

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    2002-01-01

    In this work was received equation, connecting correlatively properties of surface with electrons distribution function. Usually for equilibrium is necessary a large number of collisions. Collisions are 'destroying' correlations. In case rare collisions large importance have correlations and 'memory' effects. Non-Markov's character of emitting particles by surface lead to strongly nonequilibrium condition of 'gas'. Here kinetic equation of diffusive form does not apply. Classical kinetic equation are described only conditions near to equilibrium. This work offers to use ideas anomal diffusion in phase-space. The correlation properties of surface describe by correlations of velocities of emitting electrons: B(t). We offer to use functional equation for probability collision instead of kinetic equation: ∫ 0 ν 0 W noncoll F(ν) dv = 1 - B(t). This functional allow to consider 'memory' effects. It is important for consideration of electrons and clusters near surfaces. Distribution function become direct connected with correlations. In classical Kubo-Mory theory of transfer is necessary to get nondivergences integral: D ∝ ∫ 0 ∞ B(t). In considering case we can use even 'power function'. It was used 'slow' correlation function as Kohlraush in calculations. The information about kinetics and correlations properties are containing in one functional equation. It was received solution of this equation in form Levy function: F(ν) ∝ 1/ν α exp(-1/ν). The solution of this form can not be get with help asymptotic methods of kinetic theory. Asymptotics of solution have scale-invariant character F(V) ∝ 1/V α . This indicate on fractal properties phase-space. (author)

  19. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  20. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  1. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  2. Visco-elastic properties of biofilms

    NARCIS (Netherlands)

    Peterson, Brandon Wade

    2013-01-01

    Microbiële biofilms aanpakken door ze te laten resoneren Naar schatting tachtig procent van alle bacteriële infecties die door dokters behandeld worden, wordt veroorzaakt door biofilms, dunne laagjes micro-organismen. Brandon Peterson stelt in preklinisch onderzoek de hypothese op dat de hechting

  3. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  4. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    International Nuclear Information System (INIS)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin; Wang, Cheng Yuan

    2017-01-01

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system

  5. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  6. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  7. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  8. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  9. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  10. pH-induced contrast in viscoelasticity imaging of biopolymers

    International Nuclear Information System (INIS)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  11. Role of viscoelasticity in instability in plane shear flow over a ...

    Indian Academy of Sciences (India)

    lence in boundary layer flow over deformable surfaces as found by pioneering experiments of ... supports a viscous fluid layer of thickness around 300 μm to 1000 μm in a parallel-plate rheome- ter. ... applications are viscoelastic. ... In the absence of inertia, the Newtonian fluid flow over a flat rigid surface is always stable,.

  12. Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties

    International Nuclear Information System (INIS)

    Sumant, A. V.; Grierson, D. S.; Carpick, R. W.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.

    2007-01-01

    We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO 2 after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp 2 fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp 2 fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2±2 vs 826±186 mJ/m 2 , respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2±0.4 mJ/m 2 , at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the

  13. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  14. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  15. Understanding viscoelasticity an introduction to rheology

    CERN Document Server

    Phan-Thien, Nhan

    2017-01-01

    This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between...

  16. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  17. Understanding Viscoelasticity An Introduction to Rheology

    CERN Document Server

    Phan-Thien, Nhan

    2013-01-01

    This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed,...

  18. Viscoelastic model of tungsten 'fuzz' growth

    International Nuclear Information System (INIS)

    Krasheninnikov, S I

    2011-01-01

    A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.

  19. Dynamics and Stability of Rolling Viscoelastic Tires

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Trevor [Univ. of California, Berkeley, CA (United States)

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.

  20. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  1. Investigation of CVD graphene topography and surface electrical properties

    International Nuclear Information System (INIS)

    Wang, Rui; Pearce, Ruth; Gallop, John; Patel, Trupti; Pollard, Andrew; Hao, Ling; Zhao, Fang; Jackman, Richard; Klein, Norbert; Zurutuza, Amaia

    2016-01-01

    Combining scanning probe microscopy techniques to characterize samples of graphene, a selfsupporting, single atomic layer hexagonal lattice of carbon atoms, provides far more information than a single technique can. Here we focus on graphene grown by chemical vapour deposition (CVD), grown by passing carbon containing gas over heated copper, which catalyses single atomic layer growth of graphene on its surface. To be useful for applications the graphene must be transferred onto other substrates. Following transfer it is important to characterize the CVD graphene. We combine atomic force microscopy (AFM) and scanning Kelvin probe microscopy (SKPM) to reveal several properties of the transferred film. AFM alone provides topographic information, showing ‘wrinkles’ where the transfer provided incomplete substrate attachment. SKPM measures the surface potential indicating regions with different electronic properties for example graphene layer number. By combining AFM and SKPM local defects and impurities can also be observed. Finally, Raman spectroscopy can confirm the structural properties of the graphene films, such as the number of layers and level of disorder, by observing the peaks present. We report example data on a number of CVD samples from different sources. (paper)

  2. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  3. Recent advances in elasticity, viscoelasticity and inelasticity

    CERN Document Server

    Rajagopal, KR

    1995-01-01

    This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.

  4. Tribological properties of nanostripe surface structures-a design concept for improving tribological properties

    International Nuclear Information System (INIS)

    Miyake, K; Nakano, M; Korenaga, A; Mano, H; Ando, Y

    2010-01-01

    The tribological properties of nanostripe surface structures were investigated using a pin-on-plate tribometer in order to propose a design concept for improving the tribological properties. The authors used four kinds of nanostripe structures consisting of different combinations of materials (Fe-Au, C-SiC, Al-Al 2 O 3 and Al-Pt) fabricated by a process they had previously proposed. The frictional properties of the nanostripe structures depended on the materials that constituted the nanostripes. When the sliding direction in friction tests was parallel to the microgrooves, nanostripe structures remained on all surfaces even after friction tests. Based on the friction test results, the authors considered a design concept for nanostripe structures in tribological applications.

  5. Numerical simulations of rough contacts between viscoelastic materials

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.

  6. Effect of viscoelastic and dielectric relaxing matrix on ferroelastic behaviour of 1-3 piezocomposites

    Directory of Open Access Journals (Sweden)

    R. Jayendiran

    2015-02-01

    Full Text Available This work focuses on evaluating the time-dependent non-linear ferroelastic behaviour of 1-3 piezocomposites under pure uni-axial compressive stress loading condition. An experimental setup is developed to study the influence of high-stress levels on the stress-strain and stress-polarization behaviour of 1-3 piezocomposites. The electro-elastic effective properties of 1-3 piezocomposites are measured experimentally based on IEEE standard and compared with the proposed numerical model using finite-element software ABAQUS. The time-dependent effective properties are evaluated using viscoelastic model and it is incorporated into a 3D micromechanical model to predict the viscoelastic behaviour of 1-3 piezocomposites under mechanical loading. The simulated results are compared with the viscoelastic behaviour of 1-3 piezocomposites obtained from experiments.

  7. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  8. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  9. Viscoelastic response of a model endothelial glycocalyx

    International Nuclear Information System (INIS)

    Nijenhuis, Nadja; Spaan, Jos A E; Mizuno, Daisuke; Schmidt, Christoph F

    2009-01-01

    Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite

  10. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  11. Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity

    Science.gov (United States)

    Allison, K. L.; Dunham, E. M.

    2016-12-01

    We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.

  12. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    Science.gov (United States)

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  13. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  14. Properties of bare strange stars associated with surface electric fields

    International Nuclear Information System (INIS)

    Picanco Negreiros, Rodrigo; Mishustin, Igor N.; Schramm, Stefan; Weber, Fridolin

    2010-01-01

    In this paper we investigate the electrodynamic surface properties of bare strange quark stars. The surfaces of such objects are characterized by the formation of ultrahigh electric surface fields which might be as high as ∼10 19 V/cm. These fields result from the formation of electric dipole layers at the stellar surfaces. We calculate the increase in gravitational mass associated with the energy stored in the electric dipole field, which turns out to be only significant if the star possesses a sufficiently strong net electric charge distribution. In the second part of the paper, we explore the intriguing possibility of what happens when the electron layer (sphere) rotates with respect to the stellar strange matter body. We find that in this event magnetic fields can be generated which, for moderate effective rotational frequencies between the electron layer and the stellar body, agree with the magnetic fields inferred for several central compact objects. These objects could thus be comfortably interpreted as strange stars whose electron atmospheres rotate at frequencies that are moderately different (∼10 Hz) from the rotational frequencies of the strange star itself.

  15. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  16. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  17. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  18. Effects of a Chitosan Coating Layer on the Surface Properties and Barrier Properties of Kraft Paper

    Directory of Open Access Journals (Sweden)

    Shanhui Wang

    2016-01-01

    Full Text Available Biodegradable chitosan can be applied as a coating on the surface of kraft paper in order to improve its barrier properties against water vapor and air. The food packaging industry can benefit from the addition of chitosan to its current packaging, and in turn reduce pollution from plastic packaging plants. This paper discusses the film formation of chitosan, the permeability of paper coated with a chitosan layer, and the influence on the paper’s surface and barrier properties under different process conditions. SEM (scanning electron microscope, AFM (atomic force microscope, ATR-FTIR (Fourier transmission infrared spectroscope with attenuated total reflection, and PDA (penetration dynamics analysis were used to analyze the properties of chitosan’s film formation and permeability. A controlled experiment showed that the chitosan layer was smoother than the surface of the uncoated kraft paper, had better film formation, and that there was no chitosan penetration through the kraft paper. The barrier properties against water vapor were strongest when there was a higher concentration of chitosan solution at the optimum pH, stirring speed, and those with a thicker coating on the kraft paper.

  19. Surface ferromagnetism and superconducting properties of nanocrystalline niobium nitride

    International Nuclear Information System (INIS)

    Shipra, R.; Kumar, Nitesh; Sundaresan, A.

    2013-01-01

    Nanocrystalline δ-NbN x samples have been synthesized by reacting NbCl 5 and urea at three different temperatures. A comparison of their structural, magnetic, transport and thermal properties is reported in the present study. The size of the particles and their agglomeration extent increase with increasing reaction temperature. The sample prepared at 900 °C showed the highest superconducting transition temperature (T c ) of 16.2 K with a transition width, ∼1.8 K, as obtained from the resistivity measurement on cold-pressed bars. Above T c , magnetization measurements revealed the presence of surface ferromagnetism which coexists with superconductivity below T c . Heat capacity measurements confirm superconductivity with strong electron–phonon coupling constant. The sample prepared at 800 °C shows a lower T c (10 K) while that prepared at 700 °C exhibit no superconductivity down to the lowest temperature (3 K) measured. - Highlights: ► Synthesis of δ-NbN nanoparticles by urea nitridation of NbCl 5 . ► Superconducting transition temperature (T c ) is 16.2 K. ► Superconductivity and surface ferromagnetism coexist in the nanoparticles. ► Effect of size and agglomeration on the physical properties of nanoparticles

  20. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  1. Properties and cleanability of new and traditional agricultural surface materials

    Directory of Open Access Journals (Sweden)

    J. MÄÄTTÄ

    2008-12-01

    Full Text Available The aim of the present study was to evaluate new and traditional surface materials for use in cattle barns. The evaluated concrete materials had different compositions and included different additives and coatings. Contact angle meter, optical profilometry and scanning electron microscopy SEM were used for characterization of surface properties. Radiochemical methods and a biochemical adenosine triphosphate ATP method were used to determine cleanability. A specific methodological aim was to examine the correlations between these determination methods. A statistically significant difference was observed between contact angles of non-coated concretes, coated concretes and joint materials. In general, coatings smoothened surfaces and the joint materials were the roughest surfaces, as illustrated by profilometry and SEM. On the basis of the radiochemical determination methods, coatings improved the cleanability of concrete. An epoxy joint material was cleaned efficiently from the oil model soil and from the labelled feed soil when compared to the two cement-based joint materials. According to the results of the biochemical ATP method the manure test soil was cleaned better from a concrete including inorganic sealant than from the other materials examined. The cleanability results of oil model soil used in the radiochemical method correlated with the results of the test feed soil used in the biochemical ATP method. Both determination methods of cleanability appeared to be suitable for examining the cleanability of surfaces soiled with agricultural soils. Only the radiochemical determination gives detailed quantitative results, but it can be used only in laboratory studies. The results of this laboratory study will be used for selecting materials for a pilot study in a cattle barn.;

  2. Approximation of Viscoelastic Stresses from Newtonian Turbulent Kinematics

    Science.gov (United States)

    1988-09-01

    birefringence of polyethylene oxide solutions in a four roll mill. J.Poly.Sci.:Poly.Phys.Ed. 14, 1111-1119. Dandridge, A., Meeten , G.H., Layec-Raphalen, M.N...flows. Poly. Comm. 25, 144-146. Metzner, A.B., & Astarita, G . 1967 External flow of viscoelastic materials: fluid property restrictions on the use of...dumbbell model for dilute solutions. Rheol.Acta 23, 151-162. Philippoff, W. 1956 Flow-birefringence and stress. Nature 178 , 811-812. Ryskin, G . 1987a

  3. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

    Science.gov (United States)

    Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen

    2011-04-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

  4. Surface properties, solubility and dissolution kinetics of bamboo phytoliths

    Science.gov (United States)

    Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique

    2006-04-01

    Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir

  5. An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Wenke Huang

    2016-01-01

    Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.

  6. Finite element reduction strategy for composite sandwich plates with viscoelastic layers

    Directory of Open Access Journals (Sweden)

    Adriana Amaro Diacenco

    2013-04-01

    Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.

  7. Finite element reduction strategy for composite sandwich plates with viscoelastic layers

    Directory of Open Access Journals (Sweden)

    Adriana Amaro Diacenco

    2012-01-01

    Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.

  8. Efeito do uso de cultura adjunta (Lactobacillus helveticus na proteólise, propriedades viscoelásticas e aceitação sensorial de queijo prato light Effect of adjunct culture (Lactobacillus helveticus on proteolysis, viscoelastic properties and sensory acceptance of reduced fat prato cheese

    Directory of Open Access Journals (Sweden)

    Christiane Maciel V. Barros

    2006-03-01

    Full Text Available A proteólise, as propriedades viscoelásticas e a aceitação sensorial de queijo prato light fabricado com e sem adição de cultura adjunta (CAD foram avaliadas. Os queijos foram fabricados a partir de leite microfiltrado. Dois tratamentos foram testados em duplicata: o queijo controle foi fabricado apenas com cultura mesófila tradicional (acidificante e aromatizante, e o outro foi fabricado com adição de CAD (Lactobacillus helveticus, além da cultura tradicional. A composição dos queijos foi determinada no quinto dia após a fabricação. A proteólise e as propriedades reológicas foram avaliadas nos dias 5, 25 e 45 após a fabricação. Os parâmetros viscoelásticos foram obtidos a partir de testes de relaxação. As amostras foram avaliadas sensorialmente por meio de testes de aceitação. Não houve diferença significativa (p>0,05 na composição dos queijos. Os índices de profundidade de proteólise foram significativamente (p0,05. Nos testes de aceitação sensorial, o queijo produzido com CAD obteve notas significativamente (pProteolysis, viscoelastic properties and sensory acceptance of reduced fat Prato cheeses made with and without adjunt culture (AC were evaluated. The cheeses were made from microfiltered milk. Two different treatments were replicated twice: control cheese was made only with traditional starter, while the other was made with the addition of both AC (Lactobacillus helveticus and traditional starter. Cheese composition was determined after 5 days of manufacture. Proteolysis and rheological properties were evaluated after 5, 25 and 45 days. Viscoelastic parameters were obtained using relaxation tests. Cheese sensory properties were evaluated using acceptability tests. There was no statistical difference (p>0,05 in cheese composition. The proteolysis depth indexes were significantly higher (p0.05 in viscoelastic parameters for cheeses made with and without AC. Sensory acceptability tests indicated significant

  9. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  10. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

  11. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  12. Improvement of carbon fibre surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly due to their mechanical properties, and additional features such as high strength-to-weight ratio, stiffness-to-weight ratio, corrosion resistance and wear properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between the components that are fiber and polymeric matrix. The greatest challenge is to improve adhesion between components having elasticity modulus which differ by orders of magnitude and furthermore they are immiscible in each other. Another important factor is the sizing material on the carbon fiber, which protects the carbon fiber filaments and must be compatible with the matrix material in order to improve the adhesion process. The interaction of ionizing radiation from electron beam can induce in the irradiated material the formation of very active centers and free radicals. Further evolution of these active species can significantly modify structure and properties not only in the irradiated polymeric matrix but also on the fiber surface. So that, fiber and matrix play an important role in the production of chemical bonds, which promote better adhesion between both materials improving the composite mechanical performance. The aim of this work was to improve the surface properties of the carbon fiber surface using ionizing radiation from an electron beam in order to obtain improvement of the adhesion properties in the resulted composite. Commercial carbon fiber roving of high tensile strength with 12 000 filaments named 12 k, and sizing material of epoxy resin modified by ester groups was studied. EB irradiation has been carried out at the Institute for Nuclear and Energy Research (IPEN) facilities using a 1.5 MeV 37.5 kW Dynamitron electron accelerator model JOB-188. Rovings of carbon fibers with 1.78 g cm -3 density and 0.13 mm thickness were irradiated with 0.555 MeV, 6.43 mA and

  13. Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation

    Science.gov (United States)

    Dabiri, Arman; Butcher, Eric A.; Nazari, Morad

    2017-02-01

    Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.

  14. Growth and decay of weak disturbances in visco-elastic arteries

    International Nuclear Information System (INIS)

    Gaur, M.; Rai, S.K.

    1996-01-01

    In non-linear mathematical models of the arterial circulation, the visco-elasticity of the vessel walls has generally been neglected or only taken into account in a highly approximate manner. The object of the present paper is to provide a mathematical model for the propagation of weak disturbances in visco-elastic arteries. A differential equation governing the growth and decay of the waves has been obtained and solved analytically. It is observed that compressive pulses may grow into shock waves. A mathematical model which is based on geometrical and mechanical properties of arteries admits disturbances in the propagating pulses which are not observed in human beings under normal physiological conditions. It is also predicted that visco-elasticity delays the shock wave formation in the model. The shock wave may appear in periphery in the case of aortic insufficiency due to increased pressure at the root of aorta. The corresponding predictions are in much better agreement with in vivo measurements

  15. Stress-based viscoelastic master curve construction of model tire tread compounds

    NARCIS (Netherlands)

    Maghami, S.; Dierkes, W.; Noordermeer, J.W.M.; Tolpekina, T.; Schultz, S.; Gögelein, C.; Wrana, C.; Gil-Negrete, Nere; Asier, Alonso

    2013-01-01

    One of the important aspects in the development of new tire compounds is the correlation between the dynamic mechanical properties of the rubber, measured on laboratory scale, and the actual tire performance. In order to predict wet traction, the viscoelastic behavior of the rubber materials at high

  16. Intermolecular potential energy surface and thermophysical properties of propane.

    Science.gov (United States)

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  17. Three-sphere swimmer in a nonlinear viscoelastic medium

    KAUST Repository

    Curtis, Mark P.; Gaffney, Eamonn A.

    2013-01-01

    are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer

  18. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  19. Stick-slip behaviour of a viscoelastic flat sliding along a rigid indenter

    NARCIS (Netherlands)

    Budi Setiyana, Budi; Ismail, Rifky; Jamari, J.; Schipper, Dirk Jan

    2016-01-01

    The sliding contact of soft material surface due to a rigid indenter is different from metal and some other polymers. A stick-slip motion is more frequently obtained than a smooth motion. By modeling the soft material as low damping viscoelastic material, this study proposes an analytical model to

  20. Substrate texture properties induce triatomine probing on bitten warm surfaces

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcelo G

    2011-06-01

    Full Text Available Abstract Background In this work we initially evaluated whether the biting process of Rhodnius prolixus relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae. Results The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects. Conclusions Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.

  1. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  2. Atomistic simulations of bulk, surface and interfacial polymer properties

    Science.gov (United States)

    Natarajan, Upendra

    In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin

  3. Mapping surface properties of sinusoidal roughness standards by TPM

    International Nuclear Information System (INIS)

    Liu, X; Rubert, P

    2005-01-01

    We report our investigation on the surface properties of sinusoidal roughness standards made from pure electroformed nickel. Two specimens having a sinusoidal profile with nominal R a of 0.36 μm and a peak spacing of 25 μm are chosen for this investigation. One specimen is further treated with a hard protective coating of nickel-boron. The surface topography, friction, hardness and Young's modulus of the specimens were measured by a novel instrument, the multi-function Tribological Probe Microscope (TPM). The results show that hardness of these two specimens is 14.1 GPa for uncoated specimen and 25.7 GPa for the coated one, while the Young's modulus is 188 GPa and 225 GPa, respectively. The ramping force was set to 3mN for both the specimens and the effect of the tip penetration was investigated by comparing the topography measurements before and after hardness mapping. It has been found out that there is no significant change in the averaged profiles over the scanned area, which indicates the topography distortion seen in the multi-function mapping, is recoverable. Cross correlation between topography and its corresponding hardness/Young's modulus has been carried out and the result will be discussed in the paper

  4. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Kobayashi, M; Morita, M

    2008-01-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] thin films were systematically investigated. Spin-coated PFA-C y thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C y with short side chain (y≤6) and increased above y≥8. GIXD revealed that fluoroalkyl side chain of PFA-C y with y≥8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C y can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C 8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity

  5. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  6. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Freimann, Florian Baptist; Sprung, Christian [Charite - University Medicine Berlin, Campus Virchow-Klinikum, Neurosurgical Department, Berlin (Germany); Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf [Charite - University Medicine Berlin, Campus Charite Mitte, Department of Radiology, Berlin (Germany); Lin, Kui; McLaughlin, Joyce [Rensselaer Polytechnic Institute, Mathematics Department, Troy, NY (United States); Braun, Juergen [Charite - University Medicine Campus Benjamin Franklin, Institute of Medical Informatics, Berlin (Germany)

    2012-03-15

    Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 {+-} 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters {mu} and {alpha}, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters {mu} and {alpha} were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, {alpha} increased after shunt placement (P < 0.001) to almost normal values whereas {mu} remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)

  7. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Freimann, Florian Baptist; Sprung, Christian; Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf; Lin, Kui; McLaughlin, Joyce; Braun, Juergen

    2012-01-01

    Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 ± 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters μ and α, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters μ and α were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, α increased after shunt placement (P < 0.001) to almost normal values whereas μ remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)

  8. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  10. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites.

    Science.gov (United States)

    Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra

    2018-03-01

    Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characterization of gloss properties of differently treated polymer coating surfaces by surface clarity measurement methodology.

    Science.gov (United States)

    Gruber, Dieter P; Buder-Stroisznigg, Michael; Wallner, Gernot; Strauß, Bernhard; Jandel, Lothar; Lang, Reinhold W

    2012-07-10

    With one measurement configuration, existing gloss measurement methodologies are generally restricted to specific gloss levels. A newly developed image-analytical gloss parameter called "clarity" provides the possibility to describe the perceptual result of a broad range of different gloss levels with one setup. In order to analyze and finally monitor the perceived gloss of products, a fast and flexible method also for the automated inspection is highly demanded. The clarity parameter is very fast to calculate and therefore usable for fast in-line surface inspection. Coated metal specimens were deformed by varying degree and polished afterwards in order to study the clarity parameter regarding the quantification of varying surface gloss types and levels. In order to analyze the correlation with the human gloss perception a study was carried out in which experts were asked to assess gloss properties of a series of surface samples under standardized conditions. The study confirmed clarity to exhibit considerably better correlation to the human perception than alternative gloss parameters.

  12. Chemical, mechanical and biological properties of contemporary composite surface sealers.

    Science.gov (United States)

    Anagnostou, Maria; Mountouris, George; Silikas, Nick; Kletsas, Dimitris; Eliades, George

    2015-12-01

    To evaluate the chemical, mechanical, and biological properties of modern composite surface sealers (CSS) having different compositions. The CSS products tested were Biscover LV (BC), Durafinish (DF), G-Coat Plus (GC), and Permaseal (PS). The tests performed were: (A): degree of conversion (DC%) by ATR-FTIR spectroscopy; (B): thickness of O2-inhibition layer by transmission optical microscopy; (C): surface hardness, 10 min after irradiation and following 1 week water storage, employing a Vickers indenter (VHN); (D): color (ΔE*) and gloss changes (ΔGU) after toothbrush abrasion, using L*a*b* colorimetry and glossimetry; (E): accelerated wear (GC,PS only) by an OHSU wear simulator plus 3D profilometric analysis, and (F): cytotoxicity testing of aqueous CSS eluents on human gingival fibroblast cultures employing the methyl-(3)H thymidine DNA labeling method. Statistical analyses included 1-way (A, B, ΔE*, ΔGU) and 2-way (C, F) ANOVAs, plus Tukey post hoc tests. Student's t-test was used to evaluate the results of the accelerated wear test (α=0.05 for all). The rankings of the statistical significant differences were: (A) PS (64.9)>DF,BC,GC (56.1-53.9) DC%; (B) DF,PS (12.3,9.8)>GC,BC (5.2,4.8) μm; (C): GC (37.6)>BC,DF (32.6,31.1)>PS (26.6) VHN (10 min/dry) and BC,DF (29.3,28.7)>GC(26.5)>PS(21.6) VHN (1w/water), with no significant material/storage condition interaction; (D): no differences were found among GC,DF,BC,PS (0.67-1.11) ΔE*, with all values within the visually acceptable range and PS,BC (32.8,29.4)>GC,DF (19.4,12.9) ΔGU; (E): no differences were found between GC and PS in volume loss (0.10,0.11 mm(3)), maximum (113.9,130.5 μm) and mean wear depths (30.3,27.5 μm); (F): at 1% v/v concentration, DF showed toxicity (23% vital cells vs 95-102% for others). However, at 5% v/v concentration DF (0%) and BC (9%) were the most toxic, whereas GC (58%) and PS (56%) showed moderate toxicity. Important chemical, mechanical, and biological properties exist among

  13. Earthquake sequence simulations of a fault in a viscoelastic material with a spectral boundary integral equation method: The effect of interseismic stress relaxation on a behavior of a rate-weakening patch

    Science.gov (United States)

    Miyake, Y.; Noda, H.

    2017-12-01

    produces a series of SSEs in an elastic medium, viscoelasticity causes smaller amplitude of the SSEs or steady-state sliding, consistently with a linear stability analysis. With increasing depth, properties of both the medium and the frictional surface change. Since the former does not promote SSEs, the latter may be the key to generation of SSEs.

  14. Viscoelastic crustal deformation by magmatic intrusion: A case study in the Kutcharo caldera, eastern Hokkaido, Japan

    Science.gov (United States)

    Yamasaki, Tadashi; Kobayashi, Tomokazu; Wright, Tim J.; Fukahata, Yukitoshi

    2018-01-01

    Geodetic signals observed at volcanoes, particularly their temporal patterns, have required us to make the correlation between the surface displacement and magmatic process at depth in terms of viscoelastic crustal rheology. Here we use a parallelized 3-D finite element model to examine the response of the linear Maxwell viscoelastic crust and mantle to the inflation of a sill in order to show the characteristics of a long-term volcano deformation. In the model, an oblate-spheroidal sill is instantaneously or gradually inflated in a two-layered medium that consists of an elastic layer underlain by a viscoelastic layer. Our numerical experiments show that syn-inflation surface uplift is followed by post-inflation surface subsidence as the viscoelastic substrate relaxes. For gradual inflation events, the magnitude of inflation-induced uplift is reduced by the relaxation, through which the volume of a magma inferred by matching the prediction of an elastic model with observed surface uplift could be underestimated. For a given crustal viscosity, sill depth is the principal factor controlling subsidence caused by viscoelastic relaxation. The subsidence rate is highest when the inflation occurs at the boundary between the elastic and the viscoelastic layers. The mantle viscosity has an insignificant impact unless the depth of the inflation is greater than a half the crustal thickness. We apply the viscoelastic model to the interferometric synthetic aperture radar (InSAR) data in the Kutcharo caldera, eastern Hokkaido, Japan, where the surface has slowly subsided over a period of approximately three years following about a two-year period of inflation. The emplacement of a magmatic sill is constrained to occur at a depth of 4.5 km, which is significantly shallower than the geophysically imaged large-scale magma chamber. The geodetically detected deformation in the caldera reflects the small-scale emplacement of a magma that ascended from the deeper chamber, but not the

  15. Viscoelastic Pavement Modeling with a Spreadsheet

    DEFF Research Database (Denmark)

    Levenberg, Eyal

    2016-01-01

    The aim herein was to equip civil engineers and students with an advanced pavement modeling tool that is both easy to use and highly adaptive. To achieve this, a mathematical solution for a layered viscoelastic half-space subjected to a moving load was developed and subsequently implemented...

  16. experimental viscoelastic characterization of corn cob composites ...

    African Journals Online (AJOL)

    Dr Obe

    sufficient to represent the viscoelastic behavior of the corn cob. The effect of moisture content and rates of loading on the mechanical model determined were investigated. 1. ..... F = applied force or residual force σ. = contact stress .... J. Agric. Engineering. Res. 7(4):. 300-315. Journal of the British Society for. Research in ...

  17. Viscoelastic fingering with a pulsed pressure signal

    International Nuclear Information System (INIS)

    Corvera Poire, E; Rio, J A del

    2004-01-01

    We derive a generalized Darcy's law in the frequency domain for a linear viscoelastic fluid flowing in a Hele-Shaw cell. This leads to an analytic expression for the dynamic permeability that has maxima which are several orders of magnitude larger than the static permeability. We then follow an argument of de Gennes (1987 Europhys. Lett. 2 195) to obtain the smallest possible finger width when viscoelasticity is important. Using this and a conservation law, we obtain the lowest bound for the width of a single finger displacing a viscoelastic fluid. When the driving force consists of a constant pressure gradient plus an oscillatory signal, our results indicate that the finger width varies in time following the frequency of the incident signal. Also, the amplitude of the finger width in time depends on the value of the dynamic permeability at the imposed frequency. When the finger is driven with a frequency that maximizes the permeability, variations in the amplitude are also maximized. This gives results that are very different for Newtonian and viscoelastic fluids. For the former ones the amplitude of the oscillation decays with frequency. For the latter ones on the other hand, the amplitude has maxima at the same frequencies that maximize the dynamic permeability

  18. Isolation of nanoscale exosomes using viscoelastic effect

    Science.gov (United States)

    Hu, Guoqing; Liu, Chao

    2017-11-01

    Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).

  19. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  20. Viscoelasticity promotes collective swimming of sperm

    Science.gov (United States)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.

  1. Changes in protein solubility, fermentative capacity, viscoelasticity ...

    African Journals Online (AJOL)

    Frozen dough should be stored for fewer than 21 days; time in which the loaf volume of bread made from frozen dough was approximately 40.84% smaller than that of fresh bread dough formulation. Keywords: French type bread, frozen dough, protein solubility, baking quality, viscoelasticity. African Journal of Biotechnology ...

  2. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD.Dynamic impact properties of race surfaces

  3. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties.

  4. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  5. Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics

    Directory of Open Access Journals (Sweden)

    Himanshu Sharma

    2016-07-01

    Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution

  6. A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials

    Science.gov (United States)

    Wang, Ya; Inman, Daniel J.

    2013-04-01

    The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.

  7. The viscoelastic characterization of polymer materials exposed to the low-Earth orbit environment

    International Nuclear Information System (INIS)

    Strganac, T.; Letton, A.

    1992-01-01

    Recent accomplishments in our research efforts have included the successful measurement of the thermal mechanical properties of polymer materials exposed to the low-earth orbit environment. In particular, viscoelastic properties were recorded using the Rheometrics Solids Analyzer (RSA 2). Dynamic moduli (E', the storage component of the elastic modulus, and E'', the loss component of the elastic modulus) were recorded over three decades of frequency (0.1 to 100 rad/sec) for temperatures ranging from -150 to 150 C. Although this temperature range extends beyond the typical use range of the materials, measurements in this region are necessary in the development of complete viscoelastic constitutive models. The experimental results were used to provide the stress relaxation and creep compliance performance characteristics through viscoelastic correspondence principles. Our results quantify the differences between exposed and control polymer specimens. The characterization is specifically designed to elucidate a constitutive model that accurately predicts the change in behavior of these materials due to exposure. The constitutive model for viscoelastic behavior reflects the level of strain, the rate of strain, and the history of strain as well as the thermal history of the material

  8. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  9. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    Science.gov (United States)

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  10. Viscoelasticity-based MR elastography of skeletal muscle

    International Nuclear Information System (INIS)

    Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf; Braun, Juergen

    2010-01-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  11. Viscoelasticity-based MR elastography of skeletal muscle

    Science.gov (United States)

    Klatt, Dieter; Papazoglou, Sebastian; Braun, Jürgen; Sack, Ingolf

    2010-11-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  12. Viscoelasticity-based MR elastography of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf [Department of Radiology, Charite-Universitaetsmedizin, Berlin (Germany); Braun, Juergen, E-mail: ingolf.sack@charite.d [Institute of Medical Informatics, Charite-Universitaetsmedizin, Berlin (Germany)

    2010-11-07

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, {mu} and {alpha}, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, {mu} increased in all volunteers upon contraction from 2.68 {+-} 0.23 kPa to 3.87 {+-} 0.50 kPa. Also {alpha} varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation ({alpha} = 0.253 {+-} 0.009) to contraction ({alpha} = 0.270 {+-} 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  13. Evaluating non-stick properties of different surface materials for contact frying

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens

    2011-01-01

    to evaluate non-stick and cleaning properties of the coatings. In accordance with industry standards pancake was selected as the food model for the non-stick properties. The performance of different frying surfaces (stainless steel, aluminium, PTFE (polytetrafluoroethylene) and three ceramic coatings with two...... on their non-stick properties, so that the smoother surfaces gave a higher force of adhesion between pancake and surface....

  14. Thermodynamic and surface properties of Sb–Sn and In–Sn liquid ...

    Indian Academy of Sciences (India)

    properties through the activity coefficients of the alloy components in the bulk. .... In the model for studying surface properties, a statistical mechanical approach .... experimental values of Scc(0) determined by fitting the experimental activity ...

  15. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    International Nuclear Information System (INIS)

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  16. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Directory of Open Access Journals (Sweden)

    Ashkan Maccabi

    Full Text Available Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E, long term shear modulus (η, and time constant (τ in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  17. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Science.gov (United States)

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  18. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  19. Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography

    CSIR Research Space (South Africa)

    Cordeiro, N

    2011-01-01

    Full Text Available Inverse gas chromatography (IGC) is a suitable method to determine surface energy of natural fibres when compared to wetting techniques. In the present study, the surface properties of raw and modified lignocellulosic fibres have been investigated...

  20. Geotechnical properties of surface sediments in the INDEX area

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    As a part of the environmental impact assessment studies, geotechnical properties of sediments were determined in the Central Indian Basin. The undrained shear strength and index properties of the siliceous sediments were determined on 20 box cores...

  1. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    2018-05-19

    May 19, 2018 ... ITO thin films; sputtering; structure; electrical properties; AFM; Hall effect. 1. Introduction ... ness range (61–768 nm) and to see if this system present properties that .... using the Bragg equation, and the relation linking the inter-.

  2. Determination of Mechanical and Surface Properties of Semicrystalline Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites

    National Research Council Canada - National Science Library

    Moody, Laura E; Marchant, Darrell; Grabow, Wade W; Lee, Andre Y; Mabry, Joseph M

    2005-01-01

    INTRODUCTION: (1) Nanomodification of semicrystalline polymers -- unequalled thermal, mechanical and surface properties at low volume fractions that cannot be obtained using conventional fillers; (2...

  3. Determination of Mechanical and Surface Properties of Semicrystalline Polyhedral Oligomeric Silsequioxane (POSS) Nanocomposites

    National Research Council Canada - National Science Library

    Moody, Laura E; Marchant, Darrell; Grabow, Wade W; Lee, Andre Y; Mabry, Joseph M

    2005-01-01

    .... This study examines the ability of POSS to improve the mechanical and surface properties of three semicrystalline polymers, fluorinated ethylene-propylene (FEP), poly(vinylidene fluoride) (PVDF...

  4. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  5. Properties of surface waves in granular media under gravity

    International Nuclear Information System (INIS)

    Zheng He-Peng

    2014-01-01

    Acoustical waves propagating along the free surface of granular media under gravity are investigated in the framework of elasticity theory. The influence of stress on a surface wave is analyzed. The results have shown that two types of surface waves, namely sagittal and transverse modes exist depending on initial stress states, which may have some influence on the dispersion relations of surface waves, but the influence is not great. Considering that the present experimental accuracy is far from distinguishing this detail, the validity of elasticity theory on the surface waves propagating in granular media can still be maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects

    Science.gov (United States)

    2017-07-01

    This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...

  7. Surface modification, microstructure and mechanical properties of investment cast superalloy

    OpenAIRE

    M. Zielińska; K. Kubiak; J. Sieniawski

    2009-01-01

    Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three diff...

  8. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    Science.gov (United States)

    Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus

    2017-11-01

    The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.

  9. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  10. Ultra-fast boriding of metal surfaces for improved properties

    Science.gov (United States)

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  11. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  12. Viscoelasticity of metallic, polymeric and oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, J.M. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)]. E-mail: Jean-marc.Pelletier@insa-lyon.fr; Gauthier, C. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France); Munch, E. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)

    2006-12-20

    Present work addresses on mechanical spectroscopy experiments performed on bulk metallic glasses (Zr-Ti-Cu-Ni-Be alloys, Mg-Y-Cu alloys), on oxide glasses (SiO{sub 2}-Na{sub 2}O-CaO) and on amorphous polymers (polyethylene terephtalate (PET), nitrile butadiene rubber (NBR), etc.). It appears that whatever the nature of the chemical bonding involved in the material, we observe strong relaxation effects in an intermediate temperature range, near the glass transition temperature. In addition, when crystallization occurs in the initially amorphous material, similar evolution is observed in all the materials. A method is proposed to properly separate elastic, viscoelastic and viscoplastic contributions to the deformation. Finally a physical model is given to describe these viscoelastic phenomena.

  13. Stress wave propagation in linear viscoelasticity

    International Nuclear Information System (INIS)

    Asada, Kazuo; Fukuoka, Hidekazu.

    1992-01-01

    Decreasing characteristics of both stress and stress gradient with propagation distance at a 2-dimensional linear viscoelasticity wavefront are derived by using our 3-dimensional theoretical equation for particle velocity discontinuities. By finite-element method code DYNA3D, stress at a noncurvature dilatation wavefront of linear viscoelasticity is shown to decrease exponentially. This result is in good accordance with our theory. By dynamic photoelasticity experiment, stress gradients of urethane rubber plates at 3 types of wavefronts are shown to decrease exponentially at a noncurvature wavefront and are shown to be a decreasing function of (1/√R) exp (α 1 2 /(2α 0 3 ξ)) at a curvature wavefront. These experiment results are in good accordance with our theory. (author)

  14. Surface properties of adsorption layers formed from triterpenoid and steroid saponins

    NARCIS (Netherlands)

    Pagureva, N.; Tcholakova, S.; Golemanov, K.; Denkov, N.; Pelan, E.; Stoyanov, S.D.

    2016-01-01

    Saponins are natural surfactants with non-trivial surface and aggregation properties which find numerous important applications in several areas (food, pharma, cosmetic and others). In the current paper we study the surface properties of ten saponin extracts, having different molecular structure

  15. Quasistatic nonlinear viscoelasticity and gradient flows

    OpenAIRE

    Ball, John M.; Şengül, Yasemin

    2014-01-01

    We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the d...

  16. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  17. [Surface Property and Sorption Characteristics of Phosphorus onto Surface Sediments in Sanggou Bay].

    Science.gov (United States)

    Zhu, Jia-mei; Cao, Xiao-yan; Liu, Su-mei; Wang, Li-sha; Yang, Gui-peng; Ge, Cheng-feng; Lu, Min

    2016-02-15

    Kinetic curves and isotherms were investigated to study the sorption mechanism of phosphorus onto the sediments of Sanggou Bay, together with the surface charge properties of sediments and the forms of phosphorus studied. The results showed that the sorption including a fast process and a slow one, and could be described by a two-compartment first order equation. The thermodynamic isotherms were well fitted with a modified Langmuir equation. The maximum adsorption capacity was larger in summer than in spring, and the smaller particle size was favorable to the sorption. The maximum adsorption capacities (Qm) were 0.0471-0.1230 mg x g(-1), and the zero equilibrium phosphorus concentration (EPC0) of the sediments ranged from 0.0596 mg x L(-1) to 0.1927 mg x L(-1), which indicated that the sediments from Sanggou Bay were sources of phosphorus. Inorganic phosphorus (IP) was the main form of total phosphorus (TP). The contents of exchangeable or loosely absorbed P and Fe-bound P increased significantly in the samples after sorption. The sorption process involved physical sorption and chemical sorption, with the former being the predominant.

  18. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2015-07-01

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  19. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2015-07-15

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  20. Dynamic surface properties of poly(methylalkyldiallylammonium chloride) solutions

    Czech Academy of Sciences Publication Activity Database

    Novikova, A. A.; Vlasov, P. S.; Lin, S.-Y.; Sedláková, Zdeňka; Noskov, B. A.

    2017-01-01

    Roč. 80, November (2017), s. 122-127 ISSN 1876-1070 Institutional support: RVO:61389013 Keywords : polymer solutions * dynamic surface tension * dilational surface rheology Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.217, year: 2016

  1. Synthesis, surface characterization and optical properties of 3

    Indian Academy of Sciences (India)

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA ...

  2. Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Nacife Valéria Pereira

    1998-01-01

    Full Text Available The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals and -29.3 mV (cells from adult animals. The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5°and 40.8°, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.

  3. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  4. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  5. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  6. A frictional contact problem for an electro-viscoelastic body

    Directory of Open Access Journals (Sweden)

    Mircea Sofonea

    2007-12-01

    Full Text Available A mathematical model which describes the quasistatic frictional contact between a piezoelectric body and a deformable conductive foundation is studied. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with the normal compliance condition, a version of Coulomb's law of dry friction, and a regularized electrical conductivity condition. A variational formulation of the model, in the form of a coupled system for the displacements and the electric potential, is derived. The existence of a unique weak solution of the model is established under a smallness assumption on the surface conductance. The proof is based on arguments of evolutionary variational inequalities and fixed points of operators.

  7. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions

    Science.gov (United States)

    Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.

    2018-05-01

    The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.

  8. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  9. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  10. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  11. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within......Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  12. Titanium. Properties, raw datum surface, physicochemical basis and fabrication technique

    International Nuclear Information System (INIS)

    Garmata, V.A.; Petrun'ko, A.N.; Galitskij, N.V.; Olesov, Yu.G.; Sandler, R.A.

    1983-01-01

    On the nowadays science and technology achievements the complex of titanium metallurgy problems comprising raw material base, physico-chemical basis and fabrication technique, properties and titanium usage fields is considered for the first time. A particular attention is given to raw material base, manufacturing titanium concentrates and titanium tetrachloride, metallothermal reduction, improvement of metal quality. Data on titanium properties are given, processes of titanium powder metallurgy, scrap and waste processing, problems of economics and complex raw material use are considered

  13. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  14. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  15. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  16. Investigation of some properties of Nylon-6 surface treated by corona discharge in helium

    International Nuclear Information System (INIS)

    Dumitrascu, N.; Surdu, S.; Popa, Gh.; Raileanu, D.

    1996-01-01

    In this work an easy and less expensive method of treatment has been used by corona discharge. This allows to modify the surface properties and especially to improve the compatibility of polymers with biological tissue. The Nylon-6 as a test material was chosen. A scanning electron microscope to visualize the morphology of the morphology of the surface and an IR spectrophotometer able to identify the amide groups and other as well, have been used. Morphology of the treated surface by corona discharge emphasis an etching an etching and/or a crosslinking of amorphous domains, generally important to improve the properties as wetting, dyeing, adhesion, etc. Over all treated surface there is significant blood compatible properties without the need of heparinization of surface. The treated surface influences the biological behaviour of micro-organisms, respectively, that surface is a favourable medium for division of cells and may increase their lifetime. (authors)

  17. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  18. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  19. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    Science.gov (United States)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  20. Structure and properties of GMA surfaced armour plates

    OpenAIRE

    A. Klimpel; K. Luksa; M. Burda

    2010-01-01

    Purpose: In the combat vehicles many materials can be used for the armour. Application of the monolithic armour plates in light combat vehicles is limited by the high armour weigh. Introduction of the layered armour plates is a way to limit the vehicle weight. In the paper test results of graded and nanostructural GMA surfaced armour plates are presented.Design/methodology/approach: Metallographic structure, chemical composition and hardness of surfaced layers were investigated in order to ex...

  1. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  2. Characterizing viscoelasticity of unhydrolyzed chicken sternal cartilage extract suspensions: Towards development of injectable therapeutics formulations.

    Science.gov (United States)

    Hama, Brian; Mahajan, Gautam; Kothapalli, Chandrasekhar

    2017-08-01

    Exogenous delivery of cartilage extract is being explored as a promising candidate for knee arthritis treatment as it biomimics native cartilage tissue characteristics. In this study, we report on the rheological characterization of aqueous suspensions constituted from a powdered form of unhydrolyzed chicken sternum extract. The effect of particle size (as-received vs. milled), suspension fluid (water vs. PBS), and temperature (37°C vs. 4°C), on the viscoelastic properties of the sternum extract based particulate suspensions were evaluated. Results showed that these suspensions exhibit shear-thinning characteristics as shear rate (γ̇) increases, while viscosity (η), storage (G'), and loss (G″) moduli of the suspensions increased with increasing particulate loading (ϕ: 2.5-10wt%). Reducing the as-received particle size by milling decreased G', G, and η of the suspensions and increased the influence of ϕ on these properties, possibly due to improved particle packing. Replacing water with PBS had no significant effect on the rheological properties, but temperature reduction from 37°C to 4°C increased G', G", and η of the suspensions and lowered the impact of powder loading on viscoelastic properties. The suspension's time-dependent response was typical of viscoelastic materials, characterized by an asymptotical approach to a final stress (stress relaxation) or strain (creep). Results were fit to a power-law model for creep, a general relaxation model for exponential decay in stress, Carreau-Yasuda models for flow curves, and a two-parameter Liu model to identify the maximum powder loading (ϕ m ). Among the various forces involved in particle-particle interactions within these suspensions, electrostatic forces appeared to dominate the most. Such characterization of the viscoelastic nature of these suspensions would help in formulating stable injectable cartilage extract based therapeutics for in vivo applications. Copyright © 2017 Elsevier Ltd. All

  3. Supramolecular structures on silica surfaces and their adsorptive properties.

    Science.gov (United States)

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  4. Ion beam application for improved polymer surface properties

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Lewis, M.B.; Mansur, L.K.

    1992-01-01

    Various polymeric materials were subjected to bombardment by different energetic ions with energies ranging from 200 to 1000 keV. Tests showed substantial improvements in hardness, wear resistance, oxidation resistance, resistance to chemicals, and electrical conductivity. The magnitude of property changes was strongly dependent upon ion species, energy, dose, and polymer structure. Both hardness and electrical conductivity increased with ion energy and dose. These properties were apparently related to the effectiveness of cross-linking. Ion species with a large electronic stopping cross-section are expected to produce more crosslinking. It is believed that the polymer property improvements are commensurate with the extent of crosslinking, which is responsible for the formation of three-dimensionally-connected, carbon-rich, rigid networks. 22 refs, 5 figs

  5. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region

    Science.gov (United States)

    Mazurek, Grzegorz; Iwański, Marek

    2017-10-01

    Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was

  6. Surface electronic properties of discontinuous Pd films during hydrogen exposure

    International Nuclear Information System (INIS)

    Zhao, Ming; Nagata, Shinji; Shikama, Tatsuo; Inouye, Aichi; Yamamoto, Shunya; Yoshikawa, Masahito

    2011-01-01

    This paper explored the change in the surface resistance of the discontinuous palladium (Pd) films during hydrogen exposure. In our experiments, we observed a remarkable rise in the electrical resistance of the discontinuous film which consists of nano-sized particles, when it was exposed to thin hydrogen. By studying the resistance change ratio before and after hydrogen exposure, we have found that it demonstrates an inverse exponential relationship with the ratio of on-film particle radius to the inter island separation. This suggests that the change in the film resistance under hydrogen exposure is primarily associated with the variation of surface work function which is caused by the hydrogen absorption on the Pd surface. (author)

  7. Three Different Ways of Calibrating Burger's Contact Model for Viscoelastic Model of Asphalt Mixtures by Discrete Element Method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2016-01-01

    modulus. Three different approaches have been used and compared for calibrating the Burger's contact model. Values of the dynamic modulus and phase angle of asphalt mixtures were predicted by conducting DE simulation under dynamic strain control loading. The excellent agreement between the predicted......In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional discrete element method. Combined with Burger's model, three contact models were used for the construction of constitutive asphalt mixture model with viscoelastic properties...

  8. Influence of submonolayer films on the metal surface properties

    International Nuclear Information System (INIS)

    Bigun, G.I.

    1979-01-01

    Carried out is the calculation of concentration dependence of the work function, surface energy and binding energy of adsorption systems in the framework of ''jelly'' model. Electron density is approximated with parametric exponential family. Unknown parameters are found from the neutrality and continuity conditions using obtained relation of electrostatic potential values in the depth of the substrate and on the surface. Each of the systems Li-W(110), Na-W(110), K-W(111) and Cs-W(112) is compared with a certain value of the thickness of positive charge substituting adsorbate ion film. Quantitative agreement of the theory and experiment takes place

  9. Local adhesive surface properties studied by force microscopy

    International Nuclear Information System (INIS)

    Lekka, M.; Lekki, J.; Marszalek, M.; Stachura, Z.; Cleff, B.

    1998-01-01

    Scanning force microscopy was used in the contact mode to determine the adhesion force between a mica surface and a silicon nitride tip. The measurements were performed in an aqueous solution of sodium and calcium chlorides. The adhesion force according to the Derjaguin-Landau-Verwey-Overbeek theory depends on the competition between two kinds of forces: van der Waals and electrostatic 'double layer'. Two different curves of adhesion force versus salt concentration were obtained from the experiment with monovalent and divalent ions. The tip-surface adhesion force was determined from a statistical analysis of data obtained from the force vs. distance retracting curves. (author)

  10. Producing the surface structures with required properties with the help of concentrated fluxes of particles

    International Nuclear Information System (INIS)

    Li, I.P.; Rukhlyada, N.Ya.

    2005-01-01

    Pulsed plasma treatment has been proposed for modification of the surface layers of metal-matrix-porous cathodes and parts of electronic-vacuum devices. Surface plasma treatment leads to improvement of thermal emission properties of effective cathodes: work function decreases, secondary electron emission coefficient increases, and surface emission uniformity improves. With the help of pulse plasma, surface smoothing as well as formation of composite coatings can be done [ru

  11. Acoustic Determination of Near-Surface Soil Properties

    Science.gov (United States)

    2008-12-01

    requiring geostatistical analysis, while nearby others are spatially independent. In studies involving many different soil properties and chemistry ...Am 116(6), p. 3354-3369. Kravchenko, N., C.W. Boast, D.G. Bullock, 1991. Fractal analysis of soil spatial variability. Agronomy Journal 91

  12. Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles.

    Science.gov (United States)

    Song, Fei; Zhang, Li-Ming; Shi, Jun-Feng; Li, Nan-Nan

    2010-12-01

    The supramolecular hydrogels derived from low-molecular-mass gelators represent a unique class of soft matters and have important potential applications in biomedical fields, separation technology and cosmetic science. However, they suffer usually from weak mechanical and viscoelastic properties. In this work, we carry out the in situ hybridization of clay nanoparticles (Laponite RD) into the supramolecular hydrogel formed from a low-molecular-mass hydrogelator, 2,6-di[N-(carboxyethyl carbonyl)amino]pyridine (DAP), and investigate the viscoelastic and structural characteristics of resultant hybrid hydrogel. It was found that a small concentration of Laponite RD could lead to a significant increase in the storage modulus, loss modulus or complex viscosity. Compared with neat DAP hydrogel, the hybrid hydrogel has a greater hydrogel strength and a lower relaxation exponent. In particular, the enhancement of the clay nanoparticles to the viscoelastic properties of the DAP hydrogel is more effective in the case of higher DAP concentration. By relating its macroscopic elastic properties to a scaling fractal model, such a hybrid hydrogel was confirmed to be in the strong-link regime and to have a more complex network structure with a higher fractal dimension when compared with neat DAP hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Mathematical analysis of a viscoelastic-gravitational layered earth model for magmatic intrusion in the dynamic case

    Directory of Open Access Journals (Sweden)

    Alicia Arjona

    2015-11-01

    Full Text Available Volcanic areas present a lower effective viscosity than usually in the Earth's crust. It makes necessary to consider inelastic properties in deformation modelling. As a continuation of work done previously by some of the authors, this work is concerned with the proof that the perturbed equations representing the viscoelastic-gravitational displacements resulting from body forces embedded in a layered Earth model leads to a well-posed problem even for any kind of domains, with the natural boundary and transmission conditions. A homogeneous or stratified viscoelastic half-space has often been used as a simple earth model to calculate the displacements and gravity changes. Here we give a constructive proof of the existence of weak solutions and we show the uniqueness and the continuous dependence with respect to the initial data of weak solutions of the dynamic coupled viscoelastic-gravitational field equations.

  14. Investigations Of Powder Surface Properties Of Drug Substances ...

    African Journals Online (AJOL)

    In this study, Inverse Gas Chromatography (IGC) was used to characterize the surface energetics of different batches of two drug substances (Salmetrol Xinafoate, SX and Fluticasone Propionate, FP) manufactured under identical conditions. The results obtained demonstrate the potential of IGC technique to reveal ...

  15. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  16. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  17. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  18. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  19. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  20. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements

    Science.gov (United States)

    Wye, Lauren C.; Zebker, Howard A.; Ostro, Steven J.; West, Richard D.; Gim, Yonggyu; Lorenz, Ralph D.; The Cassini Radar Team

    2007-06-01

    We report regional-scale low-resolution backscatter images of Titan's surface acquired by the Cassini RADAR scatterometer at a wavelength of 2.18-cm. We find that the average angular dependence of the backscatter from large regions and from specific surface features is consistent with a model composed of a quasi-specular Hagfors term plus a diffuse cosine component. A Gaussian quasi-specular term also fits the data, but less well than the Hagfors term. We derive values for the mean dielectric constant and root-mean-square (rms) slope of the surface from the quasi-specular term, which we ascribe to scattering from the surface interface only. The diffuse term accommodates contributions from volume scattering, multiple scattering, or wavelength-scale near-surface structure. The Hagfors model results imply a surface with regional mean dielectric constants between 1.9 and 3.6 and regional surface roughness that varies between 5.3° and 13.4° in rms-slope. Dielectric constants between 2 and 3 are expected for a surface composed of solid simple hydrocarbons, water ice, or a mixture of both. Smaller dielectric constants, between 1.6 and 1.9, are consistent with liquid hydrocarbons, while larger dielectric constants, near 4.5, may indicate the presence of water-ammonia ice [Lorenz, R.D., 1998. Icarus 136, 344-348] or organic heteropolymers [Thompson, W.R., Squyres, S.W., 1990. Icarus 86, 336-354]. We present backscatter images corrected for angular effects using the model residuals, which show strong features that correspond roughly to those in 0.94-μm ISS images. We model the localized backscatter from specific features to estimate dielectric constant and rms slope when the angular coverage is within the quasi-specular part of the backscatter curve. Only two apparent surface features are scanned with angular coverage sufficient for accurate modeling. Data from the bright albedo feature Quivira suggests a dielectric constant near 2.8 and rms slope near 10.1°. The dark

  1. Brittle fracture in viscoelastic materials as a pattern-formation process

    Science.gov (United States)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  2. Viscoelastic stress modeling in cementitious materials using constant viscoelastic hydration modulus

    NARCIS (Netherlands)

    Hansen, W.; Liu, Z.; Koenders, E.A.B.

    2014-01-01

    Viscoelastic stress modeling in ageing cementitious materials is of major importance in high performance concrete of low water cement ratio (e.g. w/c ~0.35) where crack resistance due to deformation restraint needs to be determined. Total stress analysis is complicated by the occurrence of internal

  3. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  4. Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru [St. Petersburg Polytechnic University (Russian Federation); Chernev, A. L. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Klyachkin, L. E. [St. Petersburg Polytechnic University (Russian Federation); Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Emel’yanov, A. K.; Dubina, M. V. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2016-10-15

    Planar silicon nanostructures that are formed as a very narrow silicon quantum well confined by δ barriers heavily doped with boron are used to study the dielectric properties of DNA oligonucleotides deposited onto the surface of the nanostructures. The capacitance characteristics of the silicon nanostructures with oligonucleotides deposited onto their surface are determined by recording the local tunneling current–voltage characteristics by means of scanning tunneling microscopy. The results show the possibility of identifying the local dielectric properties of DNA oligonucleotide segments consisting of repeating G–C pairs. These properties apparently give grounds to correlate the segments with polymer molecules exhibiting the properties of multiferroics.

  5. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xue Dingqi [Politecnico di Torino, Dipartimento Scienza Applicata e Tecnologia-DISAT and Dipartimento di Ingegneria dell' Ambiente, del Territorio e delle Infrastrutture-DIATI (Italy); Sethi, Rajandrea, E-mail: rajandrea.sethi@polito.it [Politecnico di Torino, Dipartimento di Ingegneria dell' Ambiente, del Territorio e delle Infrastrutture-DIATI (Italy)

    2012-11-15

    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particles.

  6. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    International Nuclear Information System (INIS)

    Xue Dingqi; Sethi, Rajandrea

    2012-01-01

    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particles.

  7. Use of neutrals backscattering for studying the vibrational properties of solid surfaces

    International Nuclear Information System (INIS)

    Lapujoulade, J.

    1975-01-01

    The neutrals (rare gases) elastic scattering may be used for studying some interesting properties of surfaces. However, an analysis of inelastic phenomena is mostly to be performed when vibrational properties of metallic surfaces are investigated. The dispersion relation of surface phonons has not yet been experimentally obtained from neutrals backscattering from solid surfaces, but the quasi-elastic scattering of helium should give this information on condition that velocity measurements are refined in view of directly obtained the distribution function rather than its moments and determining the preponderance of one-phonon transitions, or obtaining a detailed description of many-phonon exchanges [fr

  8. Effect of surface physical and chemical properties on interaction and annihilation mechanisms of positrons

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.; Levin, B.M.; Shantarovich, V.P.

    1982-01-01

    The possibility of positron use is illustrated, to investigate physical and chemical properties of the surface, by a number of effects found by the authors while studying the interaction and annihilation of β + -decay positrons in highly-dispersed heterogeneous systems positronium formation and ortho-para conversion close to the surface of metal particles in a dielectric matrix, postronium oxidation by proton centers on the surface of an aluminosilicate catalyst). The ways, new in the main, are revealed to study the properties of the surface by the technique of monochromatic positron beams of low energy

  9. An effect of surface properties on detachment of adhered solid to cooling surface for formation of clathrate hydrate slurry

    Science.gov (United States)

    Daitoku, Tadafumi; Utaka, Yoshio

    In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.

  10. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  11. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  12. The effect of radiosterilization on surface properties of polyurethane film

    International Nuclear Information System (INIS)

    Sheikh, N.

    2003-01-01

    In this paper the effect of sterilization method by gamma-ray on structure and cytotoxicity of polyurethane film surface has been investigated. For this purpose reactive urethan prepolymer was synthesized by the reaction between Tdi with a mixture of Peg and castro oil (50/50, w/w). The cured prepolymer films were prepared due to the reaction of reactive prepolymer with air moister under ambient conditions. The polyurethane films were sterilized by gamma-ray (25 kGy). The surface of sterilized polyurethane film was observed by Sem and compared to that of the unsterilized film. Also, the in vitro interaction of fibroblast L 929 cells and sterilized polyurethane film was evaluated. Results showed no signs of cell toxicity

  13. Survey of surface roughness properties of synchrotron radiation optics

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Colbert, J.; Church, E.L.

    1986-03-01

    Measurements of surface roughness were made on a large number of grazing incidence mirrors delivered for use at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The measurements were made with a WYKO optical profiler using a 2.5X and a 10X objective and analyzed with our PROFILE code to generate an average periodogram representation for each surface. The data is presented in the form of representative profiles with all of the periodogram curves arranged according to figure type. Analysis of the periodograms allows one to compute bandwidth-limited values for RMS roughness and slope, to provide valuable feedback information to manufacturers regarding compliance with specifications, and to predict the performance of the optic at x-ray wavelengths

  14. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  15. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  16. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  17. Surface-bound microgels - From physicochemical properties to biomedical applications

    DEFF Research Database (Denmark)

    Nyström, Lina; Malmsten, Martin

    2016-01-01

    Microgels offer robust and facile approaches for surface modification, as well as opportunities to introduce biological functionality by loading such structures with bioactive agents, e.g., in the context of drug delivery, functional biomaterials, and biosensors. As such, they provide a versatile...... and covalent grafting in dilute systems, to directed self-assembly, multilayer structures, and composites, as well as loading an release of drugs and other cargo molecules into/from such systems, and biomedical applications of these....

  18. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NARCIS (Netherlands)

    Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle

  19. On the Abaqus FEA model of finite viscoelasticity

    OpenAIRE

    Ciambella, Jacopo; Destrade, Michel; Ogden, Ray W.

    2013-01-01

    Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS viscoelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and certain shortcomings of the ABAQUS model.

  20. Noise reduction of rotating machinery by viscoelastic bearing supports

    NARCIS (Netherlands)

    Tillema, H.G.

    2003-01-01

    The demand for silent rolling bearing applications, such as electric motors and gearboxes, has resulted in an investigation of viscoelastic bearing supports. By placing a thin viscoelastic layer between the bearing outer ring and the surrounding structure, vibrations of the shaft-bearing arrangement