WorldWideScience

Sample records for surface thermal front

  1. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission I. Curvature Radiation Pair Fronts

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    2001-01-01

    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities, and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational X-ray data and suggest that the effect of PC heating should significantly contribute to the thermal X-ray fluxes from middle-aged and old pulsars. The implications for current and future X-ray observations of pulsars are briefly outlined.

  2. Relationship of Northeast Atlantic albacore juveniles with surface thermal and chlorophyll-a fronts

    Science.gov (United States)

    Sagarminaga, Y.; Arrizabalaga, H.

    2014-09-01

    When the spring seasonal warming starts, North Atlantic albacore (Thunnus alalunga) juveniles and pre-adults perform a trophic migration to the northeastern Atlantic, to the Bay of Biscay, and to the southeast of Ireland. During this migration, albacore juveniles are mainly exploited by Spanish trolling and baitboat fleets. The present study analyzes the relationship between the albacore spatio-temporal distribution and the upper surface horizontal fronts in their migration paths and destinations. For this, albacore catches from personal fishing logbooks from Basque trolling and live-bait fleets and daily MODIS AQUA Chlorophyll-a and SST products covering the period 2003-2005 have being used. Gradients have been calculated with the front algorithm proposed by Belkin and O'Reilly (2009). The approach used to study the relationship of catches location with frontal areas is based in the comparison of distributions of gradient magnitude around catch locations versus gradient magnitudes in a Monthly Occupation Area. The results obtained show that there is a high spatio- temporal variability of SST and Chl-a fronts in the area. SST and Chl-a fronts are not coincident in time or in space. However, there is a clear seasonal pattern of SST and Chl-a frontal activity in the area with a peak in July for SST gradient magnitudes and a peak in April for Chl-a gradient magnitudes. The relationship of albacore juvenile catches with high gradient magnitude areas is different according to the months and fleets analysed. In general, there is no evidence of consistent adherence of albacore catches to areas with higher SST gradients. However, results suggest a potential association between both fleets catches and Chl-a high gradient magnitude areas in August and September.

  3. Radiative thermal conduction fronts

    Science.gov (United States)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  4. Non-destructive testing of objects of complex shape using infrared thermography: rear surface reconstruction by temporal tracking of the thermal front

    Science.gov (United States)

    Djupkep Dizeu, F. B.; Laurendeau, Denis; Bendada, Abdelhakim

    2016-12-01

    Infrared thermography allows contactless non-destructive testing of objects based on their thermal behavior. Quantitative inspection of an object aims to characterize its internal defects by estimating their size and their depth. In the field, a one-dimensional thermal model has been used for depth estimation. Unfortunately, the methods based on this model become inaccurate when the inspected object has a high thermal diffusivity, a complex shape, or when the defects, like corrosion, have a complex geometry. For such cases, a 3D formulation of the problem is needed. In this paper, we consider the defect characterization as an inverse geometry problem and we propose a new method: the rear surface reconstruction by temporal tracking of the thermal front. The idea is to follow the thermal front while it propagates inside the object. Referring to the duality time-depth, at every moment, the penetration depth of the thermal front can be estimated. As soon as the thermal front reaches the rear surface, a temperature change will be noticeable on the frontal surface. It is then possible to update the internal geometry of the object at each time step in such a way that the difference between the theoretical temperature, obtained by a 3D solver, and the experimental temperature, recorded by an infrared camera, is minimized. The proposed method shows accurate results and can address situations involving rear surfaces with complex geometry and objects with high thermal diffusivity and a complex shape.

  5. Radiative magnetized thermal conduction fronts

    Science.gov (United States)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  6. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission. II. Inverse Compton Radiation Pair Fronts

    CERN Document Server

    Muslimov, A G; Muslimov, Alice K. Harding & Alexander

    2002-01-01

    We investigate the production of electron-positron pairs by inverse Compton scattered (ICS) photons above a pulsar polar cap (PC) and surface heating by returning positrons. This paper is a continuation of our self-consistent treatment of acceleration, pair dynamics and electric field screening above pulsar PCs. We calculate the altitude of the inverse Compton pair formation fronts, the flux of returning positrons and present the heating efficiencies and X-ray luminosities. We revise pulsar death lines implying cessation of pair formation, and present them in surface magnetic field-period space. We find that virtually all known radio pulsars are capable of producing pairs by resonant and non-resonant ICS photons radiated by particles accelerated above the PC in a pure star-centered dipole field, so that our ICS pair death line coincides with empirical radio pulsar death. Our calculations show that ICS pairs are able to screen the accelerating electric field only for high neutron star surface temperatures and ...

  7. Colorado Front Range Surface Ozone Analysis

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Kofler, J.; Petron, G.; Cothrel, H.

    2014-12-01

    The Colorado Front Range is a unique geographical region for air quality studies, including research of surface level ozone. Not only does surface ozone play a critical role in regulating the oxidation capacity of the atmosphere, but is a primary contributor to local smog and leads to public health complications and altered ecosystem functioning. The high frequency of sunny days, increasing population and pollution, and Mountain/Valley air dynamics of this region provide atmospheric conditions suitable for production and accumulation of ozone at the surface. This region of Colorado is currently in an ozone non-attainment status due to an assortment of contributing factors. Precursor emissions from pollution, wild-fires, and gas and oil production; along with stratosphere-troposphere exchange, can all result in high ozone episodes over the Colorado Front Range. To understand the dynamics of ozone accumulation in this region, Thermo-Scientific ozone monitors have been continuously sampling ozone from 4 different altitudes since the early 2000s. Analysis of ozone data in relation to Nitrogen Oxides (NOx), Methane (CH4), Carbon Monoxide (CO), wind-conditions and back-trajectory air mass origins help to address local ozone precursor emissions and resulting high ozone episodes. Increased ozone episodes are scrutinized with regards to dominant wind direction to determine main precursor emission sources. Analysis of this data reveals a strong influence of precursor emissions from the North-East wind sector, with roughly 50% of ozone exceedances originating from winds prevailing from this direction. Further, correlation with methane is enhanced when prevailing winds are from the North-East; indicative of influence from natural gas processes and feedlot activity. Similar analysis is completed for the North-West wind sector exceedances, with strong correlation to carbon monoxide; likely related to emissions from biomass burning events and forest fires. In depth analysis of

  8. Stabilizing the Advancing Front of Thermally Driven Climbing Films.

    Science.gov (United States)

    Kataoka; Troian

    1998-07-15

    As known from thermodynamic principles, the surface tension of a liquid decreases with increasing temperature. This property can be used to force a liquid film to climb a vertical substrate whose lower end is held warmer than the top. The vertical gradient in surface tension generates a surface shear stress that causes the liquid film to spread upward spontaneously in the direction of higher surface tension. Experimental investigations have shown that the application of a large temperature gradient produces a thin climbing film whose leading edge develops a pronounced capillary rim which breaks up into vertical rivulets. In contrast, smaller temperature gradients produce thicker films whose profiles decrease monotonically toward the substrate with no evidence of a rim or subsequent film breakup. We have previously shown within linear stability analysis that a climbing film can undergo a fingering instability at the leading edge when the film is sufficiently thin or the shear stress sufficiently large for gravitational effects to be negligible. In this work we show that thicker films which experience significant drainage cannot form a capillary rim and spread in stable fashion. Gravitational drainage helps promote a straight advancing front and complete surface coverage. Our numerical predictions for the entire shape and stability of the climbing film are in good agreement with extensive experiments published years ago by Ludviksson and Lightfoot (AIChE J. 17, 1166 (1971)). We propose that the presence of a counterflow which eliminates the capillary rim can provide a simple and general technique for stabilizing thermally driven films in other geometries. Copyright 1998 Academic Press.

  9. Tracking thermal fronts with temperature-sensitive, chemically reactive tracers

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.; Birdsell, S.A.

    1987-01-01

    Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

  10. Thermal fronts and cross-frontal heat flux in the southern Huanghai Sea and the East China Sea

    Institute of Scientific and Technical Information of China (English)

    PARK Sunghyea; CHU Peter C

    2008-01-01

    Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai/Yellow Sea and East China Sea(HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m( from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows: (1) multiple boundaries of cold water, asymmetric thermochne intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju-Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsnshima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju-Tsushima front; and (4) multistructure of Kuroshio front. In the Kureshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts.The southern Cheju-Changjiang front and Cheju-Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju-Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.

  11. Persistent thermal fronts in the Black Sea: Existence, variability, and response to atmospheric forcing

    Science.gov (United States)

    Kazmin, A. S.

    2016-05-01

    High-resolution satellite sea surface temperature (SST) measurements (PATHFINDER dataset) have been used to confirm an existence of persistent thermal frontal zones in the Black Sea. Fronts have been revealed in the winter season between the intensively cooling shallow northwestern area and warmer waters of central part, and in spring-summer season between the actively warming waters of the southeastern part and cooler central area. Interannual and quasi-decadal variability of the northwestern front have been documented, as well as a high negative correlation of its intensity with the winter-mean SST.

  12. The role of atmospheric boundary layer-surface interactions on the development of coastal fronts

    Directory of Open Access Journals (Sweden)

    D. Malda

    2007-03-01

    Full Text Available Frictional convergence and thermal difference between land and sea surface are the two surface conditions that govern the intensity and evolution of a coastal front. By means of the mesoscale model MM5, we investigate the influence of these two processes on wind patterns, temperature and precipitation amounts, associated with a coastal front, observed on the west coast of The Netherlands in the night between 12 and 13 August 2004. The mesoscale model MM5 is further compared with available observations and the results of two operational models (ECMWF and HIRLAM. HIRLAM is not capable to reproduce the coastal front, whereas ECMWF and MM5 both calculate precipitation for the coastal region. The precipitation pattern, calculated by MM5, agrees satisfactorily with the accumulated radar image. The failure of HIRLAM is mainly due to a different stream pattern at the surface and consequently, a different behaviour of the frictional convergence at the coastline.

    The sensitivity analysis of frictional convergence is carried out with the MM5 model, by varying land surface roughness length (z0. For the sensitivity analysis of thermal difference between sea and land surface, we changed the sea surface temperature (SST. Increasing surface roughness implies stronger convergence near the surface and consequently stronger upward motions and intensification of the development of the coastal front. Setting land surface roughness equal to the sea surface roughness means an elimination of frictional convergence and results in a diminishing coastal front structure of the precipitation pattern. The simulation with a high SST produces much precipitation above the sea, but less precipitation in the coastal area above land. A small increment of the SST results in larger precipitation amounts above the sea; above land increments are calculated for areas near the coast. A decrease of the SST shifts the precipitation maxima inland, although the

  13. Military Specification, Mirror, Front Surfaced Aluminized: For Optical Elements

    Science.gov (United States)

    2007-11-02

    uniform magnesium fluoride or silicon monoxide or as otherwise specified on the applicable drawing. Tha film shall be free from holes, foreign...Mt] «. OATI Of IIMMIMION (YYMHDDt MIL-M-13508C AMENDMENT 1 27 May 1983 MILITARY SPECIFICATION MIRROR, FRONT SURFACED ALUMINIZED : FOR OPTICAL... ALUMINIZED : FOR OPTICAL ELEMENTS This notice should be filed in front of MIL-M-13508C, dated 19 March 1973 MIL-M-13508C dated 19 March 1973 with

  14. An N-shape thermal front in the western South Yellow Sea in winter

    Institute of Scientific and Technical Information of China (English)

    WANG Fan; LIU Chuanyu

    2009-01-01

    An N-shape thermal front in the western South Yellow Sea (YS) in winter was detected using Advanced Very High Resolution Radiation (AVHRR) Sea Surface Temperature data and in-situ observations with a merged front-detecting method. The front, which exists from late October through early March, consists of western and eastern wings extending roughly along the northeast-southwest isobaths with a southeastward middle segment across the 20-50 m isobaths. There are north and south inflexions connecting the middle segment with the western and eastern wings, respectively. The middle segment gradually moves southwestward from November through February with its length increasing from 62 km to 107 km and the southern inflexion moving from 36.2°N to 35.3°N. A cold tongue is found to coexist with the N-shape front, and is carried by the coastal jet penetrating southward from the tip of the Shandong Peninsula into the western South YS as revealed by a numerical simulation. After departing from the coast, the jet flows as an anti-cyclonic recirculation below 10 m depth, trapping warmer water originally carried by the compensating Yellow Sea Warm Current (YSWC). A northwestward flowing branch of the YSWC is also found on the lowest level south of the front. The N-shape front initially forms between the cold tongue and warm water involved in the subsurface anti-cyclonical recirculation and extends upwards to the surface through vertical advection and mixing. Correlation analyses reveal that northerly and easterly winds tend to be favorable to the formation and extension of the N-shape front probably through strengthening of the coastal jet and shifting the YSWC pathway eastward, respectively.

  15. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  16. Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes

    Science.gov (United States)

    Guidoni, S. E.; Longcope, D. W.

    2010-08-01

    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfvénic speeds from the reconnection site. Heating occurs in gas-dynamic shocks (GDSs) which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature-dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong GDSs generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the GDS consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.

  17. Design of Laboratory Experiments to Study Photoionization Fronts Driven by Thermal Sources

    Science.gov (United States)

    Drake, R. P.; Hazak, G.; Keiter, P. A.; Davis, J. S.; Patterson, C. R.; Frank, A.; Blackman, E. G.; Busquet, Michel

    2016-12-01

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  18. Analysis of moving surface structures at a laser-induced boiling front

    Science.gov (United States)

    Matti, R. S.; Kaplan, A. F. H.

    2014-10-01

    Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.

  19. Front instability and energy of the free surface

    Science.gov (United States)

    Beltrame, Philippe

    2014-05-01

    In recent years, there has been a proliferation of research devoted to the formation of preferential flow paths occurring without macroscopic heterogeneity of the porous media. DiCarlo (2013) points out the connection between "overshoot" and the front instability. Extension of the standard Richards equation is required to capture this phenomenon. In most of the improvements, interfacial phenomena as the triple line at the front are considered. For instance, velocity dependent contact angle (Wang et al., 2013) or contact angle hysteresis (Rätz and Schweizer, 2012) allow to simulate successfully the instability. Another approach proposed by Cueto-Felgueroso and Juanes (2009) introduces a macroscopic surface tension related to the existence of the water/air interface. As previously, the simulation of an advancing front displays physical looking fingering displacements. The goal of this contribution is to better understand the role of the different surface energies in the emergence of the front instability. We propose a model involving both the macroscopic surface tension and the soil wettability. This latter allows to define a contact angle and possibly hysteresis using heterogeneous wettability (Beltrame et al., 2011). Therefore, we employ the phase field approach developed by Felgueroso and Juanes, 2009 to which we add a free energy term corresponding to the wettability: a disjoining or conjoining pressure resulting from effective molecular interactions between the substrate and the free surface (DeGennes, 1985). The difference with the classical suction pressure is the hydrophobic behavior for ultra-thin film (small water saturation). Such a water repellency was recently estimated in the soil (Diamantopoulos et al. 2013). Stability analysis of an advancing front in an uniform porous media shows that macroscopic surface tension and wettability may independently produce the instability growth. In contrast, for a front stopping when reaching the layers interface of

  20. Predictability of surface currents and fronts off the Mississippi Delta

    Energy Technology Data Exchange (ETDEWEB)

    Walker, N.D.; Rouse, L.J.; Wiseman, W.J. [Louisiana State Univ., Baton Rouge, LA (United States)

    2001-07-01

    The dynamic coastal region of the lower Mississippi River was examined under varying conditions of wind, river discharge and circulation patterns of the Gulf of Mexico. Nearly 7,000 deep-sea merchant vessels enter the port complex each year and the area boasts the highest concentration of offshore drilling rigs, rendering the Mississippi delta and adjacent coastal areas vulnerable to risk from oil spills. Satellite imagery has been useful in tracking movements of the Mississippi river plume as recognizable turbidity and temperature fronts are formed where river waters encounter ambient shelf waters. Oil spill modelers often base their predictions of oil movement on the surface wind field and surface currents, but past studies have indicated that this can be overly simplistic in regions affected by river flow because river fronts have significant control over the movement of oil in opposition to prevailing winds. Frontal zones, such as those found where river waters meet oceanic waters, are characterized by strong convergence of surface flow. These frontal zones can provide large and efficient traps or natural booms for spilled oil. In an effort to facilitate cleanup operations, this study made use of the National Ocean and Atmospheric Administration (NOAA) AVHRR satellite imagery of temperature and reflectance to study front locations and their variability in space and time. The main objectives were to quantify surface temperature structure and locations of fronts throughout the year using satellite image data, to map the structure of the Mississippi sediment plume and to assess the forcing factors responsible for its variability over space and time. The final objective was to use in-situ measurements of surface currents together with satellite image data to better understand surface flow in this region of strong and variable currents. It was concluded that the main factors controlling circulation in the Mississippi River outflow region are river discharge and

  1. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    Science.gov (United States)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  2. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  3. Direct measurement of thermal effusivity of foods by front configuration of the photpyroelectric method

    NARCIS (Netherlands)

    Szafner, G.; Bicanic, D.D.; Kulcsár, R.; Doka, O.

    2014-01-01

    Thermophysical properties of foods are of considerable relevance to food industry. The One among less explored thermophysical quantities is the thermal effusivity. In this paper the front variant of the photopyroelectric method was applied to determine thermal effusivity of both, fresh hen egg¿s

  4. Quantifying the contribution of thermally driven recirculation to a high-ozone event along the Colorado Front Range using lidar

    Science.gov (United States)

    Sullivan, John T.; McGee, Thomas J.; Langford, Andrew O.; Alvarez, Raul J.; Senff, Christoph J.; Reddy, Patrick J.; Thompson, Anne M.; Twigg, Laurence W.; Sumnicht, Grant K.; Lee, Pius; Weinheimer, Andrew; Knote, Christoph; Long, Russell W.; Hoff, Raymond M.

    2016-09-01

    A high-ozone (O3) pollution episode was observed on 22 July 2014 during the concurrent "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) and "Front Range Air Pollution and Photochemistry Experiment" (FRAPPE) campaigns in northern Colorado. Surface O3 monitors at three regulatory sites exceeded the Environmental Protection Agency (EPA) 2008 National Ambient Air Quality Standard (NAAQS) daily maximum 8 h average (MDA8) of 75 ppbv. To further characterize the polluted air mass and assess transport throughout the event, measurements are presented from O3 and wind profilers, O3-sondes, aircraft, and surface-monitoring sites. Observations indicate that thermally driven upslope flow was established throughout the Colorado Front Range during the pollution episode. As the thermally driven flow persisted throughout the day, O3 concentrations increased and affected high-elevation Rocky Mountain sites. These observations, coupled with modeling analyses, demonstrate a westerly return flow of polluted air aloft, indicating that the mountain-plains solenoid circulation was established and impacted surface conditions within the Front Range.

  5. Simultaneous measurement of thermal diffusivity and effusivity of solids using the flash technique in the front-face configuration

    Science.gov (United States)

    Wilbur Pech-May, Nelson; Cifuentes, Ángel; Mendioroz, Arantza; Oleaga, Alberto; Salazar, Agustín

    2015-08-01

    Both thermal diffusivity and effusivity (or conductivity) are necessary to characterize the thermal transport properties of a material. The flash method is the most recognized procedure to measure the thermal diffusivity of free-standing opaque plates. However, it fails to simultaneously obtain the thermal effusivity (or conductivity). This is due to the difficulty of knowing the total energy absorbed by the sample surface after the light pulse. In this work, we propose using the flash method in the front-face configuration on a two-layer system made of the unknown plate and a fluid of known thermal properties. We demonstrate that the surface temperature is sensitive to the thermal mismatch between the plate and the fluid, which is governed by their thermal effusivity ratio. In order to verify the validity of the method and to establish its application limits we have performed flash measurements, using a pulsed laser and an infrared camera, on a set of calibrated materials (metals, alloys, ceramics and polymers) covering a wide range of thermal transport properties. These results confirm the ability of the flash method to simultaneously retrieve thermal diffusivity and effusivity in a fast manner in samples whose effusivities are lower than three times the effusivity of the liquid used as backing fluid.

  6. Visual study of propagation of self-sustained evaporation front within the thickness of a thermal liquid layer

    Science.gov (United States)

    Zhukov, V. E.; Moiseev, M. I.; Kuznetsov, D. V.

    2016-10-01

    In the range of low reduced pressures, the development of self-sustained evaporation front along the heat-releasing surface at non-stationary heat release is an important factor that determines possible transition to film boiling at heat fluxes, significantly lower than the critical heat fluxes at stationary heat release. This paper presents the experimental results on the scale of a leading part of the interface of self-sustained evaporation front at stepped heat release. The scale of the leading part of the interface of the evaporation front is compared with the thermal layer thickness, registered using the shadow method of visualization at high-speed video shooting with up to 25,000 frames per second. Experiments were carried out in Freon R21 under the conditions of free convection at relative pressures of 0.032 - 0.068. It is shown that self-sustained evaporation front spreads along the heated wall within the thickness of a liquid layer, superheated relative to the saturation temperature. Dependence of the front velocity on wall superheating relative to the saturation temperature does not change with significant subcooling to the temperature of liquid saturation in the volume.

  7. Shocks and Thermal Conduction Fronts in Retracting Reconnected Flux Tubes

    CERN Document Server

    Guidoni, Silvina

    2010-01-01

    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfv\\'enic speeds from the reconnection site. Heating occurs in gas-dynamic shocks which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong gas-dynamic shocks generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the t...

  8. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  9. Approach of the measurement of thermal diffusivity of mural paintings by front face photothermal radiometry

    Science.gov (United States)

    Candoré, Jean Charles; Bodnar, J. L.; Detalle, Vincent; Remy, B.; Grossel, Philippe

    2010-03-01

    In this paper we present, in an experimental way, the possibilities of front face photothermal radiometry to measure, in situ, the longitudinal thermal diffusivity of mural paintings. First, we present the principle of the method of measurement. Then, we present the experimental device implemented for the study. Finally, we show, using the experimental study of a plaster sample, the photothermal method allows in a particular case, a good approximation of the parameter longitudinal thermal diffusivity.

  10. Front surface structured targets for enhancing laser-plasma interactions

    Science.gov (United States)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  11. Thermal front propagation in variable aperture fracture-matrix system: A numerical study

    Indian Academy of Sciences (India)

    Nikhil Bagalkot; G Suresh Kumar

    2015-04-01

    A numerical study on the effect of complex fracture aperture geometry on propagation of thermal front in a coupled single fracture-matrix system has been carried out. Sinusoidal and logarithmic functions have been used to capture the variation in fracture aperture. Modifications have been made to existing coupled partial differential governing equations to consider the variation of fracture aperture. Effect of temperature on the thermal and physical properties of rock have been incorporated. A fully implicit finite difference scheme has been used to discretize the coupled governing equations. Thermal convection, dispersion and conduction are the major transport processes within fracture, while conduction is the major transport process within rock matrix. The results suggest that variation of fracture aperture increases the heat transfer rate at the fracture-matrix interface. Sensitivity analysis on rock thermal conductivity and fracture aperture have been carried out. The results suggest that the heat transfer from rock matrix to fracture for the case of the parallel plate model is greatly dependent on the rock thermal conductivity (m) as compared to variable aperture model. Further, the thermal front propagation for both parallel plate model and variable aperture model is sensitive to changes in fracture aperture. The heat transfer rate at the interface is greater at smaller fracture apertures and decreases with increase in aperture.

  12. Thermal analysis of the first canted-undulator front-end components at SSRF

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongmin, E-mail: xuzhongmin@sinap.ac.cn; Feng, Xinkang; Wang, Naxiu; Wu, Guanyuan; Zhang, Min; Wang, Jie

    2015-02-21

    The performance of three kinds of masks: pre-mask, splitter mask and fixed mask-photon shutter, used for the first canted-undulator front end under heat loads at SSRF, is studied. Because these components are shared with two beamlines, the X-rays from both dual undulators and bending magnets can strike on them. Under these complicated conditions, they will absorb much more thermal power than when they operate in usual beamline. So thermal and stress analysis is indispensable for their mechanical design. The method of applying the non-uniform power density using Ansys is presented. During thermal stress analysis, the normal operation or the worst possible case is considered. The finite element analyses results, such as the maximum temperature of the body and the cooling wall and the maximum stress of these components, show the design of them is reasonable and safe.

  13. A model of sea surface temperature front detection based on a threshold interval

    Institute of Scientific and Technical Information of China (English)

    PING Bo; SU Fenzhen; MENG Yunshan; FANG Shenghui; DU Yunyan

    2014-01-01

    A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel-lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi-ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter-mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.

  14. Front surface field formation and diffusion profiles for industrial interdigitated back contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cascant, M.; Morecroft, D.; Boulif, K.; Vauche, L.; Yuste, H.; Castano, F.J. [Siliken, High efficiency solar cell pilot line, R and D department, Ciudad Politecnica de la Innovacion- UPV Camino de Vera 14, 46022 Valencia, (Spain); Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Optimization of the Front Surface Field (FSF) for IBC cells is important for passivation, lowering series resistance and reducing UV light degradation. This work presents results for optimizing the FSF diffusion from an industrial perspective, focusing on optimizing the process flow to achieve excellent FSF performance, whilst at the same time reducing the number of process steps. The ideal FSF profile is a compromise since a lightly doped deep diffusion reduces recombination losses close the cell surface where the light is captured, whilst increased doping reduces series resistance. This work investigates diffusing the FSF (1) at the beginning, (2) in the middle and (3) towards the end of the IBC process flow. The advantage of the first option is that the diffusion depth can be increased by subsequent thermal steps. However a diffusion barrier is required to protect the FSF throughout the subsequent processing, which increases the number of process steps and results in increased costs. By placing the FSF diffusion later in the process flow it is possible to simplify the process reducing the number of steps. Experimental results show excellent FSF diffusion passivation performance over 156mm, with lifetime values of over 500 {mu}s. Simulations confirm that high current generation can be achieved with a short circuit current of over 40 mA cm-{sup 2}.

  15. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    Science.gov (United States)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  16. A one-dimensional model for the quantum efficiency of front-surface-field solar cells

    Science.gov (United States)

    Yernaux, M. I.; Battochio, C.; Verlinden, P.; van de Wiele, F.

    1984-11-01

    A one-dimensional analytical model is proposed to calculate the photocurrent generated in interdigitated back contact solar cells with a high-low junction at the front illuminated surface. The high-low junction is simulated by constant doping levels, mobilities and lifetimes. A study of the quantum efficiency of front-surface-field (FSF) solar cells is made and the computer results are compared with experimental results. A method of determining the real and the effective surface recombination velocity of FSF solar cells is proposed.

  17. Analysis of sea surface temperature fronts in the Taiwan Strait and its adjacent area using an advanced edge detection method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A morphology-based edge detection method has been used to study sea surface temperature (SST) fronts in the Taiwan Strait and its adjacent area. The method is based on mathematical morphology with multi-dimensional and multi-structural elements. Using six years’ SST data from September 2002 to August 2008, we distinguished the large SST front like Kuroshio Front as well as the smaller ones: namely Taiwan Bank Front, Zhe-Min Coastal Front and Zhang-Yun Ridge Front. The seasonal and monthly variations of these fronts were also studied. Generally, the SST fronts are stronger in winter but weaker in summer. And the fronts are at their active stage during the period from January to May but at their declining stage during the period from July to October.

  18. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  19. Earthquake Surface Rupture of the Salt Range Thrust at the Himalayan Thrust Front in Pakistan

    Science.gov (United States)

    Meigs, A.; Yule, J. D.; Madden, C.; Yeats, R.; Hussain, A.; Akhtar, S. S.; Latif, A.; Waliullah, A.; Ashraf, M.; Ramzan, S.; Dasti, N.

    2007-12-01

    Considerable evidence from Nepal and India now indicates that the basal detachment of the Himalaya produces great earthquakes that result in large coseismic displacements at the thrust front in India and Nepal (the Main Frontal thrust). In contrast, knowledge of the earthquake potential of the Salt Range thrust in Pakistan (SRT) is virtually absent. It has been clear since the publication of the Salt Range maps of Gee (1989) that the SRT deforms young surficial deposits and is an active fault. What remains uncertain is whether surface rupturing events occur on the SRT, with what frequency those events occur, and what is the size of the associated earthquakes. In a field reconnaissance of the SRT in Spring, 2007, we were able to confirm that this thrust is an active fault, and we discovered numerous localities where the fault nearly reaches the surface, cutting all but the youngest few meters of colluvial deposits. Whereas our observations suggest that surface rupturing events occur on the SRT, a number of characteristics of the Pakistani Himalaya suggests the earthquake behavior of the basal detachment and thrust front may be substantially different than it is in India and Nepal to the southeast. Key differences include an uncertain, but lower, convergence rate at the thrust front (5 to 13 mm/yr), a low tapered thrust wedge, and localization of the basal detachment in a weak evaporite unit. In this sense, the front of the Zagros fold-and-thrust belt in Iran may be a more appropriate analog for the thrust front in Pakistan than the Himalayan thrust front to the southeast. Future mapping of deformed geomorphic surfaces and paleoseismic trenching along the SRT will provide the first direct evidence of the earthquake potential and recurrence of plate- boundary earthquakes in Pakistan. This knowledge is critical for hazard assessment in north-central Pakistan where more than 7 million people are likely to be affected by a great earthquake on the plate boundary.

  20. Internal quantum efficiency mapping analysis for a >20%-efficiency n-type bifacial solar cell with front-side emitter formed by BBr3 thermal diffusion

    Science.gov (United States)

    Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka

    2017-10-01

    This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.

  1. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    CERN Document Server

    Brannon, Sean

    2014-01-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks so produced drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the "flow reversal point" or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a 1-D hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and tra...

  2. Thermal smoothing of rough surfaces in vacuo

    Science.gov (United States)

    Wahl, G.

    1986-01-01

    The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.

  3. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  4. Multipole surface solitons in layered thermal media

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2008-01-01

    We address the existence and properties of multipole solitons localized at a thermally insulating interface between uniform or layered thermal media and a linear dielectric. We find that in the case of uniform media, only surface multipoles with less than three poles can be stable. In contrast, we reveal that periodic alternation of the thermo-optic coefficient in layered thermal media makes possible the stabilization of higher order multipoles.

  5. On orbit surfacing of thermal control surfaces

    Science.gov (United States)

    Racette, G. W.

    1984-01-01

    Substrates to be contaminated and contamination source were prepared. Additional information on paint spray method apparatus was obtained. Silver teflon second surface mirror samples and S 13 GLO paint samples were mounted, photographed under the microscope and measured to establish baseline data. Atomic oxygen cleaning and spray painting are being considered. Electrostatic powder and plasma spray coating systems appear to have serious drawbacks.

  6. Particles as probes for complex plasmas in front of biased surfaces

    CERN Document Server

    Basner, R; Loffhagen, D; Schubert, G; Fehske, H; Kersten, H

    2008-01-01

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc, rf) on the charged micro-particles has been inves...

  7. Formation of shallow front emitters for solar cells by rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Hans B.; Svensson, Bengt G.; Monakhov, Edouard [Department of Physics/Center for Materials Science and Nanotechnology, University of Oslo, Sem Saelands vei 24, 0316 Oslo (Norway)

    2012-10-15

    In this work we report on formation of shallow front emitters by phosphorus in-diffusion during rapid thermal processing (RTP). Both Filmtronics P509 diffusant and concentrated phosphoric acid were deposited on 1 {Omega}cm p-type mono crystalline silicon samples. Diffused shallow emitters were realized by annealing at 900 C and 950 C in the range of 10 - 40 s using an Annealsys AS-Micro furnace. The chemical concentration versus depth profiles of phosphorus were measured by secondary ion mass spectrometry (SIMS) and the sheet resistance was measured by four-point probing. It is found that emitters with depths in the range 100 - 275 nm and the maximum doping concentrations in the range 2 x 10{sup 20} - 1 x 10{sup 21} cm{sup -3} can be formed after RTP. By varying the RTP-conditions, a sheet resistance of 314 - 40 {Omega}/sq for diffusant-treated samples and of 175 - 40 {Omega}/sq for phosphoric acid treated samples are obtained. The P509 diffusant and concentrated phosphoric acid gave similar emitter profiles. High solubility of phosphorus in silicon at elevated temperatures ensured a low sheet resistance even for short annealing times. It is shown that phosphorus in-diffusion during RTP is a viable method in formation of shallow front emitters for solar cells. In particular, the highest phosphorus peak concentration and the shallowest diffusion profile were achieved by in-diffusion from dehydrated phosphoric acid (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Study on Numerical Simulation of the Impact of the Land-Surface Process in a Meiyu Front Rainstorm

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to carry out numerical simulation on impact of land-surface process in a Meiyu front rainstorm.[Method] Based on the meso-scale atmospheric non-hydrostatic model GRAPES-Meso which coupled with NOAH land-surface module,a Meiyu front rainstorm in Jianghuai basin during 6-8 July,2005 was simulated.Via sensitivity tests with and without land-surface process,the impact of land-surface process on Meiyu front rainstorm was studied.[Result] GRAPES-Meso which coupled with NOAH land-sur...

  9. Gene expression under thermal stress varies across a geographical range expansion front.

    Science.gov (United States)

    Lancaster, Lesley T; Dudaniec, Rachael Y; Chauhan, Pallavi; Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2016-03-01

    Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genomewide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold-stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat-shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold-stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects.

  10. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.

    2011-07-08

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  11. Modeling Properties Of Chromospheric Evaporation Driven By Thermal Conduction Fronts From Reconnection Shocks

    Science.gov (United States)

    Brannon, Sean; Longcope, D.

    2013-07-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. These hydrodynamic shocks drive thermal conduction fronts (TCFs), which deposit energy into the chromosphere, driving upflows (evaporation) and downflows (condensation) across a range of temperatures. Observations have revealed that the transition between evaporation and condensation, the "velocity reversal point" (VRP), occurs at a characteristic temperature and with a characteristic slope, which vary between different flares. In this study, we develop a 1-D hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere / transition region (TR) / corona), with TCFs initiated by piston shocks introduced in the corona. We investigate the effect of three different flare loop parameters (post-shock temperature, TR temperature ratio, and TR thickness) on the temperature and slope of the VRP. We find that both of the evaporation characteristics have power-law relationships to the varied flare parameters, and we report the scaling exponents for our model. Finally, we develop a method to determine the best-fit post-shock temperature and TR temperature ratio based on the observed quantities, and discuss the results for two sets of published data.

  12. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  13. Thermal Tomography of Asteroid Surface Structure

    Science.gov (United States)

    Harris, Alan W.; Drube, Line

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  14. Thermal Tomography of Asteroid Surface Structure

    CERN Document Server

    Harris, Alan

    2016-01-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Eviden...

  15. Metallic superhydrophobic surfaces via thermal sensitization

    Science.gov (United States)

    Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.

    2017-06-01

    Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.

  16. Thermal radiation from magnetic neutron star surfaces

    CERN Document Server

    Pérez-Azorin, J F; Pons, J A

    2005-01-01

    We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).

  17. Fast calculation method of computer-generated cylindrical hologram using wave-front recording surface.

    Science.gov (United States)

    Zhao, Yu; Piao, Mei-lan; Li, Gang; Kim, Nam

    2015-07-01

    Fast calculation method for a computer-generated cylindrical hologram (CGCH) is proposed. The method consists of two steps: the first step is a calculation of a virtual wave-front recording surface (WRS), which is located between the 3D object and CGCH. In the second step, in order to obtain a CGCH, we execute the diffraction calculation based on the fast Fourier transform (FFT) from the WRS to the CGCH, which are in the same concentric arrangement. The computational complexity is dramatically reduced in comparison with direct integration method. The simulation results confirm that our proposed method is able to improve the computational speed of CGCH.

  18. Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation

    Science.gov (United States)

    Lu, Meijun; Bowden, Stuart; Das, Ujjwal; Birkmire, Robert

    2007-08-01

    This letter reports interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells which combine the performance benefits of both back contact and heterojunction technologies while reducing their limitations. Low temperature (interdigitated heteroemitter and contacts in the rear preserves substrate lifetime while minimizes optical losses in the front. The IBC-SHJ structure is ideal for diagnosing surface passivation quality, which is analyzed and measured by internal quantum efficiency and minority carrier lifetime measurements. Initial cells have independently confirmed efficiency of 11.8% under AM1.5 illumination. Simulations indicate efficiencies greater than 20% after optimization.

  19. Stable glass transformation to supercooled liquid via surface-initiated growth front.

    Science.gov (United States)

    Swallen, Stephen F; Traynor, Katherine; McMahon, Robert J; Ediger, M D; Mates, Thomas E

    2009-02-13

    Highly stable glasses of tris-naphthylbenzene transform into a liquid when annealed above the glass transition temperature T_{g}. In contrast to the predictions of standard models, the observed transformation is spatially inhomogeneous. Secondary ion mass spectrometry experiments on isotopically labeled multilayer films show that the liquid grows into the stable glass with sharp growth fronts initiated at the free surface and at the interface with the substrate. For the free surface, the growth velocity is constant in time and has the same temperature dependence as self-diffusion in the equilibrium supercooled liquid. These stable glasses are packed so efficiently that surfaces and interfaces are required to initiate the transformation to the liquid even well above T_{g}.

  20. Design of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp

    Science.gov (United States)

    Wang, Hong; Li, Xiufeng; Ge, Peng

    2017-02-01

    We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.

  1. Observation of a mesospheric front in a thermal-doppler duct over King George Island, Antarctica

    Directory of Open Access Journals (Sweden)

    J. V. Bageston

    2011-12-01

    Full Text Available A mesospheric front was observed with an all-sky airglow imager on the night of 9–10 July 2007 at Ferraz Station (62° S, 58° W, located on King George island on the Antarctic Peninsula. The observed wave propagated from southwest to northeast with a well defined wave front and a series of crests behind the main front. The wave parameters were obtained via a 2-D Fourier transform of the imager data providing a horizontal wavelength of 33 km, an observed period of 6 min, and a horizontal phase speed of 92 m s−1. Simultaneous mesospheric winds were measured with a medium frequency (MF radar at Rothera Station (68° S, 68° W and temperature profiles were obtained from the SABER instrument on the TIMED satellite. These wind and temperature profiles were used to estimate the propagation environment of the wave event. A wavelet technique was applied to the wind in the plane of wave propagation at the OH emission height spanning three days centered on the front event to define the dominant periodicities. Results revealed a dominance of near-inertial periods, and semi-diurnal and terdiurnal tides suggesting that the ducting structure enabling mesospheric front propagation occurred on large spatial scales. The observed tidal motions were used to reconstruct the winds employing a least-squares method, which were then compared to the observed ducting environment. Results suggest an important contribution of large-scale winds to the ducting structure, but with buoyancy frequency variations in the vertical also expected to be important. These results allow us to conclude that the wave front event was supported by a duct including contributions from both winds and temperature.

  2. Are boundary conditions in surface productivity at the Southern Polar Front reflected in benthic activity?

    Science.gov (United States)

    Brandt, Angelika; Vanreusel, Ann; Bracher, Astrid; Jule Marie Hoppe, Clara; Lins, Lidia; Meyer-Löbbecke, Anna; Altenburg Soppa, Mariana; Würzberg, Laura

    2014-10-01

    In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m-3 at surface, 9 mg Chl-a m-2 and 161 mg C m-2 d-1- integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m-3 at surface, 180 mg Chl-a m-2 and 2587 mg C m-2 d-1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.

  3. Thermal characterization of nanoporous 'black silicon' surfaces

    Science.gov (United States)

    Nichols, Logan; Duan, Wenqi; Toor, Fatima

    2016-09-01

    In this work we characterize the thermal conductivity properties of nanoprous `black silicon' (bSi). We fabricate the nanoporous bSi using the metal assisted chemical etching (MACE) process utilizing silver (Ag) metal as the etch catalyst. The MACE process steps include (i) electroless deposition of Ag nanoparticles on the Si surface using silver nitrate (AgNO3) and hydrofluoric acid (HF), and (ii) a wet etch in a solution of HF and hydrogen peroxide (H2O2). The resulting porosity of bSi is dependent on the ratio of the concentration of HF to (HF + H2O2); the ratio is denoted as rho (ρ). We find that as etch time of bSi increases the thermal conductivity of Si increases as well. We also analyze the absorption of the bSi samples by measuring the transmission and reflection using IR spectroscopy. This study enables improved understanding of nanoporous bSi surfaces and how they affect the solar cell performance due to the porous structures' thermal properties.

  4. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  5. Surface mesoscale pico-nanoplankton patterns at the main fronts of the Alboran Sea

    Science.gov (United States)

    León, P.; Blanco, J. M.; Flexas, M. M.; Gomis, D.; Reul, A.; Rodríguez, V.; Jiménez-Gómez, F.; Allen, J. T.; Rodríguez, J.

    2015-03-01

    The mesoscale (10-100 km, days-weeks) plays a key role in the Ocean's ecosystem structure and dynamics. This work compares the pico-nanoplankton patterns observed in the Alboran Sea (Western Mediterranean) during three oceanographic cruises. We analyse its response to different expressions of mesoscale circulation associated with the three major hydrodynamic features in the basin; namely the Northwestern Alboran Front (NWAF, surveyed in OMEGA-1 cruise), the Almeria-Oran Front (AOF, surveyed in OMEGA-2 cruise) and the Western Alboran Gyre (WAG, surveyed in BIOMEGA cruise). The first two surveys were carried out under the most typical quasi-stationary twin gyre conditions of the Alboran Sea, whereas the third cruise was performed after an eastward migration of the WAG. The analysis of pico and nanoplankton populations was carried out using flow cytometry. The patchiness observed in the three cruises indicates an association of phytoplankton peaks with the main frontal structures: abundances were higher in the NWAF/upwelling area in OMEGA-1, at the Mediterranean side of the AOF in OMEGA-2, and at a tongue of recent Atlantic Water west of the WAG in BIOMEGA. However, a more detailed analysis reveals that different factors explain the origin of the phytoplankton biomass in each front/cruise. Mixing processes at the Strait of Gibraltar and the subsequent advection of water properties into the Western Alboran Sea were the mechanisms responsible for the abundances observed in the NWAF. The highest concentrations observed in the AOF were related to the intrusion of Mediterranean Surface Waters to the north of the front. During the migrating WAG the phytoplankton distribution was influenced by the formation of a new gyre. The relation between phytoplankton and mesoscale dynamics is further explored in terms of vertical velocity diagnosis. In all cases, intense vertical motion is negatively correlated with the abundance of phytoplankton populations. This resulted from the

  6. Bioadhesion to model thermally responsive surfaces

    Science.gov (United States)

    Andrzejewski, Brett Paul

    This dissertation focuses on the characterization of two surfaces: mixed self-assembled monolayers (SAMs) of hexa(ethylene glycol) and alkyl thiolates (mixed SAM) and poly(N-isopropylacrylamide) (PNIPAAm). The synthesis of hexa(ethylene gylcol) alkyl thiol (C11EG 6OH) is presented along with the mass spectrometry and nuclear magnetic resonance results. The gold substrates were imaged prior to SAM formation with atomic force micrscopy (AFM). Average surface roughness of the gold substrate was 0.44 nm, 0.67 nm, 1.65 nm for 15, 25 and 60 nm gold thickness, respectively. The height of the mixed SAM was measured by ellipsometry and varied from 13 to 28°A depending on surface mole fraction of C11EG6OH. The surface mole fraction of C11EG6OH for the mixed SAM was determined by X-ray photoelectron spectroscopy (XPS) with optimal thermal responsive behavior in the range of 0.4 to 0.6. The mixed SAM surface was confirmed to be thermally responsive by contact angle goniometry, 35° at 28°C and ˜55° at 40°C. In addition, the mixed SAM surfaces were confirmed to be thermally responsive for various aqueous mediums by tensiometry. Factors such as oxygen, age, and surface mole fraction and how they affect the thermal responsive of the mixed SAM are discussed. Lastly, rat fibroblasts were grown on the mixed SAM and imaged by phase contrast microscopy to show inhibition of attachment at temperatures below the molecular transition. Qualitative and quantitative measurements of the fibroblast adhesion data are provided that support the hypothesis of the mixed SAM exhibits a dominantly non-fouling molecular conformation at 25°C whereas it exhibits a dominantly fouling molecular conformation at 40°C. The adhesion of six model proteins: bovine serum albumin, collagen, pyruvate kinase, cholera toxin subunit B, ribonuclease, and lysozyme to the model thermally responsive mixed SAM were examined using AFM. All six proteins possessed adhesion to the pure component alkyl thiol, in

  7. On Self-Ignition and the Propagation of Flame Fronts on the Surfaces of Accreting Neutron Stars

    Science.gov (United States)

    Bayliss, A.; Sandquist, E. L.; Taam, R. E.

    1998-12-01

    The behavior of nuclear burning in the accreted layer of a neutron star is investigated for helium and hydrogen-helium mixtures. Attention is focused on the propagation of a thermal wave due to electron conduction or radiative diffusion in the lateral direction. The fully time-dependent calculations reveal that a steady state flame front is not necessarily applicable at high mass accretion rates (dM/dt > (dM/dt)Edd). In particular, there are parameter regimes in which a steady state structure is never attained within physically relevant timescales because the gas ahead of a front self-ignites. Hence, a thermonuclear flash may take place on a timescale unrelated to the timescale for a steady state front to propagate over a homogeneous region. The existence of irregular burst activity in highly luminous neutron star X-ray binary systems may provide some observational support for this theoretical picture.

  8. Methane Lunar Surface Thermal Control Test

    Science.gov (United States)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.

    2012-01-01

    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  9. Intra-Individual Variability of Surface Electromyography in Front Crawl Swimming.

    Directory of Open Access Journals (Sweden)

    Jonas Martens

    Full Text Available The variability of electromyographic (EMG recordings between and within participants is a complex problem, rarely studied in swimming. The importance of signal normalization has long been recognized, but the method used might influence variability. The aims of this study were to: (i assess the intra-individual variability of the EMG signal in highly skilled front crawl swimmers, (ii determine the influence of two methods of both amplitude and time normalization of the EMG signal on intra-individual variability and of time normalization on muscle activity level and (iii describe the muscle activity, normalized using MVIC, in relation to upper limb crawl stroke movements. Muscle activity of rectus abdominis and deltoideus medialis was recorded using wireless surface EMG in 15 adult male competitive swimmers during three trials of 12.5 m front crawl at maximal speed without breathing. Two full upper limb cycles were analyzed from each of the swimming trials, resulting in six full cycles used for the intra-individual variability assessment, quantified with the coefficient of variation (CV, coefficient of quartile variation (CQV and the variance ratio (VR. The results of this study support previous findings on EMG patterns of deltoideus medialis and rectus abdominis as prime mover during the recovery (45% activity relative to MVIC, and stabilizer of the trunk during the pull (14.5% activity respectively. The intra-individual variability was lower (VR of 0.34-0.47 when compared to other cyclic movements. No meaningful differences were found between variability measures CV or VR when applying either of the amplitude or the time normalization methods. In addition to reporting the mean amplitude and standard deviation, future EMG studies in swimming should also report the intra-individual variability, preferably using VR as it is independent of peak amplitude, provides a good measure of repeatability and is insensitive to mean EMG amplitude and the

  10. Intra-Individual Variability of Surface Electromyography in Front Crawl Swimming.

    Science.gov (United States)

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Fernandes, Ricardo Jorge Pinto; Staes, Filip

    2015-01-01

    The variability of electromyographic (EMG) recordings between and within participants is a complex problem, rarely studied in swimming. The importance of signal normalization has long been recognized, but the method used might influence variability. The aims of this study were to: (i) assess the intra-individual variability of the EMG signal in highly skilled front crawl swimmers, (ii) determine the influence of two methods of both amplitude and time normalization of the EMG signal on intra-individual variability and of time normalization on muscle activity level and (iii) describe the muscle activity, normalized using MVIC, in relation to upper limb crawl stroke movements. Muscle activity of rectus abdominis and deltoideus medialis was recorded using wireless surface EMG in 15 adult male competitive swimmers during three trials of 12.5 m front crawl at maximal speed without breathing. Two full upper limb cycles were analyzed from each of the swimming trials, resulting in six full cycles used for the intra-individual variability assessment, quantified with the coefficient of variation (CV), coefficient of quartile variation (CQV) and the variance ratio (VR). The results of this study support previous findings on EMG patterns of deltoideus medialis and rectus abdominis as prime mover during the recovery (45% activity relative to MVIC), and stabilizer of the trunk during the pull (14.5% activity) respectively. The intra-individual variability was lower (VR of 0.34-0.47) when compared to other cyclic movements. No meaningful differences were found between variability measures CV or VR when applying either of the amplitude or the time normalization methods. In addition to reporting the mean amplitude and standard deviation, future EMG studies in swimming should also report the intra-individual variability, preferably using VR as it is independent of peak amplitude, provides a good measure of repeatability and is insensitive to mean EMG amplitude and the degree of

  11. Scenario Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2016-01-01

    Full Text Available Scenario research results of heat transfer and tissue damage in three-layered tree trunk influenced by heat flux from forest fire are presented. The problem is solved in two-dimensional statement in polar coordinates. The typical range of influence parameters (heat flux from forest fire front, trunk radius, coniferous species, air temperature, duration of exposure and distance from fire line is considered. Temperature distributions in different moments of time are obtained. Condition of tree damage by forest fire influence is under consideration in this research. Information summarized using tables with scenario and fire consequences results.

  12. Analysis of the Impact of Wildfire on Surface Ozone Record in the Colorado Front Range

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Pierce, R. B.; Sullivan, J. T.; Reddy, P. J.

    2015-12-01

    Ozone plays an important role on the oxidation capacity of the atmosphere, and at ground-level has negative impacts on human health and ecosystem processes. In order to understand the dynamics and variability of surface ozone, it is imperative to analyze individual sources, interactions between sources, transport, and chemical processes of ozone production and accumulation. Biomass burning and wildfires have been known to emit a suite of particulate matter and gaseous compounds into the atmosphere. These compounds, such as, volatile organic compounds, carbon monoxide, and nitrogen oxides are precursor species which aid in the photochemical production and destruction of ozone. The Colorado Front Range (CFR) is a region of complex interactions between pollutant sources and meteorological conditions which result in the accumulation of ozone. High ozone events in the CFR associated with fires are analyzed for 2003-2014 to develop understanding of the large scale influence and variability of ozone and wildfire relationships. This study provides analysis of the frequency of enhanced ozone episodes that can be confirmed to be transported within and affected by the fires and smoke plumes. Long-term records of surface ozone data from the CFR provide information on the impact of wildfire pollutants on seasonal and diurnal ozone behavior. Years with increased local fire activity, as well as years with increased long-range transport of smoke plumes, are evaluated for the effect on the long-term record and high ozone frequency of each location. Meteorological data, MODIS Fire detection images, NOAA HYSPLIT Back Trajectory analysis, NOAA Smoke verification model, Fire Tracer Data (K+), RAQMS Model, Carbon Monoxide data, and Aerosol optical depth retrievals are used with NOAA Global Monitoring Division surface ozone data from three sites in Colorado. This allows for investigation of the interactions between pollutants and meteorology which result in high surface ozone levels.

  13. Autonomous Aerobraking Using Thermal Response Surface Analysis

    Science.gov (United States)

    Prince, Jill L.; Dec, John A.; Tolson, Robert H.

    2007-01-01

    Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.

  14. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    Science.gov (United States)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  15. Thermal instability of DLC film surface morphology - an AFM study

    Science.gov (United States)

    Maheswaran, R.; Thiruvadigal, D. John; Gopalakrishnan, C.

    2012-06-01

    The surface morphology of the DLC film during thermal annealing at particular temperature above the graphitization temperature shows blistering and buckling and also delaminates from the substrate. The DLC film shows poor thermal stability at higher temperature.

  16. Front-end and high-voltage electronics developments for compact, dual ion-electron thermal measurements

    Science.gov (United States)

    Cara, A.; Lavraud, B.; Tap, H.; Ballot, Y.; Aoustin, C.; Chassela, O.; Cadu, A.; Devoto, P.; Fedorov, A.; Rouzaud, J.; Rubiella, J.; Sauvaud, J. A.; Seran, H. C.; Bernal, O.; Payan, D.; Rouzies, C.

    2015-12-01

    The Active Monitor Box of Electrostatic Risks (AMBER) is a double-head thermal electron and ion electrostatic analyzer (~0 - 30 keV) that will be launched onboard the Jason-3 spacecraft in 2015. The new generation AMBRE instrument (AMBER_NG) constitutes a significant new evolution that will be based on a single head with newly developed sub-systems to reduce all instrument resources. We will describe the main front-end and high-voltage electronics developments which are being made to perform such dual ion-electron measurements. The first purpose of AMBER_NG is the monitoring of spacecraft charging and of the plasma populations at the origin of this charging. The design is also appropriate for the study of space plasma processes in the Earth's magnetosphere, as well as at other planets where time resolution may not prevail over mass constraints.

  17. Inter-individual variability and pattern recognition of surface electromyography in front crawl swimming.

    Science.gov (United States)

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J

    2016-12-01

    Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Thermal slip for liquids at rough solid surfaces

    Science.gov (United States)

    Zhang, Chengbin; Chen, Yongping; Peterson, G. P.

    2014-06-01

    Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).

  19. Near-field thermal imaging of nanostructured surfaces

    Science.gov (United States)

    Kittel, A.; Wischnath, U. F.; Welker, J.; Huth, O.; Rüting, F.; Biehs, S.-A.

    2008-11-01

    We show that a near-field scanning thermal microscope, which essentially detects the local density of states of the thermally excited electromagnetic modes at nanometer distances from some material, can be employed for nanoscale imaging of structures on that material's surface. This finding is explained theoretically by an approach which treats the surface structure perturbatively.

  20. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    Science.gov (United States)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  1. Observed Asteroid Surface Area in the Thermal Infrared

    Science.gov (United States)

    Nugent, C. R.; Mainzer, A.; Masiero, J.; Wright, E. L.; Bauer, J.; Grav, T.; Kramer, E.; Sonnett, S.

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  2. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  3. Variable Surface Area Thermal Radiator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to increased complexity of spacecraft and longer expected life, more sophisticated and complex thermal management schemes are needed that will be capable of...

  4. Emergent geometry, thermal CFT and surface/state correspondence

    Science.gov (United States)

    Gan, Wen-Cong; Shu, Fu-Wen; Wu, Meng-He

    2017-09-01

    We study a conjectured correspondence between any codimension-two convex surface and a quantum state (SS-duality for short). By applying thermofield double formalism to the SS-duality, we show that thermal geometries naturally emerge as a result of hidden quantum entanglement between two boundary CFTs. We therefore propose a general framework to emerge the thermal geometry from CFT at finite temperature, without knowing many details about the thermal CFT. As an example, the case of 2d CFT is considered. We calculate its information metric and show that it is either BTZ black hole or thermal AdS as expected.

  5. Decorative Surfaces Obtained through Thermal Zyncking

    Directory of Open Access Journals (Sweden)

    Tamara Radu

    2010-06-01

    Full Text Available The surface morphology of the galvanized sheets is formed after the solidification of the melted metal, carried along the carrier strap during its extraction from the zinc bath. The surface layer quality depends on the fluidity of the melting, on its superficial tension and on the solidification characteristics, according to the chemical composition of the melting. The elements of micro-alloys can improve the surface of galvanized steel with qualities such as: uniformity, texture, luminosity. Depending on the combination elements of micro-alloying the surface can have different types of metallic layers with an important effect on the coating morphology. The research we made revealed the important effect it had for alloys with Al, Sn, Bi, Pb on the coating layer morphology.

  6. Design and optimization of the WEST ICRH antenna front face components based on thermal and hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi, E-mail: chenzx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Vulliez, Karl [Laboratoire d’étanchéité, DEN/DTEC/SDTC, Commissariat à l’énergie atomique et aux énergies alternatives, 2 rue James Watt, 26700 Pierrelatte (France); Ferlay, Fabien; Martinez, André; Mollard, Patrick; Hillairet, Julien; Doceul, Louis; Bernard, Jean-Michel; Larroque, Sébastien; Helou, Walid [CEA, IRFM, F-13108, Saint-Paul-Lez-Durance (France); Song, Yuntao; Yang, Qingxi; Wang, Yongsheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-05-15

    Highlights: • Three ICRH antennas are designed to realize continuous-wave operation. • Fully active cooling structure is designed which takes the balance of structure safety and cooling performance. • High cooling efficiency is achieved for the current cooling circuit design based on the thermal-hydraulic simulation. - Abstract: The WEST (Tungsten (W) Environment in Steady-state Tokamak) is an upgrade of Tore-Supra (TS) which aims it into an X-point magnetic configuration tokamak equipped with an actively cooled tungsten divertor. To be a platform of ITER technologies of high heat flux components testing, three sets of Ion Cyclotron Resonant Heating (ICRH) antennas have been designed to inject 9 MW during 30 s or 3 MW during 1000 s. The antenna design is based on a load resilient prototype successfully tested in Tore Supra in 2007. In order to allow continuous-wave (CW) operations, the mechanical design of the WEST ICRH antenna is emphasized on its cooling performances by designing fully active cooling structure. Two kinds of cooling water loops are used, with temperature and pressure of 70 °C/30 bar and 25 °C/5.2 bar, respectively. The hot water loop is used for the Faraday screen (FS) and the housing box (HB), while the cold water loop is used for the straps, the matching capacitors and the impedance transformer. To enhance the heat removal ability and control the pressure drop, the cooling channels in the FS and HB are drilled directly and parallel connected as much as possible. By performing the hydraulic–thermal analysis, the lack of cooling efficiency was found in the front face of lateral collector where 1 MW/m{sup 2} is imposed and fluid dead zones were found in some of the bars. After optimization, the cooling performance of the cooling circuit increased significantly. With a mass flow rate of 2.5 kg/s, the total pressure drop is 3.1 bar, and the peak temperatures on the FS and HB are 500 °C and 261 °C, respectively. Besides, no cavitation is

  7. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  8. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    Science.gov (United States)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  9. 3D SURFACE GENERATION FROM AERIAL THERMAL IMAGERY

    Directory of Open Access Journals (Sweden)

    B. Khodaei

    2015-12-01

    Full Text Available Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV. The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  10. Drop formation by thermal fluctuations at an ultralow surface tension.

    Science.gov (United States)

    Hennequin, Y; Aarts, D G A L; van der Wiel, J H; Wegdam, G; Eggers, J; Lekkerkerker, H N W; Bonn, Daniel

    2006-12-15

    We present experimental evidence that drop breakup is caused by thermal noise in a system with a surface tension that is more than 10(6) times smaller than that of water. We observe that at very small scales classical hydrodynamics breaks down and the characteristic signatures of pinch-off due to thermal noise are observed. Surprisingly, the noise makes the drop size distribution more uniform, by suppressing the formation of satellite droplets of the smallest sizes. The crossover between deterministic hydrodynamic motion and stochastic thermally driven motion has repercussions for our understanding of small-scale hydrodynamics, important in many problems such as micro- or nanofluidics and interfacial singularities.

  11. Local thermal properties of the surface of Vesta

    Science.gov (United States)

    Capria, M. T.; Tosi, F.; Capaccioni, F.; De Sanctis, M. C.; Palomba, E.; Ammannito, E.; Carraro, F.; Fonte, S.; Titus, T. N.; Combe, J.-P.; Toplis, M.; Sunshine, J.; Fulchignoni, M.; Russel, C. T.; Raymond, C. A.

    2012-04-01

    Temperature information has been obtained from the Dawn/VIR (Visible InfraRed imaging spectrometer) spectra acquired during the Vesta campaign. When combined with a thermophysical model, these temperatures can be used to derive surface thermal properties. Thermal properties are sensitive to several physical characteristics of the surface that are not all spatially resolved. Thus, the derivation of surface temperatures and thermal inertia can lead to the characterization of surface and sub-surface properties of Vesta and the determination of regolith properties. The model we are using solves the heat conduction equation and provide the temperature as a function of thermal conductivity, albedo, emissivity, density and specific heat. The model is applied to the actual shape of Vesta: for any given location, characterized by a well-defined illumination condition and a given UTC time to compute the thermal inertia that results in model temperatures providing a best-fit to surface temperatures as retrieved by VIR. The model has been already applied to the first Vesta full-disk data to derive the global average thermal inertia of Vesta. The values obtained are typical of fine-grained, unconsolidated materials (i.e. dust) and suggest a surface in which a dust layer is wide-spread on coarser regolith. The model is now being applied on small regions of the surface of Vesta. Specific regions are selected because they are interesting for some reason or appear different from the surroundings, such as, for example, dark and bright spots and other peculiar features. Given a location, the thermophysical code is applied until the obtained temperatures are matching (best-fit techniques are used) the temperatures derived from the VIR spectra. The thermal inertia, thermal conductivity, albedo and roughness values are then assumed to be characterizing the location under analysis. The results of the model must be carefully checked and interpreted by taking into account the context (from

  12. Evolution of a double-front Rayleigh-Taylor system using a GPU-based high resolution thermal Lattice-Boltzmann model

    CERN Document Server

    Ripesi, P; Schifano, S F; Tripiccione, R

    2014-01-01

    We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a 2 dimensional geometry using a highly optimized thermal Lattice Boltzmann code for GPUs. The novelty of our investigation stems from the initial condition, given by the superposition of three layers with three different densities, leading to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long time asymptotic regime. We also provide details on the optimized Lattice-Boltzmann code that we have run on a cluster of GPUs

  13. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  14. Modeling the impact of solid surfaces in thermal degradation processes

    NARCIS (Netherlands)

    Tuma, Christian; Laino, Teodoro; Martin, Elyette; Stolz, Steffen; Curioni, Alessandro

    2013-01-01

    First-principles simulations are carried out to generate reaction profiles for the initial steps of the thermal decomposition of glycerol, propylene glycol, and triacetin over the surfaces of pseudo-amorphous carbon and silica, crystalline zirconia [001], and crystalline alumina (0001).

  15. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  16. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    Science.gov (United States)

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  17. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  18. Scattering at oblique incidence by multiple cylinders in front of a surface

    Science.gov (United States)

    Lee, Siu-Chun

    2016-10-01

    This paper presents a theoretical solution for scattering by multiple parallel infinite cylinders located on top of a dielectric substrate. The incident plane wave is arbitrarily polarized and propagates in a general direction inclined from the axis of the cylinders. The scattered waves become depolarized at oblique incidence, which are reflected from the surface of the substrate to become incident waves at the cylinders. An exact solution of Maxwell's equations is developed that rigorously treats the depolarization of scattered waves and the angular spectrum of reflected and transmitted waves from the surface. Numerical results are presented for different configurations of perfectly conducting and coated cylinders at perpendicular and oblique incidence to illustrate plasmonic resonances in the near-field and scattering characteristics in the far-field.

  19. Inspection of calandria front area of Wolsung NPP using technique of mapping thermal infrared image into CCD image

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Kim, Chang Hoi; Seo, Yong Chil; Choi, Young Soo; Kim, Seung Ho [Advance Robotics Teams, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2002-11-15

    This paper describes the enhanced inspection performance of a thermal infrared camera for monitoring abnormal conditions of calandria reactor area of Wolsung nuclear power plant. Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and resolution. To compensate the poor image quality problems associated with the thermal infrared camera, the technique of mapping thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and ccd camera in parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  20. Emergent geometry, thermal CFT and surface/state correspondence

    CERN Document Server

    Gan, Wen-Cong; Wu, Meng-He

    2016-01-01

    We study a conjectured correspondence between any codimension two convex surface and a quantum state (SS-duality for short). By generalizing thermofield double formalism to continuum version of the multi-scale entanglement renormalization ansatz (cMERA) and using the SS-duality, we propose a general framework to emerge the thermal geometry from CFT at finite temperature. As an example, the case of $2d$ CFT is considered carefully. We calculate its information metric and show that it is the BTZ black hole or the thermal AdS as expectation.

  1. The effect of shadow fronts on dynamics of the surface layer during evening transitions

    Science.gov (United States)

    Pardyjak, E.; Hoch, S. W.; Jensen, D. D.; Gunawardena, N.; Di Sabatino, S.; Whiteman, C. D.; Leo, L.; Hocut, C. M.; Higgins, C. W.; Fernando, H. J.

    2013-12-01

    Two MATERHORN-X (Mountain Terrain Atmospheric Modeling and Observation Program) field campaigns were conducted at Dugway, UT, USA during the last year. An Autumn Campaign from 25 September - 21 October 2012 and a Spring Campaign from 1- 31 May 2013. A subset of the campaigns included dense observations along the East Slope of Granit Peak (40.096° N, -113.253° W). Observations included five multi-sonic anemometer eddy covariance towers (two with full energy budget stations), eleven small energy budget stations, fifteen automated weather stations, a distributed temperature sensing (DTS) system, hot-film anemometry, infrared camera surface temperature observations and up to three Doppler lidars. For this presentation, our analysis will focus on characterizing the response of mean wind and thermodynamics variables, as well as turbulence quantities during the evening transitions on East Slope. Previous observations have indicated that the dynamics of turbulence during evening transitions in steep mountainous terrain rapidly follows surface temperature changes associated with shadows produced by the local topography. The observations of flow transitions over the more moderate East Slope of Granite (~3-8%) indicate that wind shift direction and turbulence decay is not as tightly coupled to the shadow. Details of the transition response will be presented in the context of a new process model.

  2. Surface dielectric relaxation: probing technique and its application to thermal activation dynamics of polymer surface.

    Science.gov (United States)

    Ishii, Masashi

    2010-09-01

    For dynamic analyses of a polymer surface, a dielectric relaxation measurement technique with parallel electrodes placed away from the surface was developed. In this technique, a liquid heating medium was filled in the space between the polymer surface and the electrodes. The construction that maintains the surface can clarify the physical interactions between the liquid and the bare surface and controlling the temperature of the liquid reveals the thermal activation property of the surface. The dielectric relaxation spectrum of the surface convoluted into the bulk and liquid spectra can be obtained by a reactance analysis and the surface spectrum is expressed with an equivalent resistance-capacitance parallel circuit. On the basis of the electromechanical analogy, the electric elements can be converted into mechanical elements that indicate the viscoelasticity of the polymer surface. Using these measurement and analysis techniques, the electric and mechanical properties of the surface of a gelatinized chloroprene rubber sample were analyzed.

  3. Determination of thermal/dynamic characteristics of lava flow from surface thermal measurements

    Science.gov (United States)

    Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander; Tsepelev, Igor; Kovtunov, Dmitry

    2016-04-01

    Rapid development of ground based thermal cameras, drones and satellite data allows getting repeated thermal images of the surface of the lava flow. Available instrumentation allows getting a large amount of data during a single lava flow eruption. These data require development of appropriate quantitative techniques to link subsurface dynamics with observations. We present a new approach to assimilation of thermal measurements at lava's surface to the bottom of the lava flow to determine lava's thermal and dynamic characteristics. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. Using an adjoint method we develop a numerical approach to the mathematical problem based on the determination of the missing boundary condition and lava flow characteristics. Numerical results show that in the case of smooth input data lava temperature and velocity can be determined with a high accuracy. A noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. The proposed approach to assimilate measured data brings an opportunity to estimate thermal budget of the lava flow.

  4. THERMAL FRACTURE OF FUNCTIONALLY GRADED PLATE WITH PARALLEL SURFACE CRACKS

    Institute of Scientific and Technical Information of China (English)

    Yuezhong Feng; Zhihe Jin

    2009-01-01

    This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △T_c that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △T_c for an Al_2O_3/Si_3N_4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △T_c. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △T_c can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.

  5. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  6. Interaction potentials for multi-electron atoms in front of a LiF (0 0 1) surface from rainbow scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, C1428EGA Buenos Aires (Argentina); Miraglia, J.E., E-mail: miraglia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, C1428EGA Buenos Aires (Argentina); Schüller, A.; Winter, H. [Institut für Physik, Humboldt Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany)

    2013-12-15

    Pairwise interaction potentials for multi-electron atoms moving in front of a LiF (0 0 1) surface are investigated theoretically and experimentally. From angular distributions of fast He, N, S, Cl and Kr atoms grazingly scattered under axial surface channeling conditions, rainbow angles are experimentally determined for a wide range of energies for the motion normal to the surface plane. These angles are used as a benchmark to probe the pairwise potential model. In the simulations the scattering process is described by means of the surface eikonal approximation, while the atom–surface interaction is derived by adding binary interatomic potentials that include the proper asymptotic limit.

  7. Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.

    Science.gov (United States)

    Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M

    2015-03-01

    In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient.

  8. Laser-induced thermal desorption of aniline from silica surfaces

    Science.gov (United States)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  9. Thermal annealing of laser damage precursors on fused silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  10. Modeling ice front Dynamics of Northwest Greenland in response to ocean thermal forcing, using ISSM and OMG data

    Science.gov (United States)

    Morlighem, M.; Bondzio, J. H.; Seroussi, H. L.; Wood, M.; Rignot, E. J.

    2016-12-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warmer ocean waters trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 73°N to 7°N) to ocean-induced melt using the Ice Sheet System Model (ISSM) and bathymetry data collected by NASA's Occreans Melting Greenland (OMG). We first combine OMG bathymetry data with ice velocity from satellites and ice thickness from airborne radars using a mass conservation approach on land to produce ice thickness and bed elevation mapping across the ice-ocean boundary that are more precise and reliable than ever before. Using this new map, we then develop a plan-view model of this region that includes a level set based moving boundary capability, a parameterized ocean-induced melt and a calving law based on a Von Mises criterion. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean-induced melt, while others, such as Steenstrup Gletscher or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment of 12 m/day in the summer, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model suggests that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program, grant NNX15AD55G.

  11. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  12. Characters of surface deformation and surface wave in thermal capillary convection

    Institute of Scientific and Technical Information of China (English)

    DUAN; Li; KANG; Qi; HU; Wenrei

    2006-01-01

    In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mm×42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns. The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 μm. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.

  13. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-07-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  14. Thermal instability of GaSb surface oxide

    Science.gov (United States)

    Tsunoda, K.; Matsukura, Y.; Suzuki, R.; Aoki, M.

    2016-05-01

    In the development of InAs/GaSb Type-II superlattice (T2SL) infrared photodetectors, the surface leakage current at the mesa sidewall must be suppressed. To achieve this requirement, both the surface treatment and the passivation layer are key technologies. As a starting point to design these processes, we investigated the GaSb oxide in terms of its growth and thermal stability. We found that the formation of GaSb oxide was very different from those of GaAs. Both Ga and Sb are oxidized at the surface of GaSb. In contrast, only Ga is oxidized and As is barely oxidized in the case of GaAs. Interestingly, the GaSb oxide can be formed even in DI water, which results in a very thick oxide film over 40 nm after 120 minutes. To examine the thermal stability, the GaSb native oxide was annealed in a vacuum and analyzed by XPS and Raman spectroscopy. These analyses suggest that SbOx in the GaSb native oxide will be reduced to metallic Sb above 300°C. To directly evaluate the effect of oxide instability on the device performance, a T2SL p-i-n photodetector was fabricated that has a cutoff wavelength of about 4 μm at 80 K. As a result, the surface leakage component was increased by the post annealing at 325°C. On the basis of these results, it is possible to speculate that a part of GaSb oxide on the sidewall surface will be reduced to metallic Sb, which acts as an origin of additional leakage current path.

  15. Abnormal thermal effects on the surface plasmon resonance of Ag nanoparticles on the surface of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Han; Ding, Ruiqiang [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Li, Yingfeng; Yang, Ganghai; Song, Dandan; Yu, Yue; Trevor, Mwenya [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2015-06-01

    The thermal effects on the surface plasmon resonance (SPR) of Ag nanoparticles on the silicon surface have been studied. It is found that unusual blue shifts and narrowing of the SPR troughs occur as the temperature increases from 323 K to 363 K. At low temperature range (from 273 K to 323 K), the SPR troughs have the normal red shifts and broadening as in previous studies. The change of SPR is attributed to the thermal induced electron transport between particles and substrate, and is analyzed using samples with different particle sizes. This work reveals the mechanism of thermal effects on the plasmonic properties of Ag nanoparticles on the surface of silicon and offers useful information for designing of SPR devices. - Highlights: • Unusual blue shift of the SPR troughs is observed at 343 K. • Red shift of the SPR troughs is observed at 323 K. • The mechanism relies on the thermal induced surface electron transport. • Particle sizes play an important role in the change of the SPR troughs.

  16. Thermal hehavior of Surface Mounted Devices (SMD) packaging

    Science.gov (United States)

    Bloch, Werner; Moeller, Werner

    The thermal behavior of Surface Mounted Devices (SMD) packaging was investigated on an easily variable type. The effect of basic materials, chip carriers, and bonding, soldering, glueing and casting techniques was examined, considering the most important quantities, switching time and power. The test results show that cooling measures in the chip domain, such as chip bonding, chip casting, and chip carrier lining, are especially efficient for short switching times. The basic materials, even with heat sinks, become only important for longer switching times. The chip temperature of a conventional FR4/LCCC packaging was halved by the application of novel packaging materials, without changing the cooling mechanisms and the power.

  17. Surface interactions with electromagnetic spectrum relevant to solar thermal propulsion

    Science.gov (United States)

    Bonometti, Joseph Alexander John

    1997-11-01

    Elements of solar thermal rocket propulsion systems were experimentally examined to quantify the most significant physical parameters related to concentrating and capturing solar energy. A detailed examination of the sun's electromagnetic flux impingement upon a solar concentrator, redirection to a secondary reflector or refractor optic and absorption in an opaque cavity surface are presented. Research performed includes the analysis and design of a unique high temperature solar laboratory at the University of Alabama in Huntsville, its construction and subsequent operation. The entire facility was a prerequisite to conducting this experimental research and is the result of an initial two-year research effort. Four primary elements were experimentally examined and their relationship to the solar heating profile analyzed to optimize it for use in a solar thermal upper stage. The first was the comparison of concentrator types to define the incident energy profile with the conclusion that their type or quality was insignificant to the thermal heating profile in an absorber cavity. Rigid, thin-film and Fresnel concentrators were experimentally assessed. The second element was the evaluation of the absorber geometry's length-to-diameter ratio of a cylindrical cavity and included the addition of a secondary optic. The secondary optic was recognized as a requirement in the solar thermal rocket and could either improve the flux distribution on the cavity wall using a refractor with extractor rod, or hinder it as in using a parabolic reflector. The third was direct measurement of absorber material properties at elevated temperatures. Reflectivity, absorptivity and emissivity were determined for rhenium at 1000 Kelvin. The reflectivity measurements included both diffuse and specular reflection components and sample coupons of rhenium and niobium were shown to decrease in reflectivity when heated to temperatures approaching 1200 degrees Kelvin. The methodology was unique in

  18. X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Reep, J. W. [National Research Council Post-Doc Program, Naval Research Laboratory, Washington, DC 20375 (United States); Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Holman, G. D., E-mail: jeffrey.reep.ctr@nrl.navy.mil, E-mail: stephen.bradshaw@rice.edu, E-mail: gordon.d.holman@nasa.gov [Solar Physics Laboratory, Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O’Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  19. X-ray Source Heights in a Solar Flare: Thick-target versus Thermal Conduction Front Heating

    CERN Document Server

    Reep, Jeffrey W; Holman, Gordon D

    2015-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 28 November 2002 C1.1 flare, first observed with RHESSI by Sui et al. 2006 and quantitatively analyzed by O'Flannagain et al. 2013, very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  20. Surface and Electrical Properties of Electro-Coagulated Thermal Waste

    Science.gov (United States)

    Yesilkaya, S. S.; Okutan, M.; Içelli, O.; Yalçın, Z.

    2015-05-01

    The Electro-Coagulated Thermal Waste (ECTW) sample of the impedance spectroscopy investigation for electrical modulus and conductivity are presented. Electrical properties via temperature and frequency dependent impedance spectroscopy were investigated. Real and imaginary parts of electrical modulus were measured at various frequencies and a related Cole-Cole plot was acquired as well. The surface resistivity of the ECTW was measured by the four-point probe measurement technique, yielding a relatively high surface resistivity. As a result of this study, an effective building shielding material, which is a cost effective alternative, is proposed. The activation energy values were calculated from the Arrhenius plots at different frequencies. The transition region in this plot may be attributed to activation of ionic conductivity at lower temperatures.

  1. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaorong [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Bincheng [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China)

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.

  2. Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface

    Science.gov (United States)

    Kawai, Shigeki; Haapasilta, Ville; Lindner, Benjamin D.; Tahara, Kazukuni; Spijker, Peter; Buitendijk, Jeroen A.; Pawlak, Rémy; Meier, Tobias; Tobe, Yoshito; Foster, Adam S.; Meyer, Ernst

    2016-09-01

    On-surface chemical reactions hold the potential for manufacturing nanoscale structures directly onto surfaces by linking carbon atoms in a single-step reaction. To fabricate more complex and functionalized structures, the control of the on-surface chemical reactions must be developed significantly. Here, we present a thermally controlled sequential three-step chemical transformation of a hydrocarbon molecule on a Cu(111) surface. With a combination of high-resolution atomic force microscopy and first-principles computations, we investigate the transformation process in step-by-step detail from the initial structure to the final product via two intermediate states. The results demonstrate that surfaces can be used as catalysing templates to obtain compounds, which cannot easily be synthesized by solution chemistry.

  3. The Hatteras Front: August 2004 velocity and density structure

    Science.gov (United States)

    Savidge, Dana K.; Austin, Jay A.

    2007-07-01

    The Hatteras Front is a persistent mesoscale cross-shelf oriented front off Cape Hatteras, North Carolina. It is the boundary between relatively cool, fresh Mid-Atlantic Bight shelf waters and warmer, saltier shelf waters of the South Atlantic Bight, which both converge along-shelf upon Cape Hatteras year round. The Frontal Interaction Near Cape Hatteras (FINCH) project was conducted in 2004-2005 to intensively sample the Hatteras Front with shipboard ADCP and undulating towed CTD. This paper documents velocity and density structures associated with the cross-shelf oriented zone of Hatteras Front during the August 2004 field season. Property gradients across the Hatteras Front are large, with temperature (T) and salinity (S) differences of ˜4-6°C, 2-5 psu, respectively over distances of 1-2 km. The T and S are not completely compensating, and a strong density (ρ) gradient also exists, with Δρ of ˜2 kg/m3 across a gentler 10 km wide front. The density gradient results in a steric sea-level height gradient of ˜1-2 cm across the Front, which is in approximate geostrophic balance with a surface intensified jet, directed shoreward along the cross-shelf oriented Front. The velocity is sheared with depth at 3.0 × 10-2 to 5.0 × 10-2 s-1 in the upper 5 m of the jet; a rate consistent with the density gradient according to the thermal wind relationship. Shoreward transport of ˜4.8 × 104 m3/s results from the surface intensified jet. The structure of the velocity field associated with the Hatteras Front resembles that of a slope-controlled buoyant plume, as described by Lentz and Helfrich (2002). Velocity and density structures are similar during both advancing (southwestward) and retreating (northeastward) motion of the Front.

  4. Quantitative reconstruction of thermal and dynamic characteristics of lava flow from surface thermal measurements

    Science.gov (United States)

    Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg

    2016-06-01

    We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.

  5. Evaluation of thermal resistance of building insulations with reflective surfaces

    Science.gov (United States)

    Št'astník, S.

    2012-09-01

    The thermal resistance of advanced insulation materials, applied namely in civil engineering, containing reflective surfaces and air gaps, cannot be evaluated correctly using the valid European standards because of presence of the dominant nonlinear radiative heat transfer and other phenomena not included in the recommended computational formulae. The proper general physical analysis refers to rather complicated problems from classical thermodynamics, whose both existence theory and numerical analysis contain open questions and cannot be done in practice when the optimization of composition of insulation layers is required. This paper, coming from original experimental results, demonstrates an alternative simplified computational approach, taking into account the most important physical processes, useful in the design of modern insulation systems.

  6. Thermal Characteristics of Air-Water Spray Impingement Cooling of Hot Metallic Surface under Controlled Parametric Conditions

    Institute of Scientific and Technical Information of China (English)

    Santosh Kumar Nayak; Purna Chandra Mishra

    2016-01-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8 mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates 670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.

  7. Variations in the inorganic carbon components in the thermal fronts during winter in the Northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Delabehra, H.B.; Sudharani, P.; Remya, R.; Patil, J.S.; Desai, D

    , doi: 10.1029/2002GL015898. Goyet, C., Millero, F. J., O’Sullivan, D. W., Eischeid, G., McCue, S. J., and Bellerby, R. G. J.,1998. Temporal variations of pCO2 in surface seawater of the Arabian Sea in 1995, Deep Sea Res., Part I, 45, 609– 624... in the northeastern Arabian Sea, Nature, 384, 549–552. Margalef, R., 1997. Our biosphere, Ecology Institute, Oldendorf/Luhe, Germany. 12    Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and Perrot, D. 2006. Dissociation constants of carbonic acid...

  8. Improvements to a Response Surface Thermal Model for Orion

    Science.gov (United States)

    Miller, Stephen W.; Walker, William Q.

    2011-01-01

    A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that predict Orion vehicle temperatures within 10 F. The study used the Orion Outer Mold Line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty-three external Orion components were selected and their minimum and maximum temperatures captured over a period of two orbits. Thus, there are 46 responses. A DOE case matrix of 145 runs was developed. The data from these cases were analyzed to produce a fifth order RSE for each of the temperature responses. For the 145 cases in the DOE matrix, the agreement between the engineering data and the RSE predictions was encouraging with 40 of the 46 RSEs predicting temperatures within the goal band. However, the verification cases showed most responses did not meet the 10 F goal. After reframing the focus of the study to better align the RSE development with the purposes of the model, a set of RSEs for both the minimum and maximum radiator temperatures was produced which predicted the engineering model output within +/-4 F. Therefore, with the correct application of the DOE/RSE methodology, RSEs can be developed that provide analysts a fast and easy way to screen large numbers of environments and assess proposed changes to the RSE factors.

  9. Asymptotic analysis of solution to the nonlinear problem of non-stationary heat conductivity of layered anisotropic non-uniform shells at low Biot numbers on the front surfaces

    Science.gov (United States)

    Yankovskii, A. P.

    2017-03-01

    The nonlinear problem of non-stationary heat conductivity of the layered anisotropic heat-sensitive shells was formulated taking into account the linear dependence of thermal-physical characteristics of the materials of phase compositions on the temperature. The initial-boundary-value problem is formulated in the dimensionless form, and four small parameters are identified: thermal-physical, characterizing the degree of heat sensitivity of the layer material; geometric, characterizing the relative thickness of the thin-walled structure, and two small Biot numbers on the front surfaces of shells. A sequential recursion of dimensionless equations is carried out, at first, using the thermalphysical small parameter, then, small Biot numbers and, finally, geometrical small parameter. The first type of recursion allowed us to linearize the problem of heat conductivity, and on the basis of two latter types of recursion, the outer asymptotic expansion of solution to the problem of non-stationary heat conductivity of the layered anisotropic non-uniform shells and plates under boundary conditions of the II and III kind and small Biot numbers on the facial surfaces was built, taking into account heat sensitivity of the layer materials. The resulting two-dimensional boundary problems were analyzed, and asymptotic properties of solutions to the heat conductivity problem were studied. The physical explanation was given to some aspects of asymptotic temperature decomposition.

  10. Prediction and verification of melting front in GTA weld pool of full-penetration

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2006-01-01

    A thermal conduction model is applied to speed up the numerical analysis of the temperature distribution and the weld pool geometry of full penetration in gas tungsten arc (GTA) welding. With considering both top and bottom free surface deformation of full-penetrated weld pool, three-dimensional weld pool with melting front and solidification front is predicted.Welding experiments are conducted to measure the melting front curves at the top surface and the longitudinal section of the weld. It shows that the predicted and measured results are in good agreement.

  11. Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification.

    Science.gov (United States)

    Wang, Jiong; Ouyang, Wanlu

    2017-02-01

    Inefficient mitigation of excessive heat is attributed to the discrepancy between the scope of climate research and conventional planning practice. This study approaches this problem at both domains. Generally, the study, on one hand, claims that the climate research of the temperature phenomenon should be at local scale, where implementation of planning and design strategies can be more feasible. On the other hand, the study suggests that the land surface factors should be organized into zones or patches, which conforms to the urban planning and design manner. Thus in each zone, the land surface composition of those excessively hot places can be compared to the zonal standard. The comparison gives guidance to the modification of the land surface factors at the target places. Specifically, this study concerns the Land Surface Temperature (LST) in Wuhan, China. The land surface is classified into Local Thermal Zones (LTZ). The specifications of temperature sensitive land surface factors are relative homogeneous in each zone and so is the variation of the LST. By extending the city scale analysis of Urban Heat Island into local scale, the Local Surface Urban Heat Islands (LSUHIs) are extracted. Those places in each zone that constantly maintain as LSUHI and exceed the homogenous LST variation are considered as target places or hotspots with higher mitigation or adaptation priority. The operation is equivalent to attenuate the abnormal LST variation in each zone. The framework is practical in the form of prioritization and zoning, and mitigation strategies are essentially operated locally.

  12. Thermal expansion compensator having an elastic conductive element bonded to two facing surfaces

    Science.gov (United States)

    Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)

    2012-01-01

    A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.

  13. Casimir-Polder forces in the presence of thermally excited surface modes

    CERN Document Server

    Laliotis, Athanasios; Maurin, Isabelle; Ducloy, Martial; Bloch, Daniel

    2014-01-01

    The temperature dependence of the Casimir-Polder interaction addresses fundamental issues for understanding vacuum and thermal fluctuations. It is highly sensitive to surface waves which, in the near field, govern the thermal emission of a hot surface. Here we use optical reflection spectroscopy to monitor the atom-surface interaction between a Cs*(7D3/2) atom and a hot sapphire surface at a distance ~ 100 nm. In our experiments, that explore a large range of temperatures (500-1000K) the hot surface is at thermal equilibrium with the vacuum. The observed increase of the interaction with temperature, by up to 50 %, relies on the coupling between atomic virtual transitions in the infrared range and thermally excited surface-polariton modes. We extrapolate our findings to a broad distance range, from the isolated free atom to the short distances relevant to physical chemistry. Our work also opens the prospect of controlling atom surface interactions by engineering thermal fields.

  14. Evolution and sub-surface characteristics of a sea-surface temperature filament and front in the northeastern Arabian Sea during November–December 2012

    Digital Repository Service at National Institute of Oceanography (India)

    Vipin, P.; Sarkar, K.; Aparna, S.G.; Shankar, D.; Sarma, V.V.S.S.; Gracias, D.G.; Krishna, M.S.; Srikanth, G.; Mandal, R.; RamaRao, E.P.; Rao, N.S.

    , used by Ullman and Cornillon (2000) for the northwest Atlantic, was too high for the weaker SST gradients in the NEAS. Therefore, we used a cutoff of 0.15◦C. This parameter has also been relaxed in some earlier studies: for example, Wall (2006) used a... cutoff of 0.125◦C on the west Florida shelf. For the front-detection sensitivity parameter, however, we used the default value of 0.76 (Cayula and Cornillon, 1992) because a relaxation to 0.72, as done by Wall (2006), led to too many weak fronts...

  15. Practical Calculation of Thermal Deformation and Manufacture Error uin Surface Grinding

    Institute of Scientific and Technical Information of China (English)

    周里群; 李玉平

    2002-01-01

    The paper submits a method to calculate thermal deformation and manufacture error in surface grinding.The author established a simplified temperature field model.and derived the thermal deformaiton of the ground workpiece,It is found that there exists not only a upwarp thermal deformation,but also a parallel expansion thermal deformation.A upwarp thermal deformation causes a concave shape error on the profile of the workpiece,and a parallel expansion thermal deformation causes a dimension error in height.The calculations of examples are given and compared with presented experiment data.

  16. Rarefaction-undercompressive fronts in driven films

    Science.gov (United States)

    Münch, A.; Bertozzi, A. L.

    1999-10-01

    We consider experiments by Ludviksson and Lightfoot [AIChE J. 17, 1166 (1971)] on thin liquid films driven up a vertical plate by a thermally induced surface tension gradient with a counteracting gravitational force, and revisit their theoretical analysis, which neglects the effects of curvature, for predicting the climbing rate of the front. We present a new theory for the lubrication model with curvature effects, and get rising rates that depend on the microscopic length scale at the contact line. The predictions are, in general, in better agreement with the experiment.

  17. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux...

  18. Directional Characteristics of Thermal-Infrared Beaming from Atmosphereless Planetary Surfaces - A New Thermophysical Model

    CERN Document Server

    Rozitis, Ben

    2012-01-01

    We present a new rough-surface thermophysical model (Advanced Thermophysical Model or ATPM) that describes the observed directional thermal emission from any atmosphereless planetary surface. It explicitly incorporates partial shadowing, scattering of sunlight, selfheating and thermal-infrared beaming (re-radiation of absorbed sunlight back towards the Sun as a result of surface roughness). The model is verified by accurately reproducing ground-based directional thermal emission measurements of the lunar surface using surface properties that are consistent with the findings of the Apollo missions and roughness characterised by an RMS slope of ~32 degrees. By considering the wide range of potential asteroid surface properties, the model implies a beaming effect that cannot be described by a simple parameter or function. It is highly dependent on the illumination and viewing angles as well as surface thermal properties and is predominantly caused by macroscopic rather than microscopic roughness. Roughness alter...

  19. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    Science.gov (United States)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-P.; McCord, T. B.; Li, J.-Y.; Russell, C. T.; Ryamond, C. A.; Mittlefehldt, D.; Toplis, M.; Forni, O.; Sykes, M. V.

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  20. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.

    Science.gov (United States)

    Neogi, Sanghamitra; Reparaz, J Sebastian; Pereira, Luiz Felipe C; Graczykowski, Bartlomiej; Wagner, Markus R; Sledzinska, Marianna; Shchepetov, Andrey; Prunnila, Mika; Ahopelto, Jouni; Sotomayor-Torres, Clivia M; Donadio, Davide

    2015-04-28

    A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.

  1. Dynamic characterization for tumor- and deformation-induced thermal contrasts on breast surface: a simulation study

    Science.gov (United States)

    Jiang, Li; Zhan, Wang; Loew, Murray H.

    2009-02-01

    Understanding the complex relationship between the thermal contrasts on the breast surface and the underlying physiological and pathological factors is important for thermogram-based breast cancer detection. Our previous work introduced a combined thermal-elastic modeling method with improved ability to simultaneously characterize both elastic-deformation-induced and tumor-induced thermal contrasts on the breast. In this paper, the technique is further extended to investigate the dynamic behaviors of the breast thermal contrasts during cold stress and thermal recovery procedures in the practice of dynamic thermal imaging. A finite-element method (FEM) has been developed for dynamic thermal and elastic modeling. It is combined with a technique to address the nonlinear elasticity of breast tissues, as would arise in the large deformations caused by gravity. Our simulation results indicate that different sources of the thermal contrasts, such as the presence of a tumor, and elastic deformation, have different transient time courses in dynamic thermal imaging with cold-stress and thermal-recovery. Using appropriate quantifications of the thermal contrasts, we find that the tumor- and deformation-induced thermal contrasts show opposite changes in the initial period of the dynamic courses, whereas the global maxima of the contrast curves are reached at different time points during a cold-stress or thermal-recovery procedure. Moreover, deeper tumors generally lead to smaller peaks but have larger lags in the thermal contrast time course. These findings suggest that dynamic thermal imaging could be useful to differentiate the sources of the thermal contrast on breast surface and hence to enhance tumor detectability.

  2. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  3. Aspherical surfaces design for extreme ultraviolet lithographic objective with correction of thermal aberration

    Science.gov (United States)

    Liu, Yan; Li, Yanqiu

    2016-09-01

    At present, few projection objectives for extreme ultraviolet (EUV) lithography pay attention to correct thermal aberration in optical design phase, which would lead to poor image quality in a practical working environment. We present an aspherical modification method for helping the EUV lithographic objective additionally correct the thermal aberration. Based on the thermal aberration and deformation predicted by integrated optomechanical analysis, the aspherical surfaces in an objective are modified by an iterative algorithm. The modified aspherical surfaces could correct the thermal aberration and maintain the initial high image quality in a practical working environment. A six-mirror EUV lithographic objective with 0.33-numerical aperture is taken as an example to illustrate the presented method. The results show that the thermal aberration can be corrected effectively, and the image quality of the thermally deformed system is improved to the initial design level, which proves the availability of the method.

  4. Effect of a short weak prepulse on laser-triggered front-surface heavy-ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, S. G.; Bychenkov, V. Yu. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Golovin, G. V.; Uryupina, D. S.; Shulyapov, S. A.; Savel' ev, A. B. [M. V. Lomonosov Moscow State University, International Laser Centre and Faculty of Physics, Moscow (Russian Federation); Andriyash, A. V. [The All-Russia Research Institute of Automatics, Moscow (Russian Federation)

    2012-10-15

    A suppression of light-ion acceleration (from surface water contaminants) was observed when a moderate-intensity subpicosecond laser pulse was focused on a thick metal target. Simultaneously, an effective generation of high-energy multicharge ions of the target material (Fe) was experimentally observed. A numerical simulation based on the Boltzmann-Vlasov-Poisson model revealed that this is due to the very specific regime of cleaning contaminants from the target surface by the short weak prepulse preceding the main pulse by more than 10 ns and having an intensity below the surface breakdown threshold. Because this prepulse causes the contaminant layer to boil explosively, a low-density gap forms above the target surface. These conditions are consequently favorable for boosting the energy of heavy ions.

  5. Surface Coatings for Low Emittance in the Thermal Surveillance Band

    Science.gov (United States)

    1984-08-01

    radiation emanating from the sky during the day and at night [13]; 2 - (2) -the geometry, surface topography, and surface cleanliness of the target and the... surface cleanliness . A description of terms and definitions used in reflectometry is provided by Judd [19] and Overington (20]. Measurement standards

  6. Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures

    OpenAIRE

    Roberto Fioretti; Paolo Principi

    2014-01-01

    External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been invest...

  7. The 3rd generation Front-End cards of the Pierre Auger surface detectors: Test results and performance in the field

    Science.gov (United States)

    Szadkowski, Z.; Bäcker, T.; Becker, K.-H.; Buchholz, P.; Fleck, I.; Kampert, K.-H.; Rammes, M.; Rautenberg, J.; Taşcău, O.

    2009-07-01

    The surface detector array of the Pierre Auger Observatory comprises 1600 water Cherenkov detectors distributed over an area of 3000 km2. The Cherenkov light is detected by three 9-in. photo-multiplier tubes from which the signals of the anode and last dynode are digitized by 10 bit 40 MHz FADCs. An Altera Cyclone FPGA is employed to generate different local triggers and to handle the data transfer to a communication board. After briefly discussing the design of the cards we present an autonomous test-bench, which has been set up in order to test the large number of boards prior to installation in the field. The qualification procedure and the results obtained in the laboratory are presented. Up to three years of operation in the field demonstrate a very good performance and reliability of the Front-End cards.

  8. The 3rd generation Front-End cards of the Pierre Auger surface detectors: Test results and performance in the field

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Z. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany); University of Lodz, Department of Physics and Applied Informatics, 90-236 Lodz (Poland)], E-mail: zszadkow@kfd2.phys.uni.lodz.pl; Baecker, T. [Universitaet Siegen, Department of Physics, 57058 Siegen (Germany); Becker, K.-H. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany); Buchholz, P.; Fleck, I. [Universitaet Siegen, Department of Physics, 57058 Siegen (Germany); Kampert, K.-H. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany)], E-mail: kampert@uni-wuppertal.de; Rammes, M. [Universitaet Siegen, Department of Physics, 57058 Siegen (Germany); Rautenberg, J.; Tascau, O. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany)

    2009-07-21

    The surface detector array of the Pierre Auger Observatory comprises 1600 water Cherenkov detectors distributed over an area of 3000km{sup 2}. The Cherenkov light is detected by three 9-in. photo-multiplier tubes from which the signals of the anode and last dynode are digitized by 10 bit 40 MHz FADCs. An Altera Cyclone FPGA is employed to generate different local triggers and to handle the data transfer to a communication board. After briefly discussing the design of the cards we present an autonomous test-bench, which has been set up in order to test the large number of boards prior to installation in the field. The qualification procedure and the results obtained in the laboratory are presented. Up to three years of operation in the field demonstrate a very good performance and reliability of the Front-End cards.

  9. Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures

    Directory of Open Access Journals (Sweden)

    Roberto Fioretti

    2014-10-01

    Full Text Available External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been investigated. The purpose of this application is to obtain a reduction in the thermal conductivity of the block by lowering the radiative heat exchange in the enclosures. The aims of this paper are to indicate a methodology for evaluating the thermal performance of the brick and to provide information about the benefits that should be obtained. Theoretical evaluations are carried out on several bricks (12 geometries simulated with two different thermal conductivities of the clay, using a finite elements model. The heat exchange procedure is implemented in accordance with the standard, so as to obtain standardized values of the thermal characteristics of the block. Several values of emissivity are hypothesized, related to different kinds of coating. Finally, the values of the thermal transmittance of walls built with the evaluated blocks have been calculated and compared. The results show how coating the internal surface of the cavity provides a reduction in the thermal conductivity of the block, of between 26% and 45%, for a surface emissivity of 0.1.

  10. The thermal energy of a scalar field on a unidimensional Riemann surface

    CERN Document Server

    Elizalde, E

    2002-01-01

    We discuss some controverted aspects of the evaluation of the thermal energy of a scalar field on a unidimensional Riemann surface. The calculations are carried out using a generalised zeta function approach.

  11. Thermal diffusion of potassium on the modified iron surface

    Energy Technology Data Exchange (ETDEWEB)

    Narkiewicz, U. [Institute of Chemical and Environment Engineering, Technical University of Szczecin, PuIaskiego 10, 70-322 Szczecin (Poland)]. E-mail: urszula.narkiewicz@ps.pl; Moszynski, D. [Institute of Chemical and Environment Engineering, Technical University of Szczecin, PuIaskiego 10, 70-322 Szczecin (Poland); BrosIawski, M. [Institute of Chemical and Environment Engineering, Technical University of Szczecin, PuIaskiego 10, 70-322 Szczecin (Poland)

    2005-10-31

    The diffusion of potassium on the polycrystalline iron surface modified by adsorbed oxygen and nitrogen has been studied by means of AES. The migration of potassium atoms has been observed independently on the constitution of the iron surface in the temperature range between 300 and 450 deg. C. The final concentration of potassium on the iron surface increases with temperature from 300 to 400 deg. C, irrespective of what atoms accompany potassium on the surface. At 450 deg. C, the final level of potassium concentration is decreased. The profiles of the concentration on the surface along the line crossing the source of potassium were also acquired. Applying the diffusion model of finite source, the diffusion coefficient of potassium for oxygen-covered and nitrogen-covered surfaces were evaluated.

  12. Investigation of thermal effect on exterior wall surface of building material at urban city area

    OpenAIRE

    Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao

    2012-01-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat gre...

  13. Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas-A Case Study with Implications for Climatology

    Institute of Scientific and Technical Information of China (English)

    LI Man; ZHANG Suping

    2013-01-01

    A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model,with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog.Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea,creating conditions favorable for sea fog/stratus formation.The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus.The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer),the sinking branch of which on the cold flank of SSTF helps lower the stratus layer further to reach the sea surface.The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence.The secondary circulation becomes weak and the fog patches are shrunk heavily with the smoothed SSTF.A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas.Finally,the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global warming.

  14. Near-surface Thermal Infrared Imaging of a Mixed Forest

    Science.gov (United States)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will

  15. A method for tracking subsurface fronts of stress-induced permeability enhancement

    Science.gov (United States)

    Lewis, K. C.

    2012-12-01

    The coupled interactions in fractured geological media between thermal-hydrologic-mechanical (THM) and chemical effects are expected to be important in many engineering applications including CO2 sequestration, geothermal energy production, oil and gas production, nuclear waste isolation, and arctic permafrost. Large changes in pressures, temperatures, and saturations can result due to injection/withdrawal of fluids or emplaced heat sources. Phase changes or rock failure often occur in an abrupt fashion, characterized by a sharp front of discontinuity with relatively small changes in properties on either side of the front. These changes can modify the formation permeability in a manner that can often be approximated by a step-function-like dependence. Such behavior has motivated us to use an analogy to the classical Stefan problem; we construct evolution equations for the fluid pore pressure on both sides of a propagating stress induced damage front for the case of planar front geometry. Closed form expressions are derived for the position of the damage front and the observable surface mass flow rate as functions of time for planar, spherical, and cylindrical damage front geometries. Isothermal, pressure induced damage is discussed as well as damage dominated by thermal effects. Model predictions are shown to agree with those of a less general fracture model as well as with field data consisting of measured mass flow rates over a two week period. Finally, we discuss extensions of the basic model to more complex damage front geometries.

  16. The surface roughness of (433) Eros as measured by thermal-infrared beaming

    Science.gov (United States)

    Rozitis, B.

    2017-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.

  17. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  18. Infrared thermal mapping of the martian surface and atmosphere: first results.

    Science.gov (United States)

    Kieffer, H H; Chase, S C; Miner, E D; Palluconi, F D; Münch, G; Neugebauer, G; Martin, T Z

    1976-08-27

    The Viking infrared thermal mapper measures the thermal emission of the martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO(2) condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO(2) clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

  19. Infrared thermal mapping of the Martian surface and atmosphere - First results

    Science.gov (United States)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.; Muench, G.; Neugebauer, G.

    1976-01-01

    The Viking infrared thermal mapper measures the thermal emission of the Martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO2 condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO2 clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

  20. Weather fronts and acute myocardial infarction

    Science.gov (United States)

    Kveton, Vit

    1991-03-01

    Some methodological aspects are discussed of the investigation of acute infarct myocarditis (AIM) in relation to weather fronts. Results of a new method of analysis are given. Data were analysed from about the hour of the onset of symptoms, and led to the diagnosis of AIM either immediately or within a few hours or days (3019 cases observed over 4.5 years during 1982 1986 in Plzen, Czechoslovakia). Weather classification was based on three factors (the type of the foregoing front, the type of the subsequent front, the time section of the time interval demarcated by the passage of the surfaces of the fronts). AIM occurrence increased in particular types of weather fronts: (i) by 30% during 7 12 h after a warm front, if the time span between fronts exceeded 24 h; (ii) by 10% in time at least 36 h distant from the foregoing cold or occlusion front and from the succeeding warm or occlusion front; (iii) by 20% during 0 2 h before the passage of the front, provided the foregoing front was not warm and the interval between fronts exceeded 5 h. AIM occurrence decreased by 15% 20% for time span between fronts > 24 h at times 6 11, 6 23 and 6 35 h before a coming warm or occlusion front (for interfrontal intervals 25 48, 49 72 and possibly > 72 h), and also at 12 23 and possibly 12 35 h before a cold front (for intervals 49 72 and possibly > 72 h), if the foregoing front was cold or an occlusion front.

  1. Thermally tailored gradient topography surface on elastomeric thin films.

    Science.gov (United States)

    Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata

    2014-05-14

    We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.

  2. Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings

    Science.gov (United States)

    2015-07-01

    Deposition 4 3. Results/ Analysis 5 4. Conclusion 7 5. References 8 Distribution List 9 iv List of Figures Fig. 1 Contact angle...by measuring the contact angle (σ) formed between a droplet of liquid and the surface (Fig. 1). Qualitatively , surfaces with a water contact angle...several seconds and dried with filtered nitrogen. The samples were then immersed in 0.01-M aqueous solution of silver nitrate for 20 s. The deposition

  3. Belt furnace gettering and passivation of n-web silicon for high-efficiency screen-printed front-surface-field solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebong, A.; Hilali, M.; Rohatgi, A. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Meier, D. [Ebara Solar Inc., Jefferson Hills, PA (United States); Ruby, D.S. [Sandia National Lab., Albuquerque, NM (United States)

    2001-07-01

    Six different resistivities (0.32, 0.57, 1.2, 2.2, 9.1 and 20 {omega} cm) were investigated to understand the dopant-defect interaction in n-type, antimony-doped, dendritic web silicon ribbon, and to study its response to gettering and passivation during belt furnace processing (BFP). The as-grown lifetime was found to be a strong function of resistivity with higher resistivity displaying higher lifetime. Phosphorus gettering at 925{sup o}C/6 min raised the as-grown lifetime of {approx}1 {mu}s in 20 {omega} cm n-web to 5.4 {mu}s. A combination of phosphorus gettering followed by simultaneous Al gettering and SiN hydrogenation raised the 20 {omega} cm n-web lifetime to 78 {mu}s. Unlike the as-grown web, the processed lifetime was greater than 75 {mu}s for all resistivities, with no clear doping dependence. This is attributed to the very effective gettering and passivation during the belt furnace processing. Front surface field (FSF) n{sup +}-n-p{sup +} cells were fabricated by spin-on phosphorus diffusion on the front and screen-printed Al on the back. A lifetime value of over 100 {mu}s was obtained in a 14.2% screen-printed FSF n-web solar cell fabricated on 100-{mu}m-thick 20 {omega} cm substrate. The screen-printed FSF cell fabricated on (111) FZ gave an efficiency of 14.9% with a fill factor of 77.6%. These results are supported by model calculations, which revealed a maximum efficiency of {approx}15% for 100-{mu}m-thick planar screen-printed FSF cells and their insensitivity to bulk lifetime above 60 {sup m}u{sup .} (author)

  4. Thermal desorption from surfaces with laser-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, Pawel; Panczyk, Tomasz; Rudzinski, Wladyslaw

    2002-12-30

    Monte Carlo simulation method was used to mimic surface damage development caused by short laser pulses. The influence of pulsed laser irradiation on the creation of defect concentration was examined in the case of a model surface. In particular, the dependence of the intact surface area on a number of laser scans was studied and compared with the experimental results obtained for Rh(1 1 1) crystal face. Changes in the adsorptivoperties of the surface produced by laser irradiation are explained with the help of a simple geometric model connecting the laser intensity and the disordered area generated by a single laser shot. It was demonstrated that exponential decay of the Low Energy Electron Diffraction (LEED) signal with the number of laser scans, which is observed experimentally, may result directly from the overlapping of the laser spots created on the surface. This effect becomes enhanced when the laser intensity, hence the spot size, increases. The importance of laser-induced defects in the kinetics of catalytic/separation processes was examined in the case of temperature programmed desorption (TPD) spectra from surfaces subjected to a different number of laser shots. The spectra were simulated by employing the Monte Carlo method as well as by application of the absolute rate theory (ART) coupled with the mean field approximation. The results obtained with both methods were in a good agreement even when weak lateral interactions in the adsorbed phase were allowed.

  5. Thermal dynamics of silver clusters grown on rippled silica surfaces

    Science.gov (United States)

    Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Lloyd, Adam; Smith, Roger; Mukherjee, Subroto

    2017-02-01

    Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica surface which has a lower ripple height than the longer wavelength structures. Calculations carried out on a surface with such a lower ripple height also demonstrate a similar effect.

  6. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  7. The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals

    Science.gov (United States)

    Wen, QingFeng; Liu, Ying; Huang, WeiFeng; Suo, ShuangFu; Wang, YuMing

    2013-10-01

    In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure deformation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal deformation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 μm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.

  8. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  9. Coupled computational fluid-thermal investigation of hypersonic flow over a quilted dome surface

    Science.gov (United States)

    Ostoich, Christopher; Bodony, Daniel; Geubelle, Philippe

    2009-11-01

    The hypersonic environment is characterized by the high temperatures that are generated in the fluid at a vehicle surface. In the effort to enable the operation of lightweight, reusable hypersonic vehicles, flexible, thin thermal protection panels have been considered to mitigate thermal loads. High surface temperatures create through-the-thickness thermal gradients which cause the panels to bow, resulting in changes to the external flow field and leading to a fully coupled fluid-thermal-structural problem. Certain aspects of the fluid-thermal (no structural) coupling were examined in a 1980s NASA Langley experiment of a Mach 5.74 laminar boundary past an array of spherical domes. We reexamine this case computationally using a high-fidelity Navier-Stokes solver coupled with a thermal solver to investigate the effects on the flow and resulting heat load on the structure due to the bowed panels. Specifically the surface temperature, surface heat flux, and downstream boundary developments are reported, and compared with experiment.

  10. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  11. Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.

    relatively cooler near-surface thermal regime persisted owing to prolonged upwelling until November 2005. In addition, the observed local surface wind field was relatively stronger, and the net surface heat gain to the ocean was weaker over the Lakshadweep...

  12. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Gästgifvars, Maria; Lauri, Hannu; Sarkanen, Annakaisa; Myrberg, Kai; Andrejev, Oleg; Ambjörn, Cecilia

    2006-12-01

    The Gulf of Finland is an elongated estuary located in the north-eastern extremity of the Baltic Sea. This semi-enclosed sea-area is subject to heavy sea traffic, and is one of the main risk areas for oil accidents in the Baltic. The continuous development and validation of operational particle drift and oil-spill forecasting systems is thus seen to be essential for this sea-area. Here, the results of a three-day drift experiment in May 2003 are discussed. The field studies were performed using GPS-positioned surface floating buoys. The aim of this paper is to evaluate how well models can reproduce the drift of these buoys. Model simulations, both in forecast and hindcast modes, were carried out by three different 3D hydrodynamic models, the results of which are evaluated by comparing the calculated drifts with observations. These models were forced by HIRLAM (High Resolution Limited Area Model) and ECMWF (European Centre for Medium-Range Weather Forecasts) meteorological forecast fields. The simulated drift of the buoys showed a good agreement with observations even when, during the study period, a rapidly-changing wind situation was observed to affect the investigation area; in this situation the winds turned about 100 degrees in half an hour. In such a case it is a very complicated task to forecast the drifters' routes: there is a need to regularly update the meteorological forcing fields and to use these regularly-updated fields throughout the simulations. It is furthermore recommended that forecasts should be made using several circulation models and several meteorological forecasts, in order to get an overview of the accuracy of the forecasted drifts and related differences in between the forecasts.

  13. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    Science.gov (United States)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  14. The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming

    CERN Document Server

    Rozitis, Ben

    2016-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an "almost pole-on" illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterised by an RMS slope of 38 $\\pm$ 8{\\deg} at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the RMS slope of 25 $\\pm$ 5{\\deg} implied by the NEAR Shoemaker laser ran...

  15. Modeling the surface stored thermal energy in asphalt concrete pavements

    Directory of Open Access Journals (Sweden)

    Matić Bojan J.

    2016-01-01

    Full Text Available Regression analysis is used to develop models for minimal daily pavement surface temperature, using minimal daily air temperature, day of the year, wind speed and solar radiation as predictors, based on data from Awbari, Lybia,. Results were compared with existing SHRP and LTPP models. This paper also presents the models to predict surface pavement temperature depending on the days of the year using neural networks. Four annual periods are defined and new models are formulated for each period. Models using neural networks are formed on the basis of data gathered on the territory of the Republic of Serbia and are valid for that territory. [Projekat Ministarstva nauke Republike Srbije, br. TR 36017

  16. Radar, visual and thermal characteristics of Mars - Rough planar surfaces

    Science.gov (United States)

    Schaber, G. G.

    1980-05-01

    High-resolution Viking Orbiter images contain significant information on Martian surface roughness at 25- to 100-m lateral scales, while earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns are qualitatively confirmed by the Viking image data. Large-scale, curvilinear ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.

  17. Thermal Conductance of a Surface Phonon-Polariton Crystal Made up of Polar Nanorods

    Science.gov (United States)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes

    2017-02-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW·K-1, which is comparable to the quantum of thermal conductance of polar nanowires.

  18. Analytical prediction of sub surface thermal history in translucent tissue phantoms during plasmonic photo thermotherapy

    CERN Document Server

    Dhar, Purbarun; Narasimhan, Arunn; Das, Sarit K

    2015-01-01

    Knowledge of thermal history in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour orcarcinoma cells. A semi analytical model to predict sub surface thermal history in translucent, soft, bio tissue mimics has been proposed. The model can accurately predict the spatio temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub surface temperature peaks. Based on opto thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorbance coefficient of nano graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and ...

  19. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  20. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes

    DEFF Research Database (Denmark)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su

    2012-01-01

    to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several...... different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid......:phenyl-C61–butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm2) was 1.84%, 0...

  1. Numerical Study of Thermal Boundary Layer on a Continuous Moving Surface in Power Law Fluids

    Institute of Scientific and Technical Information of China (English)

    Hao ZHANG; Xinxin ZHANG; Liancun ZHENG

    2007-01-01

    This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal diffusivity and the characteristics of the flow and heat transfer are analyzed. The results show that the distribution of the thermal boundary layer depends not only on the velocity ratio parameter of the plate, but also on the power law index and Prandtl number of fluids.

  2. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Periodic changes in shallow lunat crust caused by Sun's heating and thermal diffusivity near the surface

    Science.gov (United States)

    Tanimoto, T.; Eitzel, M.; Yano, T.

    2007-12-01

    Analysis of Apollo 17 data (continuous data from 1976 to 1977) by the cross-correlation approach for seismic noise led us to two new discoveries, one related to the source of noise and the other on the periodic changes in seismic parameters due to extreme temperature changes near the surface. It has been shown previously by Larose et al. (2005) that Green's functions, dominated by Rayleigh waves, can be retrieved from cross-correlation of seismic noise in Apollo 17 data. We first confirmed their correlation results and further analyzed the details in GreenA?"qfs functions. The first discovery is that the sources of noise that lead to construction of Green's functions are (most likely) thermal moonquakes. This is suggested in the Rayleigh-wave observations that show diurnal variation (29.5 days) in amplitudes, but one can directly confirm a correlation between the statistics of thermal moonquakes and Rayleigh wave amplitudes. This is in contrast to the terrestrial case where ocean-generated seismic noise plays a critical role in the cross-correlation approach. This has implications for future planetary seismology as many planets lack oceans but may have thermal quakes caused by drastic temperature changes near the surface. Second, diurnal temporal variations in group velocity are detected, showing a strong correlation with the temporal variation of lunar surface temperature. This can be explained by the Sun's thermal effects which cause changes in density and seismic velocities near the surface. These effects are measurable on the moon since surface temperature changes as much as 270 K within the diurnal period. Depending on the thermal diffusivity of the medium, the depth extent of this thermal effect varies considerably. Inversion for thermal diffusivity using the changes in group velocity dispersion resulted in an estimate 10**(-7) (m**2/s) for the upper few meters.

  4. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    Science.gov (United States)

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; Berndt, Markus; Garimella, Rao; Moulton, J. David; Svyatskiy, Daniil; Wilson, Cathy J.

    2016-08-01

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in the microtopography, physically the result of wind scour, is modeled phenomenologically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100 year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. These simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.

  5. New perspectives on thermal and hyperthermal oxidation of silicon surfaces

    Science.gov (United States)

    Khalilov, Umedjon

    The growth of (ultra)thin silica (SiO2) layers on crystalline silicon (c-Si) and controlling the thickness of SiO2 is an important issue in the fabrication of microelectronics and photovoltaic devices (e.g., MOSFETs, solar cells, optical fibers etc.). Such ultrathin oxide can be grown and tuned even at low temperature (including room temperature), by hyperthermal oxidation or when performed on non-planar Si surfaces (e.g., Si nanowires or spheres). However, hyperthermal silica growth as well as small Si-NW oxidation in general and the initial stages in particular have not yet been investigated in full detail. This work is therefore devoted to controlling ultrathin silica thickness on planar and non-planar Si surfaces, which can open new perspectives in nanodevice fabrication. The simulation of hyperthermal (1-100 eV) Si oxidation demonstrate that at low impact energy (nanotechnology. Above the transition temperature such core-shell nanowires are completely converted to a-SiO2 nanowires. It can be concluded that an accurate control over the interfacial stress by choosing a suitable oxidation temperature and Si-NW diameter can lead to precise nanoscale control over the Si-core radius. All investigations were carried out by applying molecular dynamics calculations using the ReaxFF potential, allowing a accurately study of the underpinning physical and chemical processes.

  6. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

    Science.gov (United States)

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-08-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration.

  7. Compositional variability across Mercury's surface revealed by MESSENGER measurements of variations in thermal neutron count rates

    Science.gov (United States)

    Peplowski, P. N.; Lawrence, D. J.; Goldsten, J. O.; Nittler, L. R.; Solomon, S. C.

    2013-12-01

    Measurements by MESSENGER's Gamma-Ray and Neutron Spectrometer (GRNS) have revealed variations in the flux of thermal neutrons across Mercury's northern hemisphere. These variations are interpreted to originate from spatial variations in surface elemental composition. In particular, the measurements are sensitive to the near-surface abundances of elements that absorb thermal neutrons, including major rock-forming elements such as Fe and Ti, minor elements such as Mn and Cl, and rare-earth elements such as Gd and Sm. We have constructed a map of thermal neutron variability across the surface and compared it with known variations in elemental composition and with the distribution of geologic units. Development of the map included the derivation of the macroscopic thermal neutron absorption cross section across the surface, a quantity whose value and variability provides useful constraints on the formation and geochemical evolution of Mercury's crust. Finally, by combining the thermal neutron measurements with previously reported elemental measurements from the GRNS and MESSENGER's X-Ray Spectrometer, we have derived constraints on the abundances of neutron-absorbing elements, including previously unreported limits for some minor and rare-earth elements.

  8. The influence of the base material surface preparation on the properties of thermally sprayed coatings

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2010-01-01

    Full Text Available Using specimens, a research was conducted to determine the influence of the base material surface preparation for 42CrMo4 on the final coating, prior to actual thermal spraying. During thermal spraying, an Al-Ni-alloy was used as an interlayer before the actual coating with Cr-Mo-Ni. The surface hardness and the hardness distribution across the thickness of the sprayed coating were measured and the structure of respective sprayed coatings was photographed. A comparison of experimental results enabled the identification of the particular material preparation method with an optimal ratio of the satisfactory coating thickness and its hardness.

  9. Pathogenic and nonpathogenic Acanthamoeba spp. in thermally polluted discharges and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    de Jonckheere, J.F.

    1981-02-01

    During spring and autumn, the total number of amoebae and the number of acanthamoeba species able to grow at 37 degrees C were determined in six thermally polluted factory discharges and the surrounding surface waters. The isolated Acanthamoeba strains were studied for growth in axenic medium, cytopathic effect in Vito cell cultures, and virulence in mice. Although more amoebae were isolated in autumn, the number of Acanthamoeba species was lower than in spring, when the percent of pathogenic strains among the isolates was highest. Higher concentrations of amoebae were found in warm discharges, and more virulent strains occurred in thermal discharges than in surface waters.

  10. [The surface degradation of various light-cured composite resins by thermal cycling].

    Science.gov (United States)

    Hirabayashi, S; Nomoto, R; Harashima, I; Hirasawa, T

    1990-01-01

    The durability of four commercially available light-cured composite resins was investigated by thermal cycling, GR containing inorganic fillers treated with the graft polymerization of acryl ester, LF inorganic fillers treated with a silane coupling agent, PC silanized inorganic fillers and organic composite fillers, and the MFR-type SI containing the organic composite fillers. These materials were given 10,000, 30,000 and 50,000 thermal cycles (4 degrees C-60 degrees C) and the deterioration of materials by thermal cycling was evaluated by the measurement of the mechanical properties and the SEM observations of the surface of the thermocycled materials. Compressive strength and bending elastic moduli for all materials did not change greatly by thermal cycling. However, bending strength, toothbrush abrasion resistance and surface hardness decreased with increasing number of thermal cycles between 0 and 30,000, and changed little after 30,000 cycles. The percentage of bending strength after 50,000 thermal cycles to that of the non-thermocycled sample was 75% for GR, 60% for LF, 50% for PC and 65% for SI, respectively. Deterioration of materials was observed as cracks on the surface, which generated at the interface of the filler and matrix. The cracks generated relatively earlier during thermal cycling for SI and PC which contained the organic composite filler, later for LF which contained the silanized inorganic fillers, and the number of cracks on LF were fewer than SI and PC. On the other hand, for GR, no cracks were observed even after 50,000 thermal cycles. From these results, it can be presumed that the pre-treatment of filler by the graft polymerization is more effective to improve the durability of composite resin.

  11. Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

    Science.gov (United States)

    Hou, Yang; Zhu, Lin-Li

    2016-08-01

    Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

  12. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes

    1996-01-01

    We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip...... and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Angstrom from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip...

  13. Thermal Simulation Facilities Handbook.

    Science.gov (United States)

    1983-02-01

    as much ultraviolet radiation as possible In the concentrated solar beam. The heliostat automatically tracks the source, the sun or the moon...individually positioned to concentrate the thermal energy at the test object focal plane and are front surfaced the same as the heliostat mirrors. The...energy and redistribute it uniformly over the target area. A beam douser is mounted above the light pipe. The douser, initially positioned to block the

  14. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.

    Science.gov (United States)

    Deng, Zhong-Shan; Liu, Jing

    2004-09-01

    In non-invasive thermal diagnostics, accurate correlations between the thermal image on skin surface and interior human pathophysiology are often desired, which require general solutions for the bioheat equation. In this study, the Monte Carlo method was implemented to solve the transient three-dimensional bio-heat transfer problem with non-linear boundary conditions (simultaneously with convection, radiation and evaporation) and space-dependent thermal physiological parameters. Detailed computations indicated that the thermal states of biological bodies, reflecting physiological conditions, could be correlated to the temperature or heat flux mapping recorded at the skin surface. The effect of the skin emissivity and humidity, the convective heat transfer coefficient, the relative humidity and temperature of the surrounding air, the metabolic rate and blood perfusion rate in the tumor, and the tumor size and number on the sensitivity of thermography are comprehensively investigated. Moreover, several thermal criteria for disease diagnostic were proposed based on statistical principles. Implementations of this study for the clinical thermal diagnostics are discussed.

  15. Thermal Stability of Surface Layer Microstructures of Commercially Pure Titanium Treated by High Energy Shot Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-juan; CHEN Chun-huan; REN Rui-ming

    2004-01-01

    Commercially pure titanium was treated by high energy shot peening, and annealed at a series of temperatures. The surface layers are characterized by means of scan electronic microscope, X-Ray diffraction, transmission electronic microscope and micro-hardness testing machine. The results showed that microhardness of surface layers decreases with anneal temperature, the tendency of microhardness is similar to unannealed one, in other words, the more close to the surface, the more rapidly the hardness decreases, after reaches the depth of 50 μm, the decrease becomes steadily. But the sub-surface microhardness decreased suddenly over 500 ℃, From 550 ℃ to 650 ℃, the microhardness of surface layers almost unchanged.Observing by TEM and SEM, the grain sizes of pure titanium surface layers have increased below 500 ℃; Deformation twins begin disappearing obviously at 550 ℃; The nano-scaled grains within about 10 micrometers from surface existed even at 550℃.Surface nanocrystallization is well known as one of important methods to improve surface properties. The thermal stability of nanocrystalline microstructures was related to their preparation and application. The commercial pure Ti thermal stability of nanocrystalline and deformed microstructures induced by high-energy-shot-peening (HESP) technique was investigated. The nanostructured surface and deformed sub-surface layers of specimens were prepared through HESP treatment. The thermal stability was characterized through XRD analyses of surface layers, SEM and TEM microstructure observation and microhardness measurement of specimens annealed in different temperature in the air after HESP treatments. The results showed that after HESP treatment, the microhardness of surface layers increased with treatment time, especially in the rang of about 40 micrometers from the surface, the microhardness increase was obvious. The surface microhardness decreased gradually with annealing temperature, but the sub-surface

  16. The Wear behavior of UHMWPE against Surface Modified CP-Titanium by Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    B.T. Prayoga

    2016-12-01

    Full Text Available The effects of thermal oxidation duration on hardness, roughness, and wettability of the CP-titanium surfaces were investigated in this paper. The thermal oxidation treatment was done at 700 oC for 12-36 hours in an air atmosphere. The wear behavior of the UHMWPE sliding against treated thermal oxidation of the CP-titanium was tested by a pin-on-plate tribometer under lubrication of the solution of 75 % distilled water and 25 % bovine serum. The results showed that the layer of the oxide titanium was formed on the surface after being treated by the thermal oxidation for 12-36 hours. The oxide titanium layer was dominated by rutile form of TiO2, that offers an improvement of hardness and wettability of the CP-titanium surfaces. The average wear factor of the UHMWPE reduced significantly when the sliding against of the CP-titanium was modified by the thermal oxidation, and the lowest average wear factor was reached when the sliding against the 12 hour oxidized CP-titanium counterfaces.

  17. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  18. Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures

    Science.gov (United States)

    Maurer, Leon; Knezevic, Irena

    We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.

  19. An efficient plate heater with uniform surface temperature engineered with effective thermal materials

    CERN Document Server

    Liu, Yichao; He, Sailing; Ma, Yungui

    2014-01-01

    Extended from its electromagnetic counterpart, transformation thermodynamics applied to thermal conduction equations can map a virtual geometry into a physical thermal medium, realizing the manipulation of heat flux with almost arbitrarily desired diffusion paths, which provides unprecedented opportunities to create thermal devices unconceivable or deemed impossible before. In this work we employ this technique to design an efficient plate heater that can transiently achieve a large surface of uniform temperature powered by a small thermal source. As opposed to the traditional approach of relying on the deployment of a resistor network, our approach fully takes advantage of an advanced functional material system to guide the heat flux to achieve the desired temperature heating profile. A different set of material parameters for the transformed device has been developed, offering the parametric freedom for practical applications. As a proof of concept, the proposed devices are implemented with engineered therm...

  20. Surface-impedance approach solves problems with the thermal Casimir force between real metals

    CERN Document Server

    Geyer, B; Mostepanenko, V M

    2003-01-01

    The surface impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradiction...

  1. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles...... was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated by detailed...... simulation models with collectors with a normal glass cover and with a glass cover with antireflection surfaces. The calculations were carried out for different solar fractions and temperature levels of the solar heating systems. These parameters influence greatly the thermal performance associated...

  2. Surface Response of Brominated Carbon Media on Laser and Thermal Excitation: Optical and Thermal Analysis Study

    Science.gov (United States)

    Multian, Volodymyr V.; Kinzerskyi, Fillip E.; Vakaliuk, Anna V.; Grishchenko, Liudmyla M.; Diyuk, Vitaliy E.; Boldyrieva, Olga Yu.; Kozhanov, Vadim O.; Mischanchuk, Oleksandr V.; Lisnyak, Vladyslav V.; Gayvoronsky, Volodymyr Ya.

    2017-02-01

    The present study is objected to develop an analytical remote optical diagnostics of the functionalized carbons surface. Carbon composites with up to 1 mmol g-1 of irreversibly adsorbed bromine were produced by the room temperature plasma treatment of an activated carbon fabric (ACF) derived from polyacrylonitrile textile. The brominated ACF (BrACF) was studied by elastic optical scattering indicatrix analysis at wavelength 532 nm. The obtained data were interpreted within results of the thermogravimetric analysis, X-ray photoelectron spectroscopy and temperature programmed desorption mass spectrometry. The bromination dramatically reduces the microporosity producing practically non-porous material, while the incorporated into the micropores bromine induces the dielectric and structural impact on surface polarizability and conductivity due to the charging effect. We have found that the elastic optical scattering in proper solid angles in the forward and the backward hemispheres is sensitive to the kind of the bromine bonding, e.g., physical adsorption or chemisorption, and the bromination level, respectively, that can be utilized for the express remote fabrication control of the nanoscale carbons with given interfaces.

  3. Surface morphology changes of graphene on flexible PET substrate upon thermal annealing.

    Science.gov (United States)

    Samal, Monica; Lee, Jong Min; Park, Won Il; Yi, Dong Kee; Paik, Ungyu; Lee, Chang-Lyoul

    2011-11-01

    The performance of a polymer photovoltaic device using multilayered graphene on an amorphous PET substrate as the electrode was studied. The changes in surface morphology of graphene coated polyethylene terephthalate (PETG) substrate upon thermal annealing were investigated by atomic force microscopy (AFM), field emission scanning electron microscope (FE-SEM) and current-voltage characteristics. The root mean square (RMS) roughness of PETG substrate before annealing was 36.5 nm that decreased to 11.5 nm after 10 min thermal annealing at 110 degrees C. The mean grain size of the substrate decreased from 2301 nm2 to 848 nm2. The PETG surface became smooth when thermally annealed as the voids created by the bubbles in the graphene layer were filled up with thermal expansion of the PET substrate. However, cracks present initially on the graphene due to surface stress between the graphene and PET layer grew further upon annealing that deteriorated the device performance. This study on the graphene surface morphology change upon annealing and the consequent drop in device performance vis-à-vis an ITO glass electrode shows potential drawback of solar cell device fabrication on such flexible substrates.

  4. Estimation of Thermal Contact Conductance between Blank and Tool Surface in Hot Stamping Process

    Science.gov (United States)

    Taha, Zahari; Hanafiah Shaharudin, M. A.

    2016-02-01

    In hot stamping, the determination of the thermal contact conductance values between the blank and tool surface during the process is crucial for the purpose of simulating the blank rapid cooling inside the tool using finite element analysis (FEA). The thermal contact conductance value represents the coefficient of the heat transfer at the surface of two solid bodies in contact and is known to be influenced greatly by the applied pressure. In order to estimate the value and its dependency on applied pressure, the process of hot stamping was replicated and simplified into a process of compression of heated flat blank in between the tool at different applied pressure. The temperature of the blank and tool surface were measured by means of thermocouples installed inside the tool. Based on the measured temperature, the thermal contact conductance between the surfaces was calculated using Newton's cooling law equation. The calculated value was then used to simulate the blank cooling inside the tool using FEA commercial software. This paper describes an experimental approach to estimate the thermal contact conductance between a blank made of Boron Steel (USIBOR 1500) and tool made of Tool Steel (STAVAX). Its dependency on applied pressure is also studied and the experimental results were then compared with FEA simulations.

  5. Thermal and Dynamic Properties of Volcanic Lava Inferred from Measurements on its Surface

    Science.gov (United States)

    Ismail-Zadeh, A.; Korotkii, A.; Kovtunov, D.; Tsepelev, I.; Melnik, O. E.

    2015-12-01

    Modern remote sensing technologies allow for detecting the absolute temperature at the surface of volcanic lava, and the heat flow could be then inferred from the Stefan-Boltzmann law. Is it possible to use these surface thermal data to constrain the thermal and dynamic conditions inside the lava? We propose a quantitative approach to reconstruct temperature and velocity in the steady-state volcanic lava flow from thermal observations at its surface. This problem is reduced to a combination of the direct and inverse problems of mass- and heat transport. Namely, using known conditions at the lava surface we determine the missing condition at the bottom of lava (the inverse problem) and then search for the physical properties of lava - temperature and flow velocity - inside the lava (the direct problem). Assuming that the lava rheology and the thermal conductivity are temperature-dependent, we determine the flow characteristics in the model domain using an adjoint method. We show that in the case of smooth input data (observations) the lava temperature and the flow velocity can be reconstructed with a high accuracy. The noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level.

  6. The Surface-to-Volume Ratio in Thermal Physics: From Cheese Cube Physics to Animal Metabolism

    Science.gov (United States)

    Planinsic, Gorazd; Vollmer, Michael

    2008-01-01

    The surface-to-volume ratio is an important quantity in thermal physics. For example it governs the behaviour of heating or cooling of physical objects as a function of size like, e.g. cubes or spheres made of different material. The starting point in our paper is the simple physics problem of how cheese cubes of different sizes behave if heated…

  7. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  8. From the front

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen [Los Alamos National Laboratory

    2009-01-01

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glacier sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with

  9. Thermal Behaviour of Unusual Local-Scale Surface Features on Vesta

    Science.gov (United States)

    Tosi, F.; Capria, M. T.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; Titus, T. N.; Russell, C. T.; Raymond, C. A.; Mittlefehldt, D. W.; Toplis, M. J.; Forni, O.; Sykes, M. V.

    2012-01-01

    On Vesta, the region of the infrared spectrum beyond approximately 3.5 micrometers is dominated by the thermal emission of the asteroid's surface, which can be used to determine surface temperature by means of temperature-retrieval algorithms. The thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes are used to retrieve surface temperatures, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were re-observed by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low-Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. To calculate surface temperatures, we applied a Bayesian approach to nonlinear inversion based on the Kirchhoff law and the Planck function. These results were cross-checked through application of alternative methods. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Some bright terrains have an overall albedo in the visible as much as 40% brighter than surrounding areas. Data from the IR channel of VIR show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations. In particular, it is shown that during maximum daily insolation, dark features in the equatorial region may rise to

  10. The Surface Finish of Thermally Aged Carbon Fibre Reinforced Composites Using E-glass as a Surface Barrier

    Science.gov (United States)

    de Souza, M. L.; Fox, B. L.

    2015-10-01

    This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

  11. STRUCTURE OF WAVE FRONT AND ORGANIZATION CENTER IN EXCITABLE MEDIA

    Institute of Scientific and Technical Information of China (English)

    刘深泉

    2004-01-01

    With help of establishing the moving coordinate on the wave front surface and the perturbation analysis in the boundary layer, the structures of wave front and organization center in excitable media were studied. The eikonal equation of wave front surface and general equation of organization center were obtained. These eikonal equations reveal the wave front surfaces have structures of twisted scroll wave and Mobius band, the organization centers have structures of knotted and linked ring. These theoretical results not only explain the wave patterns of BZ ( Belousov-Zhabotinskii ) chemical reaction but also give several possibility structures of wave front surface and organization center in general excitable media.

  12. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    Science.gov (United States)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-08-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  13. Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan.

    Science.gov (United States)

    Lewandowska, Katarzyna; Sionkowska, Alina; Grabska, Sylwia; Kaczmarek, Beata

    2016-11-01

    The structure and surface properties of binary and ternary blends containing collagen (Coll), hyaluronic acid (HA) and chitosan (Ch) were investigated by contact angle measurements, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thin films of Coll/HA and Coll/HA/Ch blends have been formed by casting methods from aqueous acid solutions. The surface roughness, hydrophobic/hydrophilic character and thermal stability of Coll/HA were changed after addition of chitosan. Thermal stability of binary blends increase upon the addition of chitosan. The results of contact angle and the surface free energy revealed that hyaluronic acid films are more polar than collagen and chitosan films. The surface energy and its polar and dispersive components of binary and ternary blends were calculated and more hydrophilic films were produced by the addition of HA and chitosan, also resulting in more thermally stabile materials. These results demonstrate that collagen interacts with hyaluronic acid and chitosan changing the surface properties of polymer films.

  14. Design of laboratory experiments to study photoionization fronts

    Science.gov (United States)

    Drake, R. P.; Hazak, G.; Keiter, P. A.; Davis, J. S.; Patterson, C. R.; Frank, A.; Blackman, E.; Busquet, M.

    2016-10-01

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an x-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small. Supported by the U.S. DOE by NNSA Grants DE-NA0002956 (SSAA) and DE-NA0002719 (NLUF), by LLE, and by LLNL.

  15. Thermal transport study across interface “nanostructured solid surface / fluid” by photoacoustic technique

    Science.gov (United States)

    Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.

    2017-01-01

    In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.

  16. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  17. Simultaneous dopant diffusion and surface passivation in a single rapid thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lachiq, A.; Slaoui, A.; Georgopoulos, L.; Ventura, L.; Monna, R.; Muller, J.C. [Laboratoire PHASE, 67 - Strasbourg (France)

    1996-09-01

    Results on simultaneous formation of emitter/back-surface field or emitter/surface passivation in a single rapid thermal cycle are presented. We have investigated the diffusion kinetics of dopant elements like phosphorus, boron (from a doped spin-on glass (SOD) film), aluminium (from evaporated films) or aluminium-boron (from an Al-B SOD film). In particular, we have shown that rapid thermal co-diffusion of P and Al (or Al-B) leads to low sheet resistances, optical emitter profiles and a high gettering effect. Furthermore, the possibility of using the remaining SOD films as a surface passivation layer was investigated. Dark saturation current measurements as deduced from the photoconductivity decay technique demonstrate the passivation effect of the remaining SOD film. The highest efficiency of 12.8% obtained was achieved on SOD oxide-coated solar cells. (author)

  18. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    Science.gov (United States)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  19. Modification of proteins with cyclodextrins prevents aggregation and surface adsorption and increases thermal stability.

    Science.gov (United States)

    Prashar, Deepali; Cui, DaWei; Bandyopadhyay, Debjyoti; Luk, Yan-Yeung

    2011-11-01

    This work describes a general approach for preventing protein aggregation and surface adsorption by modifying proteins with β-cyclodextrins (βCD) via an efficient water-driven ligation. As compared to native unmodified proteins, the cyclodextrin-modified proteins (lysozyme and RNase A) exhibit significant reduction in aggregation, surface adsorption and increase in thermal stability. These results reveal a new chemistry for preventing protein aggregation and surface adsorption that is likely of different mechanisms than that by modifying proteins with poly(ethylene glycol).

  20. Structure and seasonal variability of fronts in the Southeast Indian Ocean along sections from Fremantle, Australia to Antarctic Zhongshan Station

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; GAO Libao; LI Ruixiang; LIU Changjian; YAN Jinhui

    2016-01-01

    Four sections of expendable conductivity-temperature-depth (XCTD) proifles from Fremantle, Australia to Antarctic Zhongshan Station and Moderate Resolution Imaging Spectroradiometer-Aquarius (MODIS-A) sea surface temperature (SST) products were used to study the structure and seasonal variability of Southeast Indian Ocean fronts. Water mass analysis showed that surface water masses in the Southeast Indian Ocean were less salty in March than in November. Compared with November, the subtropical front (STF) moved southward about one degree of latitude in March, whereas seasonal variability of the subantarctic front (SAF) and polar front (PF) locations was not obvious. In March, the saline front moved northward about two degrees of latitude relative to the thermal front in the upper 100 m at the SAF, which was the northern boundary of sub-Antarctic surface water (SASW). Analysis of climatological SST gradients from the satellite data showed that regions of enhanced sea surface temperature (SST) gradients were collocated with frontal locations identiifed with the XCTD data using water mass criteria. The surface expression of the PF identiifed by the SST gradient was further south by about one degree of latitude relative to the subsurface expression of the PF identiifed by the northern boundary of cold water.

  1. Front formation in an active scalar equation.

    Science.gov (United States)

    Constantin, P; Nie, Q; Schörghofer, N

    1999-09-01

    We study the formation of thermal fronts in an active scalar equation that is similar to the Euler equation. For a particular initial condition, an earlier candidate for finite-time blowup, the front forms in a generalized self-similar way with constant hyperbolicity at the center. The behavior belongs to a class of scenarios for which finite-time blowup is impossible. A systematic exploration of many different initial conditions reveals no evidence of singular solutions.

  2. Effect of thermal post-treatment on some surface-related properties of oriented strandboards

    Directory of Open Access Journals (Sweden)

    Cláudio Henrique Soares Del Menezzi

    2008-07-01

    Full Text Available A very promising method for improving the dimensional stability of oriented strandboard (OSB has been studied in Brazil since 2001. According to this method, the OSB is thermally treated under mild conditions using a hot-press, where it is reheated without high level of compression stress. The properties of the treated OSB panels are different from and enhanced compared to those untreated ones. It means that the treated OSB can be used in more severe uses, like concrete formwork. This paper aims to evaluate the effect of the proposed thermal treatment on nail-holding capability and on surface hardness of OSB. Samples from 42 commercials OSB were thermally treated according to two levels of temperature (190°C and 220°C and three heating times (12, 16 and 20 min using a single opening hot-press. For comparison, control panels were kept untreated. The following surface-related properties were evaluated: Janka hardness, nail-holding capability in a plane normal to the surface, in the edge of the panel, water absorption and thickness swelling (TS of edge sealed samples, and four surface roughness parameters. According to the Dunnett test, there were significant differences between treated and untreated panels for nail-holding, dimensional stability and surface roughness. The factorial ANOVA identified that the temperature was the main factor governing these properties while the duration of the treatment had lesser effect. It was concluded that the proposed thermal treatment improved significantly dimensional stability and did not affect adversely the nail-holding capability and surface roughness of the treated OSB

  3. Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane

    Directory of Open Access Journals (Sweden)

    Pergal Marija V.

    2014-01-01

    Full Text Available In this study, the synthesis, structure and physical properties of two series of thermoplastic polyurethanes based on hydroxypropyl terminated poly(dimethylsiloxane (HP-PDMS or hydroxyethoxy propyl terminated poly(dimethylsiloxane (EO-PDMS as a soft segment, and 4,4’-methylenediphenyl diisocyanate and 1,4-butanediol as a hard segment were investigated. Each series is composed of samples prepared with a different soft segment. The polyurethanes were synthesized by two-step polyaddition in solution. The effects of the type and content of PDMS segments on the structure, thermal and surface properties of copolymers were studied by 1H NMR, 13C NMR and two-dimensional NMR (HMBC and ROESY spectroscopy, GPC, DSC, TGA, WAXS, SEM, water contact angle and water absorption measurements. Thermal properties investigated by DSC indicated that the presence of soft PDMS segments lowers the glass transition and melting temperatures of the hard phase as well as the degree of crystallinity. SEM analysis of copolymers with a lower soft segment content confirmed the presence of spherulite superstructures, which arise from the crystallization of the hard segments. When compared with polyurethanes prepared from HP-PDMS, copolymers synthesized from EO-PDMS with the same content of the soft segments have higher degree of crystallinity, better thermal stability and less hydrophobic surface. Our results show that the synthesized polyurethanes have good thermal and surface properties, which could be further modified by changing the type or content of the soft segments.

  4. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    Science.gov (United States)

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers.

  5. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering

    Science.gov (United States)

    Ma, Lingwei; Zhang, Zhengjun; Huang, Hanchen

    2017-10-01

    The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.

  6. An Analysis of Thermally-Related Surface Rainfall Budgets Associated with Convective and Stratiform Rainfall

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; Xiaofan LI

    2011-01-01

    Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.

  7. Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface

    Directory of Open Access Journals (Sweden)

    S. Siddiqa

    2017-01-01

    Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.

  8. Methods for estimating pressure and thermal loads induced by elevon deflections on hypersonic-vehicle surfaces with turbulent boundary layers

    Science.gov (United States)

    Kaufman, L. G., II; Johnson, C. B.

    1981-01-01

    Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces.

  9. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  10. Collisionless ion dynamics in the shock front

    Science.gov (United States)

    Gedalin, Michael

    2016-07-01

    In the vicinity of the shock front the dynamics of ions is governed by the macroscopic regular electric and magnetic field of the shock. Upon crossing the shock the thermal ions form a non-gyrotropic distribution. The pressure of these non-gyrotropic ions shapes the downstream magnetic field. High-energy ions behave in the shock front as test particles under the influence on the macroscopic fields. The reflection and transmission coefficients of high-energy ions at an oblique shock front is not sensitive to the shock structure and depends only on the global magnetic field change at the shock.

  11. Thermal development of latent fingermarks on porous surfaces--further observations and refinements.

    Science.gov (United States)

    Song, Di Fei; Sommerville, Daniel; Brown, Adam G; Shimmon, Ronald G; Reedy, Brian J; Tahtouh, Mark

    2011-01-30

    In a further study of the thermal development of fingermarks on paper and similar surfaces, it is demonstrated that direct contact heating of the substrate using coated or ceramic surfaces at temperatures in excess of 230°C produces results superior to those obtained using hot air. Fingermarks can also be developed in this way on other cellulose-based substrates such as wood and cotton fabric, though ridge detail is difficult to obtain in the latter case. Fluorescence spectroscopy indicates that the phenomena observed during the thermal development of fingermarks can be reproduced simply by heating untreated white copy paper or filter paper, or these papers treated with solutions of sodium chloride or alanine. There is no evidence to suggest that the observed fluorescence of fingermarks heated on paper is due to a reaction of fingermark constituents on or with the paper. Instead, we maintain that the ridge contrast observed first as fluorescence, and later as brown charring, is simply an acceleration of the thermal degradation of the paper. Thermal degradation of cellulose, a major constituent of paper and wood, is known to give rise to a fluorescent product if sufficient oxygen is available [1-5]. However, the absence of atmospheric oxygen has only a slight effect on the thermal development of fingermarks, indicating that there is sufficient oxygen already present in paper to allow the formation of the fluorescent and charred products. In a depletion study comparing thermal development of fingermarks on paper with development using ninhydrin, the thermal technique was found to be as sensitive as ninhydrin for six out of seven donors. When thermal development was used in sequence with ninhydrin and DFO, it was found that only fingermarks that had been developed to the fluorescent stage (a few seconds of heating) could subsequently be developed with the other reagents. In the reverse sequence, no useful further development was noted for fingermarks that were

  12. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    Science.gov (United States)

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  14. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    Science.gov (United States)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  15. Investigation of thermal processes during test operation of ingot mould with composite surface layer

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-08-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of grey cast iron EN-GJL-200 ingot mould, by put directly in founding process a composite surface layer on the basis of corundum Al2O3 and quartz sand SiO2. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel and cast iron castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying. The results of studies show, that is positive influence of composite surface layer with ceramic particles on increase in life of cast iron ingot moulds.

  16. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    Science.gov (United States)

    Spadaro, F.; Rossi, A.; Lainé, E.; Woodward, P.; Spencer, N. D.

    2017-02-01

    Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  17. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  18. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model

    Institute of Scientific and Technical Information of China (English)

    B AMIRIAN; R HOSSEINI-ARA; H MOOSAVI

    2014-01-01

    This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun-dation. The system of motion equations is derived using Hamilton’s principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa-tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.

  19. Surface modification of austenitic thermal-spray coatings by low-temperature nitrocarburizing

    Science.gov (United States)

    Lindner, T.; Mehner, T.; Lampke, T.

    2016-03-01

    Thermal-spray coatings of austenitic materials are mainly used under corrosive conditions. The relatively poor wear resistance strongly limits their use. In comparative studies between nitrocarburized and untreated thermal-spray coatings, the influence of the nitrogen and carbon enrichment on the properties of the coatings and the microstructure was investigated. The cross-section micrograph of the nitrocarburized coating shows the S-phase formation in the surface layer region. The depth profile of the nitrogen and carbon concentration was determined by glow discharge optical emission spectroscopy (GDOS) analysis. A selective enrichment of the surface layer region with nitrogen and carbon by means of thermochemical heat treatment increases the wear resistance. The interstitially dissolved nitrogen and carbon causes the formation of strong compressive residual stresses and high surface hardness. Increases in the service life of existing applications or new material combinations with face-centred cubic friction partners are possible. In the absence of dimensional change, uniform as well as partial nitrogen enrichment of the thermal spray coating is possible. Nitrocarburized coatings demonstrate a significant improvement in adhesive wear resistance and extremely high surface hardness.

  20. Facile synthesis of thermally stable poly(N-vinylpyrrolidone)-modified gold surfaces by surface-initiated atom transfer radical polymerization.

    Science.gov (United States)

    Liu, Xiaoli; Sun, Kai; Wu, Zhaoqiang; Lu, Jianhong; Song, Bo; Tong, Weifang; Shi, Xiujuan; Chen, Hong

    2012-06-26

    Well-controlled polymerization of N-vinylpyrrolidone (NVP) on Au surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP) was carried out at room temperature by a silanization method. Initial attempts to graft poly(N-vinylpyrrolidone) (PVP) layers from initiators attached to alkanethiol monolayers yielded PVP films with thicknesses less than 5 nm. The combined factors of the difficulty in the controllable polymerization of NVP and the instability of alkanethiol monolayers led to the difficulty in the controlled polymerization of NVP on Au surfaces. Therefore, the silanization method was employed to form an adhesion layer for initiator attachment. This method allowed well-defined ATRP polymerization to occur on Au surfaces. Water contact angle, X-ray photoelectron spectroscopy (XPS), and reflectance Fourier transform infrared (reflectance FTIR) spectroscopy were used to characterize the modified surfaces. The PVP-modified gold surface remained stable at 130 °C for 3 h, showing excellent thermal stability. Thus, postfunctionalization of polymer brushes at elevated temperatures is made possible. The silanization method was also applied to modify SPR chips and showed potential applications in biosensors and biochips.

  1. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Xinke Zhong

    2015-06-01

    Full Text Available The surface temperature (ST of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

  2. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  3. Thermally driven transverse transports and magnetic dynamics on a topological surface capped with a ferromagnet strip

    Science.gov (United States)

    Deng, Ming-Xun; Zhong, Ming; Zheng, Shi-Han; Qiu, Jian-Ming; Yang, Mou; Wang, Rui-Qiang

    2016-02-01

    We theoretically study thermally driven transport of the Dirac fermions on the surface of a topological insulator capped with a ferromagnet strip. The generation and manipulation of anomalous Hall and Nernst effects are analyzed, in which the in-plane magnetization of the ferromagnet film is found to take a decisive role. This scenario is distinct from that modulated by Berry phase where the in-plane magnetization is independent. We further discuss the thermal spin-transfer torque as a backaction of the thermoelectric transports on the magnetization and calculate the dynamics of the anomalous Hall and Nernst effects self-consistently. It is found that the magnitude of the long-time steady Hall and Nernst conductance is determined by competition between the magnetic anisotropy and current-induced effective anisotropy. These results open up a possibility of magnetically controlling the transverse thermoelectric transports or thermally manipulating the magnet switching.

  4. Modification of a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion

    Science.gov (United States)

    Muboyadzhyan, S. A.

    2008-12-01

    A new process for modifying a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion is considered. The effect of the bias voltage (negative substrate potential) on the processes that occur on the surface of a treated part is studied when the substrate material interacts with an accelerated metallic-ion flow. The phase and elemental compositions of the modified layer are studied for substrates made of nickel-based superalloys, austenitic and martensitic steels, and titanium-based alloys. The heat resistance, the salt corrosion resistance, and the corrosion cracking resistance of steels and titanium-based alloys are investigated after their modification in vacuum arc plasmas of pure metals (Ti, Zr, Al, Cr, Y) and related alloys. The surface modification caused by the thermally stimulated ion saturation of the surfaces of parts made from structural materials is shown to change the structural-phase states of their surfaces and, correspondingly, the properties of these materials in relation to the state of the surface.

  5. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Science.gov (United States)

    Sugathan, Neena; Biju, V.; Renuka, G.

    2014-06-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76°59'E longitude and 8°29'N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  6. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Indian Academy of Sciences (India)

    Neena Sugathan; V Biju; G Renuka

    2014-07-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76° 59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  7. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.

    Science.gov (United States)

    Xie, Guofeng; Guo, Yuan; Li, Baohua; Yang, Liwen; Zhang, Kaiwang; Tang, Minghua; Zhang, Gang

    2013-09-21

    We present a kinetic model to investigate the anomalous thermal conductivity in silicon nanowires (SiNWs) by focusing on the mechanism of phonon-boundary scattering. Our theoretical model takes into account the anharmonic phonon-phonon scattering and the angle-dependent phonon scattering from the SiNWs surface. For SiNWs with diameter of 27.2 nm, it is found that in the case of specular reflection at lateral boundaries, the thermal conductivity increases as the length increases, even when the length is up to 10 μm, which is considerably longer than the phonon mean free path (MFP). Thus the phonon-phonon scattering alone is not sufficient for obtaining a normal diffusion in nanowires. However, in the case of purely diffuse reflection at lateral boundaries, the phonons diffuse normally and the thermal conductivity converges to a constant when the length of the nanowire is greater than 100 nm. Our model demonstrates that for observing the length dependence of thermal conductivity experimentally, nanowires with smooth and non-contaminated surfaces, and measuring at low temperature, are preferred.

  8. Non-Thermal Effects on CO-NO Surface Catalytic Reaction on Square Surface: Monte Carlo Study

    Institute of Scientific and Technical Information of China (English)

    M. Khalid; A. U. Qaisrani; W. Ahmad

    2005-01-01

    @@ A Monte Carlo simulation of the CO-NO heterogeneous catalytic reaction over a square surface has already been studied with a model based on the Langmuir-Hinshelwood (LH) mechanism. The results of this study are well known. Here we study the effects of transient non-thermal mobility of monomer (CO) based on precursor mechanism, diffusion of adsorbed nitrogen and oxygen atoms, on the phase diagram. The interesting feature of this model is the yield of a steady reactiw window, while simple LH mechanism is not capable of producing a steady reactive state.

  9. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Directory of Open Access Journals (Sweden)

    Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao

    2012-01-01

    Full Text Available This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation of the brick was 0.093 and produces high heat (51% compared to granite, confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  10. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  11. Electrochemical and thermal grafting of alkyl grignard reagents onto (100) silicon surfaces.

    Science.gov (United States)

    Vegunta, Sri Sai S; Ngunjiri, Johnpeter N; Flake, John C

    2009-11-03

    Passivation of (100) silicon surfaces using alkyl Grignard reagents is explored via electrochemical and thermal grafting methods. The electrochemical behavior of silicon in methyl or ethyl Grignard reagents in tetrahydrofuran is investigated using cyclic voltammetry. Surface morphology and chemistry are investigated using atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that electrochemical pathways provide an efficient and more uniform passivation method relative to thermal methods, and XPS results demonstrate that electrografted terminations are effective at limiting native oxide formation for more than 55 days in ambient conditions. A two-electron per silicon mechanism is proposed for electrografting a single (1:1) alkyl group per (100) silicon atom. The mechanism includes oxidation of two Grignard species and subsequent hydrogen abstraction and alkylation reaction resulting in a covalent attachment of alkyl groups with silicon.

  12. Design and construction of a compact module of surfaces treatment by thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester, G.; Zambra, M.; Soto, L. [Comision Chilena de Energia Nuclear, Casilla 188 D, Santiago (Chile); Feugeas, J.; Clausse, A.; Bruzzone, H. [Red Interinstitucional de Plasmas Densos y Magnetizados (PLADEMA) (Argentina)

    2002-07-01

    Research on surfaces treatment by thermal shock is currently being pursued at The Institute of Physics of the University of Rosario (IFUR), using plasma focus systems. Thus, the effect of the thermal shock, due to the incidence of highly energetic, short duration, plasma beams, on metallic surfaces, offers interesting possibilities for application in steels, increasing their resistance to the wear and microhardness. This work addresses the design and construction of a compact plasma focus module (30x30xl00 cm{sup 3}), generating pulses of ions, with a duration of 200 to 500 nanoseconds and an emission frequency under 10 Hz. The energy deposited is 10 J at a fluence of 10{sup 13} cm{sup -2} per pulse. (Author)

  13. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires

    Energy Technology Data Exchange (ETDEWEB)

    Wessling, Stefan; Kessels, Winfried; Wuttke, Manfred W. [Leibniz Institute for Applied Geosciences, Stilleweg 2, D-30655 Hannover (Germany); Kuenzer, Claudia [Institute of Photogrammetry and Remote Sensing, IPF, Vienna University of Technology, Gusshausstr. 27-29, A-1040 Wien (Austria)

    2008-05-07

    Coal seams burning underneath the surface are recognized all over the world and have drawn increasing public attention in the past years. Frequently, such fires are analyzed by detecting anomalies like increased exhaust gas concentrations and soil temperatures at the surface. A proper analysis presumes the understanding of involved processes, which determine the spatial distribution and dynamic behavior of the anomalies. In this paper, we explain the relevance of mechanical and energy transport processes with respect to the occurrence of temperature anomalies at the surface. Two approaches are presented, aiming to obtain insight into the underground coal fire situation: In-situ temperature mapping and numerical simulation. In 2000 to 2005, annual temperature mapping in the Wuda (Inner Mongolia, PR China) coal fire area showed that most thermal anomalies on the surface are closely related to fractures, where hot exhaust gases from the coal fire are released. Those fractures develop due to rock mechanical failure after volume reduction in the seams. The measured signals at the surface are therefore strongly affected by mechanical processes. More insight into causes and effects of involved energy transport processes is obtained by numerical simulation of the dynamic behavior of coal fires. Simulations show the inter-relation between release and transport of thermal energy in and around underground coal fires. Our simulation results show a time delay between the coal fire propagation and the observed appearance of the surface temperature signal. Additionally, the overall energy flux away from the burning coal seam into the surrounding bedrock is about 30-times higher than the flux through the surface. This is of particular importance for an estimation of the energy released based on surface temperature measurements. Finally, the simulation results also prove that a fire propagation rate estimated from the interpretation of surface anomalies can differ from the actual

  14. Detecting urbanization effects on surface and subsurface thermal environment--a case study of Osaka.

    Science.gov (United States)

    Huang, Shaopeng; Taniguchi, Makoto; Yamano, Makoto; Wang, Chung-ho

    2009-04-15

    Tremendous efforts have been devoted to improve our understanding of the anthropogenic effects on the atmospheric temperature change. In comparison, little has been done in the study of the human impacts on the subsurface thermal environment. The objective of this study is to analyze surface air temperature records and borehole subsurface temperature records for a better understanding of the urban heat island effects across the ground surface. The annual surface air temperature time series from six meteorological stations and six deep borehole temperature profiles of high qualities show that Osaka has been undergoing excess warming since late 19th century. The mean warming rate in Osaka surface air temperature is about 2.0 degrees C/100a over the period from 1883 to 2006, at least half of which can be attributed to the urban heat island effects. However, this surface air temperature warming is not as strong as the ground warming recorded in the subsurface temperature profiles. The surface temperature anomaly from the Osaka meteorological record can only account for part of the temperature anomaly recorded in the borehole temperature profiles. Surface air temperature is conventionally measured around 1.5 m above the ground; whereas borehole temperatures are measured from rocks in the subsurface. Heat conduction in the subsurface is much less efficient than the heat convection of the air above the ground surface. Therefore, the anthropogenic thermal impacts on the subsurface can be more persistent and profound than the impacts on the atmosphere. This study suggests that the surface air temperature records alone might underestimate the full extent of urban heat island effects on the subsurface environment.

  15. Thermal dynamics-based mechanism for intense laser-induced material surface vaporization

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2008-09-01

    Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase. Such interaction involving high brightness radiative flux causes multitude of non-linear events involving thermal phase transition at soild–liquid–gas interfaces. A theoretical perspective involving thermal dynamics of the vaporization process and consequent non-linear multiple thermal phase transitions under the action of laser plasma is the subject matter of the present work. The computational calculations were carried out where titanium (Ti) was treated as a condensed medium. The solution to the partial differential equations governing the thermal dynamics and the underlying phase transition event in the multiphase system is based on non-stationary Eulerian variables. The Mach number depicts significant fluctuations due to thermal instabilities associated with the laser beam flux and intensity. A conclusive amalgamation has been established which relates material surface temperature profile to laser intensity, laser flux and the pressure in the plasma cloud.

  16. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    Science.gov (United States)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  17. Quantifying riverine surface currents from time sequences of thermal infrared imagery

    Science.gov (United States)

    Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J.

    2012-01-01

    River surface currents are quantified from thermal and visible band imagery using two methods. One method utilizes time stacks of pixel intensity to estimate the streamwise velocity at multiple locations. The other method uses particle image velocimetry to solve for optimal two-dimensional pixel displacements between successive frames. Field validation was carried out on the Wolf River, a small coastal plain river near Landon, Mississippi, United States, on 26-27 May 2010 by collecting imagery in association with in situ velocities sampled using electromagnetic current meters deployed 0.1 m below the river surface. Comparisons are made between mean in situ velocities and image-derived velocities from 23 thermal and 6 visible-band image sequences (5 min length) during daylight and darkness conditions. The thermal signal was a small apparent temperature contrast induced by turbulent mixing of a thin layer of cooler water near the river surface with underlying warmer water. The visible-band signal was foam on the water surface. For thermal imagery, streamwise velocities derived from the pixel time stack and particle image velocimetry technique were generally highly correlated to mean streamwise current meter velocities during darkness (r 2 typically greater than 0.9) and early morning daylight (r 2 typically greater than 0.83). Streamwise velocities from the pixel time stack technique had high correlation for visible-band imagery during early morning daylight hours with respect to mean current meter velocities (r 2 > 0.86). Streamwise velocities for the particle image velocimetry technique for visible-band imagery had weaker correlations with only three out of six correlations performed having an r 2 exceeding 0.6. Copyright 2012 by the American Geophysical Union.

  18. Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown

    Science.gov (United States)

    Molaro, J. L.; Byrne, S.; Le, J.-L.

    2017-09-01

    This work investigates the macroscopic thermomechanical behavior of lunar boulders by modeling their response to diurnal thermal forcing. Our results reveal a bimodal, spatiotemporally-complex stress response. During sunrise, stresses occur in the boulders' interiors that are associated with large-scale temperature gradients developed due to overnight cooling. During sunset, stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller diameters, suggesting that larger boulders break down more quickly. Boulders ≤ 30 cm exhibit a weak response to thermal forcing, suggesting a threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown. As boulders increase in size (>1 m), stresses increase to several 10 s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. As the thermal wave loses contact with the boulder interior, stresses become limited to the near-surface. This suggests that the survival time of a boulder is not only controlled by the amplitude of induced stress, but also by its diameter as compared to the diurnal skin depth. While stresses on the order of 10 MPa are enough to drive crack propagation in terrestrial environments, crack propagation rates in vacuum are not well constrained. We explore the relationship between boulder size, stress, and the direction of crack propagation, and discuss the implications for the relative breakdown rates and estimated lifetimes of boulders on airless body surfaces.

  19. Frontal dynamics in a California Current System shallow front: 1. Frontal processes and tracer structure

    Science.gov (United States)

    Pallã S-Sanz, E.; Johnston, T. M. S.; Rudnick, D. L.

    2010-12-01

    The three-dimensional dynamics in a shallow front are examined using density and current data from two surveys 100 km offshore of Monterey Bay, California. Survey 1 is forced by down-front winds, and both surveys have considerable cross-front density gradients and flow curvature. The maximum Rossby numbers on the dense side reached maxima of +0.60 in survey 1 and +0.45 in survey 2. Downwelling occurs in regions of confluence (frontogenesis) associated with potential vorticity (PV) change and thermal wind imbalance. Streamers of particulate matter and PV are advected southeastward by the frontal jet and downward. Nonlinear Ekman currents advect dense water over light water in the presence of down-front winds, which leads to upwelling along the front and downwelling on the light side of the front. At sites of active ageostrophic secondary circulation (ASC), induced by frontogenesis or Ekman effects, the observed cross-front ageostrophic velocity is consistent with the diagnosed vertical velocity. Furthermore, in survey 2, ageostrophic divergence may play an important role at the curved front, presumably counteracting quasi-geostrophic frontogenesis due to isopycnal confluence. Downward frictional vertical PV flux below the surface extracts PV from the pycnocline and reinforces the frontogenetic vertical PV flux. PV destruction at the surface is inferred from a low PV anomaly below the mixed layer in survey 2. Since the magnitude of the frontogenetic ASC is only twice the magnitude of Ekman suction, external forcing may have a considerable impact on the vertical heat and PV fluxes.

  20. Rejection of surface background in thermal detectors: The ABSuRD project

    Energy Technology Data Exchange (ETDEWEB)

    Canonica, L., E-mail: lucia.canonica@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Biassoni, M.; Brofferio, C. [Università di Milano Bicocca e INFN Sezione di Milano Bicocca, Milano (Italy); Bucci, C.; Calvano, S.; Di Vacri, M.L. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Goett, J. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gorla, P. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Pavan, M. [Università di Milano Bicocca e INFN Sezione di Milano Bicocca, Milano (Italy); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2013-12-21

    Thermal detectors have recently achieved a leading role in the fields of Neutrinoless Double Beta Decay and Dark Matter searches thanks to their excellent energy resolution and to the wide choice of absorber materials. In these fields the background coming from surface contaminations is frequently dominant. ABSuRD (A Background Surface Rejection Detector) is a scintillation-based approach for tagging this type of background. We discuss the innovative application of this technique in non-scintillating bolometric detectors which will allow for a more favorable signal to background ratio.

  1. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  2. Atmospheric correction of LANDSAT TM thermal band using surface energy balance

    Science.gov (United States)

    Vidal, Alain; Devaux-Ros, Claire; Moran, M. Susan

    1994-01-01

    Thermal infrared data of LANDSAT Thematic Mapper (TM) are hardly used, probably due to the difficulties met when trying to correct them for atmospheric effects. A method for correcting these data was designed, based on surface energy balance estimation of known wet and dry targets included in the TM image to be corrected. This method, only using the image itself and local meteorological data was tested and validated on various surfaces: agricultural, forest and rangeland. The root mean square error on corrected temperatures is on the order of 1C.

  3. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Kusch, Gunnar; Schmidt, Michael; Collins, Timothy; Glynn, Colm; Martin, Robert W.; O’Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.

    2016-12-07

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

  4. Carbon nanotubes dispersed polymer nanocomposites: mechanical, electrical, thermal properties and surface morphology

    Indian Academy of Sciences (India)

    Nitin Sankar; Mamilla Nagarjun Reddy; R Krishna Prasad

    2016-02-01

    The various properties and surface morphology of the carbon nanotubes (CNTs) dispersed polydimethyl siloxane (PDMS) matrix were studied to determine their usefulness in various applications. The tensile strength, Young's modulus and electrical breakdown strength of CNT/polymer composites were 0.35MPa, 1.2MPa and 8.1 kV, respectively. The thermal conductivity and dielectric constant for the material having 4.28 wt% CNT were 0.225 W m−1 K−1 and 2.329, respectively. The CNT/polymer composites are promising functional composites with improved mechanical and electrical properties. The scanning electron microscope analysis of surface morphology of PDMS/CNT composite showed that the rough surface texture on nanocomposite has large surface area with circular pores. The Fourier transform infrared spectroscopy showed the functional groups present in polymer nanocomposite.

  5. Surface-effects-dominated thermal and mechanical responses of zinc oxide nanobelts

    Institute of Scientific and Technical Information of China (English)

    A.J.Kulkarni; M.Zhou

    2006-01-01

    Molecular dynamics(MD)simulations are carried out to characterize the mechanical and thermal responses of [ol(l)o]-oriented ZnO nanobelts with lateral dimensions of 21.22(A)×18.95(A),31.02(A)×29.42(A) and 40.81(A)×39.89(A) over the temperature range of 300-1000 K. The Young's modulus and thermal conductivity of the nanobelts are evaluated. Significant surface effects on properties due to the highsurface-to-volume ratios of the nanobelts are observed. For the mechanical response, surface-stress-induced internal stress plays an important role. For the thermal response, surface scattering of phonons dominates. Calculations show that the Young's modulus is higher than the corresponding value for bulk ZnO and decreases by~33%as the lateral dimensions increase from 21.22(A)×18.95(A) to 40.8l(A)×39.89(A).The thermal conductivity is one order of magnitude lower than the corresponding value for bulk ZnO single crystal and decreases with wire size. Specifically, the conductivity of the 21.22(A)×18.95(A) beltis approximately(31-18)% lower than that of the 40.81(A)×39.89(A) belt over the temperature range analyzed. A significant dependence of properties on temperature is also observed. with the Young's modulus decreasing on average by 12% and the conductivity decreasing by 50% as temperature increases from 300 K to 1000 K.

  6. Thermal anomaly at the Earth's surface associated with a lava tube

    Science.gov (United States)

    Piombo, Antonello; Di Bari, Marco; Tallarico, Andrea; Dragoni, Michele

    2016-10-01

    Lava tubes are frequently encountered in volcanic areas. The formation of lava tubes has strong implications on the volcanic hazard during effusive eruptions. The thermal dissipation of lava flowing in a tube is reduced in respect to the lava flowing in an open channel so the lava may threaten areas that would not be reached by flows in open channels: for this reason it is important to detect the presence of lava tubes. In this work we propose a model to detect the presence and the characteristics of lava tubes by their thermal footprint at the surface. We model numerically the temperature distribution and the heat flow, both in the steady and the transient state, and we take into account the principal thermal effects due to the presence of an active lava tube, i.e. the conduction to the ground and the atmosphere, the convection and the radiation in the atmosphere. We assume that lava fluid is at high temperature, in motion inside a sloping tube under the gravity force. The thermal profile across the tube direction, in particular the width of the temperature curve, allows to evaluate the depth of the tube. The values of maximum temperature and of tube depth allow to estimate the area of the tube section. The shape of the temperature curve and its asymmetry can give information about the geometry of the tube. If we observe volcanic areas at different times by thermal cameras, we can detect anomalies and evaluate their causes during an eruption; in particular, we can evaluate whether they are due to active lava flows or not and what is their state. For lava tubes, we can connect thermal anomalies with lava tube position, characteristics and state.

  7. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    Science.gov (United States)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  8. Development of non-thermal atmospheric pressure plasma system for surface modification of polymeric materials

    Science.gov (United States)

    Kasih, T. P.

    2017-04-01

    Non-thermal plasma has become one of the new technologies which are highly developed now days. This happens because the cold plasma using the principle of generated reactive gases that have the ability to modify the surface properties of a material or product without changing the original characteristics of the material. The purpose of this study is to develop a cold plasma system that operates at atmospheric pressure and investigates the effect of cold plasma treatment to change the surface characteristics of the polymer material polyethylene (PE) at various time conditions. We are successfully developing a non-thermal plasma system that can operate at atmospheric pressure and can be run with Helium or Argon gas. The characteristics of plasma will be discussed from the view of its electrical property, plasma discharge regime andoperation temperature. Experiment results on plasma treatment on PE material shows the changes of surface properties of originally hydrophobic material PE becomes hydrophilic by only few seconds of plasma treatment and level of hydrophilicity become greater with increasing duration of plasma treatment. Confirmation of this is shown by the measurement of contact angle of droplets of water on the surface of PE are getting smaller.

  9. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    CERN Document Server

    Garrod, R T; Herbst, E

    2007-01-01

    Aims: The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely contrained by theoretical work. Results: Our results ...

  10. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  11. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  12. Thermal inertia as an indicator of rockiness variegation on near-Earth asteroid surfaces

    Science.gov (United States)

    Ali-Lagoa, Victor; Delbo, Marco; Hanus, Josef

    2016-10-01

    Determining key physical properties of asteroids such as sizes and albedos or reflectance spectra is crucial to understand their origins and the processes that they have undergone during their evolution. In particular, one of the aims of NEOShield-2 project, funded by the European Union's Horizon 2020 Research and Innovation programme, is to physically characterize small near Earth asteroids (NEA) in an effort to determine effective mitigation strategies in case of impact with our planet [Harris et al. 2013 2013AcAau,90,80H].We performed thermophysical modelling of NEAs, such as (1685) Toro, and potentially hazardous asteroids (PHAs), such as (33342) 1998 WT24. In addition to size, thermophysical models (TPM) of asteroids can constrain the surface thermal inertia, which is related to the material composition and physical nature, namely its "rockiness" or typical size of the particles on its surface. These have observable effects on the surface temperature distribution as a function of time and thus on the thermal infrared fluxes we observe, to which we can fit our model.In the case of WT24, its thermal inertia has been previously constrained to be in the range 100-300 SI units [Harris et al. 2007, Icarus 188, 414H]. But this was based on a spherical shape model approximation since no shape model was available by the time. Such a low thermal inertia value seems in disagreement with a relatively high metal content of the enstatite chondrites, the meteorite type to which WT24, classified as an E-type [Lazzarin et al. 2004 A&A 425L, 25L], has been spectrally associated. Using a three-dimensional model and spin vector based on radar observations [Busch et al. 2008 Icarus 197, 375B], our TPM produces a higher best-fitting value of the thermal inertia. We also find the intriguing possibility that the hemisphere of WT24 dominated by concave terrains, possibly be the result of an impact crater, has a higher thermal inertia. This would be similar to the case of our Moon

  13. Thermally aware, durable nanoengineered surfaces with high speed liquid impalement resistance

    Science.gov (United States)

    Tiwari, Manish; Peng, Chaoyi; Chen, Zhuyang

    2016-11-01

    Highly hydrophobic nanoengineered surfaces delaying freezing down to -20 degrees Centigrade for a day, sustaining dropwise steam condensation under high rate steam shear for several days, sustaining mechanical abrasion and high strains have attracted strong interest recently. Particularly, anti-icing and dropwise condensation promotion require thermally conductive surfaces with careful nucleation control - of ice germs or droplets, respectively - using precise surface nanotexture. Scalability of surface manufacture is an additional challenge. In the current presentation, we will demonstrate a pathway to address these needs. Anodisation of metallic substrate is first used to obtain nanotextured surfaces with a precision of approx. 200 nm. Next, rationally formulated nanocomposites comprising solution processed fluorinated copolymers and nanoparticle dispersions were spray coated on the anodized metals. The resulting nanocomposite coatings were superhydrophobic with approx. 20 nm precision in surface texture. The surface durability is assessed using tape peel, sand abrasion, and droplet and water jet impact tests up to 30 m/s. High speed jet splashing is recorded at speeds >10 m/s to demonstrate the influence of jet diameter on splashing characteristics. This work was partly supported by EPSRC Grant EP/N006577/1.

  14. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified waterborne polyacrylate coatings

    Science.gov (United States)

    Miklečić, Josip; Turkulin, Hrvoje; Jirouš-Rajković, Vlatka

    2017-06-01

    In this research the samples of thermally modified (TMT) beech wood samples, finished with waterborne polyacrylate clear coatings modified with nano-sized ZnO and TiO2-rutil were naturally and artificially exposed to weathering conditions. To extend the lifetime of wood and maintain its natural look, the research and development of clear coatings with minimal use of harmful chemicals has become very important. Therefore nano-sized inorganic UV absorbers are increasingly used to enhance the durability of the coating and wood substrate, still retaining the transparency of the coating. During exposure the visual inspection was performed, further the changes of colour, gloss and adhesion were recorded. Interaction of the film with the thermally modified substrate surface were studied. Results showed that the addition of TiO2-rutil and ZnO nanoparticles to the waterborne polyacrylate coating improved the colour stability of thermally modified beech-wood. However, nano-sized ZnO increased the cracking and peeling, and caused the loss in adhesion strength of the film on thermally modified beech wood.

  15. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.

    Science.gov (United States)

    Kaya, S; Weeber, J-C; Zacharatos, F; Hassan, K; Bernardin, T; Cluzel, B; Fatome, J; Finot, C

    2013-09-23

    We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.

  16. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    Science.gov (United States)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  17. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  18. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate.

  19. Comparison of MESSENGER Optical Images with Thermal and Radar Data for the Surface of MERCURY

    Science.gov (United States)

    Blewett, D. T.; Coman, E. I.; Chabot, N. L.; Izenberg, N. R.; Harmon, J. K.; Neish, C.

    2010-12-01

    Images collected by the MESSENGER spacecraft during its three Mercury flybys cover nearly the entire surface of the planet that was not imaged by Mariner 10. The MESSENGER data now allow us to observe features at optical wavelengths that were previously known only through remote sensing in other portions of the electromagnetic spectrum. For example, the Mariner 10 infrared (IR) radiometer made measurements along a track on the night side of Mercury during the spacecraft's first encounter in 1974. Analysis of the IR radiometer data identified several thermal anomalies that we have correlated to craters with extensive rays or ejecta deposits, including Xiao Zhao and Eminescu. The thermal properties are consistent with a greater exposure of bare rock (exposed in steep walls or as boulders and cobbles) in and around these craters compared with the lower-thermal-inertia, finer-grained regolith of the surrounding older surface. The portion of Mercury not viewed by Mariner 10 has also been imaged by Earth-based radar. The radar backscatter gives information on the wavelength-scale surface roughness. Arecibo S-band (12.6-cm wavelength) radar observations have produced images of Eminescu and also revealed two spectacular rayed craters (Debussy and Hokusai) that have since been imaged by MESSENGER. We are examining radial profiles for these craters, extracted from both the radar images and MESSENGER narrow-angle camera mosaics, that extend from the crater center outwards to a distance of several crater diameters. Comparison of optical and radar profiles for the craters, as well as similar profiles for lunar craters, can provide insight into ejecta deposition, the effect of surface gravity on the cratering process, and space weathering.

  20. Atmospheric Pressure non-thermal plasmas for surface treatment of polymer films

    Science.gov (United States)

    Huang, Hsiao-Feng; Wen, Chun-Hsiang; Wei, Hsiao-Kuan; Kou, Chwung-Shan

    2006-10-01

    Interest has grown over the past few years in applying atmospheric pressure non-thermal plasmas to surface treatment. In this work, we used an asymmetric glow dielectric-barrier discharge (GDBD), at atmospheric pressure in nitrogen, to improve the surface hydrophilicity of three kinds of polymer films, biaxially oriented polypropylene (BOPP), polyimide (PI), and triacetyl cellulose (TAC). This set-up consists of two asymmetric electrodes covered by dielectrics. And to prevent the filamentary discharge occur, the frequency, gas flow rate and uniformity of gas flow distribution should be carefully controlled. The discharge performance is monitored through an oscilloscope, which is connected to a high voltage probe and a current monitor. The physical and chemical properties of polymer surfaces before and after GDBD treatment were analyzed via water contact angle (CA) measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques.

  1. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-01-01

    This article deals with the free vibration investigation of nonlocal strain gradient-based viscoelastic functionally graded (FG) nanobeams on viscoelastic medium considering surface stress effects. Nonlocal strain gradient theory possesses a nonlocal stress field parameter and a length scale parameter for more accurate prediction of mechanical behavior of nanostructures. Surface energy effect is incorporate to the nonlocal strain gradient theory employing Gurtin-Murdoch elasticity theory. Thermo-elastic material properties of nanobeam are graded in thickness direction using power-law distribution. Hamilton's principal is utilized to obtain the governing equations of FG nanobeam embedded in viscoelastic medium. The effects of surface stress, length scale parameter, nonlocal parameter, viscoelastic medium, internal damping constant, thermal loading, power-law index and boundary conditions on vibration frequencies of viscoelastic FGM nanobeams are discussed in detail.

  2. Surface studies of the thermal decomposition of triethylgallium on GaAs (100)

    Science.gov (United States)

    Murrell, A. J.; Wee, A. T. S.; Fairbrother, D. H.; Singh, N. K.; Foord, J. S.; Davies, G. J.; Andrews, D. A.

    1990-10-01

    The adsorption and surface decomposition of triethylgallium (TEG) on GaAs (100) has been studied using XPS and thermal desorption techniques. TEG is found to adsorb in a molecular form on the Ga rich (4×1) surface below 150 K. As the surface temperature is raised, this molecular state dissociates to form Ga and adsorbed ethyl species. The overall cracking reaction occurs in competition with the desorption of TEG and diethylgallium (DEG). Under the conditions of our experiments the adsorbed ethyl species formed above are found to dissociate above 600 K to form mainly gas phase ethene and hydrogen with traces of ethane, resulting in the formation of a pure Ga layer within the sensitivity limits imposed by XPS.

  3. Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

    2008-10-10

    We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

  4. On an upwelling front along the west coast of India during later part of southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    A coastal front, associated with upwelling, is identified from the observed thermal field along the west coast of India during September, 1987. The front, which is seen very clearly upto a depth of about 75 m, has a horizontal gradient...

  5. Thermal neutrons' flux near the Earth's surface as an evidence of the crustal stress

    Science.gov (United States)

    Sigaeva, Ekaterina; Nechayev, Oleg; Volodichev, Nikolay; Antonova, Valentina; Kryukov, Sergey; Chubenko, Alexander; Shchepetov, Alexander

    There are some ideas about the Earth’s global seismic activity appearance due to tidal forces. At the same time, the correlations between the big series of the earthquakes and the New and Full Moons and between the New and Full Moons and the increasings of the thermal neutrons’ flux from the Earth’s crust were observed. It is as though there are internal links between these three natural phenomena and the physical reasons for their appearance are the same. The paper presents the results of the ground-based thermal neutrons observations during different time periods characterized with phenomena in the near-Earth space (for instance, the New and Full Moon). Basing on the up-to-date conception of the tidal waves influence on the Earth's crust the authors confirm the role of the Moon in the production of the neutron flux near the Earth's surface.

  6. [Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity].

    Science.gov (United States)

    Zhang, Li-Fu; Zhang, Xue-Wen; Huang, Zhao-Qiang; Yang, Hang; Zhang, Fei-Zhou

    2011-11-01

    The objective of the present paper is to study the quantitative relationship between the CaO content and the thermal infrared emissivity spectra. The surface spectral emissivity of 23 solid rocks samples were measured in the field and the first derivative of the spectral emissivity was also calculated. Multiple linear regression (MLR), principal component analysis (PCR) and partial least squares regression (PLSR) were modeled and the regression results were compared. The results show that there is a good relationship between CaO content and thermal emissivity spectra features; emissivities become lower when CaO content increases in the 10.3-13 mm region; the first derivative spectra have a better predictive ability compared to the original emissivity spectra.

  7. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  8. Thermal Inertia Determination of C-type Asteroid Ryugu from in-situ Surface Brightness Temperature Measurements

    Science.gov (United States)

    Hamm, Maximilian; Grott, Matthias; Knollenberg, Jörg; Kührt, Ekkehard; Pelivan, Ivanka

    2016-10-01

    The Japanese Hayabusa-2 mission is a sample-return mission currently on its way to the C-type asteroid Ryugu. Hayabusa-2 carries the small lander MASCOT (Mobile Asteroid Surface Scout), whose scientific payload includes the infrared radiometer MARA. The primary science goal of MARA is to determine Ryugu's surface brightness temperatures at the landing site for a full asteroid rotation, which will be measured using a long-pass filter, an 8 to 12 µm bandpass, as well as four narrow bandpasses centered at wavelengths between 5 and 15 µm. From these measurements, surface thermal inertia will be derived, but because MARA performs single pixel measurements, heterogeneity in the field of view cannot be resolved. Yet, the surface will likely exhibit different surface textures, and thermal inertia in the field of view could vary from 600 (small rocks) to 50 Jm-2s-0.5K-1 (fine regolith grains). Sub-pixel heterogeneity is a common problem when interpreting radiometer data, since the associated ambiguities cannot be resolved without additional information on surface texture. For MARA, this information will be provided by the MASCOT camera, and in the present paper we have investigated to what extent different thermal inertias can be retrieved from MARA data. To test the applied approach, we generated synthetic MARA data using a thermal model of Ryugu, assuming different thermal inertias for sections of the field of view. We find that sub-pixel heterogeneity systematically deforms the diurnal temperature curve so that it is not possible to fit the data using a single thermal inertia value. However, including the area fractions of the different surface sections enables us to reconstruct the different thermal inertias to within 10% assuming appropriate measurement noise. The presented approach will increase robustness of the Ryugu thermal inertia determination and results will serve as a ground truth for the global measurements performed by the thermal infrared mapper (TIR) on

  9. Global trends in lake surface temperatures observed using multi-sensor thermal infrared imagery

    Science.gov (United States)

    Schneider, Philipp; Hook, Simon J.; Radocinski, Robert G.; Corlett, Gary K.; Hulley, Glynn C.; Schladow, S. Geoffrey; Steissberg, Todd E.

    2010-05-01

    Recent research has shown that the temperature of lakes and other inland water bodies does not only act as a good indicator of climate variability but under certain conditions can even increase more rapidly than the regional air temperature. Further investigation of this phenomenon in particular and of the interaction between lake temperature and climate variability in general requires extensive observations of lake temperature on a global scale. Current in situ records are limited in their spatial and/or temporal coverage and are thus insufficient for this task. However, a nearly 30-year archive of satellite-derived thermal infrared imagery from multiple sensors is available at this point and can be used to fill this data gap. We describe research on utilizing the existing archive of spaceborne thermal infrared imagery to generate multi-decadal time series of lake surface temperature for 170 of the largest lakes worldwide. The data used for this purpose includes imagery from the Advanced Very High Resolution Radiometers (AVHRR), the series of (Advanced) Along-Track Scanning Radiometers ((A)ATSR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Used in combination, these data sets offer a gapless time series of daily to near-daily thermal infrared retrievals from 1981 through present. In this contribution we demonstrate using comprehensive in situ data at Lake Tahoe, California/Nevada, that lake water surface temperature can be estimated using these sensors with an accuracy of up to 0.2 K. We further show that accurate continuous time series of water surface temperature can be derived from the data and that these time series can be used to detect significant trends in the temporal thermal behavior of lakes and other inland water bodies worldwide. Complementing our recent case study for lakes in California and Nevada for which a rapid increase in mean nighttime summertime lake surface temperatures of 0.11 K per year on average was found, we present

  10. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  11. Analysis of MASTER Thermal Data in the Greeley Area of the Front Range Urban Corridor, Colorado--Delineation of Sites for Infrastructure Resource Characterization

    Science.gov (United States)

    Livo, K. Eric; Watson, Ken

    2002-01-01

    Sand and soils southwest of Greeley, Colorado, were characterized for mineral composition and industrial quality. Radi-ance data from the thermal channels of the MASTER simulator were calibrated using estimated atmospheric parameters. Chan-nel emissivities were approximated using an estimated ground temperature. Subsequently, a decorrelation algorithm was used to calculate inverse wave emissivity images. Six soil classes, one vegetation class, water, and several small classes were defined using an unsupervised classification algorithm. Ground covered by each of the derived emissivity spectral classes was studied using color-infrared air photos, color-infrared composite MAS-TER data, geologic maps, NASA/JPL Airborne Visible and Infra-red Imaging Spectrometer (AVIRIS) data, and field examination. Spectral classes were characterized by their responses and related to their mineral content through field examination. Classes with a minimum at channel 44, and having a similar spectral shape to quartz, field checked as containing abundant quartz. Classes with a minimum at channel 45, and having a spectral shape similar to the sheet minerals, were found in the field to contain abundant mica and clay. Sandy soil was found to have a positive slope at the longer wavelengths; the more clay rich soils had a negative slope. Spectra with a strong downturn at channel 50 generally indicated low vegetation cover, whereas an upturn indicated more vegetation cover. Mapping revealed a range of classified soils with varying amounts of quartz, silt, clay, and plant humus. Sand and gravel operations along the St. Vrain River, gravel lots, and some fields spectrally classified as quartz-rich sands were confirmed through field examination. Other fields mapped as sandy soils, ranging from quartz-rich sandy soil to quartz-rich silt-sand soil with clay. Flood plains mapped as sandy-silty-organic-rich clay. The city of Greeley contained all classes of materials, with the sand classes mapping as

  12. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    Science.gov (United States)

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  13. [Correlative analysis of the diversity patterns of regional surface water, NDVI and thermal environment].

    Science.gov (United States)

    Duan, Jin-Long; Zhang, Xue-Lei

    2012-10-01

    Taking Zhengzhou City, the capital of Henan Province in Central China, as the study area, and by using the theories and methodologies of diversity, a discreteness evaluation on the regional surface water, normalized difference vegetation index (NDVI), and land surface temperature (LST) distribution was conducted in a 2 km x 2 km grid scale. Both the NDVI and the LST were divided into 4 levels, their spatial distribution diversity indices were calculated, and their connections were explored. The results showed that it was of operability and practical significance to use the theories and methodologies of diversity in the discreteness evaluation of the spatial distribution of regional thermal environment. There was a higher overlap of location between the distributions of surface water and the lowest temperature region, and the high vegetation coverage was often accompanied by low land surface temperature. In 1988-2009, the discreteness of the surface water distribution in the City had an obvious decreasing trend. The discreteness of the surface water distribution had a close correlation with the discreteness of the temperature region distribution, while the discreteness of the NDVI classification distribution had a more complicated correlation with the discreteness of the temperature region distribution. Therefore, more environmental factors were needed to be included for a better evaluation.

  14. Implications of Adhesion Studies for Dust Mitigation on Thermal Control Surfaces

    Science.gov (United States)

    Gaier, James R.; Berkebile, Stephen P.

    2012-01-01

    Experiments measuring the adhesion forces under ultrahigh vacuum conditions (10 (exp -10) torr) between a synthetic volcanic glass and commonly used space exploration materials have recently been described. The glass has a chemistry and surface structure typical of the lunar regolith. It was found that Van der Waals forces between the glass and common spacecraft materials was negligible. Charge transfer between the materials was induced by mechanically striking the spacecraft material pin against the glass plate. No measurable adhesion occurred when striking the highly conducting materials, however, on striking insulating dielectric materials the adhesion increased dramatically. This indicates that electrostatic forces dominate over Van der Waals forces under these conditions. The presence of small amounts of surface contaminants was found to lower adhesive forces by at least two orders of magnitude, and perhaps more. Both particle and space exploration material surfaces will be cleaned by the interaction with the solar wind and other energetic processes and stay clean because of the extremely high vacuum (10 (exp -12) torr) so the atomically clean adhesion values are probably the relevant ones for the lunar surface environment. These results are used to interpret the results of dust mitigation technology experiments utilizing textured surfaces, work function matching surfaces and brushing. They have also been used to reinterpret the results of the Apollo 14 Thermal Degradation Samples experiment.

  15. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    Science.gov (United States)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  16. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

    Science.gov (United States)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.

    2015-09-01

    The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].

  17. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  18. Lava lake surface characterization by thermal imaging: Erta 'Ale volcano (Ethiopia)

    Science.gov (United States)

    Spampinato, L.; Oppenheimer, C.; Calvari, S.; Cannata, A.; Montalto, P.

    2008-12-01

    Active lava lakes represent the exposed, uppermost part of convecting magma systems and provide windows into the dynamics of magma transport and degassing. Erta 'Ale volcano located within the Danakil Depression in Ethiopia hosts one of the few permanent convecting lava lakes, probably active for a century or more. We report here on the main features of the lava lake surface based on observations from an infrared thermal camera made on 11 November 2006. Efficient magma circulation was reflected in the sustained transport of the surface, which was composed of pronounced incandescent cracks that separated wide plates of cooler crust. These crossed the lake from the upwelling to the downwelling margin with mean speeds ranging between 0.01 and 0.15 m s-1. Hot spots eventually opened in the middle of crust plates and/or along cracks. These produced mild explosive activity lasting commonly between ˜10 and ˜200 s. Apparent temperatures of cracks ranged between ˜700 and 1070°C, and of crust between ˜300 and 500°C. Radiant power output of the lake varied between ˜45 and 76 MW according to the superficial activity and continuous resurfacing of the lake. Time series analysis of the radiant power output data reveals cyclicity with a period of ˜10 min. The combination of visual and thermal observations with apparent mean temperatures and convection rates allows us to interpret these signals as the periodic release of hot overpressured gas bubbles at the lake surface.

  19. Tunable wideband-directive thermal emission from SiC surface using bundled graphene sheets

    Science.gov (United States)

    Inampudi, Sandeep; Mosallaei, Hossein

    2017-09-01

    Coherent thermal radiation emitters based on diffraction gratings inscribed on surface of a polar material, such as silicon carbide, always possess high angular dispersion resulting in wideband-dispersive or monochromatic-directive emission. In this paper, we identify roots of the high angular dispersion as the rapid surface phonon polariton (SPhP) resonance of the material surface and the misalignment of the dispersion curve of the diffraction orders of the grating with respect to light line. We minimize the rapid variation of SPhP resonance by compensating the material dispersion using bundled graphene sheets and mitigate the misalignment by a proper choice of the grating design. Utilizing a modified form of rigorous coupled wave analysis to simultaneously incorporate atomic-scale graphene sheets and bulk diffraction gratings, we accurately compute the emissivity profiles of the composite structure and demonstrate reduction in the angular dispersion of thermal emission from as high as 30∘ to as low as 4∘ in the SPhP dominant wavelength range of 11-12 μ m . In addition, we demonstrate that the graphene sheets via their tunable optical properties allow a fringe benefit of dynamical variation of the angular dispersion to a wide range.

  20. Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab; Akbarshahi, Amir

    2016-07-01

    This paper is proposed to study the free vibration of a rotating Timoshenko nanobeam based on the nonlocal theory considering thermal and surface elasticity effects. The governing equations and the related boundary conditions are derived using the Hamilton's principle. In order to solve the problem, generalized differential quadrature method is applied to discretize the governing differential equations corresponding to clamped-simply and clamped-free boundary conditions. In this article, the influences of some parameters such as nonlocal parameter, angular velocity, thickness of the nanobeam, and thermal and surface elasticity effects on the free vibration of the rotating nanobeam are investigated, and the results are compared for different boundary conditions. The results show that the surface effect and the nonlocal parameter and the temperature changes have significant roles, and they should not be ignored in the vibrational study of rotating nanobeams. Also, the angular velocity and the hub radius have more significant roles than temperature change effects on the nondimensional frequency. It is found that the nonlocal parameter behavior and the temperature change behavior on the frequency are different in the first mode for the rotating cantilever nanobeam.

  1. Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability and Interdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, E. J.; Mates, T. E.; Manandhar, S.; Nandasiri, M.; Shutthanandan, V.; Ramana, C. V.

    2016-12-01

    Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films also crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.

  2. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing

  3. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data

    Science.gov (United States)

    Christensen, P.R.; Bandfield, J.L.; Smith, M.D.; Hamilton, V.E.; Clark, R.N.

    2000-01-01

    The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument collected 4.8 ?? 106 spectra of Mars during the initial aerobraking and science-phasing periods of the mission (September 14, 1997, through April 29, 1998). Two previously developed atmosphere-removal models were applied to data from Cimmeria Terra (25?? S, 213?? W). The surface spectra derived for these two models agree well, indicating that the surface and atmosphere emission can be separated and that the exact atmosphere-removal model used has little effect on the derived surface composition. The Cimmeria spectra do not match terrestrial high-silica igneous rocks (granite and rhyolite), ultramafic igneous rocks, limestone, or quartz- and clay-rich sandstone and siltstone. A particulate (sand-sized) sample of terrestrial flood basalt does provide an excellent match in both spectral shape and band depth to the Cimmeria spectrum over the entire TES spectral range. No unusual particle size effects are required to account for the observed spectral shape and depth. The implied grain size is consistent with the thermal inertia and albedo of this region, which indicate a sand-sized surface with little dust. The identification of basalt is consistent with previous indications of pyroxene and basalt-like compositions from visible/ near-infrared and thermal-infrared spectral measurements. A linear spectral deconvolution model was applied to both surface-only Cimmeria spectra using a library of 60 minerals to determine the composition and abundance of the component minerals. Plagioclase feldspar (45%; 53%) and clinopyroxene (26%; 19%) were positively identified above an estimated detection threshold of 10-15% for these minerals. The TES observations provide the first identification of feldspars on Mars. The best fit to the Mars data includes only clinopyroxene compositions; no orthopyroxene compositions are required to match the Cimmeria spectra. Olivine (12%; 12%) and sheet silicate (15%; 11%) were

  4. Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    Science.gov (United States)

    Muhleman, D. O.; Jakosky, B. M.

    1979-01-01

    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.

  5. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  6. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    Science.gov (United States)

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  7. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  8. Experimental measurement of surface temperatures during flame-jet induced thermal spallation

    Science.gov (United States)

    Wilkinson, M. A.; Tester, J. W.

    1993-01-01

    Thermal spallation is a method whereby the surface of a rock is rapidly heated causing small (100 1000 μm) flakes or spalls, to form. When applied to drilling, a supersonic, high temperature (2600 K) gas jet is directed at the rock to provide the heat source and sweep away the spalls. Previous studies of thermal spallation drilling indicate that penetration rates of up to 30 m/hr (100 ft/hr), approximately ten times greater than commonly obtained using conventional rotary mechanical methods, can be achieved in competent, non-fractured hard rock such as granite. A total direct operating cost for drilling in granite using a flame-jet spallation drill was estimated by Browning (1981) to be approximately 9/m in 1991 (about 3/ft) compared to “trouble-free” well drilling costs for conventional rotary methods in similar rock to depths of 3 to 7 km (10000 to 21000 ft) of 300 to 900/m (100 to 300/ft) (Tester and Herzog, 1990, 1992). The Browning estimates for spallation drilling are obviously optimistic in that they don't include capital costs for the rig and associated hardware. However, the substantially higher penetration rates, significantly reduced wear of downhole components, and the high efficiency of rock communition in comparison to rotary methods suggest that substantial cost reductions could be possible in deep drilling applications. For example, in the construction of hot dry rock geothermal power plants where rotary mechanical methods are used for well drilling to depths of (4 to 5 km), about half of the initial capital cost would be required for well drilling alone (Tester and Herzog, 1992). The current study has focused on gaining a better understanding of both the rock failure mechanism that occurs during thermal spallation and the heat transfer from the gas jet to the rock surface. Rock mechanics modeling leads to an expression for the surface temperature during spallation as a function of rock physical properties and the incident heat flux. Surface

  9. Thermal and Photochemical Reactions of NO2 on a Chromium (III) Oxide Surface

    Science.gov (United States)

    Nishino, N.; Finlayson-Pitts, B. J.

    2011-12-01

    Chromium oxide (Cr2O3) is a major component of the oxide layer on stainless steel surfaces. It is also widely used as pigment in paints and roofs and as a protective coating on various surfaces. While many studies have focused on the catalytic activity of Cr2O3 surfaces for selective catalytic reduction (SCR), less attention has been paid to its surface chemistry involving atmospherically important species such as NO2 under atmospheric conditions. In this study, we have investigated thermal and photochemical reactions of NO2 in the presence and the absence of water vapor, using a thin layer of Cr2O3 as a model for the surface of stainless steel as well as other similarly coated surfaces in the boundary layer. A 30 nm thick Cr2O3 film was deposited on a germanium attenuated total reflectance (ATR) crystal, and the changes in the surface species were monitored by Fourier Transform Infrared (FTIR) spectroscopy. Upon NO2 adsorption, nitrate (NO3-) ions appeared likely coordinated to Cr3+ ion(s). The NO3- peaks reversibly shifted when water vapor was added, suggesting that NO3- become solvated. Irradiation at 311 nm led to a decrease in NO3- ions under both dry and humid conditions. The major gas-phase species formed by the irradiation was NO under dry conditions, while NO2 was mainly formed in the presence of H2O. Possible mechanisms and the implications for heterogeneous NO2 chemistry in the boundary layer will be discussed. The results will also be compared to similar chemistry on other surfaces.

  10. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  11. Estimation of surface heat flux for ablation and charring of thermal protection material

    Science.gov (United States)

    Qian, Wei-qi; He, Kai-feng; Zhou, Yu

    2016-07-01

    Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.

  12. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    Science.gov (United States)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  13. Surface Study of Carbon Nanotubes Prepared by Thermal-CVD of Camphor Precursor

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature, which indirectly maybe cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The camphoric hydrocarbons not only found acts as the precursors but also enhances the production rate and the quality of CNTs.

  14. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    Science.gov (United States)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  15. RESEARCH ON DISTURBED MECHANISM OF THERMAL NOISES OF THE SURFACE IN ABRUPT GEOTHERMAL ANOMALY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Geothermal anomaly as a physical phenomenon of an active and latent volcanic area would be well recognized, and abrupt geothermal anomaly should also be understood. However, in practical work, thermal infrared remote sensing techniques are frequently used to monitor geothermal flows of the earth. But then, except for this type of thermal source in the surface thermal field, there still exist a lot of noises in the area where the abrupt geothermal anomaly is generated. By Analyzing the reason, we find that it is brought about by the non-boundless projectioncharacteristics of objects.These noises may be divided into two classes: system noises and random noises. If disturbednoises have comparative stable time sequence law and space sequence law, the noises are called system noises. And because system noises have a certain law, it is easy toremove the noises. On the contrary, if disturbed noises have not law oftime sequence and space sequence, the noises are called random noises. The random noises have the character of non-linearity, uncertainty and indeterminism. For this case, this paper discusses the disturbed mechanism of these noises as well as how to remove them.

  16. Surface, thermal, and mechanical properties of composites and nanocomposites of polyurethane/PTFE nanoparticles

    Science.gov (United States)

    Anbinder, P. S.; Peruzzo, P. J.; de Siervo, A.; Amalvy, J. I.

    2014-08-01

    Films from blends of polyurethane and nano-polytetrafluoroethylene aqueous dispersions (PU/nanoPTFE) were prepared, and the effect of the addition of different amounts of PTFE nanoparticles (50 nm) was studied. The changes in the superficial properties of the films were studied by means of XPS, ATR/FTIR, and contact angle measurements. SEM and TEM results are also included. The contact angle values confirm the surface hydrophobicity of composite films. Even though nanoparticles are present in the bulk, higher concentrations of particles appear at the surface in samples with lower nanoPTFE content (up to 10 wt%), as revealed by XPS. Higher amounts of nanoPTFE particles cause aggregation. The mechanical and thermal properties of composites are also discussed.

  17. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Joseph O; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2014-10-07

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

  18. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    Science.gov (United States)

    Welch, Joseph O.; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B.

    2014-10-01

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called "surface conductivity," a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to "bulk" diamond thin films.

  19. Crystalline silicon surface passivation by thermal ALD deposited Al doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Jagannath Panigrahi

    2017-03-01

    Full Text Available The evidence of good quality silicon surface passivation using thermal ALD deposited Al doped zinc oxide (AZO thin films is demonstrated. AZO films are prepared by introducing aluminium precursor in between zinc and oxygen precursors during the deposition. The formation of AZO is confirmed by ellipsometry, XRD and Hall measurements. Effective minority carrier lifetime (τeff greater than 1.5ms at intermediate bulk injection levels is realized for symmetrically passivated p-type silicon surfaces under optimised annealing conditions of temperature and time in hydrogen ambient. The best results are realised at 450°C annealing for >15min. Such a layer may lead to implied open circuit voltage gain of 80mV.

  20. Thermal Analysis of Unusual Local-scale Features on the Surface of Vesta

    Science.gov (United States)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Capaccioni, F.; Palomba, E.; Zambon, F.; Ammannito, E.; Blewett, D. T.; Combe, J.-Ph.; Denevi, B. W.; Li, J.-Y.; Mittlefehldt, D. W.; Palmer, E.; Sunshine, J. M.; Titus, T. N.; Raymond, C. A.; Russell, C. T.

    2013-01-01

    At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times.

  1. Evaluation of lateral resolution of scanning surface microscopy by total internal reflection with thermal lens effect.

    Science.gov (United States)

    Shimosaka, Takuya; Izako, Masakazu; Uchiyama, Katsumi; Hobo, Toshiyuki

    2003-06-01

    We have developed a novel method for in situ and non-destructive surface analyses, or a total internal reflection with thermal lens spectroscopy (TIR-TLS), which has sufficient sensitivity to monitor phenomena in thin films, such as lipid bilayers. In this study, we applied TIR-TLS to microscopy for surface analyses, and we experimentally obtained its lateral resolution using the edge of a chromium film made by a photolithography technique. The obtained resolution was 20 microm, which was 60% of the diameter of an excitation beam at the interface. The estimated resolution with a simple model agreed with the experimental one, and from this model, TIR-TLS microscopy has the same resolution as that of ordinary optical microscopy. The microscopy by TIR-TLS was applied to a sample whose contrast was too weak to be visually seen, and an image of the sample was obtained without any loss of resolution.

  2. EFFECTS OF BLENDING CHITOSAN WITH PEG ON SURFACE MORPHOLOGY,CRYSTALLIZATION AND THERMAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Ling-hao He; Rui Xue; De-bin Yang; Ying Liu; Rui Song

    2009-01-01

    Biodegradable blend films composed of chitosan and PEG with various composition ratios were prepared. The chemical structure of the blend films was characterized with FTIR and X-ray, which showed no chemical bond formations but certain interactions probably coming from the hydrogen bonds. Morphologies of these blend films were viewed using AFM and SEM, suggesting that pure chitosan film had a smooth surface structure and the blend films surface showed a plenty of holes with varying size. Through the DMA measurement, it was found that there existed differences in the peak area and position of the blend films, and the peak at the glass transition temperature became significantly weaker and was markedly wider with the increasing content of PEG. The obtained results showed that the crystallinity of chitosan was suppressed and partially destroyed; and this should have an influence on the thermal behaviors and dynamic mechanical properties of the blend films.

  3. Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation

    Institute of Scientific and Technical Information of China (English)

    Hyo-Eun JI; Soon-Hwan LEE; Hwa-Woon LEE

    2013-01-01

    To examine the correlation between the sizes of sea breeze fronts and pollutants under the influence of synoptic fields,a numerical simulation was conducted in the southeast coastal area of the Korean Peninsula,where relatively high concentrations of pollutants occur because of the presence of various kinds of industrial developments.Sea breeze and sea breeze front days during the period 2005-09 were identified using wind profiler data and,according to the results,the number of days were 72 and 53,respectively.When synoptic forcing was weak,sea breeze fronts moved fast both in horizontal fields and in terms of wind velocity,while in thc case of strong synoptic forcing,sea breeze fronts remained at the coast or moved slowly due to strong opposing flows.In this case,the sea breeze front development function and horizontal potential temperature difference were larger than with weak synoptic forcing.The ozone concentration that moves together with sea breeze fronts was also formed along the frontal surfaces.Ozone advection and diffusion in the case of strong synoptic forcing was suppressed at the frontal surface and the concentration gradient was large.The vertical distribution of ozone was very low due to the Thermal Internal Boundary Layer (TIBL) being low.

  4. Shape, thermal and surface properties determination of a candidate spacecraft target asteroid (175706) 1996 FG3

    Science.gov (United States)

    Yu, LiangLiang; Ji, Jianghui; Wang, Su

    2014-04-01

    In this paper, a 3D convex shape model of (175706) 1996 FG3, which consists of 2040 triangle facets and 1022 vertices, is derived from the known light curves. The best-fitting orientation of the asteroid's spin axis is determined to be λ = 237.27° and β = -83.8° considering the observation uncertainties, and its rotation period is ˜3.5935 h. Using the derived shape model, we adopt the so-called advanced thermophysical model (ATPM) to fit three published sets of mid-infrared observations of 1996 FG3, so as to evaluate its surface properties. Assuming the primary and the secondary bear identical shape, albedo, thermal inertia and surface roughness, the best-fitting parameters are obtained from the observations. The geometric albedo and effective diameter of the asteroid are reckoned to be pv = 0.045 ± 0.002, D_eff=1.69^{+0.05}_{-0.02} km. The diameters of the primary and secondary are determined to be D1=1.63^{+0.04}_{-0.03} km and D2=0.45^{+0.04}_{-0.03} km, respectively. The surface thermal inertia Γ is derived to be a low value of 80 ± 40 Jm-2 s-0.5 K-1 with a roughness fraction fR of 0.8^{+0.2}_{-0.4}. This indicates that the primary possibly has a regolith layer on its surface, which is likely to be covered by a mixture of dust, fragmentary rocky debris and sand. The minimum regolith depth is estimated to be 5-20 mm from the simulations of subsurface temperature distribution, indicating that 1996 FG3 could be a very suitable target for a sample return mission.

  5. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform

    Science.gov (United States)

    Bugby, David C.; Farmer, Jeffery T.; OConnor, Brian F.; Wirzburger, Melissa J.; Abel, Elisabeth D.; Stouffer, Chuck J.

    2010-01-01

    This paper describes a novel thermal control system for the Warm Electronics Box (WEB) on board a small lunar surface lander intended to support science activities anywhere on the lunar surface for an extended duration of up to 6 years. Virtually all lander electronics, which collectively dissipate about 60 W in the reference mission, are contained within the WEB. These devices must be maintained below 323 K (with a goal of 303 K) during the nearly 15-earth-day lunar day, when surface temperatures can reach 390K, and above 263 K during the nearly 15-earth-day lunar night, when surface temperatures can reach 100K. Because of the large temperature swing from lunar day-to-night, a novel thermal switching system was required that would be able to provide high conductance from WEB to radiator(s) during the hot lunar day and low (or negligible) conductance during the cold lunar night. The concept that was developed consists of ammonia variable conductance heat pipes (VCHPs) to collect heat from WEB components and a polymer wick propylene loop heat pipe (LHP) to transport the collected heat to the radiator(s). The VCHPs autonomously maximize transport when the WEB is warm and autonomously shut down when the WEB gets cold. The LHP autonomously shuts down when the VCHPs shut down. When the environment transitions from lunar night to day, the VCHPs and LHP autonomously turn back on. Out of 26 analyzed systems, this novel arrangement was able to best achieve the combined goals of zero control power, autonomous operation, long life, low complexity, low T, and landed tilt tolerance.

  6. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  7. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  8. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  9. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nowicki Piotr

    2015-12-01

    Full Text Available Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II ions.

  10. Surface evolution of polycarbonate/polyethylene terephthalate blends induced by thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, A.; Auditore, A.; Samperi, F.; Puglisi, C

    2003-01-15

    Bisphenol-A polycarbonate (PC) and polyethyleneterephthalate (PET) blends are known to undergo, upon thermal treatment (melt mixing), exchange reactions leading to the formation of copolymers having a final structure that is also affected by consecutive reactions involving CO{sub 2} and ethylene carbonate losses. In this work we followed the evolution of the surface composition of this system during the melt mixing at 270 deg. C, both with and without catalysts, by means of time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The static SIMS spectra obtained at different treatment times show the appearance of peaks related to newly formed structures and also the modification of the relative intensities of peaks characteristic of both the initial constituents of the blend. From the variation of the relative intensities of peaks related to the bisphenol-A unit of PC and to the phthalate structure of PET, it is shown that after the first stages of melt mixing the surface is PC enriched and that with the progressive formation of a random copolymer the phthalate units increase their concentration at the surface of the system. Hence, as final result of the melt mixing process, the surface composition tends to reflect the relative amount of the repeating units in the bulk.

  11. Surface evolution of polycarbonate/polyethylene terephthalate blends induced by thermal treatments

    Science.gov (United States)

    Licciardello, A.; Auditore, A.; Samperi, F.; Puglisi, C.

    2003-01-01

    Bisphenol-A polycarbonate (PC) and polyethyleneterephthalate (PET) blends are known to undergo, upon thermal treatment (melt mixing), exchange reactions leading to the formation of copolymers having a final structure that is also affected by consecutive reactions involving CO 2 and ethylene carbonate losses. In this work we followed the evolution of the surface composition of this system during the melt mixing at 270 °C, both with and without catalysts, by means of time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The static SIMS spectra obtained at different treatment times show the appearance of peaks related to newly formed structures and also the modification of the relative intensities of peaks characteristic of both the initial constituents of the blend. From the variation of the relative intensities of peaks related to the bisphenol-A unit of PC and to the phthalate structure of PET, it is shown that after the first stages of melt mixing the surface is PC enriched and that with the progressive formation of a random copolymer the phthalate units increase their concentration at the surface of the system. Hence, as final result of the melt mixing process, the surface composition tends to reflect the relative amount of the repeating units in the bulk.

  12. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.

    Science.gov (United States)

    George, Michael; Mussone, Paolo G; Bressler, David C

    2015-12-10

    The aim of this study was to characterize the surface, morphological, and thermal properties of hemp fibers treated with two commercially available, inexpensive, and water soluble sulfonic acid derivatives. Specifically, the cellulosic component of the fibers were targeted, because cellulose is not easily removed during chemical treatment. These acids have the potential to selectively transform the surfaces of natural fibers for composite applications. The proposed method proceeds in the absence of conventional organic solvents and high reaction temperatures. Surface chemical composition and signature were measured using gravimetric analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS data from the treated hemp fibers were characterized by measuring the reduction in O/C ratio and an increase in abundance of the C-C-O signature. FTIR confirmed the reaction with the emergence of peaks characteristic of disubstituted benzene and amino groups. Grafting of the sulfonic derivatives resulted in lower surface polarity. Thermogravimetric analysis revealed that treated fibers were characterized by lower percent degradation between 200 and 300 °C, and a higher initial degradation temperature.

  13. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  14. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    Science.gov (United States)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  15. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Science.gov (United States)

    Le Guillou, M.; Moncoffre, N.; Toulhoat, N.; Pipon, Y.; Ammar, M. R.; Rouzaud, J. N.; Deldicque, D.

    2016-03-01

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO2 cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges Rp of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D(3He,p)4He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200-1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower temperatures when D is located

  16. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Moncoffre, N., E-mail: n.moncoffre@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Ammar, M.R. [CNRS, CEMHTI UPR3079, Université Orléans, CS90055, F-45071 Orléans cedex 2 (France); Rouzaud, J.N.; Deldicque, D. [Laboratoire de Géologie de l’Ecole Normale Supérieure, Paris, UMR CNRS ENS 8538, F-75231 Paris cedex 5 (France)

    2016-03-15

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO{sub 2} cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges R{sub p} of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D({sup 3}He,p){sup 4}He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200–1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower

  17. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...

  18. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing

    NARCIS (Netherlands)

    Sobrino, J.; Oltra-Carrio, R; Jimenez-Munoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; Gomez, J.A.; Miguel, de E.; Bianchi, R.; Paganini, M.

    2013-01-01

    The surface urban heat island (SUHI) effect is defined as the increased surface temperatures in urban areas in contrast to cooler surrounding rural areas. In this article, the evaluation of the SUHI effect in the city of Madrid (Spain) from thermal infrared (TIR) remote-sensing data is presented. Th

  19. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference △T by a relaxation coefficient k. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1° ×1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface flux Q, surface air temperature TA,and sea surface temperature To. Then, we calculated the cross-correlation coefficients (CCC) between Q and △T. The ensemble mean CCC fields show (a) no correlation between Q and △T in the equatorial regions, and (b) evident correlation (CCC≥ 0.7) between Q and △T in the middle and high latitudes.Additionally, we did the variance analysis and found that when k= 120 W m-2K-1, the two standard deviations, σrq and σk△T, are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value of k (80 W m-2K-1) was found in the previous study.

  20. Simulated sensitivity of the tropical climate to extratropical thermal forcing: tropical SSTs and African land surface

    Science.gov (United States)

    Talento, Stefanie; Barreiro, Marcelo

    2016-08-01

    This study investigates the Intertropical Convergence Zone (ITCZ) response to extratropical thermal forcing applied to an atmospheric general circulation model coupled to slab ocean and land models. We focus on the relative roles of the atmosphere, tropical sea surface temperatures (SSTs) and continental surface temperatures in the ITCZ response to the imposed forcing. The forcing consists of cooling in one hemisphere and warming in the other poleward of 40°, with zero global average. Three sets of experiments are performed: in the first the slab ocean and land models are applied globally; in the second the tropical SSTs are kept fixed while the slab land model is applied globally; in the third, in addition, surface temperatures over Africa are kept fixed. Realistic boundary surface conditions are used. We find that the ITCZ shifts towards the warmer hemisphere and that the stronger the forcing, the larger the shift. When the constraint of fixed tropical SST is imposed we find that the ITCZ response is strongly weakened, but it is still not negligible in particular over the Atlantic Ocean and Africa where the precipitation anomalies are of the order of 20 and 60 %, respectively, of the magnitude obtained without the SST restriction. Finally, when the constraint of the African surface temperature is incorporated we find that the ITCZ response completely vanishes, indicating that the ITCZ response to the extratropical forcing is not possible just trough purely atmospheric processes, but needs the involvement of either the tropical SST or the continental surface temperatures. The clear-sky longwave radiation feedback is highlighted as the main physical mechanism operating behind the land-based extratropical to tropical communication.

  1. Verification of a thermal simulation tool for moving objects on the lunar surface

    Science.gov (United States)

    Hager, Philipp; Reiss, Philipp

    2013-04-01

    The thermal environment of the Moon is a challenge for the design and successful operation of rovers and scientific instruments, especially for dynamic, mobile situations. Examples range from transport and stability of volatile samples in transport devices at the lunar poles to an analysis instrument, to astronauts exploring varied terrain. A dynamic thermal simulation tool for moving objects on the lunar surface was created and its verification for several test cases against Lunar Reconnaissance Orbiter DIVINER brightness temperature data is presented here. The Thermal Moon Simulator (TherMoS) allows the prediction of incoming heat fluxes on a mobile object on the lunar surface and subsequent object temperatures. A model for regolith temperatures based on the models presented in [1,2] was set in a MATLAB simulation context. A time-marching numerical finite-difference approach was used to calculate the temperatures for log-distributed regolith depth nodes to a depth of 2m. The lunar interior heat flux was set to 0.033 [W ? m-2], based on the early publications of [3]. The incoming heat fluxes are calculated with a ray tracing algorithm. Parallel solar rays and their diffuse reflected components lead to the solar heat flux for each surface element. Additionally each surface element emits hemispherical, diffuse infrared rays that are absorbed by the object as well as other lunar surface elements. The lunar topography is represented in a triangular mesh. The topography is either derived from Kaguya LALT data or generated artificially. In the latter case craters and boulders are placed manually or randomly in a level terrain. This approach is restricted to bowl shaped primary craters with a boulder size and spatial distribution that takes into account the region (mare or highland) and the parent crater diameter [4,5,6]. A thermal boulder model is integrated, based on work performed by [7]. This model also uses a finite-difference numerical approach to compute boulder

  2. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  3. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Science.gov (United States)

    Batra, Neha; Gope, Jhuma; Vandana, Panigrahi, Jagannath; Singh, Rajbir; Singh, P. K.

    2015-06-01

    The effect of deposition temperature (Tdep) and subsequent annealing time (tanl) of atomic layer deposited aluminum oxide (Al2O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, QF. The interface defect density (Dit) decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min).

  4. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2016-08-01

    Full Text Available Land surface temperature (LST is an important variable involved in the Earth’s surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure and the composition (water vapor, ozone of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community’s demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth’s atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR bands of the same Landsat image. This permitted an estimation of LST for the entire

  5. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    Science.gov (United States)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  6. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations

    Science.gov (United States)

    Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu

    2017-06-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with

  7. Detecting Lagrangian fronts with favourable fishery conditions

    CERN Document Server

    Prants, S V; Uleysky, M Yu

    2012-01-01

    Lagrangian fronts in the ocean delineate boundaries between surface waters with different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps of the drift of synthetic tracers, their Lyapunov exponents, and other Lagrangian indicators. Using Russian ship's catch and location data for a number of commercial fishing seasons in the region of the northwest Pacific with one of the richest fishery in the world, it is shown that the saury fishing grounds with maximal catches are located mainly along those Lagrangian fronts where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts with the altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions in both the cases the front locations may serve good indicators of potential fishing grou...

  8. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  9. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Wang, Jianbao; Feng, Fan; Lv, Yanwei; Song, Jiupeng; Chen, Jiming

    2016-12-01

    Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m2. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  10. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    Science.gov (United States)

    Sun, Jie; Wang, Hua Sheng

    2016-10-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.

  11. Influence of Different Surface Treatments of H13 Hot Work Die Steel on Its Thermal Fatigue Behaviors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on thermal fatigue is used to compare the behaviors of different samples, which are treated with plasma nitriding、plasma sulfur-carbon-nitriding、 boronizing or not treated. The results show that the nitriding improves the thermal fatigue property of the tool steel, while the plasma sulfur-carbon-nitriding and the boronizing impair the property. The mechanisms are induced as follows. By increasing the hardness and changing the stress distribution in the surface layer, surface treatment can decrease the plastic deformation and the tensile stress during the cycling. Therefore,the generation and growth of the cracks are restrained. On the other hand, as results of surface treating, in the surface layer the toughness declines and the expanding coefficient ascendes; the latter change caused the strengthening of the tensile and compressive stress during the cycling. Thus the resistance to thermal fatigue is weakened. Whether or not the surface treatment is favor to thermal fatigue of tool steels relies on which factor is dominant.

  12. Construction of Renewable Superhydrophobic Surfaces via Thermally Induced Phase Separation and Mechanical Peeling

    Institute of Scientific and Technical Information of China (English)

    Qi Zhu; Yuan Yu; Qing-Yun Wu; Lin Gu

    2017-01-01

    We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation (TIPS) and mechanical peeling.Porous polyvinylidene fluoride (PVDF) membranes with hierarchical structures were prepared by a TIPS process under different cooling conditions,which were confirmed by scanning electron microscopy and mercury intrusion porosimetry.After peeling off the top layer,rough structures with hundreds of nanometers to several microns were obtained.A digital microscopy determines that the surface roughness of peeled PVDF membranes is much higher than that of the original PVDF membrane,which is important to obtain the superhydrophobicity.Water contact angle and sliding angle measurements demonstrate that the peeled membrane surfaces display superhydrophobicity with a high contact angle (152°) and a low sliding angle (7.2°).Moreover,the superhydrophobicity can be easily recovered for many times by a simple mechanical peeling,identical to the original superhydrophobicity.This simple preparation method is low cost,and suitable for large-scale industrialization,which may offer more opportunities for practical applications.

  13. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.

    2017-02-01

    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  14. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  15. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    Science.gov (United States)

    Mu, Li-Jun; Zhao, Wen-Zhen

    2009-05-01

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 μg/cm 2 was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  16. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  17. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  18. Surface laser-glazing of plasma-sprayed thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, C. [University of Minho, Physics Department, Campus de Gualtar, 4710-057 Braga (Portugal); Portinha, A. [University of Minho, Physics Department, Campus de Gualtar, 4710-057 Braga (Portugal); Ribeiro, R.M. [University of Minho, Physics Department, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail: ricardo@fisica.uminho.pt; Teixeira, V. [University of Minho, Physics Department, Campus de Gualtar, 4710-057 Braga (Portugal); Costa, M.F. [University of Minho, Physics Department, Campus de Gualtar, 4710-057 Braga (Portugal); Oliveira, C.R. [Instituto de Desenvolvimentoe Inovacao Tecnologica (IDIT), 4520-102 Santa Maria da Feira (Portugal); University Lusiada, 4760-108 Vila Nova de Famalicao (Portugal)

    2005-07-15

    Atmospheric plasma-sprayed (APS) ZrO{sub 2}-8%WtY{sub 2}O{sub 3} thermal barrier coatings (TBCs) were subjected to a CO{sub 2} continuous wave laser-glazing process in order to generate an external dense layer produced by different processing parameters. For that purpose, different beam scanning speeds and track overlapping were chosen. Surface roughness has been reduced significantly after laser-glazing. Despite the surface crack network, all laser-glazed specimens presented a fully dense and porous free external layer with a columnar microstructure. Surface cracks along the densified layer were found to have tendency to be oriented in two perpendicular directions, one in the direction of the laser beam travel, the other perpendicular to it. Moreover, the cracks parallel to the beam moving direction are found to be on the overlapping zone, coinciding with the edge of the subsequent track. The cracks along the densified layer are vertical and tend to branch and deviate from the vertical direction within the porous PS coating. The largest overlapping allied to the smallest amount of irradiated energy generated the most uniform layer with the shortest crack branches within the PS coating. For the as-sprayed coating, the XRD results revealed mainly t' non-transformable tetragonal zirconia with a small percentage of residual monoclinic zirconia. All glazed coatings presented only t' non-transformable tetragonal zirconia with some variations on preferable crystal orientation.

  19. Impact of various surface covers on water and thermal regime of Technosol

    Science.gov (United States)

    Kodešová, Radka; Fér, Miroslav; Klement, Aleš; Nikodem, Antonín; Teplá, Daniela; Neuberger, Pavel; Bureš, Petr

    2014-11-01

    Different soil covers influence water and thermal regimes in soils within urban areas. Knowledge of these regimes is needed, particularly when assessing effectiveness of energy gathering from soils using horizontal ground heat exchangers. The goal of this study was to calibrate the model HYDRUS-1D for simulating coupled water and thermal regime in Technosol type soils with grass cover, and to use this model for predicting water and thermal regimes under different materials covering the soil surface. For this purpose soil water contents were measured at depths of 10, 20, 30, 40, 60 and 100 cm at 4 locations and temperatures were measured at depths of 20, 40, 80, 120, 150 and 180 cm at three locations (all covered by grass) from June 2011 to December 2012. In addition sensors for simultaneous measuring soil water contents and temperatures were installed under different soil covers (grass, bark chips, sand, basalt gravel and concrete paving) at a depth of 7. The parameters of soil hydraulic properties were obtained on the 100-cm3 undisturbed soil samples using the multi-step outflow experiment and numerical inversion of the measured transient flow data using HYDRUS-1D. HYDRUS-1D was then used to simulated the water regime within the soil profile under the grass cover using climatic data from June 2011 to December 2012 and some of the soil hydraulic parameters were additionally numerically optimized using soil water contents measured at all depths. Water flow and heat transport were then simulated using these parameters, measured thermal properties and temperatures measured close to the surface applied as a top boundary condition. Simulated temperatures at all depths successfully approximated the measured data. Next, water and thermal regimes under another 4 different surface covers were simulated. Soil hydraulic properties of different materials were partly measured and partly optimized when simulating soil water regime from June 2011 to December 2012 using the soil

  20. Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers.

    Science.gov (United States)

    Steen Redeker, Erik; Eersels, Kasper; Akkermans, Onno; Royakkers, Jeroen; Dyson, Simba; Nurekeyeva, Kunya; Ferrando, Beniamino; Cornelis, Peter; Peeters, Marloes; Wagner, Patrick; Diliën, Hanne; van Grinsven, Bart; Cleij, Thomas Jan

    2017-05-12

    This paper introduces a novel bacterial identification assay based on thermal wave analysis through surface-imprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose-response curve was constructed to determine a limit of detection of 1 × 10(4) CFU mL(-1), indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 10(4) CFU mL(-1) in spiked urine samples.

  1. Thermal Fatigue Behaviour of Co-Based Alloy Coating Obtained by Laser Surface Melt-Casting on High Temperature Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermal fatigue behaviour of C o-based alloy coating obtained by laser surface melt-casting on the high tempe rature alloy GH33 was studied. The results show that after each time of thermal cycling, the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress. Through the first 50 times of thermal cycling, the morphology of coating still inherits the laser casting one, but the dendrites get bigger; After the second 50 times of thermal cycling, corrosion pits emerge from coating, and mostly in the places where coating and substrate meet. The fatigue damage type of coating belongs to stress corrosi on.

  2. Layer resolved spectroscopy of potassium adsorbed on a Ru(001) surface: Photoemission and thermal desorption study

    Energy Technology Data Exchange (ETDEWEB)

    Hrbek, J. (Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (US)); Shek, M. (Department of Physics, Hunter College of CUNY, New York, New York 10021); Sham, T.K. (Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada); Xu, G. (Chemistry Department, Brookhaven National Laboratory, Upton, New York, 11973)

    1989-11-01

    High-resolution photoemission spectroscopy and thermal desorption were used to study the coverage dependence of the K 3{ital p}{sub 3/2,1/2} core levels of K overlayers on Ru(001). Three doublets were observed to evolve sequentially and to shift to higher binding energy with increasing coverage of potassium. The doublets were assigned to photoemission from the interface (first layer), bulk'' (second layer), and surface (third layer). Spin--orbit splitting was observed for the first time in the condensed potassium phase by photoemission. The results are discussed in terms of the equivalent core approximation using a Born--Haber cycle. In the thermal desorption data three coverage regimes can be distinguished: a first layer desorbing with first-order kinetics and a strongly decreasing heat of adsorption ({ital E}{sub {ital A}} =2.80--0.87 eV); a second layer with zero-order desorption kinetics and {ital E}{sub {ital A}} =0.78 eV; a third layer and multilayers with the same kinetic order but with {ital E}{sub {ital A}} increasing from 0.78 to 0.93 eV, which is close to the heat of sublimation of potassium.

  3. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    Energy Technology Data Exchange (ETDEWEB)

    Schriener, T. M. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); El-Genk, M. S. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States)

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  4. The effect of surface roughness on lattice thermal conductivity of silicon nanowires

    Science.gov (United States)

    Wang, Zan; Ni, Zhonghua; Zhao, Ruijie; Chen, Minhua; Bi, Kedong; Chen, Yunfei

    2011-07-01

    A theoretic model is presented to take into account the roughness effects on phonon transport in Si nanowires (NWs). Based on the roughness model, an indirect Monte Carlo (MC) simulation is carried out to predict the lattice thermal conductivities of the NWs with different surface qualities. Through fitting the experimental data with the MC predictions, the scattering strength on phonons from the boundary, umklapp phonon-phonon processes and impurities can be estimated. It is found that the scattering on phonons by the roughness cell boundaries in a rough nanowire can reduce the phonon mean free path to be smaller than the nanowire diameter, the Casimir limit of the phonon mean free path in a flat nanowire for phonons engaged in completely diffused boundary scattering processes.

  5. Possible high absorptance and low emittance selective surface for high temperature solar thermal collectors.

    Science.gov (United States)

    Zhang, Q C; Kelly, J C; Mills, D R

    1991-05-01

    Optical reflectivity measurements show that the reflectivity of Ge is dramatically reduced in the wavelength 0.3-1.4-microm range after high dose oxygen ion implantation. To explain such greatly reduced reflectivity, a model has been developed for the reflectivity of high dose oxygen implanted germanium. Our experimentally measured and calculated reflectivities show that, for a layered structure consisting of a Ge and GeO(2) mixture on Ge on GeO(2) on a Cu substrate, a low reflectivity of 0-10% in the solar spectrum is obtained, together with a high reflectivity approximately 100% in the 1.7-25-microm wavelength range. This is close to that of an ideal selective surface for solar energy thermal collectors operating at high temperatures from 300 to 500 degrees C.

  6. Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin

    DEFF Research Database (Denmark)

    Ring, J.W.; de Dear, Richard; Melikov, Arsen Krikor

    1993-01-01

    The question of how the human organism perceives changing thermal stimuli has been recently studied and reported in experiments where these stimuli were either ramps and plateaux or simply step changes. Other experiments have been done in which the stimuli have been periodically varying airflows...... function. This function is then compared with the functional form found in two experiments where the stimuli were pulsating airflows of differing frequency. The PSI model seems to simulate well the form of the response of the human skin system to varying temperature changes of a whole range of frequencies....... A psychosensory intensity (PSI) model has been developed to relate experimentally derived sensation data to simulated cutaneous thermoreceptor responses to the temperature ramp-plateaux and step stimuli applied to the skin surface by thermodes. From the point of view of signal processing, a natural extension...

  7. Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation

    CERN Document Server

    Beaulieu, L; Kwiatkowski, K K; De Souza, R T; Hsi, W C; Pienkowski, L; Back, B B; Bracken, D S; Breuer, H; Cornell, E A; Gimeno-Nogues, F; Ginger, D S; Gushue, S; Korteling, R G; Laforest, R; Martin, E; Morley, K B; Ramakrishnan, E; Remsberg, L P; Rowland, D; Ruangma, A; Viola, V E; Wang, G; Winchester, E M; Yennello, S J

    2000-01-01

    Excitation-energy-gated two-fragment correlation functions have been studied between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in $\\pi^-$ and p + $^{197}$Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c. Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of one order of magnitude in the fragment emission time in the excitation energy interval 2-5A MeV, followed by a nearly constant breakup time at higher excitation energy. The observed decrease in emission time is shown to be strongly correlated with the increase of the fragment emission probability, and the onset of thermally-induced radial expansion. This result is interpreted as evidence consistent with a transition from surface-dominated to bulk emission expected for spinodal decomposition.

  8. Investigation on surface figuration and microstructure of laser glazed nanostructure zirconia thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    HUANG Binghua; WANG Hongying; HAO Yunfei; TANG Weijie

    2009-01-01

    CO2 continuous wave laser beam had been applied to the laser glazing of plasma sprayed nanostructure zirconia thermal barrier coatings. The effects of luser glazing processing parameters on the surface figuration and microstructure change had been carried out, the microstructure and phase composition of the coatings had been evaluated by the scanning electron microscope (SEM) and the X-ray diffraction (XRD). SEM observation indicates that the microstructure of the as-glazed coating could be altered from single columnar structure to a combination of the columnar grain and fine equiaxed grain with the different laser glazing conditions. XRD analysis illustrates that the predominance phase of the as-glazed coating is the metastable tetragonal phase, and the glazed coating with the single columnar structure has shown the clear orientation in (220) and (400) peaks while the other coatings do not show that.

  9. Analysis of organic contaminants from silicon wafer and disk surfaces by thermal desorption-GC-MS

    Science.gov (United States)

    Camenzind, Mark J.; Ahmed, Latif; Kumar, Anurag

    1999-03-01

    Organic contaminants can affect semiconductor wafer processing including gate oxide integrity, polysilicon growth, deep ultraviolet photoresist line-width, and cleaning & etching steps. Organophosphates are known to counter dope silicon wafers. Organic contaminants in disk drives can cause failures due to stiction or buildup on the heads. Therefore, it is important to identify organic contaminants adsorbed on wafer or disk surfaces and find their sources so they can be either completely eliminated or at least controlled. Dynamic headspace TD-GC-MS (Thermal Desorption-Gas Chromatography-Mass Spectrometry) methods are very sensitive and can be used to identify organic contaminants on disks and wafers, in air, or outgassing from running drives or their individual components.

  10. Effect of surface modification of Grewia optiva fibres on their physicochemical and thermal properties

    Indian Academy of Sciences (India)

    Amar S Singha; Ashvinder K Rana

    2012-12-01

    This paper deals with the surface modification of Grewia optiva fibre through benzoylation and graft copolymerization process. Benzoylation of Grewia optiva fibre has been carried out on mercerized fibre with varying concentrations of benzoyl chloride solution. Graft copolymerization of acrylonitrile (AN) onto Grewia optiva fibre was carried out with ceric ammonium nitrate as the redox initiator in aqueous medium under the influence of microwave radiation. Raw, graft copolymerized and benzoylated fibres were subjected to evaluation of some of their properties like swelling behaviour, moisture absorbance and chemical resistance behaviour. It has been observed that 5% benzoyl chloride treated and graft copolymerized Grewia optiva show more resistance towards moisture, water and chemicals when compared with that of raw fibre. Further morphological, structural changes, thermal stability and crystallinity of raw, graft copolymerized, pretreated and benzoylated fibres have also been studied by SEM, FTIR, TGA and XRD techniques.

  11. Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas J. [The Pennsylvania State University, Department of Material Science and Engineering, Materials Research Institute, University Park, PA (United States); Science and Technology Division, Corning Incorporated, Corning, NY (United States); Pantano, Carlo G. [The Pennsylvania State University, Department of Material Science and Engineering, Materials Research Institute, University Park, PA (United States)

    2014-08-15

    In addition to inducing second-order nonlinear properties, significant structural and compositional alteration can be imparted to glass surfaces during the process of thermal poling. In this work, we focus on how thermal poling affects a structurally complex, nominally alkali-free boroaluminosilicate display glass composition. We provide evidence for electrolysis of the glass network, characterized by the migration of both cations (Ba{sup 2+}, Na{sup +}) and anions (O{sup -}, F{sup -}) towards opposing electrode interfaces. This process results in oxidation of the positively biased electrode and forms a network-former rich, modifier-depleted glass surface layer adjacent to the anodic interface. The modified glass layer thickness is qualitatively correlated to the oxidation resistance of the electrode material, while extrinsic ions such as H{sup +}/H{sub 3}O{sup +} at not found in the depletion layer to compensate for the migration of modifier cations out of the region. Rather, FTIR spectroscopy suggests a local restructuring of the B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} network species to accommodate the charge imbalance created by the exodus of network-modifying cations, specifically the conversion of tetrahedral B(4) to trigonal B(3) as Ba or Na ions are removed from B-related sites in the parent network. The resultant poling-induced depletion layer exhibits enhanced hydrolytic resistance under acidic conditions, and the IR spectra are substantially unlike those produced by acid leaching the same glass. (orig.)

  12. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.

    Science.gov (United States)

    Nell, Diane M; Myers, Matthew R

    2010-01-01

    Experiments and computations were performed to study factors affecting thermal safety when high-intensity focused ultrasound (HIFU) beams are normally incident (i.e., beam axis normal to the interface) upon a bone/soft-tissue interface. In particular, the temperature rise and thermal dose were determined as a function of separation between the beam focus and the interface. Under conditions representative of clinical HIFU procedures, it was found that the thermal dose at the bone surface can exceed the threshold for necrosis even when the beam focus is more than 4 cm from the bone. Experiments showed that reflection of the HIFU beam from the bone back into the transducer introduced temperature fluctuations of as much as +/-15% and may be an important consideration for safety analyses at sufficiently high acoustic power. The applicability of linear propagation models in predicting thermal dose near the interface was also addressed. Linear models, while underpredicting thermal dose at the focus, provided a conservative (slight overprediction) estimate of thermal dose at the bone surface. Finally, temperature rise due to absorption of shear waves generated by the HIFU beam in the bone was computed. Modeling shear-wave propagation in the thermal analysis showed that the predicted temperature rise off axis was as much as 30% higher when absorption of shear waves is included, indicating that enhanced heating due to shear-wave absorption is potentially important, even for normally incident HIFU beams.

  13. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  14. Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Mingchao Wang

    2014-04-01

    Full Text Available Exploring thermal transport in graphene–polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene–polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using nonequilibrium molecular dynamics (NEMD simulations, we investigate the interfacial thermal conductance of graphene–polyethylene (PE nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene–polymer nanocomposites was studied, taking into account the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to the development of new graphene–polymer nanocomposites with tailored thermal properties.

  15. Ultrasmooth reaction-sintered silicon carbide surface resulting from combination of thermal oxidation and ceria slurry polishing.

    Science.gov (United States)

    Shen, Xinmin; Dai, Yifan; Deng, Hui; Guan, Chaoliang; Yamamura, Kazuya

    2013-06-17

    An ultrasmooth reaction-sintered silicon carbide surface with an rms roughness of 0.424 nm is obtained after thermal oxidation for 30 min followed by ceria slurry polishing for 30 min. By SEM-EDX analysis, we investigated the thermal oxidation behavior of RS-SiC, in which the main components are Si and SiC. As the oxidation rate is higher in the area with defects, there are no scratches or cracks on the surface after oxidation. However, a bumpy structure is formed after oxidation because the oxidation rates of Si and SiC differ. Through a theoretical analysis of thermal oxidation using the Deal-Grove model and the removal of the oxide layer by ceria slurry polishing in accordance with the Preston equation, a model for obtaining an ultrasmooth surface is proposed and the optimal processing conditions are presented.

  16. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data

    Science.gov (United States)

    Leng, Pei; Song, Xiaoning; Duan, Si-Bo; Li, Zhao-Liang

    2016-10-01

    Surface soil moisture (SSM) is a critical variable for understanding the energy and water exchange between the land and atmosphere. A multi-linear model was recently developed to determine SSM using ellipse variables, namely, the center horizontal coordinate (x0), center vertical coordinate (y0), semi-major axis (a) and rotation angle (θ), derived from the elliptical relationship between diurnal cycles of land surface temperature (LST) and net surface shortwave radiation (NSSR). However, the multi-linear model has a major disadvantage. The model coefficients are calculated based on simulated data produced by a land surface model simulation that requires sufficient meteorological measurements. This study aims to determine the model coefficients directly using limited meteorological parameters rather than via the complicated simulation process, decreasing the dependence of the model coefficients on meteorological measurements. With the simulated data, a practical algorithm was developed to estimate SSM based on combined optical and thermal infrared data. The results suggest that the proposed approach can be used to determine the coefficients associated with all ellipse variables based on historical meteorological records, whereas the constant term varies daily and can only be determined using the daily maximum solar radiation in a prediction model. Simulated results from three FLUXNET sites over 30 cloud-free days revealed an average root mean square error (RMSE) of 0.042 m3/m3 when historical meteorological records were used to synchronously determine the model coefficients. In addition, estimated SSM values exhibited generally moderate accuracies (coefficient of determination R2 = 0.395, RMSE = 0.061 m3/m3) compared to SSM measurements at the Yucheng Comprehensive Experimental Station.

  17. Structurally Integrated, Damage Tolerant Thermal Spray Coatings: Processing Effects on Surface and System Functionalities

    Science.gov (United States)

    Vackel, Andrew

    Thermal Spray (TS) coatings have seen extensive application as protective surfaces to enhance the service life of substrates prone to damage in their operating environment (wear, corrosion, heat etc.). With the advent of high velocity TS processes, the ability to deposit highly dense (>99%) metallic and cermet coatings has further enhanced the protective ability of these coatings. In addition to surface functionality, the influence of the coating application on the mechanical performance of a coated component is of great concern when such a component will experience either static or cyclic loading during service. Using a process mapping methodology, the processing-property interplay between coating materials meant to provide damage tolerant surface or for structural restoration are explored in terms of relevant mechanical properties. Most importantly, the residual stresses inherent in TS deposited coatings are shown to play a significant role in the integrated mechanical performance of these coatings. Unique to high velocity TS processes is the ability to produce compressive stresses within the deposit from the cold working induced by the high kinetic energy particles upon impact. The extent of these formation stresses are explored with different coating materials, as well as processing influence. The ability of dense TS coatings to carry significant structural load and synergistically strengthen coated tensile specimens is demonstrated as a function of coating material, processing, and thickness. The sharing of load between the substrate and otherwise brittle coating enables higher loads before yield for the bi-material specimens, offering a methodology to improve the tensile performance of coated components for structural repair or multi-functionality (surface and structure). The concern of cyclic fatigue damage in coated components is explored, since the majority of service application are designed for loading to be well below the yield point. The role of

  18. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunxi; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  19. Mars Thermal History: Core, Atmosphere, Mantle, Phobos and Surface (MaTH CAMPS)

    Science.gov (United States)

    Wicks, J. K.; Weller, M. B.; Towles, N. J.; Thissen, C.; Knezek, N. R.; Johnston, S.; Hongsresawat, S.; Duncan, M. S.; Black, B. A.; Schmerr, N. C.; Panning, M. P.; Montesi, L.; Manga, M.; Lognonne, P. H.

    2014-12-01

    The death of the Martian dynamo ~4.1 Ga and sustained volcanism throughout Martian history place fundamental constraints on the thermal history of the planet. To explore the implications for mantle structure, we constructed holistic models of Mars that include the core, mantle, lithosphere/surface, atmosphere, and an atmospheric capture of Phobos in a collaborative effort begun at the CIDER 2014 summer program. For our thermal model of the core, we employ an iterative solver and parameterized phase diagram to compute pressure, density, and temperature in the core for a variety of initial accretion temperatures and bulk compositions. We use this model to constrain core-mantle boundary (CMB) temperature and heat flow. We couple this model for the evolution of the core with a one-dimensional parameterized convection model for the mantle. The upper boundary condition is set by the state of the Martian atmosphere. We consider the effect of a distinct compositional layer at the base of the mantle that may represent dense magma ocean crystallization products or a primitive layer untouched by magma ocean processes. We find successful models that allow sufficient CMB heat flow to power an early dynamo and the potential of melt generation through extended periods of Mars' history. In addition to dynamo and magmatism timing, other diagnostics allow us to compare model outputs to modern observables. The mass, moment of inertia, and tidal Love number of our model planet are compared directly to measured values. Additionally, deformation and stress on the lithosphere due to internal volume changes and changes in surface loading predicted by our thermal evolution models could be recorded in the Martian crust. Finally, coupling temperature-dependent tidal dissipation affects Phobos' orbital secular evolution and gives constraint on mantle temperatures. These constraints are discussed for the different scenarios of Phobos capture. We present a suite of models that satisfy the

  20. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  1. Wind-induced subduction at the South Atlantic subtropical front

    Science.gov (United States)

    Calil, Paulo H. R.

    2017-10-01

    The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with O(1) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.

  2. Dynamics of freely suspended lyotropic films. I. An inelastic light scattering study of thermal surface fluctuations

    Science.gov (United States)

    Young, Charles Y.; Clark, Noel A.

    1981-04-01

    We have studied the spectrum and intensity of light scattered by thermal surface displacement fluctuations on freely suspended lyotropic films. Films consisted of a liquid core and surface soap layers and were drawn from solution containing water, glycerol, NaCl, and the ionic surfactant hexadecyltrimethyl ammonium bromide (HTAB). Two modes were observed: a propagating undulation mode in which the film surfaces move together and a damped peristaltic mode having oppositely moving surface soap layers. Dispersion relations for these modes, obtained from the dependence of the scattered light intensity correlation function on film thickness h and wave vector k, confirm the macroscopic hydrodynamic description of film motion. In particular, the overdamped peristaltic mode is shown to involve Poiseuille flow of the fluid core with the flow velocity zero within 2 Å of the surfactant-solution interface, indicating no significant slip or rigid interfacial water layer. No evidence of dispersion in the effective viscosity of the fluid core h(k,w) over the range 0surface waves in fluids. The dynamic surface tension term s(k,w) for k˜106 cm-1 and w˜6×10 sec-1 was found to be the same as the static value within experimental error. Analysis of the total scattered intensity and of the peristaltic mode dynamics allows the determination of R(h), that part of the film pressure due to electrostatic repulsive and van der Waals attractive forces. The measured R(h) are well represented by the sum of a repulsive screened electrostatic interaction and an attractive van der Waals term. The screened electrostatic interaction is consistent with the concentration of NaCl used and the attractive part of R could be fitted equally well by the simple nonretarded van der Waals form for a uniform dielectric slab, or the Ninham

  3. Understanding the mechanism of surface modification through enhanced thermal and electrochemical stabilities of N-doped graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mehetre, Shantilal S., E-mail: shantilalmehetre@gmail.com; Maktedar, Shrikant S., E-mail: shrikantmaktedar@gmail.com; Singh, Man, E-mail: mansingh50@hotmail.com

    2016-03-15

    Highlights: • The N-doped graphene oxide was confirmed with FTIR, EDS, HR-TEM, SAED, HRXPS, UV, TGA, DSC and CV. • The N-doped graphene oxide was found suitable for thermal and electrochemical applications. • The proposed mechanisms of thermal and electrochemical stabilities were experimentally verified. • The cyclic voltammetry N-doped graphene oxide implies its potential for manifold electrochemical applications. - Abstract: The kinetically active two dimensional surface of graphene oxide (GrO) plays an important role in understanding the chemistry of graphene. The GrO is comprises of carbon and oxygen while the f-(6-AIND) GrO contains nitrogen along with carbon and oxygen. The prominent thermal instability of GrO is widely explored. However, due to the synergistic impact of their constituting elements, the thermal and electrochemical stability of f-(6-AIND) GrO enhances after N-doping with nitrogen containing heterocycles like 6-Aminoindazole. Hence it is essential to probe the mutual impact of various functionalities present over the surface of GrO, to understand the mechanism of direct functionalization of GrO with thermal and electrochemical stabilities. Therefore, the decomposition kinetics of discrete atomic domains and their effect on thermal stability of f-(6-AIND) GrO was revealed with spectroscopic analysis and thermal assessment. Additionally, the mechanism of thermal transformation is precisely developed to demonstrate the impact of heat on weight loss due to the mass transfer. Likewise, the electrochemical properties can be well understood with the help of mechanism of electrochemical activity and cyclic voltammetry experiments. Also, the f-(6-AIND) GrO is confirmed with the help of various surface analysis techniques like FTIR, EDS, HR-XPS, HR-TEM, CV, SAED, TGA, DSC and UV-vis.

  4. Flame front propagation in a channel with porous walls

    Science.gov (United States)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  5. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Lin, Che-Wei; Chen, Hsin-Jui; Chang, Che-Wei; Huang, Jhih-Jie; Yang, Ming-Jui; Tjahjono, Budi; Huang, Jian-Jia; Hsu, Wen-Ching; Chen, Miin-Jang

    2013-10-09

    Efficient nanotextured black silicon solar cells passivated by an Al2O3 layer are demonstrated. The broadband antireflection of the nanotextured black silicon solar cells was provided by fabricating vertically aligned silicon nanowire (SiNW) arrays on the n(+) emitter. A highly conformal Al2O3 layer was deposited upon the SiNW arrays by the thermal atomic layer deposition (ALD) based on the multiple pulses scheme. The nanotextured black silicon wafer covered with the Al2O3 layer exhibited a low total reflectance of ∼1.5% in a broad spectrum from 400 to 800 nm. The Al2O3 passivation layer also contributes to the suppressed surface recombination, which was explored in terms of the chemical and field-effect passivation effects. An 8% increment of short-circuit current density and 10.3% enhancement of efficiency were achieved due to the ALD Al2O3 surface passivation and forming gas annealing. A high efficiency up to 18.2% was realized in the ALD Al2O3-passivated nanotextured black silicon solar cells.

  6. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  7. Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: A paradox?

    Energy Technology Data Exchange (ETDEWEB)

    Fait, Martin J.G., E-mail: martin.fait@catalysis.de [Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock (Germany); Radnik, Jörg [Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock (Germany); Lunk, Hans-Joachim [2858 Lake RD, Towanda, PA 18848 (United States)

    2016-06-10

    Highlights: • Detection of reduced tungsten ions at the solid’s surface in oxidising atmosphere. • Detection of gaseous ammonia liberated as oxidising agent. • Detection of ammonia’s oxidation products. • Quantification of the ammonia/tungsten redox process. - Abstract: The interaction of ammonia, liberated during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere, with tungsten has been studied employing a conventional microbalance combined with MS (Setaram’s instrument Sensys). Applying XPS a partial reduction of tungsten at the surface with the minimal tungsten oxidation number of +5.3 for a sample generated at 293 °C was detected. The balancing oxidation of ammonia to nitrogen/nitrogen oxides has been proven by MS. An amount of 0.049 mol e{sup −} per mol W was transferred which resulted in an ammonia conversion degree from 2.1 mol% (NO{sub 2} formation) to 3.0 mol% (N{sub 2} formation).

  8. Thermocouple Errors when Mounted on Cylindrical Surfaces in Abnormal Thermal Environments.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Suo-Anttila, Jill M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zepper, Ethan T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Jerry J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Valdez, Vincent A. [ECI Inc., Albuquerque, NM (United States)

    2017-05-01

    Mineral-insulated, metal-sheathed, Type-K thermocouples are used to measure the temperature of various items in high-temperature environments, often exceeding 1000degC (1273 K). The thermocouple wires (chromel and alumel) are protected from the harsh environments by an Inconel sheath and magnesium oxide (MgO) insulation. The sheath and insulation are required for reliable measurements. Due to the sheath and MgO insulation, the temperature registered by the thermocouple is not the temperature of the surface of interest. In some cases, the error incurred is large enough to be of concern because these data are used for model validation, and thus the uncertainties of the data need to be well documented. This report documents the error using 0.062" and 0.040" diameter Inconel sheathed, Type-K thermocouples mounted on cylindrical surfaces (inside of a shroud, outside and inside of a mock test unit). After an initial transient, the thermocouple bias errors typically range only about +-1-2% of the reading in K. After all of the uncertainty sources have been included, the total uncertainty to 95% confidence, for shroud or test unit TCs in abnormal thermal environments, is about +-2% of the reading in K, lower than the +-3% typically used for flat shrouds. Recommendations are provided in Section 6 to facilitate interpretation and use of the results. .

  9. Light-Front QCD

    CERN Document Server

    Brodsky, S J

    2004-01-01

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffr...

  10. Surface valence transformation during thermal activation and hydrogenation thermodynamics of Mg-Ni-Y melt-spun ribbons

    Science.gov (United States)

    Zhang, Tiebang; Song, Wenjie; Kou, Hongchao; Li, Jinshan

    2016-05-01

    In this work, phase compositions and chemical valence states on the surface and subsurface of Mg67Ni33-xYx (x = 0, 1, 3, 6) ribbons during thermal activation have been investigated by X-ray photoelectron spectroscopy (XPS). The results indicate that the surface contaminants of melt-spun ribbons are mainly MgO, NiO, Y2O3 and organics. The oxides/hydroxides of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are removed from the surface during thermal activation. Surface chemical valence firstly transforms from oxidized state to the metallic one during thermal activation, which accounts for hydrogenation of Mg67Ni33-xYx melt-spun ribbons. Hydrogen absorption capacities of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are enhanced with the increase of cycle numbers during thermal activation. Hydrogenation thermodynamics of activated Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons have been also compared and correlated with the surface valence transformation. The obtained enthalpy of hydride formation is -55.5, -50.5, -46.9 and -48.6 kJ/mol for Mg67Ni33-xYx melt-spun ribbons with x = 0, 1, 3 and 6, respectively.

  11. First results from the spectral DCT trigger implemented in the Cyclone V Front-End Board used for a detection of very inclined showers in the Pierre Auger surface detector Engineering Array

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew [University of Lodz, Department of Physics and Applied Informatics, 90-236 Lodz, (Poland)

    2015-07-01

    The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundary of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)

  12. Acid Aging Effects on Surfaces of PTFE Gaskets Investigated by Thermal Analysis

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-12-01

    Full Text Available This paper investigates the effect of a prolonged acid attack on the surface of PTFE by Thermogravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC. PTFE is very non-reactive, partly because of the strength of carbon–fluorine bonds and for its high crystallinity, and, as a consequence, it is often used in containers and pipework with reactive and corrosive chemicals. The PTFE under analysis is commercialized by two alternative producers in form of Teflon tapes. These tapes are adopted, as gaskets, in process plants where tires moulds are cleaned by acid solutions inside a multistage ultrasonic process. In this case, PTFE shows, in a relatively short operation time, inexplicably phenomena of surface degradation, which could be related, in general terms, to an acid attack. But, even considering the combined effect of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the risk of the extreme erosion phenomena as observed. The present experimental research aim at investigating this contradiction. A possible explanation could be related to the presence in the cleaning solution of unexpected fluorides, able to produce fluorinating agents and, thus, degrade carbon-fluorine bonds. Considering more the 300 chemical elements a tire compound consists in, it is really complex to preserve the original chemical composition of the cleaning solution. In this research PTFE samples have been treated with different mixtures of acids with the aim at investigating the different aging effects. The thermal analysis has permitted the experimental characterization of PTFE surface properties after acid attack, providing evidence of the degradation phenomena. In particular, the different acid treatments adopted for accelerating the aging of gaskets have highlighted the different behaviour of the PTFE matrix, but also differences between manufacturers.

  13. Influence of diamond surface termination on thermal boundary conductance between Al and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Monachon, Christian; Weber, Ludger [Laboratoire de Metallurgie Mecanique, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2013-05-14

    The effect of diamond surface treatment on the Thermal Boundary Conductance (TBC) between Al and diamond is investigated. The treatments consist in either of the following: exposition to a plasma of pure Ar, Ar:H and Ar:O, and HNO{sub 3}:H{sub 2}SO{sub 4} acid dip for various times. The surface of diamond after treatment is analyzed by X-ray Photoelectron Spectroscopy, revealing hydrogen termination for the as-received and Ar:H plasma treated samples, pure sp{sup 2} termination for Ar treated ones and oxygen (keton-like) termination for the other treatments. At ambient, all the specific treatments improve the TBC between Al and diamond from 23 {+-} 2 MW m{sup -2} K{sup -1} for the as-received to 65 {+-} 5, 125 {+-} 20, 150 {+-} 20, 180 {+-} 20 MW m{sup -2} K{sup -1} for the ones treated by Ar:H plasma, acid, pure Ar plasma, and Ar:O plasma with an evaporated Al layer on top, respectively. The effect of these treatments on temperature dependence are also observed and compared with the most common models available in the literature as well as experimental values in the same system. The results obtained show that the values measured for an Ar:O plasma treated diamond with Al sputtered on top stay consistently higher than the values existing in the literature over a temperature range from 78 to 290 K, probably due a lower sample surface roughness. Around ambient, the TBC values measured lay close to or even somewhat above the radiation limit, suggesting that inelastic or electronic processes may influence the transfer of heat at this metal/dielectric interface.

  14. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Hochun; Song, Hyun-Kon

    2014-06-11

    Non-flammability of electrolyte and tolerance of cells against thermal abuse should be guaranteed for widespread applications of lithium-ion batteries (LIBs). As a strategy to improve thermal stability of LIBs, here, we report on nitrile-based molecular coverage on surface of cathode active materials to block or suppress thermally accelerated side reactions between electrode and electrolyte. Two different series of aliphatic nitriles were introduced as an additive into a carbonate-based electrolyte: di-nitriles (CN-[CH2]n-CN with n = 2, 5, and 10) and mono-nitriles (CH3-[CH2]m-CN with m = 2, 5, and 10). On the basis of the strong interaction between the electronegativity of nitrile functional groups and the electropositivity of cobalt in LiCoO2 cathode, aliphatic mono- and di-nitrile molecules improved the thermal stability of lithium ion cells by efficiently protecting the surface of LiCoO2. Three factors, the surface coverage θ, the steric hindrance of aliphatic moiety within nitrile molecule, and the chain polarity, mainly affect thermal tolerance as well as cell performances at elevated temperature.

  15. The Front Desks of Boston

    Directory of Open Access Journals (Sweden)

    Michael Oshins

    2013-04-01

    Full Text Available The role of hotel front desks has not changed significantly in more than a century. The activities of welcoming guests upon arrival, assisting guests during their stay, and settling accounts upon departure are still the mainstay of the front desk. Although the function of the front desk has remained static, its form has evolved. Front desks now differ widely in terms of aesthetics and, in some cases, even operational patterns. This article offers photographs of numerous hotel front desks in Boston and provides brief commentaries that provide insight about the changing nature of front desk design.

  16. Ground surface thermal regime of rock glaciers in the High Tatra Mts., Slovakia

    Science.gov (United States)

    Uxa, Tomáš; Mida, Peter

    2017-04-01

    Numerous lobate- or tongue-shaped debris accumulations, mostly interpreted as rock glaciers, have recently been recognized in the High Tatra Mts., Slovakia (49˚ 10' N, 20˚ 08' E). These prominent landforms arise due to creep of voluminous debris-ice mixtures, and as such they are excellent indicators of present or past permafrost existence. Hence rock glaciers are extensively utilized to model the distribution of permafrost in mountain areas. However, commonly applied rules of thumb may not be entirely indicative to discriminate particularly between the inactive (permafrost in disequilibrium with present climate) and relict (without permafrost) rock glaciers, which may substantially complicate permafrost modelling. Accordingly, the information about their thermal state is essential to calibrate and validate regional permafrost models. Limited ground temperature data have been, however, available from the High Tatra Mts. to date and therefore, we bring the updated and enhanced results from the thermal investigations of eleven rock glaciers located in the Slavkovská dolina and Veľká Studená dolina valleys at elevations between 1832 and 2090 m asl. Ground surface temperature (GST) has been continuously monitored at seven rock glaciers between October 2014 and September 2016 using nine Minikin Tie (EMS Brno Inc.) and iButton DS1922L (Maxim Integrated Inc.) loggers with an accuracy of ±0.2 and ±0.5 ˚ C, respectively. In addition, the bottom temperature of snow (BTS) was measured at 306 locations during spring of 2015 and 2016 to map potential permafrost occurrence within all the surveyed rock glaciers and in their immediate surroundings. Mean annual ground surface temperature (MAGST) of the rock glaciers ranged between -1.3 ˚ C and +2.6 ˚ C and averaged +1.0 ˚ C and +0.8 ˚ C in 2014-2015 and 2015-2016, respectively. Two sites continually showed negative MAGST and two other sites were below +0.5 ˚ C and +1.0 ˚ C, respectively. This strongly contrasts with

  17. Role of surface fixed charge in the surface passivation of thermal atomic layer deposited Al2O3 on crystalline-Si

    Science.gov (United States)

    Dou, Y. N.; He, Y.; Huang, C. Y.; Zhou, C. L.; Ma, X. G.; Chen, R.; Chu, J. H.

    2012-11-01

    In this work, surface passivation of thermal atomic layer deposited (ALD) Al2O3 films on Si has been investigated. A quantitative analysis shows that field-effect passivation based on surface fixed charge combined with chemical passivation is assumed to contribute to the passivation performance and that a low defect density is critical to passivation quality. The surface fixed negative charge, which is exponentially modulated from ˜0 cm-2 to -2×1012 cm-2 by annealing, is proposed to have arisen from the reconstruction of the interfacial SiO x layer.

  18. Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    S. Pramanik

    2014-03-01

    Full Text Available The present paper aims at investigating the boundary layer flow of a non-Newtonian fluid accompanied by heat transfer toward an exponentially stretching surface in presence of suction or blowing at the surface. Casson fluid model is used to characterize the non-Newtonian fluid behavior. Thermal radiation term is incorporated into the equation for the temperature field. With the help of similarity transformations, the governing partial differential equations corresponding to the momentum and heat transfer are reduced to a set of non-linear ordinary differential equations. Numerical solutions of these equations are then obtained. The effect of increasing values of the Casson parameter is seen to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature increases. It is found that the skin-friction coefficient increases with the increase in suction parameter.

  19. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  20. Sensitivity analysis of radiative transfer for atmospheric remote sensing in thermal IR: atmospheric weighting functions and surface partials

    Science.gov (United States)

    Ustinov, E. A.

    2003-01-01

    In this presentation, we apply the adjoint sensitivity analysis of radiative transfer in thermal IR to the general case of the analytic evaluation of the weighting functions of atmospheric parameters together with the partial derivatives for the surface parameters. Applications to remote sensing of atmospheres of Mars and Venus are discussed.

  1. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  2. Surface state of GaN after rapid-thermal-annealing using AlN cap-layer

    Science.gov (United States)

    El-Zammar, G.; Khalfaoui, W.; Oheix, T.; Yvon, A.; Collard, E.; Cayrel, F.; Alquier, D.

    2015-11-01

    Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiOx) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H3PO4 at 120 °C for AlN and in HF (10%) for SiOx. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface.

  3. INVESTIGATION SURFACE ROUGHNESS AND CHARACTERIZATION OF CUTTING FRONT SIDE GEOMETRY IN THE CUTTING OF AISI 1030 MATERIAL WITH ABRASIVE WATER JET

    Directory of Open Access Journals (Sweden)

    Adnan AKKURT

    2009-01-01

    Full Text Available Abrasive water jet (AWJ is used as a new and alternative cutting technique in industry to form the materials that are hard to cut. In this study, AISI 1030 steel samples in different thickness were cut with AWJ process. The samples were cut with different cutting speeds. The effect of cutting speed on the surface characteristics was investigated. The results of the study show that AWJ can be used as an effective cutting process to form sharp corners and edges.

  4. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  5. Osteogenic potential of in situ TiO{sub 2} nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, A.W. [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ismail, R.; Chua, K.H. [Department of Physiology, Faculty of Medicine, National University of Malaysia, 50300 Kuala Lumpur (Malaysia); Ahmad, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Pingguan-Murphy, B., E-mail: bpingguan@um.edu.my [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-30

    Highlights: • In situ titanium dioxide (TiO{sub 2}) nanowire surface structures were fabricated on Ti-6Al-4V substrate using thermal oxidation. • Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression of primary human osteoblasts were examined on the TiO{sub 2} nanowire surfaces. • TiO{sub 2} nanowire surfaces showed enhanced osteogenic potential as compared to the planar surface. - Abstract: Titanium dioxide (TiO{sub 2}) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO{sub 2} nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO{sub 2} nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO{sub 2} nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  6. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  7. Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds

    Science.gov (United States)

    McDavid, R. M.; Thomas, B. G.

    1996-08-01

    Steady-state finite-element models have been formulated to investigate the coupled fluid flow and thermal behavior of the top-surface flux layers in continuous casting of steel slabs. The three-dimensional (3-D) FIDAP model includes the shear stresses imposed on the flux/steel interface by flow velocities calculated in the molten steel pool. It also includes different temperature-dependent powder properties for solidification and melting. Good agreement between the 3-D model and experimental measurements was obtained. The shear forces, imposed by the steel surface motion toward the submerged entry nozzle (SEN), create a large recirculation zone in the liquid flux pool. Its depth increases with increasing casting speed, increasing liquid flux conductivity, and decreasing flux viscosity. For typical conditions, this zone contains almost 4 kg of flux, which contributes to an average residence time of about 2 minutes. Additionally, because the shear forces produced by the narrowface consumption and the steel flow oppose each other, the flow in the liquid flux layer separates at a location centered 200 mm from the narrowface wall. This flow separation depletes the liquid flux pool at this location and may contribute to generically poor feeding of the mold-strand gap there. As a further consequence, a relatively cold spot develops at the wideface mold wall near the separation point. This nonuniformity in the temperature distribution may result in nonuniform heat removal, and possibly nonuniform initial shell growth in the meniscus region along the wideface off-corner region. In this way, potential steel quality problems may be linked to flow in the liquid flux pool.

  8. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  9. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  10. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Alarifi

    2015-10-01

    Full Text Available This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN fibers as a sensor material in a structural health monitoring (SHM system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM applications in different industries.

  11. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.

    Science.gov (United States)

    Alarifi, Ibrahim M; Alharbi, Abdulaziz; Khan, Waseem S; Swindle, Andrew; Asmatulu, Ramazan

    2015-10-14

    This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries.

  12. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  13. Modulation of electronic properties of tin oxide nanobelts via thermal control of surface oxygen defects

    Science.gov (United States)

    Keiper, Timothy D.; Barreda, Jorge L.; Zheng, Jim P.; Xiong, Peng

    2017-02-01

    Nanomaterials made from binary metal oxides are of increasing interest because of their versatility in applications from flexible electronics to portable chemical and biological sensors. Controlling the electrical properties of these materials is the first step in device implementation. Tin dioxide (SnO2) nanobelts (NB) synthesized by the vapor-liquid-solid mechanism have shown much promise in this regard. We explore the modification of devices prepared with single crystalline NBs by thermal annealing in vacuum and oxygen, resulting in a viable field-effect transistor (FET) for numerous applications at ambient temperature. An oxygen annealing step initially increases the device conductance by up to a factor of 105, likely through the modification of the surface defects of the NB, leading to Schottky barrier limited devices. A multi-step annealing procedure leads to further increase of the conductance by approximately 350% and optimization of the electronic properties. The effects of each step is investigated systematically on a single NB. The optimization of the electrical properties of the NBs makes possible the consistent production of channel-limited FETs and control of the device performance. Understanding these improvements on the electrical properties over the as-grown materials provides a pathway to enhance and tailor the functionalities of tin oxide nanostructures for a wide variety of optical, electronic, optoelectronic, and sensing applications that operate at room temperature.

  14. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  15. Behaviour of Self-Standing CVD Diamond Film with Different Dominant Crystalline Surfaces in Thermal-Iron Plate Polishing

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Chao; ZHOU Zu-Yuan; LI Bin; ZHOU You-Liang; J. Askri; LI Cheng-Ming; TANG Wei-Zhong; TONG Yu-Mei; LU Fan-Xiu

    2006-01-01

    @@ Self-standing CVD diamond films with different dominant crystalline surfaces are polished by the thermal-iron plate polishing method. The influence of the dominant crystalline surfaces on polishing efficiency is investigated by measuring the removal rate and final roughness. The smallest rms roughness of 0.14μm is measured with smallest removal rate in the films with the initial (220) dominant crystalline surface. Activation energy for the polishing is analysed by the Arrhenius relation. It is found that the values are 170kJ/mol, 222kJ/mol and 214kJ/mol for the film with t hree different dominant crystalline surfaces. Based on these values, the polishing cause is regarded as the graphitization-controlling process. In the experiment, we find that transformation of the dominant crystalline surfaces from (111) to (220) always appears in the polishing process when we polish the (111) dominant surface.

  16. Combined study of evaporation from liquid surface by background oriented schlieren, infrared thermal imaging and numerical simulation

    Directory of Open Access Journals (Sweden)

    Plaksina Yu.Yu.

    2013-04-01

    Full Text Available Temperature fields in evaporating liquids are measured by simultaneous use of Background Oriented Schlieren (BOS technique for the side view and IR thermal imaging for the surface distribution. Good agreement between the two methods is obtained with typical measurement error less than 0.1 K. Two configurations of surface layer are observed: thermocapillary convection state with moving liquid surface and small thermal cells, associated with Marangoni convection, and “cool skin” with negligible velocity at the surface, larger cells and dramatic increase of velocity within 0.1 mm layer beneath the surface. These configurations are shown to be formed in various liquids (water with various degrees of purification, ethanol, butanol, decane, kerosene, glycerine depending rather on initial conditions and ambient parameters than on the liquid. Water, which has been considered as the liquid without observable Marangoni convection, actually can exhibit both kinds of behavior during the same experimental run. Evaporation is also studied by means of numerical simulations. Separate problemsin air and liquid are considered, with thermal imaging data of surface temperature making the separation possible. It is shown that evaporation rate can be predicted by numerical simulation of the air side with appropriate boundary conditions. Comparison is made with known empirical correlations for Sherwood-Rayleigh relationship. Numerical simulations of water-side problem reveal the issue of velocity boundary conditions at the free surface, determining the structure of surface layer. Flow field similar to observed in the experiments is obtained with special boundary conditions of third kind, presenting a combination of no-slip and surface tension boundary conditions.

  17. The surface treatment lab team. From left to right : J Carosone, M Malabaila, JP Malivert (front row), M Thiebert and A Lasserre (back row)

    CERN Multimedia

    2001-01-01

    The surface treatment lab covers common metals with rarer ones through a process called electroplating. When electroplating is done, the piece of equipment made out of a common metal (like steel) is submerged in a solution which has the desired rare metal (like gold) dissolved in it. An electric current is then run through the solution to the common metal. The tiny rare metal particles follow the current and stick to the common metal when they reach it. It is then that the plating occcurs. All in all, a relatively simple process, but it can be potentially hazardous.

  18. Cold Fronts: Probes of Plasma Astrophysics in Galaxy Clusters

    CERN Document Server

    ZuHone, John

    2016-01-01

    The most massive baryonic component of galaxy clusters is the "intracluster medium" (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well-constrained. A path to determine macroscopic ICM properties opened up with the discovery of "cold fronts". These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the brighter (and denser) side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about the cold fronts. First, they should be subject to Kelvin-Helmholtz instabilites, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. From the time of their discov...

  19. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.

    Science.gov (United States)

    Liu, Jiao; Du, Junxie; Yang, Yanrui; Wang, Yun

    2015-11-01

    Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. Here, we demonstrate that Cdk5 phosphorylates TRPV1 at Threonine 406 and promotes the surface localization of TRPV1, leading to inflammatory thermal hyperalgesia. The mutation of Thr-406 of TRPV1 to alanine reduced the interaction of TRPV1 with the cytoskeletal elements and decreased the binding of TRPV1 with the motor protein KIF13B, which led to reduced surface distribution of TRPV1. Disrupting the phosphorylation of TRPV1 at Thr-406 dramatically reduced the surface level of TRPV1 in HEK 293 cells after transient expression and the channel function in cultured dorsal root ganglion (DRG) neurons. Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.

  20. Design of Laboratory Experiments to Study Photoionization Fronts

    Science.gov (United States)

    Gray, William James; Davis, Josh; Drake, R. Paul

    2017-06-01

    Here we present the theoretical foundation for a laboratory experiment to study photoionization fronts. Photoionization fronts play important roles in the formation and evolution of structure in the Universe. A properly designed experiment will have to control the recombination rate, electron impact ionization rate, and the initial thermal spectrum. We show that such an experiment can be designed, but requires the use of the largest high-energy-density laser facilities, such as Omega, Z, and NIF. We also show that prior experiments do not actually generate photoionization fronts, rather a heat front is produced by heat conductions. We show some initial simulation results of the current experimental design and characterize the ionization front.

  1. An experiment to distinguish between diffusive and specular surfaces for thermal radiation in cryogenic gravitational-wave detectors

    Science.gov (United States)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Suzuki, Toshikazu; Yamamoto, Kazuhiro; Tokoku, Chihiro; Uchiyama, Takashi; Kuroda, Kazuaki

    2015-07-01

    In cryogenic gravitational-wave detectors, one of the most important issues is the fast cooling of their mirrors and keeping them cool during operation to reduce thermal noise. For this purpose, the correct estimation of thermal-radiation heat transfer through the pipe-shaped radiation shield is vital to reduce the heat load on the mirrors. However, the amount of radiation heat transfer strongly depends on whether the surfaces reflect radiation rays diffusely or specularly. Here, we propose an original experiment to distinguish between diffusive and specular surfaces. This experiment has clearly shown that the examined diamond-like carbon-coated surface is specular. This result emphasizes the importance of suppressing the specular reflection of radiation in the pipe-shaped shield.

  2. A Preliminary Study on the Relation Between the Thermal and Geometric Surface Centroids of the Western Pacific Warm Pool

    Institute of Scientific and Technical Information of China (English)

    FANG Mingqiang

    2006-01-01

    Numerous published results have shown the importance of the Western Pacific Warm Pool (WPWP) surface centroid movement in ENSO-(El Nino/Southern Oscillation) related studies. However, some recent research conclusions make it necessary to clarify the differences of the currently exiting two types of WPWP surface centroid: the geometric centroid and the thermal (heat) centroid. This study analyzes the physical backgrounds of the two types of centroid and points out their differences, which suggest that different types of centroid may serve different study purposes. This study also shows gion sea surface temperature (SST) anomaly and can also be regarded as an important indicator of ENSO events.

  3. Advancing the retrievals of surface emissivity by modelling the spatial distribution of temperature in the thermal hyperspectral scene

    Science.gov (United States)

    Shimoni, M.; Haelterman, R.; Lodewyckx, P.

    2016-05-01

    Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.

  4. Non-thermal processes on ice and liquid micro-jet surfaces

    Science.gov (United States)

    Olanrewaju, Babajide O.

    The primary focus of this research is to investigate non-thermal processes occurring on ice surfaces and the photo-ejection of ions from liquid surfaces. Processes at the air-water/ice interface are known to play a very important role in the release of reactive halogen species with atmospheric aerosols serving as catalysts. The ability to make different types of ice with various morphologies, hence, different adsorption and surface properties in vacuum, provide a useful way to probe the catalytic effect of ice in atmospheric reactions. Also, the use of the liquid jet technique provides the rare opportunity to probe liquid samples at the interface; hitherto impossible to investigate with traditional surface science techniques. In Chapter 2, the effect of ice morphology on the release of reactive halogen species from photodissociation of adsorbed organic halides on ice will be presented. Quantum state resolved measurements of neutral atomic iodine from the photon irradiation of submonolayer coverages of methyl iodide adsorbed on low temperature water ice were conducted. Temperature programmed desorption (TPD) studies of methyl iodide adsorbed on ice were performed to provide information on the effect of ice morphology on the adsorption of submonolayer methyl iodide. The interaction and autoionization of HCl on low-temperature (80{140 K) water ice surfaces has been studied using low-energy (5-250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). A detailed ESD study of the interactions of low concentrations of HCl with low-temperature porous amorphous solid water (PASW), amorphous solid water (ASW) and crystalline ice (CI) surfaces will be presented in Chapter 3. The ESD cation yields from HCl adsorbed on ice, as well as the coverage dependence, kinetic energy distributions and TPD measurements were all monitored. Probing liquid surface using traditional surface science technique is usually difficult because of the problem of

  5. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  6. 暖体假人表面温度的均匀性%Surface temperature uniformity of thermal manikin

    Institute of Scientific and Technical Information of China (English)

    王毅; 王铭; 邹钺; 李书政; 刘赟

    2012-01-01

    Thermal manikin is equipped with heating wire which serves as internal heat source to simulate the human body heat dissipating, and mainly used for testing the thermal resistance of garments, whose surface temperature uniformity is critical. The aim of this study is to find out the main factors influencing the uniformity of the temperature on the surface of thermal manikin and how to meet the requirement of uniform distribution of the temperature. The arrangement of the heating wire and test method of the temperature are presented. Comparative experiments are conducted and temperature distribution rule on the surface of the thermal manikin is observed. The test results indicate that the laying interval of heating wire, thickness of thermal manikin's skin cover, and the side boundary conditions on the surface all have influence on the temperature uniformity to different extents.%暖体假人是以电热丝作为内热源来模拟人体散热的一种设备,主要用于测试服装热阻,对表面温度均匀性要求极高.为找出影响假人表面温度均匀性的主要因素,达到假人表面温度分布均匀的要求,提出假人表面电热丝的敷设方案和温度测试方案.通过对比实验,观察假人皮肤表面的温度分布规律.结果表明:电热丝的敷设间隔、假人皮肤的覆盖厚度以及侧面边界条件对假人表面温度均匀性都有不同程度的影响.

  7. The impacts of thermal roughness length on land surface climate in IPSL-CM

    Science.gov (United States)

    Wand, Fuxing; Cheruy, Frédérique; Vuichard, Nicolas; Sima, Adriana; Hourdin, Frederic

    2016-04-01

    The aerodynamic and thermal roughness lengths (z0m and z0h) are the two crucial parameters for bulk transfer equations to calculate turbulent flux. The exchange of momentum is usually different with scalars as heat (or water vapor, carbon dioxide, traces gas). In general, the transport of scalars (by molecular diffusion) is considered less efficient than momentum (by pressure fluctuations), owing to the absence of bluff-body forces for scalar exchange. However, the z0h and z0m are equal in the current IPSL-CM model. The objective of the study is to investigate the impacts of z0h parameterizations on the land surface climate. Several sensitivity experiments that accounting for different z0h and z0m are carried out with IPSL-CM: (1) z0h = z0m/10; (2) z0h = z0m/100; (3) a more physically based z0h parameterizations. A nudging approach is used in order to avoid the time-consuming long-term simulations required to account for the natural variability of the climate. The results show that the seasonal mean surface temperature (Ts) increases 0.5-1 K (for z0h = z0m/10) and 1-2 K (for z0h = z0m/100) over JJA due to the decrease of z0h. The most significant variation is over the Sahara. During the daytime, the increase of Ts (around 1-2 K) is higher than the air temperature (Tair, ~0.2 K) for z0h = z0m/10. During the night time, the increase of Ts and Tair are very close (around 0.3-0.6 K) for z0h = z0m/10. The asymmetric variation of Tair during night and day causes a decrease (~0.3 K for z0h = z0m/10; ~0.6 K for z0h = z0m/100) of diurnal temperature range (DTR). The seasonal mean sensible heat flux decreases by ~4-6 W/m2 (for z0h = z0m/10) with the decrease of z0h as well. The change of latent heat flux is the most significant over the tropics with the seasonal mean decrease of 4-8 W/m2 for z0h = z0m/10 over both JJA and DJF. Besides the change of mean climate, the human thermal comfort is also affected by z0h. A smaller z0h corresponds to a higher wet-bulb temperature

  8. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  9. Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing.

    Science.gov (United States)

    Kumar, Deepak; Shekhar, Sulochana

    2015-11-01

    Vegetation coverage has a significant influence on the land surface temperature (LST) distribution. In the field of urban heat islands (UHIs) based on remote sensing, vegetation indexes are widely used to estimate the LST-vegetation relationship. This paper devises two objectives. The first analyzes the correlation between vegetation parameters/indicators and LST. The subsequent computes the occurrence of vegetation parameter, which defines the distribution of LST (for quantitative analysis of urban heat island) in Kalaburagi (formerly Gulbarga) City. However, estimation work has been done on the valuation of the relationship between different vegetation indexes and LST. In addition to the correlation between LST and the normalized difference vegetation index (NDVI), the normalized difference build-up index (NDBI) is attempted to explore the impacts of the green land to the build-up land on the urban heat island by calculating the evaluation index of sub-urban areas. The results indicated that the effect of urban heat island in Kalaburagi city is mainly located in the sub-urban areas or Rurban area especially in the South-Eastern and North-Western part of the city. The correlation between LST and NDVI, indicates the negative correlation. The NDVI suggests that the green land can weaken the effect on urban heat island, while we perceived the positive correlation between LST and NDBI, which infers that the built-up land can strengthen the effect of urban heat island in our case study. Although satellite data (e.g., Landsat TM thermal bands data) has been applied to test the distribution of urban heat islands, but the method still needs to be refined with in situ measurements of LST in future studies.

  10. Variation with thermal cycling in microstructure and area specific resistance of a ferritic stainless steel having rough surfaces

    Science.gov (United States)

    Song, Myoung Youp; Mumm, Daniel R.; Song, Jiunn

    2013-03-01

    Crofer22 APU specimens were prepared by grinding with grit 120 and 400 SiC grinding papers, and were then thermally cycled. The variation in oxidation behavior with thermal cycling was then investigated. Observation of microstructures, measurement of area-specific resistance (ASR), analysis of the atomic percentages of the elements by EDX, and XRD analysis were performed. XRD patterns showed that the (Cr, Mn)3O4 spinel phase grew on the surface of the Crofer22 APU samples ground using grit 120. For the samples ground with grit 400, ASR increased as the number of thermal cycles ( n) increased. Plots of ln (ASR/T) vs. 1/ T for the samples ground with grit 400 after n = 4, 20, and 40 exhibited good linearity, and the apparent activation energies were between 73.4 kJ/mole and 82.5 kJ/mole.

  11. Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction

    Directory of Open Access Journals (Sweden)

    P. Bala Anki Reddy

    2016-06-01

    Full Text Available This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge–Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.

  12. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  13. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2010-08-01

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

  14. Fronts and Thermohaline Structure of the Brazil Current Confluence System

    Science.gov (United States)

    Severov, Dimitri

    and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant

  15. 11 August 2008 - Member of the House of Councillors M. Naito (The National Diet of Japan, The Democratic Party of Japan) visiting the ATLAS experiment control room with Collaboration Spokesperson P. Jenni and ATLAS Muon Project Leader G. Mikenberg. Family photograph with CERN Japanese scientists in front of the ATLAS surface building.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    11 August 2008 - Member of the House of Councillors M. Naito (The National Diet of Japan, The Democratic Party of Japan) visiting the ATLAS experiment control room with Collaboration Spokesperson P. Jenni and ATLAS Muon Project Leader G. Mikenberg. Family photograph with CERN Japanese scientists in front of the ATLAS surface building.

  16. New Front End Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, D; Jovanovic, I; Comaskey, B J

    2001-02-01

    The next generation of Petawatt class lasers will require the development of new laser technology. Optical parametric chirped pulse amplification (OPCPA) holds a potential to increase the peak power level to >10 PW with existing grating technology through ultrashort pulses. Furthermore, by utilizing a new type of front-end system based on optical parametric amplification, pulses can be produced with substantially higher contrast than with Ti:sapphire regenerative amplifier technology. We performed extensive study of OPCPA using a single crystal-based OPA. We developed a replacement for Ti:sapphire regenerative amplifier for high peak power lasers based on OPCPA, with an output of 30 mJ, at 10 Hz repetition rate and 16.5 nm spectral bandwidth. We developed a 3D numerical model for OPCPA and we performed a theoretical study of influences of pump laser beam quality on optical parametric amplification. Our results indicate that OPCPA represents a valid replacement for Ti:sapphire in the front end of high energy short pulse lasers.

  17. Order Parameter Equations for Front Transitions Planar and Circular Fronts

    CERN Document Server

    Hagberg, A; Rubinstein, I; Zaltzman, B; Hagberg, Aric; Meron, Ehud

    1997-01-01

    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.

  18. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    Science.gov (United States)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  19. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    Science.gov (United States)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  20. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Ri [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kwon, Jae-Sung [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Song, Doo-Hoon [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Eun Ha [Plasma Bioscience Research Center Kwangwoon University, Seoul 139-701, 447-1 Wokgye-Dong, Nowon-Gu, Seoul (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn, E-mail: kmkim@yuhs.ac [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2013-11-29

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering.

  1. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  2. Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, V.J. (ed.)

    1979-05-01

    Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

  3. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    Science.gov (United States)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  4. Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach

    Science.gov (United States)

    Buchachenko, A. A.; Kroupnov, A. A.; Kovalev, V. L.

    2015-08-01

    Elementary stage rate coefficients of the full system of kinetic equations describing heterogeneous catalytic recombination of the dissociated air on the surfaces of thermal protective ceramic coatings of β-cristobalite and α-Al2O3 are determined using the quantum-mechanical calculations within the framework of cluster models and literature data. Both the impact and associative recombination processes of adsorbed oxygen and nitrogen atoms are taken into account.

  5. Sub-surface paleochannel detection in DeGrussa area, Western Australia, using thermal infrared remote sensing

    Science.gov (United States)

    Thakur, Sanchari; Chudasama, Bijal; Porwal, Alok; González-Álvarez, Ignacio

    2016-05-01

    Thermal Infrared (TIR) remote sensing measures emitted radiation of Earth in the thermal region of electromagnetic spectrum. This information can be useful in studying sub-surface features such as buried palaeochannels, which are ancient river systems that have dried up over time and are now buried under soil cover or overlying sediments in the present landscape. Therefore they have little or no expression on the surface topography. Study of these paleo channels has wide applications in the fields of uranium exploration and ground water hydrology. Identifying paleo channels using remote sensing technique is a cost-effective means of narrowing down search areas and thereby aids in ground exploration. The difference in thermal properties between the paleo channel-fill sediments and the surrounding bed-rock is the key to demarcate these channels. This study uses five TIR bands of day-time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) L1A data for delineation of paleo-systems in the DeGrussa area of the Capricorn Orogen in Western Australia. The temperature-emissivity separation algorithm is applied to obtain kinetic temperature and emissivity images. Sharp contrasts in kinetic temperature and emissivity values are used to demarcate the channel boundaries. Profiles of topographic elevation, temperature and emissivity values are plotted for different sections of the interpreted channels and compared to distinguish the surface channels from sub-surface channels, and also to interpret the thickness and nature of the paleo channel-fill sediments. The results are validated using core-drilling litho logs and field exploration data.

  6. Adjusted normalized emissivity method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data

    OpenAIRE

    Coll Company, César; Valor i Micó, Enric; Caselles Miralles, Vicente; Niclòs Corts, Raquel

    2003-01-01

    A methodology for the retrieval of surface temperatures and emissivities combining visible, near infrared and thermal infrared remote sensing data was applied to Digital Airborne Imaging Spectrometer (DAIS) data and validated with coincident ground measurements acquired in a multiyear experiment held in an agricultural site in Barrax, Spain. The Adjusted Normalized Emissivity Method (ANEM) is based on the use of visible and near infrared data to estimate the vegetation cover and model the max...

  7. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  8. Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J. [School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Cao, Liang [High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui (China); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore); Qi, Dongchen, E-mail: d.qi@latrobe.edu.au [Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Tallaire, Alexandre [LSPM-CNRS, Université Paris 13, Villetaneuse 93430 (France); Limiti, E.; Verona, C. [Department of Industrial Engineering, “Tor Vergata” University, Rome 00173 (Italy); Wee, Andrew T. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore)

    2016-01-25

    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channel produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.

  9. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  10. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    Science.gov (United States)

    Yusufali, C.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.; Sengupta, P.; Dutta, R. S.; Dey, G. K.

    2014-04-01

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al2O3 layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  11. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    Energy Technology Data Exchange (ETDEWEB)

    Yusufali, C., E-mail: yusuf@barc.gov.in; Sengupta, P.; Dutta, R. S.; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Kshirsagar, R. J. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Mishra, R. K.; Kaushik, C. P. [Waste Management Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  12. A simulation study on the thermal and wetting behavior of alkane thiol SAM on gold (111) surface

    Institute of Scientific and Technical Information of China (English)

    J. Meena Devi

    2014-01-01

    Molecular dynamics simulations have been performed to investigate the structural, thermal and wetting properties of self-assembled monolayer (SAM) of alkane thiol on gold surface. The specific heat capacity of the gold SAM surface was found to linearly increase with the temperature in the range 100-300 K. It was found to drop down at 400 K and this decrease might be attributed to the disorder of the SAM chains. Hydration of gold SAM surface for two different terminal groups, namely methyl (hydrophobic), and hydroxy (hydrophilic) was studied at room temperature. The difference in their wetting behavior and the structure of their interfacial water were examined from the estimation of the z density profile, radial distribution function, hydrogen bonds and orientation of water dipoles in the interfacial region. The present simulation results suggest that the wetting behavior of the gold SAM surface can be modified by altering the terminal functional group of the SAM chains.

  13. Photoemission and LEED study of the Sn/Rh(111) surface--early oxidation steps and thermal stability.

    Science.gov (United States)

    Hanyš, Petr; Píš, Igor; Mašek, Karel; Sutara, František; Matolín, Vladimír; Nehasil, Václav

    2012-01-11

    We have deposited two monolayers of Sn onto Rh(111) single crystal. After the deposition, no ordered structure was revealed by low energy electron diffraction (LEED). We oxidized the obtained system in a low-pressure oxygen atmosphere at 420 K. The oxidized sample was then gradually heated to study the thermal stability of the oxide layer. We characterized the system by synchrotron radiation stimulated photoelectron spectroscopy and LEED. Valence band and core level photoelectron spectra of rhodium, tin and oxygen were used to study the oxidation of the Sn-Rh(111) surface and its behaviour upon annealing. A low stoichiometric oxide of Sn was created on the surface. The oxidation process did not continue towards creation of SnO(2) with higher oxygen dose. The annealing at 970 K caused decomposition of the surface oxide of Sn and creation of an ordered (√3 × √3)R30° Sn-Rh(111) surface alloy.

  14. Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-22

    Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.

  15. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.

    Science.gov (United States)

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V

    2007-04-01

    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.

  16. The Effect of Simulated Lunar Dust on the Absorptivity, Emissivity, and Operating Temperature on AZ-93 and Ag/FEP Thermal Control Surfaces

    Science.gov (United States)

    Gaier, James R.; Siamidis, John; Panko, Scott R.; Rogers, Kerry J.; Larkin, Elizabeth M. G.

    2008-01-01

    JSC-1AF lunar simulant has been applied to AZ-93 and AgFEP thermal control surfaces on aluminum or composite substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator and cooled in a 30 K coldbox. Thermal modeling was used to determine the absorptivity ( ) and emissivity ( ) of the thermal control surfaces in both their clean and dusted states. Then, a known amount of power was applied to the samples while in the coldbox and the steady state temperatures measured. It was found that even a submonolayer of simulated lunar dust can significantly degrade the performance of both white paint and second-surface mirror type thermal control surfaces under these conditions. Contrary to earlier studies, dust was found to affect as well as . Dust lowered the emissivity by as much as 16 percent in the case of AZ-93, and raised it by as much as 11 percent in the case of AgFEP. The degradation of thermal control surface by dust as measured by / rose linearly regardless of the thermal control coating or substrate, and extrapolated to degradation by a factor 3 at full coverage by dust. Submonolayer coatings of dust were found to not significantly change the steady state temperature at which a shadowed thermal control surface will radiate.

  17. Biological Activity at Oceanic Fronts.

    Science.gov (United States)

    1985-12-01

    and/or phytoplankton concentrations between the adjacent areas. High particle concentrations are associated with a front east of the Galapagos Islands...yeTlowfin, albacore, and bluefin tunas, mackerel, salmon, and some whales (Uda, 1938, 1952,. 9.=, 1973; Uda and Ishino, 1958). Behavioral responses of...Marine mammals ,Gaskin, 1976) also utilize tidal fronts. Minke whales were observed to feed on herring or capelin collected in fronts and fin whales fed

  18. On the speed of fast and slow rupture fronts along frictional interfaces

    CERN Document Server

    Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-01-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of the junctions between the two contacting surfaces. Typically, interactions between the junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasi-static fronts with speeds proportional to external loading rates, via fronts much slower than the Rayleigh wave speed, and fronts that propagate near the Rayleigh wave speed, to fronts that travel faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic 2D spring--block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that a proportionality between material slip speed and rupture front speed, previously reported for slow fronts, actually holds ac...

  19. Photoionization effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2006-12-21

    In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.

  20. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m(2)g(-1). As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  1. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  2. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    Science.gov (United States)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  3. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  4. Development of thermal protective seal for hot structure control surface actuator rod

    Science.gov (United States)

    Infed, F.; Handrick, K.; Lange, H.; Steinacher, A.; Weiland, S.; Wegmann, C.

    2012-01-01

    For the Intermediate eXperimental Vehicle (IXV) the deflection of the highly loaded body flap is performed by an actuator system which is connected to the body flap by a rod. Besides the thermal and mechanical loads the sealing of the inner vehicle against the possible leaking hot plasma is an important issue whereby the special challenge for the design results from the spatial movement of the rod. This requires a design consisting of different parts and various materials in order to satisfy the mechanical flexibility and the resistance to the thermal and mechanical loads under the aspect of reusability. This paper describes the MT Aerospace approach for the thermal protection system for the actuator as presented for the critical design review of IXV. The design is presented and described including all necessary performed analysis steps toward such a design.

  5. Multifunctional magnetic plasmonic nanoparticles for applications of magnetic/photo-thermal hyperthermia and surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jr-Jie; Lai, Wan-Ru; Chen, Chuh-Yean [Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology,No. 1, Nan-Tai Street, Yung-kang District., Tainan, Taiwan (China); Chen, Shih-Wei, E-mail: amadues2005@yahoo.com.tw [Department of Chemistry, National Sun Yat-Sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan (China); Chiang, Chen-Li, E-mail: chiang@mail.stust.edu.tw [Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology,No. 1, Nan-Tai Street, Yung-kang District., Tainan, Taiwan (China)

    2013-04-15

    We prepared magnetic plasmonic nanocomposites, multicore MnFe{sub 2}O{sub 4}@SiO{sub 2}@Ag magnetic nanoparticles (MFA-MNPs). Their magnetic and plasmonic properties were investigated for the applications of hyperthermia and chemical detection. The experiments showed that such nanocomposites could generate heat under the AC magnetic field mainly by the Néel relaxation and are suitable as thermal seeds in magnetic hyperthermia. Moreover, these nanocomposites also possess strong photo-thermal property under near infrared laser light by their properties of surface plasmonic resonance. The measurement of surface enhanced Raman spectroscopy (SERS) spectra exhibited that MFA-MNPs had high sensitivity to rhodamine 6G molecules at concentration of 0.5 ppb. -- Highlights: ► Multicore MnFe{sub 2}O{sub 4}@SiO{sub 2}@Ag nanocomposites were prepared. ► Nanocomposites could generate heat under the AC field mainly by Néel relaxation. ► Nanocomposites showed a strong photo-thermal property under near IR laser light. ► Nanocomposites had high sensitivity to R6G molecules at concentration of 0.5 ppb.

  6. Structural and Computational Study of 4 New Solvatomorphs of Betulin: A Combined X-Ray, Hirshfeld Surface, and Thermal Analysis.

    Science.gov (United States)

    Yang, Dezhi; Gong, Ningbo; Zhang, Li; Lu, Yang; Du, Guanhua

    2017-03-01

    Four new solvatomorphs of betulin were reported and characterized by X-ray diffractometry as well as thermal and vibrational spectroscopic analyses. Single-crystal X-ray diffraction was used to analyze the X-ray structures of the compounds and confirmed the stoichiometric ratio between the host and guest molecules from thermal data. Results indicated that solvatomorphism occurred in several betulin solvates. Changes in intermolecular arrangements, stoichiometry, and hydrogen-bonding interactions of solvatomorphs were due to solvent incorporation to solvates. Hirshfeld surface analyses, especially dnorm surface and fingerprint plots, were used to determine intermolecular interactions in the crystal network. Solvent molecules played an important role in the construction of a 3D architecture. The stabilities of these solvates were evaluated by thermal analyses. Nonisothermal kinetic analysis was used to explain the kinetics of solid-solid phase transition (desolvation) of betulin solvates. The apparent activation energies were evaluated using Kissinger and Ozawa methods. Moreover, phase transitions were visually investigated by hot-stage microscopic analysis. Copyright © 2017. Published by Elsevier Inc.

  7. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries.

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-08-25

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  8. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions

    Science.gov (United States)

    Panayotov, Dimitar A.; Morris, John R.

    2016-03-01

    The fascinating particle size dependence to the physical, photophysical, and chemical properties of gold has motivated thousands of studies focused on exploring the ability of supported gold nanoparticles to catalyze chemical transformations. In particular, titanium dioxide-supported gold (Au/TiO2) nanoparticles may provide the right combination of electronic structure, structural dynamics, and stability to affect catalysis in important practical applications from environmental remediation to selective hydrogenation to carbon monoxide oxidation. Harnessing the full potential of Au/TiO2 will require a detailed atomic-scale understanding of the thermal and photolytic processes that accompany chemical conversion. This review describes some of the unique properties exhibited by particulate gold before delving into how those properties affect chemistry on titania supports. Particular attention is given first to thermally driven reactions on single crystal system. This review then addresses nanoparticulate samples in an effort begin to bridge the so-called materials gap. Building on the foundation provided by the large body of work in the field of thermal catalysis, the review describes new research into light-driven catalysis on Au/TiO2. Importantly, the reader should bear in mind throughout this review that thermal chemistry and thermal effects typically accompany photochemistry. Distinguishing between thermally-driven stages of a reaction and photo-induced steps remains a significant challenge, but one that experimentalists and theorists are beginning to decipher with new approaches. Finally, a summary of several state-of-the-art studies describes how they are illuminating new frontiers in the quest to exploit Au/TiO2 as an efficient catalyst and low-energy photocatalyst.

  9. Sputtering of the Europa surface by thermal ions from the torus and pickup ions in a diverted flow

    Science.gov (United States)

    Dols, Vincent J.; Cassidy, Timothy A.; Bagenal, Fran; Crary, Frank; Delamere, Peter A.

    2016-10-01

    Europa's atmosphere is very tenuous and is mainly composed of O2. It is thought to be produced by ion bombardment of its icy surface. Several ion populations may contribute to this sputtering:1) The thermal plasma of the torus (~ 1keV including ram velocity), which may be partially diverted around the moon by the ionospheric currents2) The energetic sulfur and hydrogen ions (~10 keV-MeV), which diffuse inward toward Europa's orbit3) and possibly the newly ionized O2 molecules that are picked up by the torus flow and hit the surface.The relative contribution of each sputtering ion population has been debated for more than three decades with estimated O2 sputtering rates varying by ~2 order of magnitude. Modelers have historically focused on a single piece of the puzzle: plasma modelers assume a static atmosphere and tend not to check that their sources and losses are consistent with their prescribed atmosphere; while atmospheric modelers neglect the electro-dynamic interaction that diverts torus plasma around the moon, and limits the ion flux to the surface.In this work, we present a first step to compute self-consistently the atmospheric production by the bombardment of the thermal plasma and pickup O2+ ions.1) We calculate the plasma flow around Europa with a MHD model2) We use this flow in a multi-species physical chemistry model of the plasma-atmosphere interaction to compute the ion fluxes into Europa's surface.3) We compute the production rate of O2 resulting from the ice sputtering by thermal and pickup ions and compare the resulting atmospheric source rate to previously published results.

  10. Comparing Methods for Land Surface Temperature Retrieval over Heterogeneous Land Cover Using Landsat-5 TM Thermal Infrared Data

    Science.gov (United States)

    Windahl, E.; de Beurs, K.

    2014-12-01

    Among other applications, remotely sensed land surface temperature (LST) has become critical for monitoring the surface urban heat island (SUHI) effect in cities across the world. While daily MODIS thermal infrared data is invaluable for examining changes in LST over time, the large 1 km spatial resolution makes studying the spatial patterns of LST in a heterogeneous urban environment difficult. The 120 m spatial resolution of Landsat 4-5 TM, as well the archive of data stretching back to 1982, make Landsat 4-5 TM sensors valuable resources for thermal data, especially in urban areas. However, the difficulty accurately correcting for atmospheric effects with only one thermal band, as well as the necessity for a priori knowledge of land surface emissivity (LSE), mean it is underutilized. Research to determine best practices for deriving LST from Landsat TM data given homogenous, usually vegetated land cover is relatively extensive; however, the accuracy of these methods given heterogeneous land cover is less well known, especially given Land Surface Emissivity (LSE) calculations that often rely heavily on NDVI. In order to determine the best methodology for measuring LST across heterogeneous land cover in the central United States, this study derives LST from Landsat 5 TM band 6 for Oklahoma City and the surrounding countryside on a fall and a spring date using three different methods: no atmospheric correction, the radiative transfer equation, and the mono-window algorithm. With all three methods, the common NDVI-based approach for estimating LSE is used; a fourth LST calculation with no atmospheric correction and an assumed emissivity of one is therefore included as contrast. Using regression analysis, these four LST measurements are compared to air temperatures recorded concurrently by approximately 40 Oklahoma Mesonet stations across the study area, and results are broken down by land cover type to explore potential biases or variations in accuracy.

  11. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  12. Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Seguini, G.; Cianci, E.; Wiemer, C.; Perego, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza MB (Italy); Saynova, D.; Van Roosmalen, J.A.M. [ECN Solar Energy, Westerduinweg 3, NL-1755 ZG Petten (Netherlands)

    2013-04-05

    High-quality surface passivation of crystalline Si is achieved using 10 nm thick Al2O3 films fabricated by thermal atomic layer deposition at 100C. After a 5 min post deposition annealing at 200C, the effective carrier lifetime is 1 ms, indicating a functional level of surface passivation. The interplay between the chemical and the field effect passivation is investigated monitoring the density of interface traps and the amount of fixed charges with conductance-voltage and capacitance-voltage techniques. The physical mechanisms underlying the surface passivation are described. The combination of low processing temperatures, thin layers, and good passivation properties facilitate a technology for low-temperature solar cells.

  13. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  14. Lunar Eclipse Observations Reveal Anomalous Thermal Performance of Apollo Reflectors

    CERN Document Server

    Murphy, T W; Johnson, N H; Goodrow, S D

    2013-01-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ~50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  15. Lunar eclipse observations reveal anomalous thermal performance of Apollo reflectors

    Science.gov (United States)

    Murphy, T. W.; McMillan, R. J.; Johnson, N. H.; Goodrow, S. D.

    2014-03-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ∼50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  16. Laser Surface Treatment of Hydro and Thermal Power Plant Components and Their Coatings: A Review and Recent Findings

    Science.gov (United States)

    Mann, B. S.

    2015-11-01

    High-power diode laser (HPDL) surface modification of hydro and thermal power plant components is of the utmost importance to minimize their damages occurring due to cavitation erosion, water droplet erosion, and particle erosion (CE, WDE, and PE). Special emphasis is given on the HPDL surface treatment of martensitic and precipitate-hardened stainless steels, Ti6Al4V alloy, plasma ion nitro-carburized layers, high pressure high velocity oxy-fuel and twin-wire arc sprayed coatings. WDE test results of all these materials and coatings in `untreated' and `HPDL- treated at 1550 °C' conditions, up to 8.55 million cycles, are already available. Their WDE testing was further continued up to 10.43 million cycles. The X20Cr13 and X10CrNiMoV1222, the most common martensitic stainless steels used in hydro and thermal power plants, were HPDL surface treated at higher temperature (1650 °C) and their WDE test results were also obtained up to 10.43 million cycles. It is observed that the increased HPDL surface temperature from 1550 to 1650 °C has resulted in significant improvement in their WDE resistances because of increased martensitic (ά) phase at higher temperature. After conducting long-range WDE tests, the correlation of CE, WDE, and PE resistances of these materials and protective coatings with their mechanical properties such as fracture toughness and microhardness product, ultimate resilience, modified resilience, and ultimate modified resilience has been reviewed and discussed. One of the edges of a 500 MW low pressure steam turbine moving blade (X10CrNiMoV1222 stainless steel) was HPDL surface treated at 1550 °C and its radii of curvatures and deflections were measured. These were compared with the data available earlier from a flat rectangular sample of similar composition and identical HPDL surface temperature.

  17. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  18. Light Front Boson Model Propagation

    Institute of Scientific and Technical Information of China (English)

    Jorge Henrique Sales; Alfredo Takashi Suzuki

    2011-01-01

    stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ > O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.

  19. Fluids by design using chaotic surface waves to create a metafluid that is Newtonian, thermal, and entirely tunable

    Science.gov (United States)

    Welch, Kyle J.; Liebman-Peláez, Alexander; Corwin, Eric I.

    2016-09-01

    In conventional fluids, viscosity depends on temperature according to a strict relationship. To change this relationship, one must change the molecular nature of the fluid. Here, we create a metafluid whose properties are derived not from the properties of molecules but rather from chaotic waves excited on the surface of vertically agitated water. By making direct rheological measurements of the flow properties of our metafluid, we show that it has independently tunable viscosity and temperature, a quality that no conventional fluid possesses. We go on to show that the metafluid obeys the Einstein relation, which relates many-body response (viscosity) to single-particle dynamics (diffusion) and is a fundamental result in equilibrium thermal systems. Thus, our metafluid is wholly consistent with equilibrium thermal physics, despite being markedly nonequilibrium. Taken together, our results demonstrate a type of material that retains equilibrium physics while simultaneously allowing for direct programmatic control over material properties.

  20. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Endo, Kiyoshi; Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan)

    2002-12-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient. (author)

  1. Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties

    Science.gov (United States)

    Kuzhir, P.; Paddubskaya, A.; Plyushch, A.; Volynets, N.; Maksimenko, S.; Macutkevic, J.; Kranauskaite, I.; Banys, J.; Ivanov, E.; Kotsilkova, R.; Celzard, A.; Fierro, V.; Zicans, J.; Ivanova, T.; Merijs Meri, R.; Bochkov, I.; Cataldo, A.; Micciulla, F.; Bellucci, S.; Lambin, Ph.

    2013-10-01

    A comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25-2.0 wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, good correlation between properties and filler amount was observed for concentrations below 1.5 wt. %. We conclude that CBH and, to a lower extent, EG could replace expensive CNTs for producing effective EM materials in microwave and low-frequency ranges, which are, in addition, mechanically and thermally stable.

  2. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    CERN Document Server

    Yamamoto, K; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, T

    2002-01-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradia