Numerical Study of Thermal Boundary Layer on a Continuous Moving Surface in Power Law Fluids
Institute of Scientific and Technical Information of China (English)
Hao ZHANG; Xinxin ZHANG; Liancun ZHENG
2007-01-01
This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal diffusivity and the characteristics of the flow and heat transfer are analyzed. The results show that the distribution of the thermal boundary layer depends not only on the velocity ratio parameter of the plate, but also on the power law index and Prandtl number of fluids.
Directory of Open Access Journals (Sweden)
Petar Glišović
2015-01-01
Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique
Kaufman, L. G., II; Johnson, C. B.
1981-01-01
Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces.
Directory of Open Access Journals (Sweden)
Yinhuan Ao
2017-01-01
Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference △T by a relaxation coefficient k. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1° ×1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface flux Q, surface air temperature TA,and sea surface temperature To. Then, we calculated the cross-correlation coefficients (CCC) between Q and △T. The ensemble mean CCC fields show (a) no correlation between Q and △T in the equatorial regions, and (b) evident correlation (CCC≥ 0.7) between Q and △T in the middle and high latitudes.Additionally, we did the variance analysis and found that when k= 120 W m-2K-1, the two standard deviations, σrq and σk△T, are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value of k (80 W m-2K-1) was found in the previous study.
Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers
Hanjalić, K.; Hrebtov, M.
2016-07-01
We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.
Influence of diamond surface termination on thermal boundary conductance between Al and diamond
Energy Technology Data Exchange (ETDEWEB)
Monachon, Christian; Weber, Ludger [Laboratoire de Metallurgie Mecanique, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)
2013-05-14
The effect of diamond surface treatment on the Thermal Boundary Conductance (TBC) between Al and diamond is investigated. The treatments consist in either of the following: exposition to a plasma of pure Ar, Ar:H and Ar:O, and HNO{sub 3}:H{sub 2}SO{sub 4} acid dip for various times. The surface of diamond after treatment is analyzed by X-ray Photoelectron Spectroscopy, revealing hydrogen termination for the as-received and Ar:H plasma treated samples, pure sp{sup 2} termination for Ar treated ones and oxygen (keton-like) termination for the other treatments. At ambient, all the specific treatments improve the TBC between Al and diamond from 23 {+-} 2 MW m{sup -2} K{sup -1} for the as-received to 65 {+-} 5, 125 {+-} 20, 150 {+-} 20, 180 {+-} 20 MW m{sup -2} K{sup -1} for the ones treated by Ar:H plasma, acid, pure Ar plasma, and Ar:O plasma with an evaporated Al layer on top, respectively. The effect of these treatments on temperature dependence are also observed and compared with the most common models available in the literature as well as experimental values in the same system. The results obtained show that the values measured for an Ar:O plasma treated diamond with Al sputtered on top stay consistently higher than the values existing in the literature over a temperature range from 78 to 290 K, probably due a lower sample surface roughness. Around ambient, the TBC values measured lay close to or even somewhat above the radiation limit, suggesting that inelastic or electronic processes may influence the transfer of heat at this metal/dielectric interface.
The aqueous thermal boundary layer
Katsaros, Kristina B.
1980-02-01
This article reviews the available data, measurement techniques, and present understanding of the millimeter thick aqueous thermal boundary layer. A temperature difference between the surface and lower strata, δT, of the order of a few tenths to -1 °C have been observed. Techniques ranging from miniature mercury thermometers and electrical point sensors to optical interferometry and infrared radiometry have been employed. Many processes influence the temperature structure in this thin boundary layer. Among them are: the net upward heat flux due to evaporation and sensible heat transfer; infrared and solar radiation; and the turbulence near the interface due to wind mixing, wave breaking and current shear. Presence of solute and surface-active materials stimulate or dampen these mixing processes thereby influencing boundary-layer thickness and temperature structure.
Institute of Scientific and Technical Information of China (English)
Petar Glisovic; Alessandro M. Forte
2015-01-01
Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition). As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid) boundary condition. A rigid boundary condition dem-onstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs), especially below the Pacific. The evolution of sub-duction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
Ogasawara, Haruka; Koga, Nobuyoshi
2014-04-03
In this study, ferrous oxalate dihydrate polymorph particles, α- and β-phases, with square bipyramidal and quadratic prismatic shapes, respectively, were synthesized. Thermal dehydration of the samples was subjected to kinetic study as a typical reaction that indicates a significant induction period and a sigmoidal mass-loss behavior. On the basis of the formal kinetic analysis of the mass-loss traces recorded under isothermal, nonisothermal, and constant transformation rate conditions and the morphological observations of the surface textures of the partially reacted sample particles, a combined kinetic model for the induction period-surface reaction-phase boundary reaction was developed. The sigmoidal mass-loss behavior after the significant induction period under isothermal conditions was satisfactorily simulated by the combined kinetic model. The kinetic parameters for the component processes of induction period, surface reaction, and phase boundary reaction were separately determined from the kinetic simulation. The differences in the kinetic behaviors of the induction period and the phase boundary reaction between α- and β-phase samples were well described by the kinetic parameters. The applicability of the combined kinetic model to practical systems was demonstrated through characterizing the physicogeometrical kinetics of the thermal dehydration of ferrous oxalate dihydrate polymorphs.
Transgressive Surface as Sequence Boundary
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Analysis of the four cases of the sequence boundary (SB)-transgressive surface (TS) relation in nature shows that applying transgressive surfaces as sequence boundaries has the following merits: it improves the methodology of stratigraphic subdivision; the position of transgressive surface in a sea level curve is relatively fixed; the transgressive surface is a transforming surface of the stratal structure; in platforms or ramps, the transgressive surface is the only choice for determining the sequence boundary; the transgressive surface is a readily recognized physical surface reflected by seismic records in seismostratigraphy. The paper reaches a conclusion that to delineate a SB in terms of the TS is theoretically and practically better than to delineate it between highstand and lowstand sediments as has been done traditionally.
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
Enhanced performance thermal diode via thermal boundary resistance at nanoscale
Tovar-Padilla, M.; Licea-Jimenez, L.; Pérez-Garcia, S. A.; Alvarez-Quintana, J.
2015-08-01
Hypothetically, a thermal rectifier is a device which leads a greater heat flux in one direction than another one, similarly as the electrical diode works for the electrical flux. Here, a drastic increment in the rectification factor has been obtained in nanoscale layered thermal diodes due to the effect of thermal boundary resistance present on an asymmetrical stack of nanofilms. Measurements show a thermal rectification factor as large as 3.3 under a temperature bias well below 1 K, which is the biggest thermal rectification factor reported at room temperature compared to previously reported thermal diodes so far. According to the direction of the applied heat flux, the observed impact of the thermal boundary resistance on the device is manifested through the presence of an asymmetric temperature rise along the heat transfer axis. Such effect provides an alternative route for the development of high performance thermal diodes.
THERMAL BOUNDARY LAYER IN CFB BOILER RISER
Institute of Scientific and Technical Information of China (English)
Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue
2006-01-01
Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.
Weak phonon scattering effect of twin boundaries on thermal transmission.
Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin
2016-01-29
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries' thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity.
A Thermal Plume Model for the Martian Convective Boundary Layer
Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn
2013-01-01
The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...
The dynamic specification of surfaces and boundaries.
Cunningham, D W; Shipley, T F; Kellman, P J
1998-01-01
Sequential changes in small separated texture elements can produce perception of a moving form with continuous boundaries. This process of spatiotemporal boundary formation may exist to provide a robust means of detecting moving objects that occlude more distant textured surfaces. Whereas most research on spatiotemporal boundary formation has been focused on boundary and shape perception, two experiments are reported here on the perception of surface qualities in spatiotemporal boundary formation. In experiment 1 a free-report procedure was used to investigate whether surface perception can be determined by dynamic information alone, apart from static spatial differences. Results showed that dynamic information was sufficient to determine the appearance of a surface. This dynamic information may play an important role in other aspects of perception. In experiment 2, it was shown that dynamically specifying an extended, opaque surface facilitated edge perception. Implications for the relation of boundary and surface perception and for theories of perceptual transparency are discussed.
Directory of Open Access Journals (Sweden)
E.Hemalatha
2015-09-01
Full Text Available This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to describe radiative heat transfer as we consider optically thick fluids. The governing boundary layer equations are transformed into a system of ordinary differential equations using similarity transformations, which are then solved numerically by employing fourth order Runge-Kutta method along with shooting technique. The effects of various material parameters on the velocity, temperature and concentration as well as the skin friction coefficient, the Nusselt number, the Sherwood number and the plate surface temperature are illustrated and interpreted in physical terms. A comparison of present results with previously published results shows an excellent agreement.
Thermal momentum distribution from shifted boundary conditions
Giusti, Leonardo
2011-01-01
At finite temperature the distribution of the total momentum is an observable characterizing the thermal state of a field theory, and its cumulants are related to thermodynamic potentials. In a relativistic system at zero chemical potential, for instance, the thermal variance of the total momentum is a direct measure of the entropy. We relate the generating function of the cumulants to the ratio of a path integral with properly shifted boundary conditions in the compact direction over the ordinary partition function. In this form it is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang--Mills theory, and obtain the entropy density at three different temperatures.
Thermal Boundary Conductance: A Materials Science Perspective
Monachon, Christian; Weber, Ludger; Dames, Chris
2016-07-01
The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.
Weak phonon scattering effect of twin boundaries on thermal transmission
Huicong Dong; Jianwei Xiao; Roderick Melnik; Bin Wen
2016-01-01
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries’ thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced averag...
Thermal field theories and shifted boundary conditions
Giusti, Leonardo
2013-01-01
The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedur...
SURFACE MESH PARAMETERIZATION WITH NATURAL BOUNDARY
Institute of Scientific and Technical Information of China (English)
Ye Ming; Zhu Xiaofeng; Wang Chengtao
2003-01-01
Using the projected curve of surface mesh boundary as parameter domain border, linear mapping parameterization with natural boundary is realized. A fast algorithm for least squares fitting plane of vertices in the mesh boundary is proposed. After the mesh boundary is projected onto the fitting plane, low-pass filtering is adopted to eliminate crossovers, sharp corners and cavities in the projected curve and convert it into an eligible convex parameter domain boundary. In order to facilitate quantitative evaluations of parameterization schemes, three distortion-measuring formulae are presented.
An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.
Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji
2013-01-16
Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.
Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers
Balasubramaniam, R.; Subramanian, R. S.
1996-01-01
The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.
Aly, Emad H.; Sayed, Hamed M.
2017-01-01
In the current work, we investigated effects of the velocity slip for the flow and heat transfer of four nanofluids over a non-linear stretching sheet taking into account the thermal radiation and magnetic field in presence of the effective electrical conductivity. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equation using similarity transformations before being solved numerically by the Chebyshev pseudospectral differentiation matrix (ChPDM). It was found that the investigated parameters affect remarkably on the nanofluid stream function for the whole investigated nanoparticles. In addition, velocity and skin friction profiles of the four investigated nanofluids decreases and increases, respectively, with the increase of the magnetic parameter, first-order and second-order velocity slips. Further, the flow velocity, surface shear stress and temperature are strongly influenced on applying the velocity slip model, where lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer.
Wei, Jun; Malanotte-Rizzoli, Paola; Li, Ming-Ting; Wang, Hao
2016-11-01
Based on a fully coupled, high-resolution regional climate model, this study analyzed three-dimensional temperature and momentum changes in the South China Sea (SCS) from 1970 to 2000, during which period the climate shifts from a decadal La Niña-like condition (before 1976/1977) to a decadal El Niño-like condition afterward. With a set of partially coupled experiments, sea surface temperature (SST) and kinetic energy (KE) changes during this period are first decomposed into two components: those induced by lateral boundary forcing and those induced by atmospheric surface fluxes. The results showed that the total SST and KE changes show an increasing trend from 1970 to 2000. The two decomposed components together determined 96 and 89% of the SST and KE changes, respectively, implying their dominant roles on the SCS's surface variability. Spatially, a sandwich pattern of air-sea forcing relationship is revealed in the SCS basin. The increased KE, represented by a cyclonic flow anomaly in the northern SCS, was induced by enhanced cold water intrusion from Pacific into the SCS via the Luzon Strait (boundary forcing). This cold-water inflow, however, resulted in SST cooling along the northern shelf of the SCS. The maximal SST warming occurred in the central SCS and was attributed to the wind-evaporation-SST (WES) positive feedback (surface forcing), in which a southwestward wind anomaly is initialized by SST gradients between the northern and southern SCS. This wind anomaly decelerates the southwestly summer monsoons and in turn increases the SST gradients. Over the shallow Sunda shelf, which is far from the Luzon Strait, the SST/KE variability appeared to be determined primarily by local air-sea interactions. Furthermore, analyses on subsurface components indicated that the subsurface temperature changes are primarily induced by internal ocean mixing, which becomes significantly important below the thermocline. The enhanced subsurface flow is driven by the Luzon
Restructuring surface tessellation with irregular boundary conditions
Directory of Open Access Journals (Sweden)
Tsung-Hsien Wang
2014-12-01
Full Text Available In this paper, the surface tessellation problem is explored, in particular, the task of meshing a surface with the added consideration of incorporating constructible building components. When a surface is tessellated into discrete counterparts, certain unexpected conditions usually occur at the boundary of the surface, in particular, when the surface is being trimmed. For example, irregularly shaped panels form at the trimmed edges. To reduce the number of irregular panels that may form during the tessellation process, this paper presents an algorithmic approach to restructuring the surface tessellation by investigating irregular boundary conditions. The objective of this approach is to provide an alternative way for freeform surface manifestation from a well-structured discrete model of the given surface.
Energy Technology Data Exchange (ETDEWEB)
Aghababaei, Ramin, E-mail: ramin.aghababaei@epfl.ch; Anciaux, Guillaume; Molinari, Jean-François [Computational Solid Mechanics Laboratory, Civil Engineering Institute (School of Architecture, Civil and Environmental Engineering), Institute of Materials (School of Engineering), Ecole Polytechnique Fédérale de Lausanne - EPFL, Lausanne (Switzerland)
2014-11-10
The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phonon-crystalline boundaries scattering and its effect on the overall lattice thermal conductivity of crystalline bodies. Various types of crystalline boundaries such as stacking faults, twins, and grain boundaries have been considered in FCC crystalline structures. Accordingly, the specularity coefficient has been determined for different boundaries as the probability of the specular scattering across boundaries. Our results show that in the presence of internal boundaries, the lattice thermal conductivity can be characterized by two parameters: (1) boundary spacing and (2) boundary excess free volume. We show that the inverse of the lattice thermal conductivity depends linearly on a non-dimensional quantity which is the ratio of boundary excess free volume over boundary spacing. This shows that phonon scattering across crystalline boundaries is mainly a geometrically favorable process rather than an energetic one. Using the kinetic theory of phonon transport, we present a simple analytical model which can be used to evaluate the lattice thermal conductivity of nano-crystalline materials where the ratio can be considered as an average density of excess free volume. While this study is focused on FCC crystalline materials, where inter-atomic potentials and corresponding defect structures have been well studied in the past, the results would be quantitatively applicable for semiconductors in which heat transport is mainly due to phonon transport.
Studies of planetary boundary layer by infrared thermal imagery
Energy Technology Data Exchange (ETDEWEB)
Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)
2014-11-24
The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2017-01-01
Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2017-01-01
Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...
Effects of flow and colony morphology on the thermal boundary layer of corals
DEFF Research Database (Denmark)
Jimenez, Isabel M; Kühl, Michael; Larkum, Anthony W D
2011-01-01
measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies...
Vesta surface thermal properties map
Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.
2014-01-01
The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.
Grain boundary engineering to enhance thermal stability of electrodeposited nickel
DEFF Research Database (Denmark)
Alimadadi, Hossein
by miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly......Manufacturing technologies such as injection molding and micro electromechanical systems demand materials with improved mechanical properties (e.g. hardness, ductility) and high durability at elevated temperatures. Significant improvement in some of the mechanical properties is obtained......, grain boundary engineering of electrodeposited nickel to achieve high population of coherent twin boundaries and, hence, higher thermal stability is a promising method to achieve simultaneous improvement in mechanical properties and thermal stability. This is of particular scientific and practical...
N-sided Surface Generation from Arbitrary Boundary Edges
2000-01-01
Such surfaces are generally classified as transfinite surfaces, in which a surface is interpolated to span given curves. In the proposed method...the 3D space. Sabin calls the method of surface generation from boundary edges a " transfinite surface" in contrast with the one which is characterized...vectors. Thus, the surface is a transfinite surface in consideration of the boundary positions and cross-boundary derivatives on the given boundary
Effective Hydrodynamic Boundary Conditions for Corrugated Surfaces
Mongruel, Anne; Asmolov, Evgeny S; Vinogradova, Olga I
2012-01-01
We report measurements of the hydrodynamic drag force acting on a smooth sphere falling down under gravity to a plane decorated with microscopic periodic grooves. Both surfaces are lyophilic, so that a liquid (silicone oil) invades the surface texture being in the Wenzel state. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. To quantify the effect of roughness we use the effective no-slip boundary condition, which is applied at the imaginary smooth homogeneous isotropic surface located at an intermediate position between top and bottom of grooves. Such an effective condition fully characterizes the force reduction measured with the real surface, and the location of this effective plane is related to geometric parameters of the texture by a simple analytical formula.
Laser pulse heating of surfaces and thermal stress analysis
Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M
2013-01-01
This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.
Interaction between surface and atmosphere in a convective boundary layer
Garai, Anirban
Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to
Thermal slip for liquids at rough solid surfaces
Zhang, Chengbin; Chen, Yongping; Peterson, G. P.
2014-06-01
Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).
Infinitesimal nonrigidity of convex surfaces with planar boundary
Institute of Scientific and Technical Information of China (English)
LI Chunhe; HONG Jiaxing
2005-01-01
In the present paper infinitesimal nonrigidity of a class of convex surfaces with planar boundary is given. This result shows that if the image of the Gauss map of an evolution convex surface with planar boundary covers some hemisphere, this surface may be of infinitesimal nonrigidity for the isometric deformation of planar boundary.
Thermal activation in boundary lubricated friction
Energy Technology Data Exchange (ETDEWEB)
Michael, P.C. [Francis Bitter National Magnet Lab. and Dept. of Mechanical Engineering, Massachusetts Inst. of Tech., Cambridge, MA (United States); Rabinowicz, E. [Francis Bitter National Magnet Lab. and Dept. of Mechanical Engineering, Massachusetts Inst. of Tech., Cambridge, MA (United States); Iwasa, Y. [Francis Bitter National Magnet Lab. and Dept. of Mechanical Engineering, Massachusetts Inst. of Tech., Cambridge, MA (United States)
1996-05-01
The friction coefficients for copper pairs lubricated with fatty acids and fluorinated fatty acids have been measured over a wide range of sliding speeds and temperatures. Sliding speeds in the range 10{sup -7}-10{sup -2} m s{sup -1} and temperatures in the range 4.2-300 K were used. The friction coefficients near 300 K are generally low and increase with sliding speed, while the friction coefficients at low temperatures are markedly higher and relatively independent of velocity. Each lubricant`s friction vs. velocity behavior over the temperature range 150-300 K can be described by a friction-velocity master curve derived from a thermal activation model for the lubricant`s shear strength. The activation energies deduced from this friction model are identical to those obtained in the same temperature range for a vibrational mode associated with low temperature mechanical relaxations in similarly structured polymers. These results suggest that thermally activated interfacial shear is responsible for the fatty acids` positive-sloped friction vs. velocity characteristics at low sliding speeds near room temperature. (orig.)
Thermal boundary resistance from transient nanocalorimetry: A multiscale modeling approach
Caddeo, Claudia; Melis, Claudio; Ronchi, Andrea; Giannetti, Claudio; Ferrini, Gabriele; Rurali, Riccardo; Colombo, Luciano; Banfi, Francesco
2017-02-01
The thermal boundary resistance at the interface between a nanosized Al film and an Al2O3 substrate is investigated at an atomistic level. The thermal dynamics occurring in time-resolved thermoreflectance experiments is then modeled via macrophysics equations upon insertion of the materials parameters obtained from atomistic simulations. Electrons and phonons nonequilibrium and spatiotemporal temperatures inhomogeneities are found to persist up to the nanosecond time scale. These results question the validity of the commonly adopted lumped thermal capacitance model in interpreting transient nanocalorimetry experiments. The strategy adopted in the literature to extract the thermal boundary resistance from transient reflectivity traces is revised in the light of the present findings. The results are of relevance beyond the specific system, the physical picture being general and readily extendable to other heterojunctions.
Energy Technology Data Exchange (ETDEWEB)
Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)
2015-01-15
Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.
Does the thermal wind exist near the Earth's core boundary?
Dolginov, A. Z.
1993-01-01
Temperature distribution in the Earth core determines many important processes such as the following: convective motion, magnetic field generation, matter exchange between the core and the mantle, and the thermal flux. This distribution depends on conditions in the core-mantle boundary and on the distribution of the thermal conductivity in the mantle. Seismic tomography shows that large horizontal temperature and compositional gradients exists at the core-mantle boundary. The simple assumption that these inhomogeneities are extended into the top of the core contradicts the common opinion that the horizontal temperature gradient (the thermal wind) wipes them out in a short time. However, this conclusion has been obtained without taking into account that the core volume is closed and the motion, if it is started, can lead to a small redistribution of composition that stops this motion.
Observation of thermally etched grain boundaries with the FIB/TEM technique
Energy Technology Data Exchange (ETDEWEB)
Palizdar, Y., E-mail: y.palizdar@merc.ac.ir [Nanotechnology and advanced materials department, Materials and energy research centre (MERC), Karaj (Iran, Islamic Republic of); San Martin, D. [MATERALIA group, Department of Physical Metallurgy, (CENIM-CSIC), Centro Nacional de Investigaciones Metalúrgicas Av. Gregorio del Amo 8, 28040 Madrid (Spain); Ward, M.; Cochrane, R.C.; Brydson, R.; Scott, A.J. [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom)
2013-10-15
Thermal etching is a method which is able to reveal and characterize grain boundaries, twins or dislocation structures and determine parameters such as grain boundary energies, surface diffusivities or study phase transformations in steels, intermetallics or ceramic materials. This method relies on the preferential transfer of matter away from grain boundaries on a polished sample during heating at high temperatures in an inert/vacuum atmosphere. The evaporation/diffusion of atoms at high temperatures results in the formation of grooves at the intersections of the planes of grain/twin boundaries with the polished surface. This work describes how the combined use of Focussed Ion Beam and Transmission Electron Microscopy can be used to characterize not only the grooves and their profile with the surface, but also the grain boundary line below the groove, this method being complementary to the commonly used scanning probe techniques. - Highlights: • Thermally etched low-carbon steel samples have been characterized by FIB/TEM • Grain boundary (GB) lines below the groove have been characterized in this way • Absence of ghost traces and large θ angle suggests that GB are not stationary but mobile • Observations correlate well with previous works and Mullins' investigations [22].
Emergent geometry, thermal CFT and surface/state correspondence
Gan, Wen-Cong; Shu, Fu-Wen; Wu, Meng-He
2017-09-01
We study a conjectured correspondence between any codimension-two convex surface and a quantum state (SS-duality for short). By applying thermofield double formalism to the SS-duality, we show that thermal geometries naturally emerge as a result of hidden quantum entanglement between two boundary CFTs. We therefore propose a general framework to emerge the thermal geometry from CFT at finite temperature, without knowing many details about the thermal CFT. As an example, the case of 2d CFT is considered. We calculate its information metric and show that it is either BTZ black hole or thermal AdS as expected.
Surface free energy for systems with integrable boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Goehmann, Frank [Fachbereich C-Physik, Bergische Universitaet Wuppertal, 42097 Wuppertal (Germany); Bortz, Michael [Department of Theoretical Physics, Australian National University, Canberra ACT 0200 (Australia); Frahm, Holger [Institut fuer Theoretische Physik, Universitaet Hannover, 30167 Hannover (Germany)
2005-12-16
The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions.
DYNAMIC SURFACE BOUNDARY-CONDITIONS - A SIMPLE BOUNDARY MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS
JUFFER, AH; BERENDSEN, HJC
1993-01-01
A simple model for the treatment of boundaries in molecular dynamics simulations is presented. The method involves the positioning of boundary atoms on a surface that surrounds a system of interest. The boundary atoms interact with the inner region and represent the effect of atoms outside the surfa
Formation of the thermal-driven boundary jet in an f-plane mesoscale basin
Institute of Scientific and Technical Information of China (English)
2008-01-01
The paper adopts an f-plane quasi-geostrophic inertial model without linearization to investigate the perturbation temperature, boundary jet and upwelling (downwelling) in an idealized rectangular basin, under the consideration of west side friction layer and heat conservation. There is net heat input on the upper surface and equal quality heat dissipation on the west boundary, and without heat exchange on other boundaries, then the heat is conservation in the whole basin. Results show that there is thermal front due to denseness of the perturbation temperature in the west side boundary, the perturbation pressure and flow field are reversal on the upper layer and bottom layer. On the bottom layer, the west coastal current is northward, and the maximum perturbation pressure center is on the west, however, on the upper layer, the east coastal current is southward, and the maximum perturbation pressure center is on the east. There is strong vertical flow in narrow western boundary layer, and also in the central zone. The effect of different upper thermal forcings is also studied, and it can be concluded that there is always temperature denseness and boundary jet near the west boundary, and the appearance of flow field reversal, but the distribution of vertical flow is rather different.
Quantum statistical correlations in thermal field theories: boundary effective theory
Bessa, A; de Carvalho, C A A; Fraga, E S
2010-01-01
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $\\phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $\\phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
DNS of stratified spatially-developing turbulent thermal boundary layers
Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth
2012-11-01
Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.
A Numerical Study of Sea-Spray Aerosol Motion in a Coastal Thermal Internal Boundary Layer
Liang, Tinghao; Yu, Xiping
2016-08-01
A three-dimensional large-eddy simulation model is applied to the study of sea-spray aerosol transport, dispersion and settling in the coastal thermal internal boundary layer (IBL) formed by cool airflow from the open sea to the warm land. An idealized situation with constant inflow from the ocean and constant heat flux over the coastal land is considered. The numerical results confirm that the thickness of the coastal thermal IBL increases with the distance from the coastline until the outer edge of the IBL penetrates into the capping inversion layer. The thickness increases also with time until a fully-developed thermal boundary layer is formed. In addition, the thickness of the coastal thermal IBL increases more rapidly when the heat flux over the land is greater. Existence of large-scale eddies within the thermal IBL is identified and the turbulence intensity within the thermal IBL is also found to be significantly higher than that above. It is also indicated that the vertical position of the maximum concentration does not occur at the surface but increases as sea-spray aerosols are transported inland. The vertical position of the maximum flux of sea-spray aerosols within the coastal thermal IBL is shown to coincide with that of the maximum vertical velocity fluctuations when the coastal thermal IBL is fully developed with increased distance in the airflow direction.
Thermal momentum distribution from path integrals with shifted boundary conditions
Giusti, Leonardo
2011-01-01
For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.
Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance
Asakuma, Yusuke; Yamamoto, Tsuyoshi
2016-10-01
The effective thermal conductivity of composites with ellipsoidal fillers is analyzed by using a homogenization method that is able to represent the microstructure precisely. In this study, various parameters such as the volume fraction, shape, and distribution of the filler are quantitatively estimated to understand the mechanisms of heat transfer in the composite. First, thermal boundary resistance between resin and filler is important for obtaining composites with higher thermal conductivity. Second, the anisotropy of the effective thermal conductivity arises from contact between filler in the case of ellipsoidal filler and produces lower thermal resistance. Finally, the filler network and thermal resistance are essential for the heat transfer in composites because the path of thermal conduction is improved by contact between neighboring filler particles.
Simulations of thermal conductance across tilt grain boundaries in graphene
Institute of Scientific and Technical Information of China (English)
Peng Wang; Bo Gong; Qiong Feng; Hong-Tao Wang
2012-01-01
Non-equilibrium molecular dynamics (MD) method was performed to simulate the thermal transportation process in graphene nanoribbons (GNRs).A convenient way was conceived to introduce tilt grain boundaries (GBs) into the graphene lattice by repetitive removing C atom rows along certain directions.Comprehensive MD simulations reveal that larger-angle GBs are effective thermal barriers and substantially reduce the average thermal conductivity of GNRs.The GB thermal conductivity is ～ 10 W.m-1·K-1 for a bicrystal GNR with a misorientation of 21.8°,which is ～97％ less than that of a prefect GNR with the same size.The total thermal resistance has a monotonic dependence on the density of the 5-7 defects along the GBs.A theoretical model is proposed to capture this relation and resolve the contributions by both the reduction in the phonon mean free path and the defect-induced thermal resistance.
Park, K.; Bayram, C.
2016-10-01
Here, we investigate the effects of thermal boundary resistance (TBR) and temperature-dependent thermal conductivity on the thermal resistance of GaN/substrate stacks. A combination of parameters such as substrates {diamond, silicon carbide, silicon, and sapphire}, thermal boundary resistance {10-60 m2K/GW}, heat source lengths {10 nm-20 μm}, and power dissipation levels {1-8 W} are studied by using technology computer-aided design (TCAD) software Synopsys. Among diamond, silicon carbide, silicon, and sapphire substrates, the diamond provides the lowest thermal resistance due to its superior thermal conductivity. We report that due to non-zero thermal boundary resistance and localized heating in GaN-based high electron mobility transistors, an optimum separation between the heat source and substrate exists. For high power (i.e., 8 W) heat dissipation on high thermal conductive substrates (i.e., diamond), the optimum separation between the heat source and substrate becomes submicron thick (i.e., 500 nm), which reduces the hotspot temperature as much as 50 °C compared to conventional multi-micron thick case (i.e., 4 μm). This is attributed to the thermal conductivity drop in GaN near the heat source. Improving the TBR between GaN and diamond increases temperature reduction by our further approach. Overall, we provide thermal management design guidelines for GaN-based devices.
Determination of thermal/dynamic characteristics of lava flow from surface thermal measurements
Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander; Tsepelev, Igor; Kovtunov, Dmitry
2016-04-01
Rapid development of ground based thermal cameras, drones and satellite data allows getting repeated thermal images of the surface of the lava flow. Available instrumentation allows getting a large amount of data during a single lava flow eruption. These data require development of appropriate quantitative techniques to link subsurface dynamics with observations. We present a new approach to assimilation of thermal measurements at lava's surface to the bottom of the lava flow to determine lava's thermal and dynamic characteristics. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. Using an adjoint method we develop a numerical approach to the mathematical problem based on the determination of the missing boundary condition and lava flow characteristics. Numerical results show that in the case of smooth input data lava temperature and velocity can be determined with a high accuracy. A noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. The proposed approach to assimilate measured data brings an opportunity to estimate thermal budget of the lava flow.
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan
2011-01-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
Three-Dimensional Waves in Tilt Thermal Boundary Layers
Institute of Scientific and Technical Information of China (English)
TAO Jian-Jun; YUAN Xiang-Jiang
2009-01-01
We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.
Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces
Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.
2008-07-01
Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.
Uranus evolution models with simple thermal boundary layers
Nettelmann, N.; Wang, K.; Fortney, J. J.; Hamel, S.; Yellamilli, S.; Bethkenhagen, M.; Redmer, R.
2016-09-01
The strikingly low luminosity of Uranus (Teff ≃ Teq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2-3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of 1 × solar. Finally, we allow for an equilibrium evolution (Teff ≃ Teq) that begun prior to the present day, which would therefore no longer require the current era to be a "special time" in Uranus' evolution. In this scenario, the thermal boundary leads to more rapid cooling of the outer envelope. When Teff ≃ Teq is reached, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones.
SurfCut: Free-Boundary Surface Extraction
Algarni, Marei
2016-09-15
We present SurfCut, an algorithm for extracting a smooth simple surface with unknown boundary from a noisy 3D image and a seed point. In contrast to existing approaches that extract smooth simple surfaces with boundary, our method requires less user input, i.e., a seed point, rather than a 3D boundary curve. Our method is built on the novel observation that certain ridge curves of a front propagated using the Fast Marching algorithm are likely to lie on the surface. Using the framework of cubical complexes, we design a novel algorithm to robustly extract such ridge curves and form the surface of interest. Our algorithm automatically cuts these ridge curves to form the surface boundary, and then extracts the surface. Experiments show the robustness of our method to errors in the data, and that we achieve higher accuracy with lower computational cost than comparable methods. © Springer International Publishing AG 2016.
Turbulent Boundary Layer Flow over Superhydrophobic Surfaces
2013-05-10
Figure 1 were a highly viscous fluid, such as honey , the boundary layer would be thick while if the fluid were water, a low-viscosity fluid, the boundary...drag has become even more important. In response to this need, and with the benefit of modern technology, the drag-reduction field is replete with...manufactured with “riblets,” small ridges on the order of fractions of millimeters, built-into the hull or skin that seek to reduce frictional drag. The
Uranus evolution models with simple thermal boundary layers
Nettelmann, N; Fortney, J J; Hamel, S; Yellamilli, S; Bethkenhagen, M; Redmer, R
2016-01-01
The strikingly low luminosity of Uranus (Teff ~ Teq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2--3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of $1\\tim...
Turbulent thermal boundary layers subjected to severe acceleration
Araya, Guillermo; Castillo, Luciano
2013-11-01
Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.
Meierbachtol, Toby W.; Harper, Joel T.; Johnson, Jesse V.; Humphrey, Neil F.; Brinkerhoff, Douglas J.
2015-03-01
The surface and basal boundary conditions exert an important control on the thermodynamic state of the Greenland Ice Sheet, but their representation in numerical ice sheet models is poorly constrained due to the lack of observations. Here we investigate a land-terminating sector of western Greenland and (1) quantify differences between new observations and commonly used boundary condition data sets and (2) demonstrate the impact of improved boundary conditions on simulated thermodynamics in a higher-order numerical flow model. We constrain near-surface temperature with measurements from two 20 m boreholes in the ablation zone and 10 m firn temperature from the percolation zone. We constrain basal heat flux using in situ measurement in a deep bedrock hole at the study area margin and other existing assessments. To assess boundary condition influences on simulated thermal-mechanical processes, we compare model output to multiple full-thickness temperature profiles collected in the ablation zone. Our observation-constrained basal heat flux is 30 mW m-2 less than commonly used representations. In contrast, measured near-surface temperatures are warmer than common surface temperature data sets by up to 15°C. Application of lower basal heat flux increases a model cold bias compared to the measured temperature profiles and causes frozen basal conditions across the ablation zone. Temperate basal conditions are reestablished by our warmer surface boundary. Warmer surface ice and firn can introduce several times more energy to the modeled ice mass than what is lost at the bed from reduced basal heat flux, indicating that the thermomechanical state of the ice sheet is highly sensitive to near-surface effects.
Energy Technology Data Exchange (ETDEWEB)
Barmak, Katayun [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 and Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Darbal, Amith [Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Ganesh, Kameswaran J.; Ferreira, Paulo J. [Materials Science and Engineering, The University of Texas at Austin, 1 University Station, Austin, Texas 78712 (United States); Rickman, Jeffrey M. [Department of Materials Science and Engineering and Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Sun, Tik; Yao, Bo; Warren, Andrew P.; Coffey, Kevin R., E-mail: kb2612@columbia.edu [Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States)
2014-11-01
The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined Fuchs–Sondheimer surface scattering model and Mayadas–Shatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p = 0.48 and a grain-boundary reflection coefficient of R = 0.26.
Variations of Boundary Surface in Chua’s Circuit
Directory of Open Access Journals (Sweden)
M. Guzan
2015-09-01
Full Text Available The paper compares the boundary surfaces with help of cross-sections in three projection planes, for the four changes of Chua’s circuit parameters. It is known that due to changing the parameters, the Chua’s circuit can be characterized in addition to a stable limit cycle also by one double scroll chaotic attractor, two single scroll chaotic attractors or other two stable limit cycles. Chua’s circuit can even start working as a binary memory. It is not known yet, how changes in parameters and conseqently in attractors in the circuit will affect the morphology of the boundary surface. The boundary surface separates the double scroll chaotic attractor from the stable limit cycle. In a variation of the parameters presented in this paper the boundary surface will separate even single scroll chaotic attractors from each other. Dividing the state space into regions of attractivity for different attractors, however, remains fundamentally the same.
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-05-01
Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and
Surface modes in sheared boundary layers over impedance linings
Brambley, E. J.
2013-08-01
Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.
Interactions between the thermal internal boundary layer and sea breezes
Energy Technology Data Exchange (ETDEWEB)
Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)
1997-10-01
In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)
Phononic heat transfer across an interface: thermal boundary resistance.
Persson, B N J; Volokitin, A I; Ueba, H
2011-02-02
We present a general theory of phononic heat transfer between two solids (or a solid and a fluid) in contact at a flat interface. We present simple analytical results which can be used to estimate the heat transfer coefficient (the inverse of which is usually called the 'thermal boundary resistance' or 'Kapitza resistance'). We present numerical results for the heat transfer across solid-solid and solid-liquid He contacts, and between a membrane (graphene) and a solid substrate (amorphous SiO(2)). The latter system involves the heat transfer between weakly coupled systems, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.
Interpolated lattice Boltzmann boundary conditions for surface reaction kinetics.
Walsh, S D C; Saar, M O
2010-12-01
This paper describes a method for implementing surface reaction kinetics in lattice Boltzmann simulations. The interpolated boundary conditions are capable of simulating surface reactions and dissolution at both stationary and moving solid-fluid and fluid-fluid interfaces. Results obtained with the boundary conditions are compared to analytical solutions for first-order and constant-flux kinetic surface reactions in a one-dimensional half space, as well as to the analytical solution for evaporation from the surface of a cylinder. Excellent agreement between analytical and simulated results is obtained for a wide range of diffusivities, lattice velocities, and surface reaction rates. The boundary model's ability to represent dissolution in binary fluid mixtures is demonstrated by modeling diffusion from a rising bubble and dissolution of a droplet near a flat plate.
Energy Technology Data Exchange (ETDEWEB)
Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)
2006-06-15
Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.
Thermal smoothing of rough surfaces in vacuo
Wahl, G.
1986-01-01
The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.
Multipole surface solitons in layered thermal media
Kartashov, Yaroslav V; Torner, Lluis
2008-01-01
We address the existence and properties of multipole solitons localized at a thermally insulating interface between uniform or layered thermal media and a linear dielectric. We find that in the case of uniform media, only surface multipoles with less than three poles can be stable. In contrast, we reveal that periodic alternation of the thermo-optic coefficient in layered thermal media makes possible the stabilization of higher order multipoles.
Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations
Xydou, A.; Parviainen, S.; Aicheler, M.; Djurabekova, F.
2016-09-01
By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature ({{T}\\text{m}} ). The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculated based on molecular dynamic simulations. This value agrees well with the experimental given in the Ashby maps for the creep in copper via Coble GB diffusion.
Xydou, A; Aicheler, M; Djurabekova, F
2016-01-01
By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature $(T_m)$. The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculate...
On orbit surfacing of thermal control surfaces
Racette, G. W.
1984-01-01
Substrates to be contaminated and contamination source were prepared. Additional information on paint spray method apparatus was obtained. Silver teflon second surface mirror samples and S 13 GLO paint samples were mounted, photographed under the microscope and measured to establish baseline data. Atomic oxygen cleaning and spray painting are being considered. Electrostatic powder and plasma spray coating systems appear to have serious drawbacks.
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
The Onset of Convection in an Unsteady Thermal Boundary Layer in a Porous Medium
Directory of Open Access Journals (Sweden)
Biliana Bidin
2016-12-01
Full Text Available In this study, the linear stability of an unsteady thermal boundary layer in a semi-infinite porous medium is considered. This boundary layer is induced by varying the temperature of the horizontal boundary sinusoidally in time about the ambient temperature of the porous medium; this mimics diurnal heating and cooling from above in subsurface groundwater. Thus if instability occurs, this will happen in those regions where cold fluid lies above hot fluid, and this is not necessarily a region that includes the bounding surface. A linear stability analysis is performed using small-amplitude disturbances of the form of monochromatic cells with wavenumber, k. This yields a parabolic system describing the time-evolution of small-amplitude disturbances which are solved using the Keller box method. The critical Darcy-Rayleigh number as a function of the wavenumber is found by iterating on the Darcy-Rayleigh number so that no mean growth occurs over one forcing period. It is found that the most dangerous disturbance has a period which is twice that of the underlying basic state. Cells that rotate clockwise at first tend to rise upwards from the surface and weaken, but they induce an anticlockwise cell near the surface at the end of one forcing period, which is otherwise identical to the clockwise cell found at the start of that forcing period.
Directory of Open Access Journals (Sweden)
Oluwole Daniel Makinde
2011-08-01
Full Text Available The present paper is concerned with the analysis of inherent irreversibility in hydromagnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat plate under the influence of thermal radiation and Newtonian heating. Using local similarity solution technique and shooting quadrature, the velocity and temperature profiles are obtained numerically and utilized to compute the entropy generation number. The effects of magnetic field parameter, Brinkmann number, the Prandtl number, variable viscosity parameter, radiation parameter and local Biot number on the fluid velocity profiles, temperature profiles, local skin friction and local Nusselt number are presented. The influences of the same parameters and the dimensionless group parameter on the entropy generation rate in the flow regime and Bejan number are calculated, depicted graphically and discussed quantitatively. It is observed that the peak of entropy generation rate is attained within the boundary layer region and plate surface act as a strong source of entropy generation and heat transfer irreversibility.
Effects of displacement boundary conditions on thermal deformation in thermal stress problems
Directory of Open Access Journals (Sweden)
S. Y. Kwak
2013-05-01
Full Text Available Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions because most static stable mechanical structures are working under already prescribed displacement boundary conditions. In all of the computational analysis of solving a system of algebraic equations, such as FEM (Finite Element Method, three translational and three rotational degrees of freedom (DOF should be constrained (by applying DBCs before solving the system of algebraic equation in order to prevent rigid body motions of the analysis results (singular problem. However, it is very difficult for an inexperienced engineer or designer to apply proper DBCs in the case of thermal stress analysis where no prescribed DBCs or constraints exist, for example in water quenching for heat treatment. Moreover, improper DBCs cause incorrect solutions in thermal stress analysis, such as stress concentration or unreasonable deformation phases. To avoid these problems, we studied a technique which performs the thermal stress analysis without any DBCs; and then removes rigid body motions from the deformation results in a post process step as the need arises. The proposed technique makes it easy to apply DBCs and prevent the error caused by improper DBCs. We proved it was mathematically possible to solve a system of algebraic equations without a step of applying DBCs. We also compared the analysis results with those of a traditional procedure for real castings.
Studies of stability of blade cascade suction surface boundary layer
Institute of Scientific and Technical Information of China (English)
DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin
2007-01-01
Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.
Body surface adaptations to boundary-layer dynamics.
Videler, J J
1995-01-01
Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, scales, riblets and roughness may influence the flow velocity gradient, the type of flow and the thickness of the boundary layer around animals, and may seriously affect their drag in a positive or negative way. The long-chain polymers found in mucus decrease the pressure gradient and considerably reduced drag due to friction. The effect is probably due to channelling of the flow particles in the direction of the main flow, resulting in a reduction of turbulence. Compliant surfaces could probably reduce drag by equalising and distributing pressure pulses. However, the existing evidence that drag reduction actually occurs is not convincing. There is no indication that instantaneous heating, reducing the viscosity in the boundary layer, is used by animals as a drag-reducing technique. Small longitudinal ridges on rows of scales on fish can reduce shear stress in the boundary by a maximum of 10% compared with the shear stress of a smooth surface. The mechanism is based on the impedance of cross flow under well-defined conditions. The effect has been visualized with the use of particle image velocimetry techniques. The function of the swords and spears of several fast, pelagic, predatory fish species is still enigmatic. The surface structure of the sword of a swordfish is shown to be both rough and porous. The height of the roughness elements on the tip of the sword is close to the critical value for the induction of a laminar-to-turbulent flow transition at moderate cruising speeds. A flow tank is described that is designed to visualize the effects of surface imperfections on flow in the boundary layer in direct comparison with a smooth flat wall. The flow in a 1 m long, 10 cm
Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru
2011-01-01
Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated...
Boundary conditions for soft glassy flows: slippage and surface fluidization.
Mansard, Vincent; Bocquet, Lydéric; Colin, Annie
2014-09-28
We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.
Body surface adaptations to boundary-layer dynamics
Videler, J.J.
1995-01-01
Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, sca
Heat Flow for the Minimal Surface with Plateau Boundary Condition
Institute of Scientific and Technical Information of China (English)
Kung Ching CHANG; Jia Quan LIU
2003-01-01
The heat flow for the minimal surface under Plateau boundary condition is defined to be aparabolic variational inequality, and then the existence, uniqueness, regularity, continuous dependenceon the initial data and the asymptotics are studied. It is applied as a deformation of the level sets inthe critical point theory.
Body surface adaptations to boundary-layer dynamics
Videler, J.J.
1995-01-01
Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,
Convective boundary layers driven by nonstationary surface heat fluxes
Van Driel, R.; Jonker, H.J.J.
2011-01-01
In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change
D Surface Generation from Aerial Thermal Imagery
Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.
2015-12-01
Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.
Hydrodynamic boundary condition of water on hydrophobic surfaces.
Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian
2013-05-01
By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.
Thermal Tomography of Asteroid Surface Structure
Harris, Alan W.; Drube, Line
2016-12-01
Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.
Tuning the thermal conductivity of silicon carbide by twin boundary: a molecular dynamics study
Liu, Qunfeng; Luo, Hao; Wang, Liang; Shen, Shengping
2017-02-01
Silicon carbide (SiC) is a semiconductor with excellent mechanical and physical properties. We study the thermal transport in SiC by using non-equilibrium molecular dynamics simulations. The work is focused on the effects of twin boundaries and temperature on the thermal conductivity of 3C-SiC. We find that compared to perfect SiC, twinned SiC has a markedly reduced thermal conductivity when the twin boundary spacing is less than 100 nm. The Si-Si twin boundary is more effective to phonon scattering than the C-C twin boundary. We also find that the phonon scattering effect of twin boundary decreases with increasing temperature. Our findings provide insights into the thermal management of SiC-based electronic devices and thermoelectric applications.
A unified slip boundary condition for flow over a surface
Thalakkottor, Joseph John
2015-01-01
Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.
Viscous boundary lubrication of hydrophobic surfaces by mucin.
Yakubov, Gleb E; McColl, James; Bongaerts, Jeroen H H; Ramsden, Jeremy J
2009-02-17
The lubricating behavior of the weakly charged short-side-chain glycoprotein mucin "Orthana" (Mw=0.55 MDa) has been investigated between hydrophobic and hydrophilic PDMS substrates using soft-contact tribometry. It was found that mucin facilitates lubrication between hydrophobic PDMS surfaces, leading to a 10-fold reduction in boundary friction coefficient for rough surfaces. The presence of mucin also results in a shift of the mixed lubrication regime to lower entrainment speeds. The observed boundary lubrication behavior of mucin was found to depend on the bulk concentration, and we linked this to the structure and dynamics of the adsorbed mucin films, which are assessed using optical waveguide light spectroscopy. We observe a composite structure of the adsorbed mucin layer, with its internal structure governed by entanglement. The film thickness of this adsorbed layer increases with concentration, while the boundary friction coefficient for rough surfaces was found to be inversely proportional to the thickness of the adsorbed film. This link between lubrication and structure of the film is consistent with a viscous boundary lubrication mechanism, i.e., a thicker adsorbed film, at a given sliding speed, results in a lower local shear rate and, hence, in a lower local shear stress. The estimated local viscosities of the adsorbed layer, derived from the friction measurements and the polymer layer density, are in agreement with each other.
Pekker, Leonid
2015-01-01
In this paper we propose new boundary conditions at the hot walls with thermionic electron emission for two-temperature thermal arc models. In the derived boundary conditions the walls are assumed to be made from refractory metals and that the erosion of the wall is small and, therefore, is not taken into account in the model. In these boundary conditions the plasma sheath formed at the electrode is considered as the interface between the plasma and the wall. The derived boundary conditions allow the calculation of the heat flux to the walls from the plasma and consequently the thermionic electron current that makes the two temperature thermal model self consistent.
MHD Natural Convection with Convective Surface Boundary Condition over a Flat Plate
Directory of Open Access Journals (Sweden)
Mohammad M. Rashidi
2014-01-01
Full Text Available We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD heat and mass transfer flow of a steady viscous incompressible fluid over a flat plate. By using the one parameter group method, similarity transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead of the usual boundary conditions of constant surface temperature or constant heat flux. In addition it is assumed that viscosity, thermal conductivity, and concentration diffusivity vary linearly. Our study indicates that a similarity solution is possible if the convective heat transfer related to the hot fluid on the lower surface of the plate is directly proportional to (x--1/2 where x- is the distance from the leading edge of the solid surface. Numerical solutions of the ordinary differential equations are obtained by the Keller Box method for different values of the controlling parameters associated with the problem.
Thermal Tomography of Asteroid Surface Structure
Harris, Alan
2016-01-01
Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Eviden...
Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg
2016-06-01
We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.
Metallic superhydrophobic surfaces via thermal sensitization
Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.
2017-06-01
Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.
Excitation of surface plasmons at the boundary of overdense plasma
Institute of Scientific and Technical Information of China (English)
Wang Liang; Cao Jin-Xiang; Wang Yan; Niu Tian-Ye; Liu Lei; Lü You
2008-01-01
The excitation of surface plasmons (SPs) with a strip grating at the boundary of an unmagnetized overdense plasma has been investigated theoretically and experimentally. An incident electromagnetic radiation was p-polarized at the frequency of 5 GHz. Experiments showed that when the plasma density was four times higher than the critical density with the grating present, and the SPs could be excited at the boundary of the overdense plasma. Contribution of the glass layer in the formation of the SP dispersion relation was examined. When the incident electromagnetic radiation was coupled into SPs the coupling order with the effective permittivity was simulated qualitatively. We find that the existence of SPs at the boundary of overdense plasma indicates that the reflection coefficient of the incident electromagnetic radiation reaches its minimum and even becomes total absorption. In this work the plasma density was diagnosed by a Langmuir double probe.
Thermal radiation from magnetic neutron star surfaces
Pérez-Azorin, J F; Pons, J A
2005-01-01
We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).
Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe
2015-01-01
The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...
The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device
2011-11-01
IMECE2011-65562 THE IMPACT OF GaN /SUBSTRATE THERMAL BOUNDARY RESISTANCE ON A HEMT DEVICE Horacio C. Nochetto General Technical Services, LLC...USA ABSTRACT The present work uses finite element thermal simulations of Gallium Nitride High Electron Mobility Transistors ( GaN HEMTs ) to...a challenging situation for thermal management. There have been several past efforts at thermally modeling the GaN HEMT device. In the series of
A Boundary Condition for Simulation of Flow Over Porous Surfaces
Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.
2001-01-01
A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.
Cutanda-Henríquez, Vicente; Juhl, Peter Møller
2013-11-01
The formulation presented in this paper is based on the boundary element method (BEM) and implements Kirchhoff's decomposition into viscous, thermal, and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses are solved using extended boundary conditions that assume (i) negligible temperature fluctuations at the boundary and (ii) normal and tangential matching of the boundary's particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers as is the case with the existing finite element method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions.
Thermally driven grain boundary migration and melting in Cu.
Li, Y H; Wang, L; Li, B; E, J C; Zhao, F P; Zhu, J; Luo, S N
2015-02-07
With molecular dynamics simulations, we systematically investigate melting of a set of Σ3〈110〉70.53° tilt grain boundaries (GB) in Cu bicrystals, including coherent twin boundaries (CTBs), 12 asymmetric tilt grain boundaries (ATGBs), and symmetric incoherent twin boundaries (SITBs), in the order of increasing length weight of SITB or GB energy. ATGBs decompose into CTBs and SITBs, which migrate and coalesce as a result of internal stress relaxation. GBs can be superheated or premelted, and GB melting temperature decreases exponentially with increasing SITB weight, owing to the systematics in GB microstructure. GB melting nucleates at disordered CTB-SITB junctions, and grows along SITBs and then into grain interiors, with the solid-liquid interfaces preferentially aligned with {111}.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2013-01-01
The formulation presented in this paper is based on the Boundary Element Method (BEM) and implements Kirchhoff’s decomposition into viscous, thermal and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses ar...
Interface Shape and Marangoni Effect Around a Bubble Within the Thermal Boundary Layer
Institute of Scientific and Technical Information of China (English)
X.F.Peng; J.M.Ochterbeck; 等
1998-01-01
The characteristics of a vapor bubble within the thermal boundary layer were theoretically analyzed.The Physical models accounting for the variation of interfacial tension and fluid density with temperature were propsed to investigate bubble interface aspects and the fluid flow around the bubble.The analyses demonstrated that the variation in interfacial tension results in veriations in the liquid-vapor interface shpae and bubble dynamics,which may play s significant role in the departure process of a vapor bubble from a heated wall surface,Increasing temperature gradients in the boundary layer and the gravitational field induce a contact line contraction and correspondingly promotes bubble departure.The simulation of liquid flow around the bubble shows that natural convection dominates the flow for earth conditions;however,the thermocapillary forces provide the principal catalyst for bubble departure in a microgravity environment.The results indicate that both the vapor bubble contraction and the Marangoni flow may increase the heat transfer around the vapor bubble and may cause the bubble to move away from the heating surface,further increasing heat transfer.
2D BEM modeling of a singular thermal diffusion free boundary problem with phase change
Nikolayev, Vadim
2016-01-01
We report a 2D Boundary Element Method (BEM) modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated pool boiling. The transient heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater. The heat generated homogeneously in the heater causes evaporation, i. e. the bubble growth. A singularity exists at the point of the triple (liquid-vapor-solid) contact. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater, thus triggering the boiling crisis (Critical Heat Flux phenomenon).
Turbulent boundary layer measurements over high-porosity surfaces
Efstathiou, Christoph; Luhar, Mitul
2016-11-01
Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.
Directory of Open Access Journals (Sweden)
Mohd Hafizi Mat Yasin
2013-01-01
Full Text Available We present the numerical investigation of the steady mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium saturated by a nanofluid. The governing partial differential equations are reduced to the ordinary differential equations, using the similarity transformations. The similarity equations are solved numerically for three types of metallic or nonmetallic nanoparticles, namely, copper (Cu, alumina (Al2O3, and titania (TiO2, in a water-based fluid to investigate the effect of the solid volume fraction or nanoparticle volume fraction parameter φ of the nanofluid on the flow and heat transfer characteristics. The skin friction coefficient and the velocity and temperature profiles are presented and discussed.
Evolution of vortex-surface fields in transitional boundary layers
Yang, Yue; Zhao, Yaomin; Xiong, Shiying
2016-11-01
We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.
Spatial heterogeneity of ocean surface boundary conditions under sea ice
Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues
2016-06-01
The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.
The effects of phase boundary induced layering on the Earth's thermal history
Butler, S. L.
2009-12-01
The convective Urey ratio is equal to the instantaneous heating generated in the Earth's mantle by radioactive decay divided by the contribution of convection in Earth's mantle to Earth's surface heat flow. The measured heat flow at the Earth's surface as well as geochemical models for radioactive abundances give relatively low modern-day convective Urey ratios of roughly 0.4 while early parameterized modelling studies that treated the internal heating rate as a free parameter indicated relatively high modern-day Urey ratios of at least 0.6. Seismic tomographic images of subducting slabs and numerical simulations of convection in Earth's mantle indicate that convection is partially layered by the endothermic phase transition at 660-km depth in the mantle. In numerical simulations, the 660-km depth phase transition also leads to increased time-dependence of the mantle flow and mantle `avalanches'. Incomplete layering has been proposed as a mechanism that could store heat in Earth's lower mantle early in Earth's evolution and release it at later times when the degree of layering decreases thus allowing for the modern-day surface heat flow with a relatively low internal heating rate. In this contribution, the Earth's thermal history is simulated using both dynamic models of mantle circulation that include the effects of the mantle phase transitions and parametrized models of mantle heat transfer. In particular, we will show that for dynamic models with Earth-like parameters describing the 660-km-depth phase boundary that, although the mass flux at 660-km depth is partially impeded and avalanching takes place, the long-term evolution of the surface heat flow is very similar to models with no phase boundary induced layering and hence incomplete mantle layering is not a likely solution of the mantle heat flow paradox.
LIMIT BEHAVIOUR OF SOLUTIONS TO EQUIVALUED SURFACE BOUNDARY VALUE PROBLEM FOR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
LI Fengquan
2002-01-01
In this paper, we discuss the limit behaviour of solutions to equivalued surface boundary value problem for parabolic equations when the equivalued surface boundary shrinks to a point and the space dimension of the domain is two or more.
Investigation of Microstructural Changes of Type-II Boundary by Thermal Aging
Energy Technology Data Exchange (ETDEWEB)
Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2014-05-15
They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic σ-γ transformation at the base metal in the elevated austenitic temperature range. Moreover, many other crack growth experiments conclude that the type-II boundary and fusion boundary region of the weld metal are susceptible to SCC. Hou et al. investigate the microstructure and mechanical properties of the DMW of Alloy 182 and low-alloy steel A533 Gr. B. Using the tensile test, they found that type-II boundaries are high angle grain boundaries, which are more susceptible to SCC than low-angle grain boundaries. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. So thermal aging effect by long-term operation, and existence of type-II boundary must be considered to evaluate the susceptibility to SCC of structural materials. Purpose of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type-II boundary and fusion boundary region of the DMW between Alloy 152 and low-alloy steel A533 Gr. B in order to investigate the effect of thermal aging influence. Type-II boundaries are observed in the whole specimen, which seem to be arranged and then shifted away from fusion boundary as the heat treatment is applied. Increasing low-angle grain boundaries were observed as the heat treatment
Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.
2012-01-01
A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.
Thermal characterization of nanoporous 'black silicon' surfaces
Nichols, Logan; Duan, Wenqi; Toor, Fatima
2016-09-01
In this work we characterize the thermal conductivity properties of nanoprous `black silicon' (bSi). We fabricate the nanoporous bSi using the metal assisted chemical etching (MACE) process utilizing silver (Ag) metal as the etch catalyst. The MACE process steps include (i) electroless deposition of Ag nanoparticles on the Si surface using silver nitrate (AgNO3) and hydrofluoric acid (HF), and (ii) a wet etch in a solution of HF and hydrogen peroxide (H2O2). The resulting porosity of bSi is dependent on the ratio of the concentration of HF to (HF + H2O2); the ratio is denoted as rho (ρ). We find that as etch time of bSi increases the thermal conductivity of Si increases as well. We also analyze the absorption of the bSi samples by measuring the transmission and reflection using IR spectroscopy. This study enables improved understanding of nanoporous bSi surfaces and how they affect the solar cell performance due to the porous structures' thermal properties.
Transient thermal response of turbulent compressible boundary layers
DEFF Research Database (Denmark)
Li, Hongwei; Nalim, M. Razi; Merkle, Charles L.
2011-01-01
and Smith, and the turbulent Prandtl number formulation originally developed by Kays and Crawford. The governing differential equations are discretized with the Keller-box method. The numerical accuracy is validated through grid-independence studies and comparison with the steady state solution......-dimensional semi-infinite flat plate. The compressible Reynolds-averaged boundary layer equations are transformed into incompressible form through the Dorodnitsyn-Howarth transformation and then solved with similarity transformations. Turbulence is modeled using a two-layer eddy viscosity model developed by Cebeci....... In turbulent flow as in laminar, the transient heat transfer rates are very different from that obtained from quasi-steady analysis. It is found that the time scale for response of the turbulent boundary layer to far-field temperature changes is 40% less than for laminar flow, and the turbulent local Nusselt...
Seta, Takeshi
2013-06-01
In the present paper, we apply the implicit-correction method to the immersed-boundary thermal lattice Boltzmann method (IB-TLBM) for the natural convection between two concentric horizontal cylinders and in a square enclosure containing a circular cylinder. The Chapman-Enskog multiscale expansion proves the existence of an extra term in the temperature equation from the source term of the kinetic equation. In order to eliminate the extra term, we redefine the temperature and the source term in the lattice Boltzmann equation. When the relaxation time is less than unity, the new definition of the temperature and source term enhances the accuracy of the thermal lattice Boltzmann method. The implicit-correction method is required in order to calculate the thermal interaction between a fluid and a rigid solid using the redefined temperature. Simulation of the heat conduction between two concentric cylinders indicates that the error at each boundary point of the proposed IB-TLBM is reduced by the increment of the number of Lagrangian points constituting the boundaries. We derive the theoretical relation between a temperature slip at the boundary and the relaxation time and demonstrate that the IB-TLBM requires a small relaxation time in order to avoid temperature distortion around the immersed boundary. The streamline, isotherms, and average Nusselt number calculated by the proposed method agree well with those of previous numerical studies involving natural convection. The proposed IB-TLBM improves the accuracy of the boundary conditions for the temperature and velocity using an adequate discrete area for each of the Lagrangian nodes and reduces the penetration of the streamline on the surface of the body.
Ionic Segregation on Grain Boundaries in Thermally Grown Alumina Scales
Energy Technology Data Exchange (ETDEWEB)
Pint, Bruce A [ORNL; Unocic, Kinga A [ORNL
2012-01-01
This study first examined segregation behaviour in the alumina scale formed after 100 h at 1100 C on bare and MCrAlYHfSi-coated single-crystal superalloys with {approx}10 ppma La and Y. For the bare superalloy, Hf and Ti were detected on the grain boundaries of the inner columnar alumina layer. Increasing the oxidation temperature to 1200 C for 2 h did not change the segregation behavior. With the bond coating, both Y and Hf were segregated to the grain boundaries as expected. However, there was evidence of Ti-rich oxide particles near the gas interface suggesting that Ti diffused from the superalloy through the coating. To further understand these segregation observations with multiple dopants, other alumina-forming systems were examined. Alumina scale grain boundary co-segregation of Ti with Y is common for FeCrAl alloys. Co-segregation of Hf and Ti was observed in the scale formed on co-doped NiAl. No La segregation was detected in the scale formed on NiCrAl with only a 19 ppma La addition, however, the scale was adherent.
Boundary layer separation and reattachment detection on airfoils by thermal flow sensors.
Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter
2012-10-24
A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model
Chen, Q.; Zhang, X. B.; Zhang, J. F.
2014-03-01
In this paper, a bilinear interpolation finite-difference scheme is proposed to handle the Neumann boundary condition with nonequilibrium extrapolation method in the thermal lattice Boltzmann model. The temperature value at the boundary point is obtained by the finite-difference approximation, and then used to determine the wall temperature via an extrapolation. Our method can deal with the boundaries with complex geometries, motions and gradient boundary conditions. Several simulations are performed to examine the capacity of this proposed boundary method. The numerical results agree well with the analytical solutions. When compared with a representative boundary method, an improved performance is observed. The results also show that the proposed scheme together with nonequilibrium extrapolation method has second-order accuracy.
Effects of thermal boundary conditions on the joule heating of electrolyte in a microchannel
Institute of Scientific and Technical Information of China (English)
M Y ABDOLLAHZADEH JAMALABADI; J H PARK; M M RASHIDI; J M CHEN
2016-01-01
Joule heating effects on a slit microchannel filled with electrolytes are comprehensively investigated with emphasis on the thermal boundary conditions. An accurate analytical expression is proposed for the electrical field and the temperature distributions due to Joule heating are numerically obtained from the energy balance equation. The results show that a thermal design based on the average electric potential difference between electrodes can cause severe underestimation of Joule heating. In addition, the parame- tric study of thermal boundary conditions gives us an insight into the best cooling scenario for microfluidic devices. Other significant thermal characteristics, including Nusselt number, thermophoretic force, and entropy generation, are discussed as well. This study will provide useful information for the optimization of a bioMEMS device in relation to the thermal aspect.
Institute of Scientific and Technical Information of China (English)
MALIK Pravin; KADOLI Ravikiran; GANESAN N.
2007-01-01
Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer equation.
Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir
2012-01-01
It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.
Boundary conditions for free surface inlet and outlet problems
Taroni, M.
2012-08-10
We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.
Directory of Open Access Journals (Sweden)
SUBBARAO ANNASAGARAM
2016-01-01
Full Text Available The laminar boundary layer flow and heat transfer of Casson non-Newtonian fluid from an inclined (solar collector plate in the presence of thermal and hydrodynamic slip conditions is analysed. The inclined plate surface is maintained at a constant temperature. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite-difference scheme. Increasing velocity slip induces acceleration in the flow near the inclined plate surface. Increasing velocity slip consistently enhances temperatures throughout the boundary layer regime. An increase in thermal slip parameter strongly decelerates the flow and also reduces temperatures in the boundary layer regime. An increase in Casson rheological parameter acts to elevate considerably the velocity and this effect is pronounced at higher values of tangential coordinate. Temperatures are however very slightly decreased with increasing values of Casson rheological parameter.
Finite-temperature effective boundary theory of the quantized thermal Hall effect
Nakai, Ryota; Ryu, Shinsei; Nomura, Kentaro
2016-02-01
A finite-temperature effective free energy of the boundary of a quantized thermal Hall system is derived microscopically from the bulk two-dimensional Dirac fermion coupled with a gravitational field. In two spatial dimensions, the thermal Hall conductivity of fully gapped insulators and superconductors is quantized and given by the bulk Chern number, in analogy to the quantized electric Hall conductivity in quantum Hall systems. From the perspective of effective action functionals, two distinct types of the field theory have been proposed to describe the quantized thermal Hall effect. One of these, known as the gravitational Chern-Simons action, is a kind of topological field theory, and the other is a phenomenological theory relevant to the Strěda formula. In order to solve this problem, we derive microscopically an effective theory that accounts for the quantized thermal Hall effect. In this paper, the two-dimensional Dirac fermion under a static background gravitational field is considered in equilibrium at a finite temperature, from which an effective boundary free energy functional of the gravitational field is derived. This boundary theory is shown to explain the quantized thermal Hall conductivity and thermal Hall current in the bulk by assuming the Lorentz symmetry. The bulk effective theory is consistently determined via the boundary effective theory.
Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall
Washuta, Nathan; Duncan, James H
2016-01-01
The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...
Characterisation of net type thermal insulators at 1.8 K low boundary temperature
Peón-Hernández, G; Szeless, Balázs
1997-01-01
The Large Hadron Collider's superconducting magnets are cooled by superfluid helium at 1.8 K and housed in cryostats that minimise the heat inleak to this temperature level by extracting heat at 70 and 5 K. In the first generation of prototype cryostats, the radiative heat to the 1.8 K temperature level accounted for 70 % of the total heat inleak. An alternative to enhance the cryostat thermal performance incorporates a thermalised radiation screen at 5 K. In order to avoid contact between the 5 K radiation screen and the cold mass, insulators are placed between both surfaces. Sets of commercial fibre glass nets are insulator candidates to minimise the heat inleak caused by a accidental contact between the two temperature levels. A model to estimate their performance is presented. A set-up to thermally characterise them has been designed and is also described in the paper. Finally, results as a function of the number of the spacer nets, the boundary temperatures and the compressive force in the spacer are pre...
A Cautionary Note on the Thermal Boundary Layer Similarity Scaling for the Turbulent Boundary Layer
Weyburne, David
2016-01-01
Wang and Castillo have developed empirical parameters for scaling the temperature profile of the turbulent boundary layer flowing over a heated wall in the paper X. Wang and L. Castillo, J. Turbul., 4, 1(2003). They presented experimental data plots that showed similarity type behavior when scaled with their new scaling parameters. However, what was actually plotted, and what actually showed similarity type behavior, was not the temperature profile but the defect profile formed by subtracting the temperature in the boundary layer from the temperature in the bulk flow. We show that if the same data and same scaling is replotted as just the scaled temperature profile, similarity is no longer prevalent. This failure to show both defect profile similarity and temperature profile similarity is indicative of false similarity. The nature of this false similarity problem is discussed in detail.
Bioadhesion to model thermally responsive surfaces
Andrzejewski, Brett Paul
This dissertation focuses on the characterization of two surfaces: mixed self-assembled monolayers (SAMs) of hexa(ethylene glycol) and alkyl thiolates (mixed SAM) and poly(N-isopropylacrylamide) (PNIPAAm). The synthesis of hexa(ethylene gylcol) alkyl thiol (C11EG 6OH) is presented along with the mass spectrometry and nuclear magnetic resonance results. The gold substrates were imaged prior to SAM formation with atomic force micrscopy (AFM). Average surface roughness of the gold substrate was 0.44 nm, 0.67 nm, 1.65 nm for 15, 25 and 60 nm gold thickness, respectively. The height of the mixed SAM was measured by ellipsometry and varied from 13 to 28°A depending on surface mole fraction of C11EG6OH. The surface mole fraction of C11EG6OH for the mixed SAM was determined by X-ray photoelectron spectroscopy (XPS) with optimal thermal responsive behavior in the range of 0.4 to 0.6. The mixed SAM surface was confirmed to be thermally responsive by contact angle goniometry, 35° at 28°C and ˜55° at 40°C. In addition, the mixed SAM surfaces were confirmed to be thermally responsive for various aqueous mediums by tensiometry. Factors such as oxygen, age, and surface mole fraction and how they affect the thermal responsive of the mixed SAM are discussed. Lastly, rat fibroblasts were grown on the mixed SAM and imaged by phase contrast microscopy to show inhibition of attachment at temperatures below the molecular transition. Qualitative and quantitative measurements of the fibroblast adhesion data are provided that support the hypothesis of the mixed SAM exhibits a dominantly non-fouling molecular conformation at 25°C whereas it exhibits a dominantly fouling molecular conformation at 40°C. The adhesion of six model proteins: bovine serum albumin, collagen, pyruvate kinase, cholera toxin subunit B, ribonuclease, and lysozyme to the model thermally responsive mixed SAM were examined using AFM. All six proteins possessed adhesion to the pure component alkyl thiol, in
Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces
2014-08-31
involving carbon materials. Determined scaling laws for conductivity of carbon nanotube networks [11]. Modified the DMM to predict hBD at metal–graphite...111, 084310 (2012). 11A. N. Volkov and L. V. Zhigilei, “Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials...instead from an algebraic expression that accurately reproduces the MD results but with negligible computational expense. This permitted a large
Numerical and Experimental Models of the Thermally Stratified Boundary Layer
Directory of Open Access Journals (Sweden)
Michalcová Vladimíra
2016-12-01
Full Text Available The article describes a change of selected turbulent variables in the surroundings of a flow around thermally loaded object. The problem is solved numerically in the software Ansys Fluent using a Transition SST model that is able to take into account the difference between high and low turbulence at the interface between the wake behind an obstacle and the free stream. The results are verified with experimental measurements in the wind tunnel.
Energy Technology Data Exchange (ETDEWEB)
van Dongen, M.E.H.; van Eck, R.B.P.; Hagebeuk, H.J.L.; Hirschberg, A.; Hutten-Mansfeld, A.C.B.; Jager, H.J.; Willems, J.F.H. (Technische Hogeschool Eindhoven (Netherlands))
1981-08-01
A model for the unsteady thermal boundary-layer development at the end wall of a shock tube, in partially ionized atmospheric argon, is proposed. Consideration is given to ionization and thermal relaxation processes. In order to obtain some insight into the influence of the relaxation processes on the structure of the boundary layer, a study of the frozen and equilibrium limits has been carried out. The transition from a near-equilibrium situation in the outer part of the boundary layer towards a frozen situation near the wall is determined numerically. Experimental data on the electron and atom density profiles obtained from laser schlieren and absorption measurements are presented. A quantitative agreement between theory and experiment is found for a moderate degree of ionization (3%). At a higher degree of ionization the structure of the boundary layer is dominated by the influence of radiation cooling, which has been neglected in the model.
Directory of Open Access Journals (Sweden)
Li Ming
2013-03-01
Full Text Available In this study, a single beam model has been developed to analyze the thermal vibration of Single-Walled Carbon Nanotubes (SWCNT. The nonlocal elasticity takes into account the effect of small size into the formulation and the boundary condition. With exact solution of the dynamic governing equations, the thermal-vibrational characteristics of a cantilever SWCNT are obtained. Influence of nonlocal small scale effects, temperature change and vibration modes of the CNT on the frequency are investigated. The present study shows that the additional boundary conditions from small scale do not change natural frequencies at different temperature change. Thus for simplicity, one can apply the local boundary condition to replace the small scale boundary condition.
Dong, Huicong; Wen, Bin; Melnik, Roderick
2014-11-13
A theoretical model for describing effective thermal conductivity (ETC) of nanocrystalline materials has been proposed, so that the ETC can be easily obtained from its grain size, single crystal thermal conductivity, single crystal phonon mean free path (PMFP), and the Kaptiza thermal resistance. In addition, the relative importance between grain boundaries (GBs) and size effects on the ETC of nanocrystalline diamond at 300 K has been studied. It has been demonstrated that with increasing grain size, both GBs and size effects become weaker, while size effects become stronger on thermal conductivity than GBs effects.
Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface
Directory of Open Access Journals (Sweden)
S. Siddiqa
2017-01-01
Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.
Multiple time-dependent coefficient identification thermal problems with a free boundary
Hussein, MS; Lesnic, D.; Ivanchov, MI; Snitko, HA
2016-01-01
Multiple time-dependent coefficient identification thermal problems with an unknown free boundary are investigated. The difficulty in solving such inverse and ill-posed free boundary problems is amplified by the fact that several quantities of physical interest (conduction, convection/advection and reaction coefficients) have to be simultaneously identified. The additional measurements which render a unique solution are given by the heat moments of various orders together with a Stefan bounda...
Methane Lunar Surface Thermal Control Test
Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.
2012-01-01
NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.
Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru
2011-06-01
Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated at a constant wall temperature to investigate the effects of thermal convection under the effects of freestream turbulence. For both cases, the turbulence intensity in the freestream is Tu = 1.3% ˜ 2.4%, and the integral length scale of freestream turbulence, L∞, is much smaller than the boundary layer thickness δ, i.e., L∞/δ ≪1. The Reynolds numbers Reθ based on the momentum thickness and freestream speed U∞ are Reθ = 560, 1100, 1310, and 2330 in isothermal boundary layers without grid turbulence. Instantaneous velocities, U and V, and instantaneous temperature T are simultaneously measured using a hot-wire anemometry and a constant-current resistance thermometer. The results show that the rms velocities and Reynolds shear stress normalized by the friction velocity are strongly suppressed by the freestream turbulence throughout the boundary layer in both isothermal and non-isothermal boundary layers. In the non-isothermal boundary layers, the normalized rms temperature and vertical turbulent heat flux are also strongly suppressed by the freestream turbulence. Turbulent momentum and heat transfer at the wall are enhanced by the freestream turbulence and the enhancement is notable in unstable stratification. The power spectra of u, v, and θ and their cospectra show that motions of almost all scales are suppressed by the freestream turbulence in both the isothermal and non-isothermal boundary layers.
Ahmed, Ikramuddin
A Chebyshev-spectral collocation scheme has been developed to simulate thermocapillary convection processes in a differentially heated cavity with and without buoyancy effects. The time-dependent Navier- Stokes equations in primitive variables were solved with a semi-implicit scheme using the influence matrix technique. The deformable free surface was incorporated by means of a boundary-fitted coordinate (BFC) system. The BFC grid was generated by solving a system of elliptic equations. An iterative scheme based on finite difference methods was found to be sufficient for calculating a smooth distribution of grid-points for relatively low degrees of deformation of the free surface. The metrics of transformation, however, were calculated spectrally in order to achieve a high order of accuracy in the a posteriori mapping of the physical grid to the computational grid. The overall scheme was found to be efficient, economical, and capable of resolving the complex hydrodynamic and thermal structures in thermocapillarity driven flows with deformable free surfaces. The scheme was also modified to study problems with very high Marangoni numbers and non-deformable free surfaces, and later extended to three dimensions with periodic boundary conditions in order to explore the transitions to fully three dimensional phenomena that are anticipated in industrially relevant flow configurations.
Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition
Institute of Scientific and Technical Information of China (English)
YIN Cong; HUANG Lei; HE Fa-Hong; GONG Ma-Li
2007-01-01
Three-dimensional heat transfer model of laser diode array under constant convective heat transfer coefficient boundary condition is established and analytical temperature profiles within its heat sink are obtained by separation of variables. The influences on thermal resistance and maximum temperature variation among emitters from heat sink structure parameters and convective heat transfer coefficient are brought forward. The derived formula enables the thermal optimization of laser diode array.
Turbulent boundary layer over a divergent convergent superhydrophobic surface
Jalalabadi, Razieh; Hwang, Jinyul; Nadeem, Muhammad; Yoon, Min; Sung, Hyung Jin
2017-08-01
A direct numerical simulation of a spatially developing turbulent boundary layer over a divergent and convergent superhydrophobic surface (SHS) was performed over the range 800 < Reθ < 1200. The surface patterns were aligned along the streamwise direction. The SHS was modeled as a pattern of free-slip and no-slip surfaces. The gas fraction of the divergent and convergent SHS was the same as that for the straight SHS for a given slip area. The divergent and convergent SHS gave 21% more drag reduction than the straight SHS. Although the maximum value of the streamwise slip velocity was larger over the divergent and convergent SHS, the average slip velocity (Uslip/U∞) was larger over the straight SHS. The greater drag reduction was attributed to the manipulation of the secondary flow in the y-z plane and the changes in the turbulence structure. The streamwise vortices generated by the secondary flow over the divergent and convergent SHS were diminished which reduced drag relative to the flow over the straight SHS. The ejection and sweep motions were weak, and the vortical structure was attenuated near the wall over the divergent and convergent SHS. The skin friction contributions were explored using the velocity-vorticity correlation. The vortex stretching contribution dominated the skin friction budget. The reduced skin friction over the divergent and convergent SHS resulted mainly from reduced vortex stretching.
Autonomous Aerobraking Using Thermal Response Surface Analysis
Prince, Jill L.; Dec, John A.; Tolson, Robert H.
2007-01-01
Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.
Autonomous Aerobraking: Thermal Analysis and Response Surface Development
Dec, John A.; Thornblom, Mark N.
2011-01-01
A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.
Thermal instability of DLC film surface morphology - an AFM study
Maheswaran, R.; Thiruvadigal, D. John; Gopalakrishnan, C.
2012-06-01
The surface morphology of the DLC film during thermal annealing at particular temperature above the graphitization temperature shows blistering and buckling and also delaminates from the substrate. The DLC film shows poor thermal stability at higher temperature.
Coupled computational fluid-thermal investigation of hypersonic flow over a quilted dome surface
Ostoich, Christopher; Bodony, Daniel; Geubelle, Philippe
2009-11-01
The hypersonic environment is characterized by the high temperatures that are generated in the fluid at a vehicle surface. In the effort to enable the operation of lightweight, reusable hypersonic vehicles, flexible, thin thermal protection panels have been considered to mitigate thermal loads. High surface temperatures create through-the-thickness thermal gradients which cause the panels to bow, resulting in changes to the external flow field and leading to a fully coupled fluid-thermal-structural problem. Certain aspects of the fluid-thermal (no structural) coupling were examined in a 1980s NASA Langley experiment of a Mach 5.74 laminar boundary past an array of spherical domes. We reexamine this case computationally using a high-fidelity Navier-Stokes solver coupled with a thermal solver to investigate the effects on the flow and resulting heat load on the structure due to the bowed panels. Specifically the surface temperature, surface heat flux, and downstream boundary developments are reported, and compared with experiment.
Porter, Aaron; Tran, Chan; Sansoz, Frederic
2016-05-01
Coherent twin boundaries form periodic lamellar twinning in a wide variety of semiconductor nanowires, and they are often viewed as near-perfect interfaces with reduced phonon and electron scattering behaviors. Such unique characteristics are of practical interest for high-performance thermoelectrics and optoelectronics; however, insufficient understanding of twin-size effects on thermal boundary resistance poses significant limitations for potential applications. Here, using atomistic simulations and ab initio calculations, we report direct computational observations showing a crossover from diffuse interface scattering to superlatticelike behavior for thermal transport across nanoscale twin boundaries present in prototypical bulk and nanowire Si examples. Intrinsic interface scattering is identified for twin periods ≥22.6 nm, but it also vanishes below this size to be replaced by ultrahigh Kapitza thermal conductances. Detailed analysis of vibrational modes shows that modeling twin boundaries as atomically thin 6 H -Si layers, rather than phonon scattering interfaces, provides an accurate description of effective cross-plane and in-plane thermal conductivities in twinning superlattices, as a function of the twin period thickness.
Effects of various thermal boundary conditions on natural convection in porous cavities
Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.
2015-10-01
The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.
Belt, Carol Lynn
The feasibility of using satellite-derived thermal data to generate realistic synoptic-scale winds within the planetary boundary layer (PBL) is examined. Diagnostic "modified Ekman" wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite-derived winds based on 62 predawn (0921 GMT 19 April 1979) TIROS-N soundings are compared to similarly-derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface. Horizontal moisture divergence, moisture advection, velocity divergence and relative vorticity are computed at 300 m AGL using satellite-derived winds and moisture data. Results show excellent agreement with corresponding RAOB-derived values. Areas of horizontal moisture convergence, velocity convergence, and positive vorticity are nearly coincident and align in regions which later develop intense convection. Vertical motion at 1600 m AGL is computed using stepwise integration of the satellite winds through the PBL. Values and patterns are similar to those obtained using the RAOB-derived winds. Regions of maximum upward motion correspond with areas of greatest moisture convergence and the convection that later develops.
Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor
Kamrin, Ken; Stone, Howard A
2009-01-01
In a variety of applications, most notably microfluidic design, slip-based boundary conditions have been sought to characterize fluid flow over patterned surfaces. We focus on laminar shear flows over surfaces with periodic height fluctuations and/or fluctuating Navier scalar slip properties. We derive a general formula for the "effective slip", which describes equivalent fluid motion at the mean surface as depicted by the linear velocity profile that arises far from it. We show that the slip and the applied stress are related linearly through a tensorial mobility matrix, and the method of domain perturbation is then used to derive an approximate formula for the mobility law directly in terms of surface properties. The specific accuracy of the approximation is detailed, and the mobility relation is then utilized to address several questions, such as the determination of optimal surface shapes and the effect of random surface fluctuations on fluid slip.
Numerical simulations of thermal-chemical instabilities at the core-mantle boundary
Hansen, Ulrich; Yuen, David A.
1988-01-01
Numerical simulations of thermal-chemical instabilities in the D-double-prime layer at the core-mantle boundary are presented which show that strong lateral heterogeneities in the composition and density fields can be initiated and maintained dynamically if there is continuous replenishment of material from subduced slabs coming from the upper mantle. These chemical instabilities have a tendency to migrate laterally and may help to support core-mantle boundary topography with short and long wavelengths. The thermal-chemical flows produce a relatively stagnant D-double-prime layer with strong lateral and temporal variations in basal heat flux, which gives rise to thermal core-mantle interactions influencing the geodynamo.
Analytical solutions for thermal forcing vortices in boundary layer and its applications
Institute of Scientific and Technical Information of China (English)
LIU Xiao-ran; LI Guo-ping
2007-01-01
Using the Boussinesq approximation, the vortex in the boundary layer is assumed to be axisymmetrical and thermal-wind balanced system forced by diabatic heating and friction, and is solved as an initial-value problem of linearized vortex equation set in cylindrical coordinates. The impacts of thermal forcing on the flow field structure of vortex are analyzed. It is found that thermal forcing has significant impacts on the flow field structure, and the material representative forms of these impacts are closely related to the radial distribution of heating. The discussion for the analytical solutions for the vortex in the boundary layer can explain some main structures of the vortex over the Tibetan Plateau.
Simulating thermal boundary conditions of spin-lattice models with weighted averages
Wang, Wenlong
2016-07-01
Thermal boundary conditions have played an increasingly important role in revealing the nature of short-range spin glasses and is likely to be relevant also for other disordered systems. Diffusion method initializing each replica with a random boundary condition at the infinite temperature using population annealing has been used in recent large-scale simulations. However, the efficiency of this method can be greatly suppressed because of temperature chaos. For example, most samples have some boundary conditions that are completely eliminated from the population in the process of annealing at low temperatures. In this work, I study a weighted average method to solve this problem by simulating each boundary conditions separately and collect data using weighted averages. The efficiency of the two methods is studied using both population annealing and parallel tempering, showing that the weighted average method is more efficient and accurate.
Unsteady Hydromagnetic Flow past a Moving Vertical Plate with Convective Surface Boundary Condition
Directory of Open Access Journals (Sweden)
Gauri Shanker Seth
2016-01-01
Full Text Available Investigation of unsteady MHD natural convection flow through a fluid-saturated porous medium of a viscous, incompressible, electrically-conducting and optically-thin radiating fluid past an impulsively moving semi-infinite vertical plate with convective surface boundary condition is carried out. With the aim to replicate practical situations, the heat transfer and thermal expansion coefficients are chosen to be constant and a new set of non-dimensional quantities and parameters are introduced to represent the governing equations along with initial and boundary conditions in dimensionless form. Solution of the initial boundary-value problem (IBVP is obtained by an efficient implicit finite-difference scheme of the Crank-Nicolson type which is one of the most popular schemes to solve IBVPs. The numerical values of fluid velocity and fluid temperature are depicted graphically whereas those of the shear stress at the wall, wall temperature and the wall heat transfer are presented in tabular form for various values of the pertinent flow parameters. A comparison with previously published papers is made for validation of the numerical code and the results are found to be in good agreement.
Reversal and amplification of zonal flows by boundary enforced thermal wind
Dietrich, W.; Gastine, T.; Wicht, J.
2017-01-01
Zonal flows in rapidly-rotating celestial objects such as the Sun, gas or ice giants form in a variety of surface patterns and amplitudes. Whereas the differential rotation on the Sun, Jupiter and Saturn features a super-rotating equatorial region, the ice giants, Neptune and Uranus harbour an equatorial jet slower than the planetary rotation. Global numerical models covering the optically thick, deep-reaching and rapidly rotating convective envelopes of gas giants reproduce successfully the prograde jet at the equator. In such models, convective columns shaped by the dominant Coriolis force typically exhibit a consistent prograde tilt. Hence angular momentum is pumped away from the rotation axis via Reynolds stresses. Those models are found to be strongly geostrophic, hence a modulation of the zonal flow structure along the axis of rotation, e.g. introduced by persistent latitudinal temperature gradients, seems of minor importance. Within our study we stimulate these thermal gradients and the resulting ageostrophic flows by applying an axisymmetric and equatorially symmetric outer boundary heat flux anomaly (Y20) with variable amplitude and sign. Such a forcing pattern mimics the thermal effect of intense solar or stellar irradiation. Our results suggest that the ageostrophic flows are linearly amplified with the forcing amplitude q⋆ leading to a more pronounced dimple of the equatorial jet (alike Jupiter). The geostrophic flow contributions, however, are suppressed for weak q⋆, but inverted and re-amplified once q⋆ exceeds a critical value. The inverse geostrophic differential rotation is consistently maintained by now also inversely tilted columns and reminiscent of zonal flow profiles observed for the ice giants. Analysis of the main force balance and parameter studies further foster these results.
Goldberg, Robert K.; Hopkins, Dale A.
1994-01-01
The boundary element method is utilized in this study to conduct thermal analysis of functionally graded composites, materials in which the internal microstructure or properties are explicitly tailored in order to obtain an optimal response, on the micromechanical (constituent) scale. A unique feature of the boundary element formulations used here is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one dimensional integrations. Using the computer code BEST-CMS, the through the thickness temperature profiles are computed for a representative material with varying numbers of fibers and fiber spacing in the thickness direction. The computed temperature profiles are compared to those obtained using an alternate analytical theory which explicitly couples the heterogeneous microstructure to the global analysis. The boundary element results compared favorably to the analytical calculations, with discrepancies that are explainable based on the boundary element formulation. The results serve both to demonstrate the ability of the boundary element method to analyze these types of materials, and to verify the accuracy of the analytical theory.
Modification of Turbulent Boundary Layer Flows by Superhydrophobic Surfaces
Gose, James W.; Golovin, Kevin; Barros, Julio; Schultz, Michael P.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.
2016-11-01
Measurements of near zero pressure gradient turbulent boundary layer (TBL) flow over several superhydrophobic surfaces (SHSs) are presented and compared to those for a hydraulically smooth baseline. The surfaces were developed at the University of Michigan as part of an ongoing research thrust to investigate the feasibility of SHSs for skin-friction drag reduction in turbulent flow. The SHSs were previously evaluated in fully-developed turbulent channel flow and have been shown to provide meaningful drag reduction. The TBL experiments were conducted at the USNA in a water tunnel with a test section 2.0 m (L) x 0.2 m (W) x 0.2 m (H). The free-stream speed was set to 1.26 m/s which corresponded to a friction Reynolds number of 1,500. The TBL was tripped at the test section inlet with a 0.8 mm diameter wire. The upper and side walls provided optical access, while the lower wall was either the smooth baseline or a spray coated SHS. The velocity measurements were obtained with a TSI FSA3500 two-component Laser-Doppler Velocimeter (LDV) and custom-designed beam displacer operated in coincidence mode. The LDV probe volume diameter was 45 μm (approx. one wall-unit). The measurements were recorded 1.5 m downstream of the trip. When the measured quantities were normalized using the inner variables, the results indicated a significant reduction in the near wall viscous and total stresses with little effect on the flow outside the inner layer.
Impact of boundary conditions on the development of the thermal plume above a sitting human body
DEFF Research Database (Denmark)
Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor
2010-01-01
a sitting occupant. CFD predictions were performed to explain the reason for a skewness in the thermal plume above a sitting thermal manikin with realistic body shape, size, and surface temperature distribution, measured in a climate chamber with mean radiant temperature equal to the room air temperature...
Zhu, Weiping; Xu, Peng; Xu, Dong; Zhang, Meimei; Liu, Huiming; Gong, Linghui; Lu, Junfeng
2014-05-01
To study the effects of the thermal relaxation, the blood perfusion and the oscillating of ambient heat flux on the living tissue temperature in detail, we analytically investigated the one-dimensional CV model, a thermal wave model presented by Cattaneo and Vernott, for Pennes' bio-heat transfer equation under oscillating second-kind boundary condition. The results showed that the blood perfusion has the effect of maintaining the tissue's temperature. The heat propagation velocity decreases with the thermal relaxation time, while the absolute value of tissue's mean excess temperature at steady state increases with the thermal relaxation time. When the ambient heat flux oscillates, the tissue's temperature oscillates in the same period with a lag time. The results obtained in this paper are valuable for the research reference on the topic of tumor hyperthermia, heat injury, etc.
Institute of Scientific and Technical Information of China (English)
GAO Xue; ZHANG Yue; SHANG Jia-Xiang
2011-01-01
We choose a Si/Ge interface as a research object to investigate the infiuence of interface disorder on thermal boundary conductance. In the calculations, the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials, while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory. The results show that interface disorder limits thermal transport. The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance. This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.%We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.It is well known that interfaces can play a dominant role in the overall thermal transport characteristics of structures whose length scale is less than the phonon mean free path.When heat flows across an interface between two different materials,there exists a temperature jump at the interface.Thermal boundary conductance (TBC),which describes the efficiency of heat flow at material interfaces,plays an importance role in the transport of thermal energy in nanometerscale devices,semiconductor superlattices,thin film multilayers and nanocrystalline materials.[1
Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots
Institute of Scientific and Technical Information of China (English)
Attia A. Awadalla; Adel H. Phillips
2011-01-01
Thermal shot noise, thermal voltage and thermo power are studied through a carbon nanotube quantum dot coupled to two leads with random roughness of amplitude on each of the two boundaries, under the effect of microwave field, and magnetic Held. The expressions for the thermal shot noise and thermal energy are deduced when the barrier strength and contact area are taken into consideration. A model for such mesoscopic devices is proposed as a carbon nanotube quantum dot coupled to two leads with random roughness of amplitude on each of the two boundaries. The results show oscillatory behaviors of the dependence of the thermal shot noise on the studied parameters. The thermopower oscillates with the variation of the contact area, and the peak heights decrease linearly with the contact area and increases with temperature. This trend of behavior is due to the interplay of the induced microwave photons and the tunneling rate through the side bands. This research is important for using a model as a high-frequency shot noise detector and the thermopower is sensitive to the energy dependence of the conductance.
Near-field thermal imaging of nanostructured surfaces
Kittel, A.; Wischnath, U. F.; Welker, J.; Huth, O.; Rüting, F.; Biehs, S.-A.
2008-11-01
We show that a near-field scanning thermal microscope, which essentially detects the local density of states of the thermally excited electromagnetic modes at nanometer distances from some material, can be employed for nanoscale imaging of structures on that material's surface. This finding is explained theoretically by an approach which treats the surface structure perturbatively.
Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection
Emran, Mohammad; Shishkina, Olga
2016-11-01
We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.
LIMIT BEHAVIOUR OF SOLUTIONS TO EQUIVALUED SURFACE BOUNDARY VALUE PROBLEM FOR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
LiFengquan
2002-01-01
In this paper,we discuss the limit behaviour of solutions to equivalued surface boundayr value problem for parabolic equatiopns when the equivalued surface boundary shriks to a point and the space dimension of the domain is two or more.
Application of CCD Cameras to Investigations of Mixing on Boundaries of a Thermal Plasma Jet
Institute of Scientific and Technical Information of China (English)
J.HLINA; J.(S)ONSKY; J.(S)LECHTA
2007-01-01
Mixing of a thermal plasma jet with the surrounding atmosphere was studied using two CCD cameras (PCO SensiCam) situated detecting simultaneously the radiation of argon and nitrogen.The evaluation of image differences between two records showed that the location of regions on plasma jet boundaries characterised by stronger nitrogen radiation changes with the plasma flow rate.Close-to-laminar flow results in a small mixing rate and consequently low nitrogen optical emission on plasma jet boundaries.The increase of the flow rate leads to the formation of a relatively thick and stable layer on the boundaries characterised by strong nitrogen radiation.Further enhancement of the flow rate results in the formation of unstable regions of excited nitrogen molecules moving along the jet.
Implementation aspects of the Boundary Element Method including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2014-01-01
The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...... with mesh definition, geometrical singularities and treatment of closed cavities. These issues are specific of the BEM with losses. Using examples, some strategies are presented that can alleviate shortcomings and improve performance....
Assessment of thermal structure of boundary layer atmosphere of Western Siberia
Akhmetshina, Anna
2013-01-01
The assessment of frequency of temperature inversions makes it possible to investigate the probability of coincidence of unfavorable conditions of atmospheric stratification and the results of the intensive business activity. This paper is devoted to the study of thermal structure of the atmosphere boundary layer of Western Siberian territory in the period from 1990 to 2010 by using reanalysis of NCEP/NCAR data. The data of reanalysis is the only available information for similar research. Ba...
Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
Xie, Guofeng; Guo, Yuan; Li, Baohua; Yang, Liwen; Zhang, Kaiwang; Tang, Minghua; Zhang, Gang
2013-09-21
We present a kinetic model to investigate the anomalous thermal conductivity in silicon nanowires (SiNWs) by focusing on the mechanism of phonon-boundary scattering. Our theoretical model takes into account the anharmonic phonon-phonon scattering and the angle-dependent phonon scattering from the SiNWs surface. For SiNWs with diameter of 27.2 nm, it is found that in the case of specular reflection at lateral boundaries, the thermal conductivity increases as the length increases, even when the length is up to 10 μm, which is considerably longer than the phonon mean free path (MFP). Thus the phonon-phonon scattering alone is not sufficient for obtaining a normal diffusion in nanowires. However, in the case of purely diffuse reflection at lateral boundaries, the phonons diffuse normally and the thermal conductivity converges to a constant when the length of the nanowire is greater than 100 nm. Our model demonstrates that for observing the length dependence of thermal conductivity experimentally, nanowires with smooth and non-contaminated surfaces, and measuring at low temperature, are preferred.
Observed Asteroid Surface Area in the Thermal Infrared
Nugent, C. R.; Mainzer, A.; Masiero, J.; Wright, E. L.; Bauer, J.; Grav, T.; Kramer, E.; Sonnett, S.
2017-02-01
The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.
Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario
Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita
2016-04-01
A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.
Variable Surface Area Thermal Radiator Project
National Aeronautics and Space Administration — Due to increased complexity of spacecraft and longer expected life, more sophisticated and complex thermal management schemes are needed that will be capable of...
Magnetohydrodynamic boundary layer nanofluid flow and heat transfer over a stretching surface
Ali, M.; Alim, M. A.; Nasrin, R.; Alam, M. S.; Chowdhury, M. Z. U.
2017-06-01
The present study is performed to investigate the effect of unsteadiness, stretching ratio, Brownian motion, thermophoresis and magnetic parameter on boundary layer such as momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer over a stretching surface. The dimensionless governing equations are unsteady, two-dimensional coupled and non-linear ordinary differential equations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of magnetic parameter and unsteadiness parameter but decreases for stretching ratio parameter, the temperature profile decreases in presence of Brownian motion, unsteadiness parameter, stretching ratio parameter and thermophoresis parameter but increases for magnetic parameter and, the nanoparticle concentration decreases for increasing values of thermophoresis parameter, unsteadiness parameter and stretching ratio parameter whereas the reverse trend arises for Brownian motion & magnetic parameter. For validity and accuracy the present results are compared with previously published work and found good agreement.
Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate
Fisher, A. T.; Stein, C. A.; Harris, R. N.; Wang, K.; Silver, E. A.; Pfender, M.; Hutnak, M.; Cherkaoui, A.; Bodzin, R.; Villinger, H.
2003-06-01
New thermal data from 18-24 Ma lithosphere on the Cocos Plate delineate contrasting subsurface thermal conditions in adjacent sections of crust. Heat flow through seafloor created at the East Pacific Rise is generally suppressed by ~70% relative to conductive lithospheric cooling models, whereas heat flow through adjacent, similarly-aged lithosphere generated at the Cocos-Nazca Spreading Center is consistent with these models. The transition between thermal regimes is remarkably abrupt, only 2-5 km wide, indicating a shallow hydrothermal origin. The transition is more closely associated with differences in the distribution of basement outcrops than with tectonic boundaries, demonstrating the importance of the former in extracting heat from the lithosphere on a regional basis.
Directory of Open Access Journals (Sweden)
N. Bhaskar Reddy
2014-01-01
Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.
Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J
2017-07-01
Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CTmax). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO2 (simulated ocean acidification) on the hypoxia sensitivity of CTmax We found that CTmax was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CTmax declined sharply with water oxygen tension (PwO2). Furthermore, the hypoxia sensitivity of CTmax was unaffected by elevated CO2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).
Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation
Institute of Scientific and Technical Information of China (English)
CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing
2008-01-01
The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions.The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles.Other factors,such as fluid viscosity,bulk pressure may also change the slip length.We find that boundary slip only occurs under a certain density(bulk pressure).If the density is large enough,the slip length will tend to zero.In our simulations,a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics.It is the low density layer that induces the boundary slip.The results may be helpful to understand recent experimental observations on the slippage of micro flows.
Turbulent boundary layer on perforated surfaces with vector injection
Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.
1980-10-01
The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.
Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface
Dettenrieder, Fabian; Bodony, Daniel
2016-11-01
Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The research progress of non-equilibrium grain-boundary segregation theories in the last 20 years is reviewed. Based on studies by the present authors, the critical time of non-equilibrium segregation and its impact on the development of non-equilibrium segregation theories are described. Quasi- thermo- dynamics and kinetics for thermal non-equilibrium grain boundary segregation are detailed along with a non-equilibrium grain boundary cosegregation model. The experimental validation of the theories and their application to the reversible temper embrittlement of steels and the intermediate temperature brittleness in metals and alloys are also addressed.
Institute of Scientific and Technical Information of China (English)
XU TingDong; WANG Kai; SONG ShenHua
2009-01-01
The research progress of non-equilibrium grain-boundary segregaUon theories in the last 20 years is reviewed. Based on studies by the present authors, the critical time of non-equilibrium segregation and its impact on the development of non-equilibrium segregation theories are described. Quasi-thermodynamics and kinetics for thermal non-equilibrium grain boundary segregation are detailed along with a non-equilibrium grain boundary cosegregation model. The experimental validation of the theories and their application to the reversible temper embrittlement of steels and the intermediate temperature brittleness in metals and alloys are also addressed.
Directory of Open Access Journals (Sweden)
Ibukun Sarah Oyelakin
2016-06-01
Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.
The Lowest Atmosphere: Atmospheric Boundary Layer Including Atmospheric Surface Layer.
1996-04-01
of motion of the atmosphere— "second order closure"—to such applications as the SCIPUFF -PC code for tracer dispersion (see Sykes, 1994). Now, for...Turbulence, Methuen, London, 2nd Ed., 1955. Sykes, R.I., "The SCIPUFF -PC Code," ARAP Draft Report, 1994. Tennekes, H., "The Atmospheric Boundary Layer
Surface-impedance approach solves problems with the thermal Casimir force between real metals
Geyer, B; Mostepanenko, V M
2003-01-01
The surface impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradiction...
Institute of Scientific and Technical Information of China (English)
马杭
2002-01-01
With the aid of the properties of the hypersingular kernels,a geometric conversion approach was presented in this paper.The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method.Based on the conversion,the hypersingularity in the boundary integrals could be lowered by one order,resulting in the simplification of the computer code.Moreover,an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case.The approach is simple to use,which can be inserted readily to computer code,thus getting rid of the dull routine deduction of formulae before the numerical implementatins,as the expressions of these kernels are in general complicated.The numerical examples were gien in three-dimensional elasticity,verifying the effectiveness of the proposed approach,which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.
Directory of Open Access Journals (Sweden)
Andrea N. Ceretani
2015-01-01
Full Text Available A semi-infinite material under a solidification process with the Solomon-Wilson-Alexiades mushy zone model with a heat flux condition at the fixed boundary is considered. The associated free boundary problem is overspecified through a convective boundary condition with the aim of the simultaneous determination of the temperature, the two free boundaries of the mushy zone and one thermal coefficient among the latent heat by unit mass, the thermal conductivity, the mass density, the specific heat, and the two coefficients that characterize the mushy zone, when the unknown thermal coefficient is supposed to be constant. Bulk temperature and coefficients which characterize the heat flux and the heat transfer at the boundary are assumed to be determined experimentally. Explicit formulae for the unknowns are given for the resulting six phase-change problems, besides necessary and sufficient conditions on data in order to obtain them. In addition, relationship between the phase-change process solved in this paper and an analogous process overspecified by a temperature boundary condition is presented, and this second problem is solved by considering a large heat transfer coefficient at the boundary in the problem with the convective boundary condition. Formulae for the unknown thermal coefficients corresponding to both problems are summarized in two tables.
The logarithmic and power law behaviors of the accelerating, turbulent thermal boundary layer
Castillo, Luciano; Hussain, Fazle
2017-02-01
Direct numerical simulation of spatially evolving thermal turbulent boundary layers with strong favorable pressure gradient (FPG) shows that the thermal fluctuation intensity, θ' + and the Reynolds shear stress, u'v'¯+ exhibit a logarithmic behavior spanning the meso-layer (e.g., 50 ≤y+≤170 ). However, the mean thermal profile is not logarithmic even in the zero pressure gradient (ZPG) region; instead, it follows a power law. The maxima of u' 2 ¯+ and v'θ'¯+ change little with the strength of acceleration, while v'+, w'+, and u'v'¯+ continue to decay in the flow direction. Furthermore, θ'+ and u'θ'¯+ surprisingly experience changes from constants in ZPG to sharp rises in the FPG region. Such behavior appears to be due to squashing of the streaks which decreases the streak flank angle below the critical value for "transient growth" generation of streamwise vortices, shutting down production [W. Schoppa and F. Hussain, "Coherent structure generation near-wall turbulence," J. Fluid Mech. 453, 57-108 (2002)]. The streamwise vortices near the wall, although shrink because of stretching, simultaneously, also become weaker as the structures are progressively pushed farther down to the more viscous region near the wall. While the vortical structures decay rapidly in accelerating flows, the thermal field does not—nullifying the myth that both the thermal and velocity fields are similar.
van Buren, Tyler; Williams, Owen J.; Smits, Alexander J.
2014-11-01
Thermally stable boundary layers with a step change in boundary condition are seen in industrial applications (e.g. plate heat exchangers) as well as in nature (e.g. onshore breezes). Previous studies indicate that bulk indicators of stability are often insufficient to describe the local state of turbulence because the local flow strongly depends on its upstream history. Experiments were conducted to gain further insight into these flows. A low-speed wind tunnel was used to generate a rough-wall boundary layer at up to Reθ = 1500 . After a development length of approximately 22 δ , the downstream half of the tunnel wall was heated, creating a step change in wall temperature of up to 135° C . Particle image velocimetry and a thermocouple rake were used to measure the fluctuating velocity field and mean temperature profile at three locations downstream of the step change. We examine the rate of growth of the internal boundary layer and the corresponding evolution of the turbulent stresses in relation to changes in mean local stratification. This work was supported by the Princeton University Cooperative Institute for Climate Science.
Avery, D. E.
1978-01-01
An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.
Scaling analysis of the mean and variariance of temperature in a developing thermal boundary layer
Byers, Clayton; Hultmark, Marcus
2016-11-01
A developing thermal boundary layer in a turbulent boundary layer is investigated both theoretically and experimentally. A scaling analysis of the mean temperature field and temperature variance, 1/2 θ2 , is developed by utilizing the "Asymptotic Invariance Principle" developed by George and Castillo (1997), including the possible effects of the Reynolds and Prandtl number. The derived solution for the inner and outer scaling is then used to develop a "heat transfer law" for the wall heat flux, qw. The condition of constant wall temperature is utilized, with an analysis of the temperature field treated as a passive scalar through ensuring the temperature differences remain small. Data collection is performed with a nanoscale temperature sensor, providing an improvement to performance over previous cold wire data acquisition. Supported by NSF (CBET-1510100 program manager Dimitrios Papavassiliou) and ONR (N00014-12-1-0875 and N00014-12-1-0962 program manager Ki-Han Kim).
Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers
2015-10-01
index. In the boundary layer, atmospheric temperature fluctuations are primarily responsible for the variations in refractive index at ultraviolet...parameterization of the atmospheric emissivity, in the early 1980s a parallel study of the SEB was conducted by the US Army Waterways Experiment Station...period of rotation of the atmosphere can be defined as TI = 2π/fc. At most mid- latitude locations this period is approximately 17 h. This quantity is
Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.
2012-01-01
We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod
The effect of surface roughness on lattice thermal conductivity of silicon nanowires
Wang, Zan; Ni, Zhonghua; Zhao, Ruijie; Chen, Minhua; Bi, Kedong; Chen, Yunfei
2011-07-01
A theoretic model is presented to take into account the roughness effects on phonon transport in Si nanowires (NWs). Based on the roughness model, an indirect Monte Carlo (MC) simulation is carried out to predict the lattice thermal conductivities of the NWs with different surface qualities. Through fitting the experimental data with the MC predictions, the scattering strength on phonons from the boundary, umklapp phonon-phonon processes and impurities can be estimated. It is found that the scattering on phonons by the roughness cell boundaries in a rough nanowire can reduce the phonon mean free path to be smaller than the nanowire diameter, the Casimir limit of the phonon mean free path in a flat nanowire for phonons engaged in completely diffused boundary scattering processes.
Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.
Gao, Chang; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping; He, X. T.
2016-11-01
With 6LiD as an example, we show that the applicable region of the orbital-free molecular dynamics (OFMD) method in a large temperature range is determined by the thermal ionization process of bound electrons in shell structures. The validity boundary of the OFMD method is defined roughly by the balance point of the average thermal energy of an electron and the ionization energy of the lowest localized electronic state. This theoretical proposition is based on the observation that the deviation of the OFMD method originates from its less accurate description to the charge density in partially ionized shells, as compared with the results of the extended first-principles molecular dynamics method, which well reproduces the charge density of shell structures.
Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem
Kostikova, E. K.; Zaika, Yu V.
2016-11-01
One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).
Surface transition on ice induced by the formation of a grain boundary.
Directory of Open Access Journals (Sweden)
Christian Pedersen
Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.
Ghadiri, Majid; Shafiei, Navvab; Akbarshahi, Amir
2016-07-01
This paper is proposed to study the free vibration of a rotating Timoshenko nanobeam based on the nonlocal theory considering thermal and surface elasticity effects. The governing equations and the related boundary conditions are derived using the Hamilton's principle. In order to solve the problem, generalized differential quadrature method is applied to discretize the governing differential equations corresponding to clamped-simply and clamped-free boundary conditions. In this article, the influences of some parameters such as nonlocal parameter, angular velocity, thickness of the nanobeam, and thermal and surface elasticity effects on the free vibration of the rotating nanobeam are investigated, and the results are compared for different boundary conditions. The results show that the surface effect and the nonlocal parameter and the temperature changes have significant roles, and they should not be ignored in the vibrational study of rotating nanobeams. Also, the angular velocity and the hub radius have more significant roles than temperature change effects on the nondimensional frequency. It is found that the nonlocal parameter behavior and the temperature change behavior on the frequency are different in the first mode for the rotating cantilever nanobeam.
Decorative Surfaces Obtained through Thermal Zyncking
Directory of Open Access Journals (Sweden)
Tamara Radu
2010-06-01
Full Text Available The surface morphology of the galvanized sheets is formed after the solidification of the melted metal, carried along the carrier strap during its extraction from the zinc bath. The surface layer quality depends on the fluidity of the melting, on its superficial tension and on the solidification characteristics, according to the chemical composition of the melting. The elements of micro-alloys can improve the surface of galvanized steel with qualities such as: uniformity, texture, luminosity. Depending on the combination elements of micro-alloying the surface can have different types of metallic layers with an important effect on the coating morphology. The research we made revealed the important effect it had for alloys with Al, Sn, Bi, Pb on the coating layer morphology.
Surface integrals approach to solution of some free boundary problems
Directory of Open Access Journals (Sweden)
Igor Malyshev
1988-01-01
Full Text Available Inverse problems in which it is required to determine the coefficients of an equation belong to the important class of ill-posed problems. Among these, of increasing significance, are problems with free boundaries. They can be found in a wide range of disciplines including medicine, materials engineering, control theory, etc. We apply the integral equations techniques, typical for parabolic inverse problems, to the solution of a generalized Stefan problem. The regularization of the corresponding system of nonlinear integral Volterra equations, as well as local existence, uniqueness, continuation of its solution, and several numerical experiments are discussed.
Variation of thermal conductivity and heat flux at the Earth's core mantle boundary
Ammann, Michael W.; Walker, Andrew M.; Stackhouse, Stephen; Wookey, James; Forte, Alessandro M.; Brodholt, John P.; Dobson, David P.
2014-03-01
The two convective systems that dominate Earth's internal dynamics meet at the boundary between the rocky mantle and metallic liquid core. Energy transfer between processes driving plate tectonics and the geodynamo is controlled by thermal conduction in the lowermost mantle (D″). We use atomic scale simulations to determine the thermal conductivity of MgSiO3 perovskite and post-perovskite under D″ conditions and probe how these two convective systems interact. We show that the thermal conductivity of post-perovskite (∼12 W/mK) is 50% larger than that of perovskite under the same conditions (∼8.5 W/mK) and is anisotropic, with conductivity along the a-axis being 40% higher than conductivity along the c-axis. This enhances the high heat flux into cold regions of D″ where post-perovskite is stable, strengthening the feedback between convection in the core and mantle. Reminiscent of the situation in the lithosphere, there is potential for deformation induced texturing associated with mantle convection to modify how the mantle is heated from below. We test this by coupling our atomic scale results to models of texture in D″ and suggest that anisotropic thermal conductivity may help to stabilise the roots of mantle plumes over their protracted lifetime.
Deng, Zhong-Shan; Liu, Jing
2004-09-01
In non-invasive thermal diagnostics, accurate correlations between the thermal image on skin surface and interior human pathophysiology are often desired, which require general solutions for the bioheat equation. In this study, the Monte Carlo method was implemented to solve the transient three-dimensional bio-heat transfer problem with non-linear boundary conditions (simultaneously with convection, radiation and evaporation) and space-dependent thermal physiological parameters. Detailed computations indicated that the thermal states of biological bodies, reflecting physiological conditions, could be correlated to the temperature or heat flux mapping recorded at the skin surface. The effect of the skin emissivity and humidity, the convective heat transfer coefficient, the relative humidity and temperature of the surrounding air, the metabolic rate and blood perfusion rate in the tumor, and the tumor size and number on the sensitivity of thermography are comprehensively investigated. Moreover, several thermal criteria for disease diagnostic were proposed based on statistical principles. Implementations of this study for the clinical thermal diagnostics are discussed.
Surface boundary conditions for the numerical solution of the Euler equations
Dadone, A.; Grossman, B.
1993-01-01
We consider the implementation of boundary conditions at solid walls in inviscid Euler solutions by upwind, finite-volume methods. We review some current methods for the implementation of surface boundary conditions and examine their behavior for the problem of an oblique shock reflecting off a planar surface. We show the importance of characteristic boundary conditions for this problem and introduce a method of applying the classical flux-difference splitting of Roe as a characteristic boundary condition. Consideration of the equivalent problem of the intersection of two (equal and opposite) oblique shocks was very illuminating on the role of surface boundary conditions for an inviscid flow and led to the introduction of two new boundary-condition procedures, denoted as the symmetry technique and the curvature-corrected symmetry technique. Examples of the effects of the various surface boundary conditions considered are presented for the supersonic blunt body problem and the subcritical compressible flow over a circular cylinder. Dramatic advantages of the curvature-corrected symmetry technique over the other methods are shown, with regard to numerical entropy generation, total pressure loss, drag and grid convergence.
On the Nature of Boundary Conditions for Flows with Moving Free Surfaces
Renardy, Michael; Renardy, Yuriko
1991-04-01
We consider small perturbations of plane parallel flow between a wall and a moving free surface. The problem is posed on a rectangle with inflow and outflow boundaries. The usual boundary conditions are posed at the wall and the free surface, and the fluid satisfies the Navier-Stokes equations. We examine the nature of boundary conditions which can be imposed at the inflow and outflow boundaries in order to yield a well-posed problem. This question turns out to be more delicate than is generally appreciated. Depending on the precise situation and on the regularity required of the solution, boundary conditions at just one or both endpoints of the free surface need to be imposed. For example, we show that if the velocities at te inflow and outflow boundaries are prescribed, then the position of the free surface at the inflow boundary can be prescribed, but not at the outflow if an H1-solution is desired. Numerical simulations with the FIDAP package are used to illustrate our analytical results.
Rosner, D. E.
1985-01-01
The effects of Soret diffusion (for vapors) and thermophoresis (for particles) are illustrated using recent optical experiments and boundary layer computations. Mass transfer rate augmentations of up to a factor of 1000 were observed and predicted for submicron-particle capture by cooled solid surfaces, while mass transfer suppressions of more than 10 to the -10th-fold were predicted for 'overheated' surfaces. It is noted that the results obtained are of interest in connection with such technological applications as fly-ash capture in power generation equipment and glass droplet deposition in optical-waveguide manufacture.
Directory of Open Access Journals (Sweden)
Mohammed J Uddin
Full Text Available Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmad Izani Md
2015-01-01
Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures
Maurer, Leon; Knezevic, Irena
We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.
Directory of Open Access Journals (Sweden)
Yankui Sun
2016-03-01
Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.
Reduction of the temperature jump in the immersed boundary-thermal lattice Boltzmann method
Seta, Takeshi; Hayashi, Kosuke; Tomiyama, Akio
2015-11-01
We analytically and numerically investigate the boundary errors computed by the immersed boundary-thermal lattice Boltzmann method (IB-TLBM) with the two-relaxation-time (TRT) collision operator. In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. We derive the theoretical relation between the relaxation parameters for the symmetric and antisymmetric parts of the distribution function so as to eliminate the temperature jump. The simple TRT collision operator succeeds in reducing the temperature jump occurring at the high relaxation time in the IB-TLBM calculation. The porous plate problem numerically and analytically demonstrate that the velocity squared terms should be neglected in the equilibrium distribution function in order to eliminate the effect of the advection velocity on the temperature jump in the IB-TLBMs. The passive scalar model without the velocity squared terms more accurately calculates the incompressible temperature equation in the IB-TLBMs, compared to the double distribution model, which is based on the relation of the distribution function gk = (ek - u)2fk / 2 . We apply the passive scalar model without the velocity squared terms to the simulation of the natural convection between a hot circular cylinder and a cold square enclosure. The proposed method adequately sets the boundary values and provides reasonable average Nusselt numbers and maximum absolute values of the stream function.
Ground-based measurement of surface temperature and thermal emissivity
Owe, M.; Van De Griend, A. A.
1994-01-01
Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.
Vdovichenko, I. I.; Yakovlev, M. Ya; Vershinin, A. V.; Levin, V. A.
2016-11-01
One of the key problems of mechanics of composite materials is an estimation of effective properties of composite materials. This article describes the algorithms for numerical evaluation of the effective thermal conductivity and thermal expansion of composites. An algorithm of effective thermal conductivity evaluation is based on sequential solution of boundary problems of thermal conductivity with different boundary conditions (in the form of the temperature on the boundary) on representative volume element (RVE) of composite with subsequent averaging of the resulting vector field of heat flux. An algorithm of effective thermal expansion evaluation is based on the solution of the boundary problem of elasticity (considering the thermal expansion) on a RVE of composite material with subsequent averaging of a resulting strain tensor field. Numerical calculations were performed with the help of Fidesys Composite software module of CAE Fidesys using the finite element method. The article presents the results of numerical calculations of the effective coefficients of thermal conductivity and thermoelasticity for two types of composites (single-layer fiber and particulate materials) in comparison with the analytical estimates. The comparison leads to the conclusion about the correctness of algorithms and program developed.
Debska, Aleksandra; Balandraud, Xavier; Destrebecq, Jean-François; Gwozdziewicz, Piotr; Seruga, Andrzej
2017-07-01
The study deals with the influence of thermal boundary effects on the process of creating recovery stresses in a SMA wire activated by Joule heating, during a thermal cycle (up to the return to ambient temperature). First, a thermal characterization is performed using infrared thermography for temperature profile measurements along the wire in a steady-state regime. Second, recovery stress tests are performed using a uniaxial testing machine. Finally, tests are analyzed using a thermomechanical model, taking the inhomogeneous temperature distribution along the wire into account. The influence of the initial distribution of martensite (before thermal activation of the memory effect) is discussed, as well as the influence of the wire length. It is shown that the thermal boundary effects at the contact with the grips of the testing machine significantly influence the response of the wire. For instance, during the heating of the wire, an austenite-to-martensite transformation may occur in the zones near the wire ends (where the temperature remains close to ambient) due to the increased stress. A length of influence of the thermal boundary effects on the overall wire response is defined, and a condition to neglect this influence is proposed. The study highlights the importance of taking thermal boundary effects into account for practical applications of SMAs based on Joule heating.
Directory of Open Access Journals (Sweden)
Mohamed Ali
2015-09-01
Full Text Available The mixed laminar boundary layer flow and heat transfer on a permeable stretched surface moving with prescribed skin friction are studied. Three major cases, which correspond to complete similarity solutions, are considered. The cases are combinations of power law indices n and m representing temperature and skin friction distributions, respectively. The first case (n = 0, m = 0.5 corresponds to isothermal stretched surface with skin friction at the surface scales as x 1/4. The second case (n = 1, m = 1 is a linear temperature and skin friction distribution along the vertical stretched surface. The third case (n = −1, m = 0 represents inverse temperature variation along the surface with prescribed skin friction of the order of x −1/2. Similarity solutions are obtained for the surface stretched in a stagnant air with Prandtl number = 0.72. The effect of suction/injection velocity (fw and the buoyancy parameter (λ is studied in detail. The results show that the heat transfer coefficient along the surface is enhanced for assisting flow (λ > 0 at any value of fw for the first and second cases, while it is reduced for the third case. However, the opposite is true for the opposing flow (λ < 0. Furthermore, suction enhances the heat transfer coefficient, whereas injection degrades it at any fixed λ for the first and second prescribed skin friction boundary conditions, and the opposite is true for the third case.
On the coupling between a supersonic boundary layer and a flexible surface
Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin
1992-01-01
The coupling between a two-dimensional, supersonic, laminar boundary layer and a flexible surface is studied using direct numerical computations of the Navier-Stokes equations coupled with the plate equation. The flexible surface is forced to vibrate by plane acoustic waves at normal incidence emanated by a sound source located on the side of the flexible surface opposite to the boundary layer. The effect of the source excitation frequency on the surface vibration and boundary layer stability is analyzed. We find that, for frequencies near the fifth natural frequency of the surface or lower, large disturbances are introduced in the boundary layer which may alter its stability characteristics. The interaction between a stable two-dimensional disturbance of Tollmien-Schlichting (TS) type with the vibrating surface is also studied. We find that the disturbance level is higher over the vibrating flexible surface than that obtained when the surface is rigid, which indicates a strong coupling between flow and structure. However, in the absence of the sound source the disturbance level over the rigid and flexible surfaces are identical. This result is due to the high frequency of the TS disturbance which does not couple with the flexible surface.
Directory of Open Access Journals (Sweden)
Hadała B.
2016-12-01
Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.
Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints
Energy Technology Data Exchange (ETDEWEB)
Yoo, Seung Chang; Choi, Kyoung Joon [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Bahn, Chi Bum [School of Mechanical Engineering, Pusan National University, 63-gil, Geumjeong-Gu, Pusan 609-735 (Korea, Republic of); Kim, Si Hoon; Kim, Ju Young [School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)
2015-04-15
In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.
Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints
Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun
2015-04-01
In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.
Improved low frequency room responses by considering finiteness of room boundary surfaces
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2013-01-01
For room acoustic simulations, the acoustic characteristics of room boundary surfaces are typically calculated under the assumption that the surfaces are sufficiently large. In this study, a reflection coefficient for finite surfaces is suggested and its performance is assessed through case studies...... surface impedance values that are assigned to all the boundary surfaces, the suggested reflection coefficient is found to improve low frequency responses compared to the infinite panel theory; larger improvements are found for a more disproportionate room, more absorptive surfaces, and surfaces having...... larger negative phase angles of the surface impedance. A larger improvement is also found for a nonuniform absorption case than for a uniform absorption setting having a similar equivalent absorption coefficient....
Accurate computation of surface stresses and forces with immersed boundary methods
Goza, Andres; Morley, Benjamin; Colonius, Tim
2016-01-01
Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is a...
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review
Directory of Open Access Journals (Sweden)
Yunlu Pan
2014-07-01
Full Text Available The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA and contact angle hysteresis (CAH of a droplet of deionized (DI water on a hydrophobic polystyrene (PS surface were measured with applied direct current (DC and alternating current (AC voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.
Basu, S.; Holtslag, A.A.M.; Wiel, van de B.J.H.; Moene, A.F.; Steeneveld, G.J.
2008-01-01
In single column and large-eddy simulation studies of the atmospheric boundary layer, surface sensible heat flux is often used as a boundary condition. In this paper, we delineate the fundamental shortcomings of such a boundary condition in the context of stable boundary layer modelling and simulati
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-09-01
Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.
Magnetohydrodynamic Stagnation Point Flow with a Convective Surface Boundary Condition
Jafar, Khamisah; Ishak, Anuar; Nazar, Roslinda
2011-09-01
This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities.
Magnetohydrodynamic stagnation point flow with a convective surface boundary condition
Energy Technology Data Exchange (ETDEWEB)
Jafar, Khamisah [Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia). Faculty of Engineering and Built Environment; Ishak, Anuar; Nazar, Roslinda [Universiti Kebangsaan, Bangi, Selangor (Malaysia). School of Mathematical Sciences
2011-08-15
This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities. (orig.)
Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions.
Manor, Ofer; Vakarelski, Ivan U; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C
2008-10-21
A bubble attached to the end of an atomic force microscope cantilever and driven toward or away from a flat mica surface across an aqueous film is used to characterize the dynamic force that arises from hydrodynamic drainage and electrical double layer interactions across the nanometer thick intervening aqueous film. The hydrodynamic response of the air/water interface can range from a classical fully immobile, no-slip surface in the presence of added surfactants to a partially mobile interface in an electrolyte solution without added surfactants. A model that includes the convection and diffusion of trace surface contaminants can account for the observed behavior presented. This model predicts quantitatively different interfacial dynamics to the Navier slip model that can also be used to fit dynamic force data with a post hoc choice of a slip length.
Stefánsson, Andri; Barnes, Jaime D.
2016-09-01
The chlorine isotope composition of thermal fluids from Iceland were measured in order to evaluate the source of chlorine and possible chlorine isotope fractionation in geothermal systems at divergent plate boundaries. The geothermal systems studied have a wide range of reservoir temperatures from 40 to 437 °C and in-situ pH of 6.15 to 7.15. Chlorine concentrations range from 5.2 to 171 ppm and δ37 Cl values are -0.3 to + 2.1 ‰ (n = 38). The δ37 Cl values of the thermal fluids are interpreted to reflect the source of the chlorine in the fluids. Geothermal processes such as secondary mineral formation, aqueous and vapor speciation and boiling were found to have minimal effects on the δ37 Cl values. However, further work is needed on incorporation of Cl into secondary minerals and its effect on Cl isotope fractionation. Results of isotope geochemical modeling demonstrate that the range of δ37 Cl values documented in the natural thermal fluids can be explained by leaching of the basaltic rocks by meteoric source water under geothermal conditions. Magmatic gas partitioning may also contribute to the source of Cl in some cases. The range of δ37 Cl values of the fluids result mainly from the large range of δ37 Cl values observed for Icelandic basalts, which range from -0.6 to + 1.2 ‰.
Direct numerical simulation methods of hypersonic flat-plate boundary layer in thermally perfect gas
Jia, WenLi; Cao, Wei
2014-01-01
High-temperature effects alter the physical and transport properties of air such as vibrational excitation in a thermally perfect gas, and this factor should be considered in order to compute the flow field correctly. Herein, for the thermally perfect gas, a simple method of direct numerical simulation on flat-plat boundary layer is put forward, using the equivalent specific heat ratio instead of constant specific heat ratio in the N-S equations and flux splitting form of a calorically perfect gas. The results calculated by the new method are consistent with that by solving the N-S equations of a thermally perfect gas directly. The mean flow has the similarity, and consistent to the corresponding Blasius solution, which confirms that satisfactory results can be obtained basing on the Blasius solution as the mean flow directly in stability analysis. The amplitude growth curve of small disturbance is introduced at the inlet by using direct numerical simulation, which is consistent with that obtained by linear stability theory. It verified that the equation established and the simulation method is correct.
Raghupathy, Arun; Ghia, Karman; Ghia, Urmila
2008-11-01
Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.
Alam, M. S.; Ali, M.; Alim, M. A.; Munshi, M. J. Haque
2017-06-01
The present study is performed to find the similarity solution like Blasius solution and also analyzed the effect of various dimensionless parameters on the momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer along a porous stretching surface. So the governing partial differential equations are transformed to ordinary differential equations by using similarity transformations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of unsteadiness parameter, permeability parameter and stretching ratio parameter but there is no effect for magnetic parameter, the temperature profile decreases for increasing values of Brownian motion, unsteadiness, thermophoresis and stretching ratio but increases for magnetic parameter, the nanoparticle concentration decreases for increasing values of unsteadiness parameter, thermophoresis parameter, suction parameter, stretching ratio parameter and Lewis number but increases for magnetic parameter and Brownian motion parameter. For validity and accuracy the present results are compared with previously published work and found to in good agreement.
3D SURFACE GENERATION FROM AERIAL THERMAL IMAGERY
Directory of Open Access Journals (Sweden)
B. Khodaei
2015-12-01
Full Text Available Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV. The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.
An algorithm for estimating surface normal from its boundary curves
Directory of Open Access Journals (Sweden)
Jisoon Park
2015-01-01
Full Text Available Recently, along with the improvements of geometry modeling methods using sketch-based interface, there have been a lot of developments in research about generating surface model from 3D curves. However, surfacing a 3D curve network remains an ambiguous problem due to the lack of geometric information. In this paper, we propose a new algorithm for estimating the normal vectors of the 3D curves which accord closely with user intent. Bending energy is defined by utilizing RMF(Rotation-Minimizing Frame of 3D curve, and we estimated this minimal energy frame as the one that accords design intent. The proposed algorithm is demonstrated with surface model creation of various curve networks. The algorithm of estimating geometric information in 3D curves which is proposed in this paper can be utilized to extract new information in the sketch-based modeling process. Also, a new framework of 3D modeling can be expected through the fusion between curve network and surface creating algorithm.
Drop formation by thermal fluctuations at an ultralow surface tension.
Hennequin, Y; Aarts, D G A L; van der Wiel, J H; Wegdam, G; Eggers, J; Lekkerkerker, H N W; Bonn, Daniel
2006-12-15
We present experimental evidence that drop breakup is caused by thermal noise in a system with a surface tension that is more than 10(6) times smaller than that of water. We observe that at very small scales classical hydrodynamics breaks down and the characteristic signatures of pinch-off due to thermal noise are observed. Surprisingly, the noise makes the drop size distribution more uniform, by suppressing the formation of satellite droplets of the smallest sizes. The crossover between deterministic hydrodynamic motion and stochastic thermally driven motion has repercussions for our understanding of small-scale hydrodynamics, important in many problems such as micro- or nanofluidics and interfacial singularities.
Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer
DEFF Research Database (Denmark)
Fairall, C.W.; Larsen, Søren Ejling
1984-01-01
A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... developed by Davidson et al. (1983). This three layer model (diffusion sublayer, turbulent surface layer and mixed layer) is applied to an open ocean marine regime where boundary layer advection is ignored. The aerosol concentration in the boundary layer is considered to consist of sea salt particles...
A model of the planetary boundary layer over a snow surface
Halberstam, I.; Melendez, R.
1979-01-01
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.
Land-surface and boundary layer processes in a semi-arid heterogeneous landscape
Jochum, A.M.
2003-01-01
The European Field Experiment in a Desertification-threatened Area (EFEDA) provides a comprehensive land-surface dataset for a semiarid Mediterranean environment. It is used here to study heat and moisture transport processes in the atmospheric boundary layer (ABL), to derive grid-scale surface flux
Local thermal properties of the surface of Vesta
Capria, M. T.; Tosi, F.; Capaccioni, F.; De Sanctis, M. C.; Palomba, E.; Ammannito, E.; Carraro, F.; Fonte, S.; Titus, T. N.; Combe, J.-P.; Toplis, M.; Sunshine, J.; Fulchignoni, M.; Russel, C. T.; Raymond, C. A.
2012-04-01
Temperature information has been obtained from the Dawn/VIR (Visible InfraRed imaging spectrometer) spectra acquired during the Vesta campaign. When combined with a thermophysical model, these temperatures can be used to derive surface thermal properties. Thermal properties are sensitive to several physical characteristics of the surface that are not all spatially resolved. Thus, the derivation of surface temperatures and thermal inertia can lead to the characterization of surface and sub-surface properties of Vesta and the determination of regolith properties. The model we are using solves the heat conduction equation and provide the temperature as a function of thermal conductivity, albedo, emissivity, density and specific heat. The model is applied to the actual shape of Vesta: for any given location, characterized by a well-defined illumination condition and a given UTC time to compute the thermal inertia that results in model temperatures providing a best-fit to surface temperatures as retrieved by VIR. The model has been already applied to the first Vesta full-disk data to derive the global average thermal inertia of Vesta. The values obtained are typical of fine-grained, unconsolidated materials (i.e. dust) and suggest a surface in which a dust layer is wide-spread on coarser regolith. The model is now being applied on small regions of the surface of Vesta. Specific regions are selected because they are interesting for some reason or appear different from the surroundings, such as, for example, dark and bright spots and other peculiar features. Given a location, the thermophysical code is applied until the obtained temperatures are matching (best-fit techniques are used) the temperatures derived from the VIR spectra. The thermal inertia, thermal conductivity, albedo and roughness values are then assumed to be characterizing the location under analysis. The results of the model must be carefully checked and interpreted by taking into account the context (from
Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface
Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.
2001-01-01
Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.
Remote sensing of Arctic boundary layer clouds above snow surfaces
Ehrlich, André; Bierwirth, Eike; Wendisch, Manfred
2015-04-01
In the Arctic remote sensing of clouds using reflected solar radiation is mostly related to high uncertainties as the contrast between the bright sea ice and snow surface and the clouds is low. Additionally, uncertainties result from variation of the snow grain size which changes the absorption of solar radiation similarly to the size of cloud particles. This is a major issue for understanding the response of Arctic clouds to climate warming as the quantification of cloud properties in this remote region mostly relies on satellite observations. We used spectral radiation measurements of the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) to improve common used cloud remote sensing algorithms in case of snow surfaces. The measurements were collected during the airborne research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) above the Canadian Beaufort where both sea ice covered and ice free ocean areas were present during the observation period. Based on the spectral absorption characteristics of snow and clouds (assuming to be dominated by the liquid fraction) a combination of wavelengths was found which allows to separate the impact of clouds and snow surface on the reflected radiation measured above the clouds. While snow grain size dominates the absorption at a wavelength of 1.0 μm, information on cloud optical thickness and cloud particle effective radius can be extracted at wavelengths of 1.7 μm and 2.1 μm, respectively. Based on radiative transfer simulations lookup tables for the retrieval algorithm were calculated and used to estimate the theoretical uncertainties of the retrieval. It was found that using ratios instead of absolute radiances reduces the uncertainties significantly. The new algorithm was applied to a specific case observed during the VERDI campaign where a stratocumulus clouds was located above an ice edge. It could be shown that the method works also over water
Fuchs, Lukas; Schmeling, Harro; Koyi, Hemin
2014-05-01
Understanding the interaction between the oceanic lithosphere and the upper mantle is a crucial part in understanding plate tectonics/kinematic, especially along the lithosphere-asthenosphere boundary (LAB). In this study, we analyzed finite deformation (f = log(a b) , where a and b are the major and minor axis of the strain ellipse, respectively) integrated over time, within the upper 400 km of the mantle. The velocity field was numerically calculated within a two-dimensional channel of certain depth and length with a constant plate velocity on top (Couette flow), with no slip bottom boundary and open side boundaries. The viscosity is described by a composite rheology (dislocation and diffusion creep) which is given by a temperature field based on a half-space cooling model for an oceanic lithospheric plate using variable thermal parameters. A constant pressure was applied at the left boundary of the channel to obtain a faster flowing asthenosphere (additional Poiseuille flow). The depth of the LAB is assumed to be mechanically defined and corresponds to the depth at which no additional strain is accumulated on the downstream side, separating the high-viscous non-deforming lithosphere from the low-viscous asthenosphere. Model results show that the lower part of the lithosphere defined in this way is characterized by large inherited strains (f ~ 2). Due to the applied kinematic boundary conditions for a Couette-flow model and the lateral viscosity variations within the channel a minor induced Poiseuille-flow component is obtained within the model. Thus, the stresses vary significantly in comparison to the 1D solution of a Couette-flow. Preliminary results show that deformation along the LAB is strongly governed by the temperature and the plate velocity. The maximum depth of the lithosphere defined in the above way is 120 km, and correlates with the 1230 °C temperature contour line. Moreover, assuming steady state, the finite deformation will always increase with
Institute of Scientific and Technical Information of China (English)
LIU Zhen-Xiang; XIE Kan
2000-01-01
Nanostructured CeO2 thin films and powders are studied by high temperature x-ray photoelectron spectroscopy and thermal gravimetric analysis. The results indicate that the surface composition strongly depends on temperature, the surface O/Ce ratio initially increases with increasing temperature, then decreases with the further increase of temperature, the maximum surface O/Ce ratio is at about 300℃ C. The variation of the surface composition with temperature arises from the ion migration, redistribution and transformation between lattice oxygen and gas phase oxygen near the grain boundaries during the thermodynamic equilibrium process. The results also show that CeO2 has a weakly bond oxygen, high oxygen mobility in the bulk and a high molecular dissociation rate at the surface, especially for the sol-gel prepared nanocrystallite CeO2.
Kazmerski, L. L.
Complementary surface analysis techniques (AES, SIMS, XPS) are applied to photovoltaic devices in order to assess the limiting factors of grain and grain boundary chemistry to the performance of polycrystalline solar cells. Results of these compositional and chemical studies are directly correlated with electrical measurements (EBIC) and with resulting device performance. Examples of grain boundary passivation in polycrystalline Si and GaAs solar cells are cited. The quality of the intragrain material used in these devices is shown to be equally important to the grain boundary activity in determining overall photovoltaic performance.
Thermal boundary layer profiles in turbulent Rayleigh-B\\'enard convection in a cylindrical sample
Stevens, Richard J A M; Grossmann, Siegfried; Verzicco, Roberto; Xia, Ke-Qing; Lohse, Detlef
2011-01-01
We numerically investigate the structures of the near-plate temperature profiles close to the bottom and top plates of turbulent Rayleigh-B\\'{e}nard flow in a cylindrical sample at Rayleigh numbers $Ra=10^8$ to $Ra=2\\times10^{12}$ and Prandtl numbers Pr=6.4 and Pr=0.7 thus extending previous results for quasi-2-dimensional systems to 3D systems for the first time. The results show that the instantaneous temperature profiles scaled by the dynamical frame method [Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 104, 104301 (2010)] agree well with the classical Prandtl-Blasius laminar boundary layer (BL) profiles, especially for low Ra and high Pr. The agreement is slightly less, but still good, for lower Pr, where the thermal BL is more exposed to the bulk fluctuations due to the thinner kinetic BL, and higher Ra, where more plumes are passing the measurement location.
Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes
2014-05-01
Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA
A neural network for enhancing boundaries and surfaces in synthetic aperture radar images.
Mingolla, Ennio; Ross, William; Grossberg, Stephen
1999-04-01
A neural network system for boundary segmentation and surface representation, inspired by a new local-circuit model of visual processing in the cerebral cortex, is used to enhance images of range data gathered by a synthetic aperture radar (SAR) sensor. Boundary segmentation is accomplished by an improved Boundary Contour System (BCS) model which completes coherent boundaries that retain their sensitivity to image contrasts and locations. A Feature Contour System (FCS) model compensates for local contrast variations and uses the compensated signals to diffusively fill-in surface regions within the BCS boundaries. Image noise pixels that are not supported by BCS boundaries are hereby eliminated. More generally, BCS/FCS processing normalizes input dynamic range, reduces noise, and enhances contrasts between surface regions. BCS/FCS processing hereby makes structures such as motor vehicles, roads, and buildings more salient to human observers than in original imagery. The new BCS model improves image enhancement with significant reductions in processing time and complexity over previous BCS applications. The new system also outperforms several established techniques for image enhancement.
Directory of Open Access Journals (Sweden)
Plaksina Yu.Yu.
2013-04-01
Full Text Available Temperature fields in evaporating liquids are measured by simultaneous use of Background Oriented Schlieren (BOS technique for the side view and IR thermal imaging for the surface distribution. Good agreement between the two methods is obtained with typical measurement error less than 0.1 K. Two configurations of surface layer are observed: thermocapillary convection state with moving liquid surface and small thermal cells, associated with Marangoni convection, and “cool skin” with negligible velocity at the surface, larger cells and dramatic increase of velocity within 0.1 mm layer beneath the surface. These configurations are shown to be formed in various liquids (water with various degrees of purification, ethanol, butanol, decane, kerosene, glycerine depending rather on initial conditions and ambient parameters than on the liquid. Water, which has been considered as the liquid without observable Marangoni convection, actually can exhibit both kinds of behavior during the same experimental run. Evaporation is also studied by means of numerical simulations. Separate problemsin air and liquid are considered, with thermal imaging data of surface temperature making the separation possible. It is shown that evaporation rate can be predicted by numerical simulation of the air side with appropriate boundary conditions. Comparison is made with known empirical correlations for Sherwood-Rayleigh relationship. Numerical simulations of water-side problem reveal the issue of velocity boundary conditions at the free surface, determining the structure of surface layer. Flow field similar to observed in the experiments is obtained with special boundary conditions of third kind, presenting a combination of no-slip and surface tension boundary conditions.
Lambrakos, S. G.
2017-08-01
An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.
Simulation of a free-surface and seepage face using boundary-fitted coordinate system method
Lee, Kang-Kun; Leap, Darrell I.
1997-09-01
The boundary-fitted coordinate (BFC) system method is applied to simulate steady groundwater seepage with a free-surface and seepage face using the finite-difference method. The BFC system method eliminates the difficulty of fitting finite-difference grids to a changeable free-surface which is not known a priori but will be obtained as part of a solution. Also, grid generation with this approach is simpler than with the finite-element method. At each iterative sweep, the changeable free-surface becomes a part of the boundary-fitted grid lines, making boundary condition implementation easy and accurate. An example problem demonstrating the simulation procedure and numerical results compares very well with the analytical solution.
Klich, G. F.
1976-01-01
A description of the Langley thermal protection system test facility is presented. This facility was designed to provide realistic environments and times for testing thermal protection systems proposed for use on high speed vehicles such as the space shuttle. Products from the combustion of methane-air-oxygen mixtures, having a maximum total enthalpy of 10.3 MJ/kg, are used as a test medium. Test panels with maximum dimensions of 61 cm x 91.4 cm are mounted in the side wall of the test region. Static pressures in the test region can range from .005 to .1 atm and calculated equilibrium temperatures of test panels range from 700 K to 1700 K. Test times can be as long as 1800 sec. Some experimental data obtained while using combustion products of methane-air mixtures are compared with theory, and calibration of the facility is being continued to verify calculated values of parameters which are within the design operating boundaries.
Modeling the impact of solid surfaces in thermal degradation processes
Tuma, Christian; Laino, Teodoro; Martin, Elyette; Stolz, Steffen; Curioni, Alessandro
2013-01-01
First-principles simulations are carried out to generate reaction profiles for the initial steps of the thermal decomposition of glycerol, propylene glycol, and triacetin over the surfaces of pseudo-amorphous carbon and silica, crystalline zirconia [001], and crystalline alumina (0001).
Sea surface temperature mapping using a thermal infrared scanner
Digital Repository Service at National Institute of Oceanography (India)
RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.
1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...
Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S
2016-12-01
Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.
Seasonality of submesoscale flows in the ocean surface boundary layer
Buckingham, Christian E.; Naveira Garabato, Alberto C.; Thompson, Andrew F.; Brannigan, Liam; Lazar, Ayah; Marshall, David P.; George Nurser, A. J.; Damerell, Gillian; Heywood, Karen J.; Belcher, Stephen E.
2016-03-01
A signature of submesoscale flows in the upper ocean is skewness in the distribution of relative vorticity. Expected to result for high Rossby number flows, such skewness has implications for mixing, dissipation, and stratification within the upper ocean. An array of moorings deployed in the Northeast Atlantic for 1 year as part of the experiment of the Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS) reveals that relative vorticity is positively skewed during winter even though the scale of the Rossby number is less than 0.5. Furthermore, this skewness is reduced to zero during spring and autumn. There is also evidence of modest seasonal variations in the gradient Rossby number. The proposed mechanism by which relative vorticity is skewed is that the ratio of lateral to vertical buoyancy gradients, as summarized by the inverse gradient Richardson number, restricts its range during winter but less so at other times of the year. These results support recent observations and model simulations suggesting that the upper ocean is host to a seasonal cycle in submesoscale turbulence.
Crossing the Traditional Boundaries: Salen-Based Schiff Bases for Thermal Protective Applications.
Naik, Anil D; Fontaine, Gaëlle; Bellayer, Séverine; Bourbigot, Serge
2015-09-30
A broad spectrum of applications of "Salen"-based Schiff bases tagged them as versatile multifunctional materials. However, their applicability is often bounded by a temperature threshold and, thus, they have rarely been used for high temperature applications. Our investigation of a classical Schiff base, N,N'-bis(4-hydroxysalicylidene)ethylenediamine (L2), reveals that it displays an intriguingly combative response to an elevated temperature/fire scenario. L2 resists and regulates thermal degradation by forming an ablative surface, and acts as a thermal shield. A polycondensation via covalent cross-linking, which forms a hyperbranched cross-linked resin is found to constitute the origin of the ablative surface. This is a unique example of a resin formation produced with a Schiff base, that mimicks the operational strategy of a high-heat resistant phenolic resin. Further applicability of L2, as a flame retardant, was tested in an engineering polymer, polyamide-6. It was found that it reinforces the polymer against fire risks by the formation of an intumescent coating. This paves the way for a new strategic avenue in safeguarding polymeric materials toward fire risks. Further, this material represents a promising start for thermal protective applications.
Free surface simulation of a two-layer fluid by boundary element method
Directory of Open Access Journals (Sweden)
Weoncheol Koo
2010-09-01
Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.
Qi, Y.; Sheldon, B. W.; Guo, H.; Xiao, X.; Kothari, A. K.
2009-02-01
First principles calculations were integrated with cohesive zone and growth chemistry models to demonstrate that adsorbed species can significantly alter stresses associated with grain boundary formation during polycrystalline film growth. Using diamond growth as an example, the results show that lower substrate temperatures increase the hydrogen content at the surface, which reduces tensile stress, widens the grain boundary separations, and permits additional atom insertions that can induce compressive stress. More generally, this work demonstrates that surface heteroatoms can lead to behavior which is not readily described by existing models of intrinsic stress evolution.
Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects
Ebrahimi, Farzad; Barati, Mohammad Reza
2017-01-01
This article deals with the free vibration investigation of nonlocal strain gradient-based viscoelastic functionally graded (FG) nanobeams on viscoelastic medium considering surface stress effects. Nonlocal strain gradient theory possesses a nonlocal stress field parameter and a length scale parameter for more accurate prediction of mechanical behavior of nanostructures. Surface energy effect is incorporate to the nonlocal strain gradient theory employing Gurtin-Murdoch elasticity theory. Thermo-elastic material properties of nanobeam are graded in thickness direction using power-law distribution. Hamilton's principal is utilized to obtain the governing equations of FG nanobeam embedded in viscoelastic medium. The effects of surface stress, length scale parameter, nonlocal parameter, viscoelastic medium, internal damping constant, thermal loading, power-law index and boundary conditions on vibration frequencies of viscoelastic FGM nanobeams are discussed in detail.
Geng, Weihua
2013-01-01
In this paper, we present a parallel higher-order boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular surfaces are first discretized with flat triangles and then converted to curved triangles with the assistance of normal information at vertices. To maintain the desired accuracy, four-point Gauss-Radau quadratures are used on regular triangles and sixteen-point Gauss-Legendre quadratures together with regularization transformations are applied on singular triangles. To speed up our method, we take advantage of the embarrassingly parallel feature of boundary integral formulation, and parallelize the schemes with the message passing interface (MPI) implementation. Numerical tests show significantly improved accuracy and convergence of the proposed higher-order boundary integral Poisson-Boltzmann (HOBI-PB) solver compared with bou...
Li, Yifan; Bhushan, Bharat
2015-10-14
The reduction of fluid drag is an important issue in many fluid flow applications at the micro/nanoscale. Boundary slip is believed to affect fluid drag. Slip length has been measured on various surfaces with different degrees of hydrophobicity and oleophobicity immersed in various liquids of scientific interest. Surface charge has been found to affect slip length in water and electrolytes. However, there are no studies on the effect of surface charge on slip at solid-oil interfaces. This study focuses on the effect of surface charge on the boundary slip of superoleophilic, oleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water and hexadecane and ethylene glycol, based on atomic force microscopy (AFM). The surface charge was changed by applying a positive electric field to the solid-liquid interface, and by using liquids with different pH values. The results show that slip length increases with an increase in applied positive electric field voltage. Slip length also increases with a decrease in the pH of the solutions. The change in slip length is dependent on the absolute value of the surface charge, and a larger surface charge density results in a smaller slip length. In addition, the surface charge density at different solid-liquid interfaces is related to the dielectric properties of the surface. The underlying mechanisms are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Yoo, Seung Chang; Choi, Kyung Joon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2013-10-15
Fusion boundary region has complex microstructure because of welding heat and latter heat treatment that cause changes of mechanical property and corrosion resistance of material. Due to this reason, this region has very different characteristic with base metal or filler metal. Therefore, it needs to be more studied. Nelson et al. found type-II boundary which is parallel to fusion boundary in the filler metal within 100μm in dilution zone is a potential crack path for SCC. Mechanism of formation of type-II boundary is not clearly turned out. Nelson et al. suggest that the type-II boundary is created by changing process of solidification from body centered cubic structure of ferrite to face centered cubic structure of austenite at welding process. But further research is required on this region. As nuclear power plant operation time increased, concerns occur about decreased integrity of dissimilar metal weld about SCC due to thermal aging. This study purposes to analyze the detailed microstructure of type-II boundary of Alloy 152 . A533 Gr. B weld joint, applying thermal aging effect simulation of nuclear power plant environment to evaluating integrity of this region about SCC. The microstructure of type-II boundary region of Alloy 152 . A533 Gr. B weld joint had been analyzed with optical microscope (OM), energy dispersive x-ray spectroscope attached to scanning electron microscope (SEM-EDX), Vickers micro-hardness tester. In order to characterize the thermal aging effect on microstructures in the fusion boundary and type-II boundary, the DMWs consisting of Alloy 690-Alloy 152-A533 Gr. B were analyzed with several instruments. Hardness was maximized at narrow zone near type-II boundary. Reason for this phenomenon may include residual stress, precipitate and stiff composition gradient. There are studies which report that SCC is easily propagates at the region with higher hardness, so integrity to SCC at this region must be considered. After heat treatment, nickel
HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT
Directory of Open Access Journals (Sweden)
I.A. Gorlach
2012-01-01
Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.
Pekker, Leonid; Murphy, Anthony B.
2016-09-01
In this paper, we propose a new set of boundary conditions at ablative hot walls with thermionic electron emission for two-temperature thermal arc models in which the temperature of electrons can deviate from the temperature of heavy particles,~{{T}\\text{e}}\
Lu, D.; Takizawa, A.; Kondo, S.
A newly developed ``physical component boundary fitted coordinate (PCBFC) method'' is extended for the analysis of free-surface flows coupled with moving boundaries. Extra techniques are employed to deal with the coupling movement of the free surface and moving boundaries. After the validation of the extension by several benchmark problems, the method is successfully applied for the first time to the simulation of overflow-induced vibration of the weir coupled with sloshing of the free-surface liquid.
Emergent geometry, thermal CFT and surface/state correspondence
Gan, Wen-Cong; Wu, Meng-He
2016-01-01
We study a conjectured correspondence between any codimension two convex surface and a quantum state (SS-duality for short). By generalizing thermofield double formalism to continuum version of the multi-scale entanglement renormalization ansatz (cMERA) and using the SS-duality, we propose a general framework to emerge the thermal geometry from CFT at finite temperature. As an example, the case of $2d$ CFT is considered carefully. We calculate its information metric and show that it is the BTZ black hole or the thermal AdS as expectation.
Directory of Open Access Journals (Sweden)
M.A. Mansour
2015-11-01
Full Text Available Numerical investigation for heat transfer with natural convection and nanofluid flow subjected to changeable thermal boundary conditions and inclined magnetic field has been performed. Effect of problem’s parameters on each other has been monitored. It has been reached to that inclination angle can justify the quasi-symmetric boundary conditions to be symmetric. In addition to that as inclination angle increases, the magnetic force pointed to horizontal trend; so the convection regime dominates the cavity. In a related context, nanoparticles provide conduction regime, increase and maintenance the rate of heat transfer all over the cavity. However thermal emission at ends of heat source–sink has been found to be constant when boundary conditions change in the pure case.
Impact of mass and bond energy difference and interface defects on thermal boundary conductance
Choi, ChangJin
The objective of this study is to use molecular dynamics simulation techniques in order to improve the understanding of phonon transport at the interface of dissimilar materials and the impact of different material properties on thermal boundary conductance (TBC). In order to achieve this goal, we investigated the contributions of mass and bond energy difference and interface defects on TBC at the interface of nanostructured materials using non-equilibrium molecular dynamics (NEMD) simulation and phonon wave-packet (PWP) simulation techniques. NEMD is used to distinguish relative and combined contributions of mass and bond energy difference on TBC. As a result, it is found that the mass has a stronger contribution than the bond energy on lowering the TBC and that the TBC is dependent on the length of interdiffusion region as well as temperature. In addition, evidence of inelastic scattering is observed with interdiffusion regions especially when two materials differ in the bond energy. A detailed description of phonon interactions at the interface is obtained performing PWP simulations. A frequency dependence of the TBC based on phonon dispersion relation is observed. As it is expected, minimum scattering occurs when there exists only vibrational mismatch at the interface and inelastic scattering is to take place at high frequency region when the bond energy of the two materials is different resulting in the strain at the interface. It is also shown that the level of inelastic scattering is dependent on the length of the interdiffusion region. In addition, the TBC calculated with the results of PWP simulations is compared with that of NEMD simulations as well as theoretical predictions from the acoustic mismatch model and the diffuse mismatch model. A simple analytical model, which utilizes knowledge of thermal interface resistance and the interface geometry for the prediction of effective thermal conductivity, is developed. This model is generated based on Si
Directory of Open Access Journals (Sweden)
R. H. H. Janssen
2012-08-01
Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.
Interactions of the land-surface with the atmospheric boundary layer
Ek, M.B.
2005-01-01
We study daytime land-atmosphere interaction using a one-dimensional (column) coupled land-surface - atmospheric boundary-Iayer (ABL) model and data sets gathered at Cabauw (1978, central Netherlands) and during the Hydrological and Atmospheric Pilot Experiment - Modélisation du Bilan Hydrique (HAPE
Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export
Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.;
2014-01-01
Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.
Null exact controllability of the parabolic equations with equivalued surface boundary condition
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available This paper is devoted to showing the null exact controllability for a class of parabolic equations with equivalued surface boundary condition. Our method is based on the duality argument and global Carleman-type estimate for a parabolic operator.
Vilà-Guerau de Arellano, J.; Dries, van den K.; Pino, D.
2009-01-01
We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL). A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of i
A second-order boundary-fitted projection method for free-surface flow computations
Yang, B.; Prosperetti, A.
2006-01-01
This paper describes a new approach to the high-fidelity simulation of axisymmetric free-surface flows. A boundary-fitted grid is coupled with a new projection method for the solution of the Navier–Stokes equations with second-order accuracy in space and time. Two variants of this new method are dev
DEFF Research Database (Denmark)
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...
Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning
Directory of Open Access Journals (Sweden)
N. A. Brunsell
2010-07-01
Full Text Available The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model. The simulations exhibit little variation in net radiation. Rather, a change in the partitioning of the surface energy between sensible and latent heat flux is responsible for differences in boundary layer dynamics. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to surface heterogeneity than water vapor, which implies that the role of surface heterogeneity in modifying the local temperature gradients in order to maximize convective heat fluxes. More homogeneous surface conditions, on the other hand, tend to maximize latent heat flux. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w, T and q and associated cospectra (w'T', w'q' and T'q', however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the
Washuta, Nathan; Duncan, James H
2016-01-01
The complex interactions between turbulence and the free surface, including air entrainment processes, in boundary layer shear flows created by vertical surface-piercing plates are considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is operated both as a suddenly-started plate to reproduce boundary layer flow or at steady state in the presence of a stationary flat plate positioned parallel to the belt to create a Couette flow with a free surface. Surface profiles are measured with a cinematic laser-induced fluorescence system in both experiments and air entrainment events and bubble motions are observed with stereo underwater white-light movies in the suddenly started belt experiment. It is found that the RMS surface height fluctuations, $\\eta$, peak near the boundaries of the flows and increase approximately l...
Dubail, J.; Santachiara, R.; Emig, T.
2017-03-01
Systems as diverse as binary mixtures and inclusions in biological membranes, and many more, can be described effectively by interacting spins. When the critical fluctuations in these systems are constrained by boundary conditions, critical Casimir forces (CCF) emerge. Here we analyze CCF between boundaries with alternating boundary conditions in two dimensions, employing conformal field theory (CFT). After presenting the concept of boundary changing operators, we specifically consider two different boundary configurations for a strip of critical Ising spins: (I) alternating equi-sized domains of up and down spins on both sides of the strip, with a possible lateral shift, and (II) alternating domains of up and down spins of different size on one side and homogeneously fixed spins on the other side of the strip. Asymptotic results for the CCF at small and large distances are derived. We introduce a novel modified Szegö formula for determinants of real antisymmetric block Toeplitz matrices to obtain the exact CCF and the corresponding scaling functions at all distances. We demonstrate the existence of a surface renormalization group flow between universal force amplitudes of different magnitude and sign. The Casimir force can vanish at a stable equilibrium position that can be controlled by parameters of the boundary conditions. Lateral Casimir forces assume a universal simple cosine form at large separations.
Ishii, Masashi
2010-09-01
For dynamic analyses of a polymer surface, a dielectric relaxation measurement technique with parallel electrodes placed away from the surface was developed. In this technique, a liquid heating medium was filled in the space between the polymer surface and the electrodes. The construction that maintains the surface can clarify the physical interactions between the liquid and the bare surface and controlling the temperature of the liquid reveals the thermal activation property of the surface. The dielectric relaxation spectrum of the surface convoluted into the bulk and liquid spectra can be obtained by a reactance analysis and the surface spectrum is expressed with an equivalent resistance-capacitance parallel circuit. On the basis of the electromechanical analogy, the electric elements can be converted into mechanical elements that indicate the viscoelasticity of the polymer surface. Using these measurement and analysis techniques, the electric and mechanical properties of the surface of a gelatinized chloroprene rubber sample were analyzed.
THERMAL FRACTURE OF FUNCTIONALLY GRADED PLATE WITH PARALLEL SURFACE CRACKS
Institute of Scientific and Technical Information of China (English)
Yuezhong Feng; Zhihe Jin
2009-01-01
This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △T_c that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △T_c for an Al_2O_3/Si_3N_4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △T_c. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △T_c can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.
Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid
2009-07-21
Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.
Thermal convection in Earth's inner core with phase change at its boundary
Deguen, Renaud; Cardin, Philippe
2013-01-01
Inner core translation, with solidification on one hemisphere and melting on the other, provides a promising basis for understanding the hemispherical dichotomy of the inner core, as well as the anomalous stable layer observed at the base of the outer core - the F-layer - which might be sustained by continuous melting of inner core material. In this paper, we study in details the dynamics of inner core thermal convection when dynamically induced melting and freezing of the inner core boundary (ICB) are taken into account. If the inner core is unstably stratified, linear stability analysis and numerical simulations consistently show that the translation mode dominates only if the viscosity $\\eta$ is large enough, with a critical viscosity value, of order $3 10^{18}$ Pas, depending on the ability of outer core convection to supply or remove the latent heat of melting or solidification. If $\\eta$ is smaller, the dynamical effect of melting and freezing is small. Convection takes a more classical form, with a one...
Multilayer scaling of mean velocity and thermal fields of compressible turbulent boundary layer
Bi, Weitao; Wu, Bin; Zhang, Yousheng; Hussain, Fazle; She, Zhen-Su
2014-11-01
Recently, a symmetry based structural ensemble dynamics (SED) theory was proposed by She et al. for canonical wall bounded turbulent flows, yielding prediction of the mean velocity profile at an unprecedented accuracy (99%). Here, we extend the theory to compressible turbulent boundary layers (TBL) at supersonic and hypersonic Mach numbers. The flows are acquired by spatially evolving direct numerical simulations (DNS). A momentum mixing length displays a four layer structure and quantitatively obeys the dilation group invariance as for the incompressible TBL. In addition, a temperature mixing length behaves very similarly to the momentum mixing length when the wall is adiabatic, with a small difference in the scaling exponents in the buffer layer - consistent with the strong Reynolds analogy. The Lie group based formulization of the two mixing lengths yields a multilayer model for the turbulent Prandtl number, along with predictions to the mean thermal and velocity profiles, both in good agreement with the DNS. Thus, we assert that the compressible TBLs are governed by the same symmetry principle as that in the canonical wall bounded turbulent flows, and its mean fields can be accurately described by the SED theory.
Thermal separation in near-axis boundary layers with intense swirl
Herrada, M. A.; Pérez-Saborid, M.; Barrero, A.
1999-12-01
Swirling flows have a wide range of applications and exhibit a variety of interesting features. Gas cooling near the axis in these flows, the so-called Ranque-Hilsch effect, is one of them. To gain insight into this phenomenon, we have analyzed the thermal, near-axis boundary layer of a gas jet driven by a class of conical inviscid quasi-incompressible flows whose axial and azimuthal velocity components, w and v, and stagnation temperature, Tt, behave near the axis as w=W0rm-2,v=LW0rm-2, and Tt-Tr=T0r2(m-2), where z and r are the axial and radial coordinates, L is the Squire number directly related to the swirl strength, m is any real number such as 1⩽mvortex core for some range of values of both L and Pr (Ranque-Hilsch effect) when the effect of both heat conduction and the work done by viscous forces are taken into account. It is also found that there exists an optimum value Lop for which the cooling effect reaches a sharp maximum and that small deviations of L from Lop reduce drastically the cooling effect. The appropriate tuning of Lop can be dramatically important for the efficient operation of Ranque-Hilsch tubes. The influence of the Prandtl number and the rest of the parameters of the problem has been also considered.
On the role of thermal boundary conditions in dynamo scaling laws
Oruba, Ludivine
2016-01-01
In dynamo power-based scaling laws, the power $P$ injected by buoyancy forces is measured by a so-called flux-based Rayleigh number, denoted as ${\\rm Ra}_Q^*$ (see Christensen and Aubert, 2006). Whereas it is widely accepted that this parameter is measured (as opposite to controlled) in dynamos driven by differential heating, the literature is much less clear concerning its nature in the case of imposed heat flux. We clarify this issue by highlighting that in that case, the ${\\rm Ra}_{Q}^*$ parameter becomes controlled only in the limit of large Nusselt numbers (${\\rm Nu} \\gg 1$). We then address the issue of the robustness of the original relation between $P$ and ${\\rm Ra}_Q^*$ with the geometry and the thermal boundary conditions. We show that in the cartesian geometry, as in the spherical geometry with a central mass distribution, this relation is purely linear, in both differential and fixed-flux heating. However, we show that in the geometry commonly studied by geophysicists (spherical with uniform mass ...
Directory of Open Access Journals (Sweden)
M.A Mansour
2016-01-01
Full Text Available Numerical investigation for heat transfer with steady MHD natural convection cooling of a localized heat source at the bottom wall of an enclosure filled with nanofluids subjected to changeable thermal boundary conditions at the sidewalls has been studied in the a presence of inclined magnetic field. Finite difference method was employed to solve the dimensionless governing equations of the problem. The effects of governing parameters, namely, Hartmann number, solid volume fraction, the different values of the heat source length and the different locations of the heat source on the streamlines and isotherms contours as well as maximum temperature, Nusselt number and average Nusselt number along the heat source were considered. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed. It is found that an increase in the Hartmann number results in a clear reduction in the rate of heat transfer; however, the increase in Rayleigh number enhances the nanofluid flow and heat transfer rate.
Thermal and Photochemical Reactions of NO2 on a Chromium (III) Oxide Surface
Nishino, N.; Finlayson-Pitts, B. J.
2011-12-01
Chromium oxide (Cr2O3) is a major component of the oxide layer on stainless steel surfaces. It is also widely used as pigment in paints and roofs and as a protective coating on various surfaces. While many studies have focused on the catalytic activity of Cr2O3 surfaces for selective catalytic reduction (SCR), less attention has been paid to its surface chemistry involving atmospherically important species such as NO2 under atmospheric conditions. In this study, we have investigated thermal and photochemical reactions of NO2 in the presence and the absence of water vapor, using a thin layer of Cr2O3 as a model for the surface of stainless steel as well as other similarly coated surfaces in the boundary layer. A 30 nm thick Cr2O3 film was deposited on a germanium attenuated total reflectance (ATR) crystal, and the changes in the surface species were monitored by Fourier Transform Infrared (FTIR) spectroscopy. Upon NO2 adsorption, nitrate (NO3-) ions appeared likely coordinated to Cr3+ ion(s). The NO3- peaks reversibly shifted when water vapor was added, suggesting that NO3- become solvated. Irradiation at 311 nm led to a decrease in NO3- ions under both dry and humid conditions. The major gas-phase species formed by the irradiation was NO under dry conditions, while NO2 was mainly formed in the presence of H2O. Possible mechanisms and the implications for heterogeneous NO2 chemistry in the boundary layer will be discussed. The results will also be compared to similar chemistry on other surfaces.
Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities
Energy Technology Data Exchange (ETDEWEB)
Murthy Nadella, Narayana
2010-09-15
Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.
Energy Technology Data Exchange (ETDEWEB)
Huang, Haoxiang; Kumar, Satish, E-mail: satish.kumar@me.gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Chen, Liang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi (China); Varshney, Vikas [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Universal Technology Corporation, Dayton, Ohio 45432 (United States); Roy, Ajit K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)
2016-09-07
Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0–80 (0%–6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEK interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.
Huang, Haoxiang; Chen, Liang; Varshney, Vikas; Roy, Ajit K.; Kumar, Satish
2016-09-01
Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0-80 (0%-6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEK interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.
The boundary layer over turbine blade models with realistic rough surfaces
McIlroy, Hugh M., Jr.
The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence
Campbell, Charles H.; Berger, Karen; Anderson, Brian
2012-01-01
Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.
Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio
2002-05-01
This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.
García, S.; Íñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Pérez, S.
2016-06-01
In this paper, we present results from the simulations of a submicrometer AlGaN/GaN high-electron-mobility transistor (HEMT) by using an in-house electro-thermal Monte Carlo simulator. We study the temperature distribution and the influence of heating on the transfer characteristics and the transconductance when the device is grown on different substrates (sapphire, silicon, silicon carbide and diamond). The effect of the inclusion of a thermal boundary resistance (TBR) is also investigated. It is found that, as expected, HEMTs fabricated on substrates with high thermal conductivities (diamond) exhibit lower temperatures, but the difference between hot-spot and average temperatures is higher. In addition, devices fabricated on substrates with higher thermal conductivities are more sensitive to the value of the TBR because the temperature discontinuity is greater in the TBR layer.
Electrochemical and Numerical Studies of Surface, Grain-Boundary and Bulk Copper Diffusion Into Gold
Miller, Eric Todd
Surface, grain-boundary, and bulk chemical diffusivities of copper into gold were measured by chronoamperometry -potentiometry applied to Cu|CuCl |Au solid state galvanic cells at 300-400^circC. The cells were constructed using a novel vapor deposition technique which is described. The automated data acquisition techniques utilizing unique hardware and custom designed software are also presented. Chronoamperometry and a two electrode limited potential cyclic voltammetry technique were comparatively used to determine cell capacitance and resistance. Both gave similar RC values at lower temperatures but diverged from each other at higher temperatures. Electron hole conductivity of CuCl could not be determined from intercept values in the chronoamperometry Cottrell analysis. The partial molar enthalpy and entropy of mixing copper into gold were determined from Emf vs temperature vs composition measurements of Cu|CuCl |Au-Cu alloy cells. The results support the regular solution model of mixing with interaction energy parameter {bf{cal Q}} = 10kJ. Diffusion coefficients were calculated from the chronoamperometry-potentiometry time/flux/concentration data in two ways: via the Cottrell equation, for an average diffusion coefficient; and via a simplex and finite difference program for the simultaneous determination of surface, grain-boundary, and bulk diffusion coefficients. This program was run on a MASPAR MP-2 massively parallel computer. The surface and grain-boundary diffusivities were numerically determinable in single and polycrystalline cathodes at short diffusion times. Bulk diffusivity was determinable at short and long diffusion times and agreed with previous data. Surface diffusivity was two orders of magnitude larger than the bulk with lower activation energy. Grain -boundary diffusivity was one order of magnitude larger than the bulk with similar activation energy. The Cottrell equation was only valid at very long diffusion times due to the transient interface
Accurate computation of surface stresses and forces with immersed boundary methods
Goza, Andres; Liska, Sebastian; Morley, Benjamin; Colonius, Tim
2016-09-01
Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems.
Institute of Scientific and Technical Information of China (English)
Liguo Tang; Jianchun Cheng
2008-01-01
The method of eigenfunction expansion is one of the most elegant methods for solving elastodynamic problems.The solution obtained from it is more concise than that obtained from the integral transform technique.Traditional eigenfunction expansion method is used for the elastodynamic problems with displacement and traction boundary conditions.In this paper,the method is generalized to study the elastodynamic response of an elastic solid with mixed boundary surfaces,and the exact analytical solution is derived.The dynamic response of a finite-length solid aluminum cylinder with two mixed end boundaries is numerically evaluated.The result com-puted from the analytical solution agrees very well with that obtained from finite element method(FEM).
Venancio, Igor M.; Gomes, Vitor P.; Belem, Andre L.; Albuquerque, Ana Luiza S.
2016-08-01
The upper thermal gradient of a western boundary upwelling system was reconstructed for the last 100 years. The reconstruction was based on oxygen isotopic composition (δ18O) of four planktonic foraminifera species derived from two boxcores (BCCF10-01 and BCCF10-04) located in the southeastern Brazilian shelf. Calcification depths of the four planktonic foraminifera species were estimated in order to understand which layer of the water column was assessed. Changes in the upper thermal gradient were evaluated by using the δ18O difference from the surface-dwelling species Globigerinoides ruber (pink) and the deep-dwelling Neogloboquadrina dutertrei. The relative abundance of cold-water species and the δ13C of G. ruber (pink) were also used to evaluate changes on the surface layer. Our results demonstrate a trend to reduction on the temperature difference (∆T) between the surface and the thermocline layer towards the present for both cores, together with an increase on the relative abundance of cold-water species for the mid-shelf core (BCCF10-04) and a decrease in δ13C values of G. ruber (pink) for both cores. Despite the observable trend on the proxies, only the relative abundance of Turborotalita quinqueloba and the δ13C of G. ruber (pink) for the mid-shelf core presented statistically significant trends. These results were related to an increase in South Atlantic Central Water (SACW) intrusions in the sub-surface layer, especially on the middle shelf region. The SACW intrusions would lower the sea surface temperature and would bring a depleted δ13C of the dissolved inorganic carbon signature to the surface, which would be in agreement with our findings. Moreover, these mid-shelf SACW intrusions in the region were attributed to the Ekman pumping (wind stress curl-driven), which was previously reported to be an important mechanism in this upwelling system. The major outcomes to this western boundary current ecosystem from an intensification of the mid
Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.
Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M
2015-03-01
In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient.
Laser-induced thermal desorption of aniline from silica surfaces
Voumard, Pierre; Zenobi, Renato
1995-10-01
A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.
Institute of Scientific and Technical Information of China (English)
Chandaneswar Midya
2012-01-01
An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible Buid over a linearly shrinking surface is presented. The Row is permeated by an externally applied magnetic Geld normal to the plane of the flow. The equations governing the Row and concentration Reid are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is signiRcantly different from that of a stretching surface. It s found that te solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced vaJues of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n = 0. Negative solute boundary layer thickness is observed for the PMF case when n = 1 and 2, and these facts may not be realized in real-world applications.%An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented.The flow is permeated by an externally applied magnetic field normal to the plane of the flow.The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables.Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall
Energy Technology Data Exchange (ETDEWEB)
Hirsa, A.H.; Vogel, M.J.; Gayton, J.D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering
2001-08-01
A variation of the digital particle image velocimetry (DPIV) technique was developed for the measurement of velocity at a free surface for low Froude number flows. The two-step process involves first determining the location of the free surface in the digital images of the seeded flow using the fast Fourier transform-based method of surface elevation mapping (SEM), which takes advantage of total internal reflection at the interface. The boundary-fitted DPIV code positions the interrogation windows below the computed location of the interface to allow for extrapolation of interfacial velocities. This technique was designed specifically to handle large surface-parallel vorticity which can occur when the Reynolds number is large and surface-active materials are present. The SEM technique was verified on capillary-gravity waves and the full boundary-fitted DPIV technique was applied to the interaction of vortex pairs with a free surface covered by an insoluble monolayer. The local rise and fall of the free surface as well as the passage and return of a contamination front was clearly observed in the DPIV data. (orig.)
Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.
2015-12-01
Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.
Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries
Deguen, Renaud
2013-01-01
In a number of geophysical or planetological settings (Earth's inner core, a silicate mantle crystallizing from a magma ocean, or an ice shell surrounding a deep water ocean) a convecting crystalline layer is in contact with a layer of its melt. Allowing for melting/freezing at one or both of the boundaries of the solid layer is likely to affect the pattern of convection in the layer. We study here the onset of thermal convection in a viscous spherical shell with dynamically induced melting/freezing at either or both of its boundaries. It is shown that the behavior of each interface depends on the value of a dimensional number P, which is the ratio of a melting/freezing timescale over a viscous relaxation timescale. A small value of P corresponds to permeable boundary conditions, while a large value of P corresponds to impermeable boundary conditions. The linear stability analysis predicts a significant effect of semi-permeable boundaries when the number P characterizing either of the boundary is small enough...
Reversal and amplification of zonal flows by boundary enforced thermal wind
Dietrich, Wieland; Wicht, Johannes
2016-01-01
Zonal flows in rapidly-rotating celestial objects such as the Sun, gas or ice giants form in a variety of surface patterns and amplitudes. Whereas the differential rotation on the Sun, Jupiter and Saturn features a super-rotating equatorial region, the ice giants, Neptune and Uranus harbour an equatorial jet slower than the planetary rotation. Global numerical models covering the optically thick, deep-reaching and rapidly rotating convective envelopes of gas giants reproduce successfully the prograde jet at the equator. In such models, convective columns shaped by the dominant Coriolis force typically exhibit a consistent prograde tilt. Hence angular momentum is pumped away from the rotation axis via Reynolds stresses. Those models are found to be strongly geostrophic, hence a modulation of the zonal flow structure along the axis of rotation, e.g. introduced by persistent latitudinal temperature gradients, seems of minor importance. Within our study we stimulate these thermal gradients and the resulting ageos...
Directory of Open Access Journals (Sweden)
S. Pramanik
2014-03-01
Full Text Available The present paper aims at investigating the boundary layer flow of a non-Newtonian fluid accompanied by heat transfer toward an exponentially stretching surface in presence of suction or blowing at the surface. Casson fluid model is used to characterize the non-Newtonian fluid behavior. Thermal radiation term is incorporated into the equation for the temperature field. With the help of similarity transformations, the governing partial differential equations corresponding to the momentum and heat transfer are reduced to a set of non-linear ordinary differential equations. Numerical solutions of these equations are then obtained. The effect of increasing values of the Casson parameter is seen to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature increases. It is found that the skin-friction coefficient increases with the increase in suction parameter.
The boundary-constraint method for constructing vortex-surface fields
Xiong, Shiying; Yang, Yue
2016-11-01
We develop a boundary-constraint method for constructing the vortex-surface field (VSF) in a three-dimensional fluid velocity field. The isosurface of VSF is a vortex surface consisting of vortex lines, which can be used to identify and track the evolution of vortical structures in a Lagrangian sense. The evolution equation with pseudo-time is solved under the boundary constraint of VSF to obtain an approximate solution of VSF. Using the boundary-constraint method, we construct the VSFs in Taylor-Green flow and transitional channel flow. The uniqueness of VSF are demonstrated with different initial conditions, and the consistency of this boundary-constraint method and the previous two-time approach for constructing VSF is discussed. In addition, the convergence error in the calculation of VSF is analyzed. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.
Thermal annealing of laser damage precursors on fused silica surfaces
Energy Technology Data Exchange (ETDEWEB)
Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L
2012-03-19
Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.
Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary
Ohta, K.; Yagi, T.; Taketoshi, N.; Hirose, K.; Komabayashi, T.; Baba, T.; Ohishi, Y.; Hernlund, J. W.
2011-12-01
Heat in the Earth's interior is transported dominantly by convection in the mantle and core, and by conduction at thermal boundary layers. The thermal conductivity of the bottom thermal boundary layer of the mantle determines the magnitude of heat flux from the core, and is intimately related to the formation of mantle plumes, the long-term thermal evolution of both mantle and core, and the driving force for generation of the geomagnetic field (Lay et al. 2008). However, the thermal conductivity and diffusivity have been poorly constrained at the high pressures of Earth's lowermost mantle. Previous estimates of the thermal conductivity in this region ranged widely between 5 and 30 W/m/K, and it has been often assumed to be 10 W/m/K (Lay et al. 2006). The lattice thermal diffusivity of MgSiO3 perovskite, a primary mineral in the Earth's lower mantle, has only been measured at 1 bar (Osako and Ito 1991). And the thermal diffusivity of post-perovskite has not been investigated so far. We measured the lattice component of thermal diffusivities of both MgSiO3 perovskite and post-perovskite to 144 GPa using a light pulse thermoreflectance technique in a diamond anvil cell (Yagi et al. 2011). The estimated lattice thermal conductivity of perovskite-dominant lowermost mantle is about 9 W/m/K, while post-perovskite-dominant one exhibits ~50% higher diffusivity than perovskite at equivalent pressure. Since many previous calculations assumed a lowermost mantle conductivity of 10 W/m/K, compatible with values obtained in this study, the present findings do not significantly alter the magnitude of heat flow from the core estimated using the post-perovskite double-crossing model (e.g., Lay et al. 2006). Indeed, the present results continue to support the notion of high core-mantle boundary heat flow along with a large degree of secular cooling necessary to sustain a geodynamo even in the absence of an inner core.
Gopinath, Ashok
1996-01-01
Analytical and numerical studies are to be carried out to examine time-averaged thermal effects which are induced by the interaction of strong acoustic fields with a rigid boundary (thermoacoustic streaming). Also of interest is the significance of a second-order thermal expansion coefficient that emerges from this analysis. The model problem to be considered is that of a sphere that is acoustically levitated such that it is effectively isolated in a high-intensity standing acoustic field. The solution technique involves matched asymptotic analysis along with numerical solution of the boundary layer equations. The objective of this study is to predict the thermoacoustic streaming behavior and fully understand the role of the associated second-order thermodynamic modulus.
Srivastava, R.; Rosner, D. E.
1979-01-01
A rational approach to the correlation of boundary layer mass transport rates, applicable to many commonly encountered laminar flow conditions with thermal diffusion and/or variable properties, is outlined. The correlation scheme builds upon already available constant property blowing/suction solutions by introducing appropriate correction factors to account for the additional ('pseudo' blowing and source) effects identified with variable properties and thermal diffusion. Applications of the scheme to the particular laminar boundary layer mass transfer problems considered herein (alkali and transition metal compound vapor transport) indicates satisfactory accuracy up to effective blowing factors equivalent to about one third of the 'blow off' value. As a useful by-product of the variable property correlation, we extend the heat-mass transfer analogy, for a wide range of Lewis numbers, to include variable property effects.
Energy Technology Data Exchange (ETDEWEB)
Jin, Yanan; Lai, Wensheng, E-mail: wslai@tsinghua.edu.cn
2016-03-15
The effect of grain boundaries (GBs) on bulk cascades in nano-structured alpha-zirconium has been studied by molecular dynamics (MD) simulations. It turns out that the existence of GBs increases the defect productivity in grains, suggesting that the GBs may act as a thermal barrier and postpone the annihilation of defects within grains. Moreover, it is found that the thermal barrier effect of GBs facilitates the shift of symmetric tilt GBs to the grain with higher temperature, and the smaller the tilt angle is, the easier the boundary shift will be. Thus, the influence of GBs on radiation damage in the nano-structured materials comes from the competition between damage increase in grains and defect annihilation at GBs.
THE MECHANISM OF FRICTION BETWEEN SURFACES WITH REGULAR MICRO GROOVES UNDER BOUNDARY LUBRICATION
Directory of Open Access Journals (Sweden)
Mykhaylo Pashechko
2012-12-01
Full Text Available The results of researches related to the influence of partially regular microrelief parameters on the adhesion component of the friction factor under boundary lubrication have been given. A special ring-on tape test rig is proposed in order to avoid errors during running-in process. Special technique is used to form sinusoidal microgrooves what helped to create a partially regular microrelief on the surface with controlled contour and nominal contact areas. Fatigue and deformation components of wear process are considered. We proved that microtexturing with proposed parameters decreases the adhesion component of friction and reduces the probability of microwelding. It has been shown that under boundary friction micro grooves are effective on precision surfaces with low roughness when lack of film and probability of seizure appear.
2D-Manifold Boundary Surfaces Extraction from Heterogeneous Object on GPU
Institute of Scientific and Technical Information of China (English)
Ming Wang; Jie-Qing Feng
2012-01-01
The conventional isosurface techniques are not competent for meshing a heterogeneous object because they assume that the object is homogeneous.Thus the visualization method taking the heterogeneity into account is desired.In this paper,we propose a novel algorithm to extract the boundary surfaces from a heterogeneous object in one pass,whose remarkable advantage is free of the number of materials contained.The heterogeneous object is first classified into a series of homogeneous material components.Then each component is enclosed with a 2D-manifold boundary surface extracted via our algorithm.The information important to the heterogeneous object is also provided,such as the interface between two materials,the intersection curve where three materials meet and the intersection point where four materials meet.To improve the performance,the algorithm is also designed and implemented on GPU.Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm.
Characters of surface deformation and surface wave in thermal capillary convection
Institute of Scientific and Technical Information of China (English)
DUAN; Li; KANG; Qi; HU; Wenrei
2006-01-01
In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mm×42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns. The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 μm. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.
Kang, S. L.; Chun, J.; Kumar, A.
2015-12-01
We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.
Digital Repository Service at National Institute of Oceanography (India)
DileepKumar, M.
-1 Special section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks Preface Exchanges across marine interfaces are important in global material cycles and in the modification of atmospheric composition. Climate... and feedbacks was held during the 2nd Annual Meeting of the Asia?Oceania Geosciences Society (AOGS) in Singapore during 20?24 June 2005. The following Special section contains some of the papers presented at that session. The first article by Sarma addresses...
Institute of Scientific and Technical Information of China (English)
Xuehui Chen; Liancun Zheng; Xinxin Zhang
2006-01-01
An efficient Adomian analytical decomposition technique for studying the momentum and heat boundary layer equations with exponentially stretching surface conditions was presented and an approximate analytical solution was obtained, which can be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solution were verified using numerical solutions in the literature. The approximate solution can be successfully applied to provide the values of skin friction and the temperature gradient coefficient.
Receptivity of the Boundary Layer to Vibrations of the Wing Surface
Bernots, Tomass; Ruban, Anatoly; Pryce, David; Laminar Flow Control UK Group Team
2014-11-01
In this work we study generation of Tollmien-Schlichting (T-S) waves in the boundary layer due to elastic vibrations of the wing surface. The flow is investigated based on the asymptotic analysis of the Navier-Stokes equations at large values of the Reynolds number. It is assumed that in the spectrum of the wing vibrations there is a harmonic which comes in resonance with the T-S wave on the lower branch of the stability curve. It was found that the vibrations of the wing surface produce pressure perturbations in the flow outside the boundary layer which can be calculated with the help of the piston theory. As the pressure perturbations penetrate into the boundary layer, a Stokes layer forms on the wing surface which appears to be influenced significantly by the compressibility of the flow, and is incapable of producing the T-S waves. The situation changes when the Stokes layer encounters an roughness; near which the flow is described using the triple-deck theory. The solution of the triple-deck problem can be found in an analytic form. Our main concern is with the flow behaviour downstream of the roughness and, in particular, with the amplitude of the generated Tollmien-Schlichting waves. This research was performed in the Laminar Flow Control Centre (LFC-UK) at Imperial College London. The centre is supported by EPSRC, Airbus UK and EADS Innovation Works.
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-07-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Thermal instability of GaSb surface oxide
Tsunoda, K.; Matsukura, Y.; Suzuki, R.; Aoki, M.
2016-05-01
In the development of InAs/GaSb Type-II superlattice (T2SL) infrared photodetectors, the surface leakage current at the mesa sidewall must be suppressed. To achieve this requirement, both the surface treatment and the passivation layer are key technologies. As a starting point to design these processes, we investigated the GaSb oxide in terms of its growth and thermal stability. We found that the formation of GaSb oxide was very different from those of GaAs. Both Ga and Sb are oxidized at the surface of GaSb. In contrast, only Ga is oxidized and As is barely oxidized in the case of GaAs. Interestingly, the GaSb oxide can be formed even in DI water, which results in a very thick oxide film over 40 nm after 120 minutes. To examine the thermal stability, the GaSb native oxide was annealed in a vacuum and analyzed by XPS and Raman spectroscopy. These analyses suggest that SbOx in the GaSb native oxide will be reduced to metallic Sb above 300°C. To directly evaluate the effect of oxide instability on the device performance, a T2SL p-i-n photodetector was fabricated that has a cutoff wavelength of about 4 μm at 80 K. As a result, the surface leakage component was increased by the post annealing at 325°C. On the basis of these results, it is possible to speculate that a part of GaSb oxide on the sidewall surface will be reduced to metallic Sb, which acts as an origin of additional leakage current path.
Energy Technology Data Exchange (ETDEWEB)
Dai, Han; Ding, Ruiqiang [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Li, Yingfeng; Yang, Ganghai; Song, Dandan; Yu, Yue; Trevor, Mwenya [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)
2015-06-01
The thermal effects on the surface plasmon resonance (SPR) of Ag nanoparticles on the silicon surface have been studied. It is found that unusual blue shifts and narrowing of the SPR troughs occur as the temperature increases from 323 K to 363 K. At low temperature range (from 273 K to 323 K), the SPR troughs have the normal red shifts and broadening as in previous studies. The change of SPR is attributed to the thermal induced electron transport between particles and substrate, and is analyzed using samples with different particle sizes. This work reveals the mechanism of thermal effects on the plasmonic properties of Ag nanoparticles on the surface of silicon and offers useful information for designing of SPR devices. - Highlights: • Unusual blue shift of the SPR troughs is observed at 343 K. • Red shift of the SPR troughs is observed at 323 K. • The mechanism relies on the thermal induced surface electron transport. • Particle sizes play an important role in the change of the SPR troughs.
Thermal hehavior of Surface Mounted Devices (SMD) packaging
Bloch, Werner; Moeller, Werner
The thermal behavior of Surface Mounted Devices (SMD) packaging was investigated on an easily variable type. The effect of basic materials, chip carriers, and bonding, soldering, glueing and casting techniques was examined, considering the most important quantities, switching time and power. The test results show that cooling measures in the chip domain, such as chip bonding, chip casting, and chip carrier lining, are especially efficient for short switching times. The basic materials, even with heat sinks, become only important for longer switching times. The chip temperature of a conventional FR4/LCCC packaging was halved by the application of novel packaging materials, without changing the cooling mechanisms and the power.
Surface interactions with electromagnetic spectrum relevant to solar thermal propulsion
Bonometti, Joseph Alexander John
1997-11-01
Elements of solar thermal rocket propulsion systems were experimentally examined to quantify the most significant physical parameters related to concentrating and capturing solar energy. A detailed examination of the sun's electromagnetic flux impingement upon a solar concentrator, redirection to a secondary reflector or refractor optic and absorption in an opaque cavity surface are presented. Research performed includes the analysis and design of a unique high temperature solar laboratory at the University of Alabama in Huntsville, its construction and subsequent operation. The entire facility was a prerequisite to conducting this experimental research and is the result of an initial two-year research effort. Four primary elements were experimentally examined and their relationship to the solar heating profile analyzed to optimize it for use in a solar thermal upper stage. The first was the comparison of concentrator types to define the incident energy profile with the conclusion that their type or quality was insignificant to the thermal heating profile in an absorber cavity. Rigid, thin-film and Fresnel concentrators were experimentally assessed. The second element was the evaluation of the absorber geometry's length-to-diameter ratio of a cylindrical cavity and included the addition of a secondary optic. The secondary optic was recognized as a requirement in the solar thermal rocket and could either improve the flux distribution on the cavity wall using a refractor with extractor rod, or hinder it as in using a parabolic reflector. The third was direct measurement of absorber material properties at elevated temperatures. Reflectivity, absorptivity and emissivity were determined for rhenium at 1000 Kelvin. The reflectivity measurements included both diffuse and specular reflection components and sample coupons of rhenium and niobium were shown to decrease in reflectivity when heated to temperatures approaching 1200 degrees Kelvin. The methodology was unique in
Wind tunnel experiment of drag of isolated tree models in surface boundary layer
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.
Directory of Open Access Journals (Sweden)
W. Choi
2010-11-01
Full Text Available In this study the atmospheric boundary layer (ABL height (z_{i} over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The z_{i} values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007 and rawinsonde (2009 measurements under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h and power spectra of lateral winds and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.
Electron scattering at surfaces and grain boundaries in thin Au films
Energy Technology Data Exchange (ETDEWEB)
Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Flores, Marcos; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, German [Bachillerato, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); González-Fuentes, Claudio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)
2013-05-15
The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ{sub 0}(T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K < T < 300 K. Cooling the samples to 4 K increases ℓ{sub 0}(T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ{sub 0}(300) = 37 nm, the electron mean
General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2016-01-01
Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated the...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results.......Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...
Flow, slippage and a hydrodynamic boundary condition of polymers at surfaces
Energy Technology Data Exchange (ETDEWEB)
Mueller, M; Pastorino, C; Servantie, J [Institut fuer Theoretische Physik, Georg-August-Universitaet, D-37077 Goettingen (Germany)], E-mail: mmueller@theorie.physik.uni-goettingen.de
2008-12-10
Tailoring surface interactions or grafting of polymers onto surfaces is a versatile tool for controlling wettability, lubrication, adhesion and interactions between surfaces. Using molecular dynamics of a coarse-grained, bead-spring model and dynamic single-chain-in-mean-field simulations, we investigate how structural changes near the surface affect the flow of a polymer melt over the surface and how these changes can be parameterized by a hydrodynamic boundary condition. We study the temperature dependence of the near-surface flow of a polymer melt at a corrugated, attractive surface. At weakly attractive surfaces, lubrication layers form, the slip length is large and increases upon cooling. Close to the glass transition temperature, very large slip lengths are observed. At a more attractive surface, a 'sticky surface layer' is build up, giving rise to a small slip length. Upon cooling, the slip length decreases at high temperatures, passes through a minimum and increases upon approaching the glass transition temperature. At strongly attractive surfaces, the Navier slip condition fails to describe Couette and Poiseuille flows simultaneously. A similar failure of the Navier slip condition is observed for the flow of a polymer melt over a brush comprised of identical molecules. The wetting and flow properties of this surface are rather complex. Most notably, the cyclic motion of the grafted molecules gives rise to a reversal of the flow direction at the grafting surface. The failure of the Navier slip condition in both cases can be rationalized within a schematic, two-layer model, which demonstrates that the Navier slip condition fails to simultaneously describe Poiseuille and Couette flow if the fluid at the surface exhibits a higher viscosity than the bulk.
Fluid-structure interaction of turbulent boundary layer over a compliant surface
Anantharamu, Sreevatsa; Mahesh, Krishnan
2016-11-01
Turbulent flows induce unsteady loads on surfaces in contact with them, which affect material stresses, surface vibrations and far-field acoustics. We are developing a numerical methodology to study the coupled interaction of a turbulent boundary layer with the underlying surface. The surface is modeled as a linear elastic solid, while the fluid follows the spatially filtered incompressible Navier-Stokes equations. An incompressible Large Eddy Simulation finite volume flow approach based on the algorithm of Mahesh et al. is used in the fluid domain. The discrete kinetic energy conserving property of the method ensures robustness at high Reynolds number. The linear elastic model in the solid domain is integrated in space using finite element method and in time using the Newmark time integration method. The fluid and solid domain solvers are coupled using both weak and strong coupling methods. Details of the algorithm, validation, and relevant results will be presented. This work is supported by NSWCCD, ONR.
Surface and Electrical Properties of Electro-Coagulated Thermal Waste
Yesilkaya, S. S.; Okutan, M.; Içelli, O.; Yalçın, Z.
2015-05-01
The Electro-Coagulated Thermal Waste (ECTW) sample of the impedance spectroscopy investigation for electrical modulus and conductivity are presented. Electrical properties via temperature and frequency dependent impedance spectroscopy were investigated. Real and imaginary parts of electrical modulus were measured at various frequencies and a related Cole-Cole plot was acquired as well. The surface resistivity of the ECTW was measured by the four-point probe measurement technique, yielding a relatively high surface resistivity. As a result of this study, an effective building shielding material, which is a cost effective alternative, is proposed. The activation energy values were calculated from the Arrhenius plots at different frequencies. The transition region in this plot may be attributed to activation of ionic conductivity at lower temperatures.
Stracke, B.; Godolt, M.; Grenfell, J. L.; von Paris, P.; Patzer, B.; Rauer, H.
2012-04-01
The question of habitability is very important in the context of terrestrial extrasolar planets. Generally, the Habitable Zone (HZ) is defined as the orbital region around a star, in which life-supporting (habitable) planets can exist. Taking into account that liquid water is a commonly accepted, fundamental requirement for the development of life - as we know it - the habitable region around a star is mainly determined by the stellar insolation of radiation, which is sufficient to maintain liquid water at the planetary surface. This study focuses on different processes that can lead to the complete loss of a liquid water reservoir from the surface of a terrestrial planet to determine the inner boundary of the HZ. The investigated criteria are, for example, reaching the temperature of the critical point of water at the planetary surface, the runaway greenhouse effect and the diffusion-limited escape of water from the atmosphere, which could lead to the loss of the complete water reservoir within the lifetime of a planet. We investigate these criteria, which determine the inner boundary of the HZ, with a one-dimensional radiative-convective model of a planetary atmosphere, which extends from the surface to the mid-mesosphere. Our modelling approach involves the step-by-step increase of the incoming stellar flux and the subsequent iterative calculation of resulting changes in the temperature profiles, the atmospheric water vapour content and the radiative properties. Therefore, this climate model had to be adapted to account for high temperatures and water mixing ratios. For example, the infrared radiative transfer scheme was improved to be suitable for such high temperature and pressure conditions. Modelling results are presented determining the inner boundary of the HZ affected by these processes, which can result in no liquid water on the planetary surface. In this context, especially the role of the runaway greenhouse effect is discussed in detail.
Directory of Open Access Journals (Sweden)
W. Choi
2011-07-01
Full Text Available The atmospheric boundary layer (ABL height (z_{i} over complex, forested terrain is estimated based on the power spectra and the integral length scale of cross-stream winds obtained from a three-axis sonic anemometer during the two summers of the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The z_{i} values estimated with this technique show very good agreement with observations obtained from balloon tether sondes (2007 and rawinsondes (2009 under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. On the other hand, the low frequency behavior of the streamwise upslope winds did not exhibit significant variations and was therefore not useful in predicting boundary layer height. The behavior of the nocturnal boundary layer height (h with respect to the power spectra of the v-wind component and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the 2009 experiment in which it was measured. Finally, significant directional wind shear was observed during both day and night soundings. The winds were found to be consistently backing from the prevailing west-southwesterlies within the ABL (the anabatic cross-valley circulation to southerlies in a layer ~1–2 km thick just above the ABL before veering to the prevailing westerlies further aloft. This shear pattern is shown to be consistent with the forcing of a thermal wind driven by the regional temperature gradient directed east-southeast in the lower troposphere.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiaorong [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Bincheng [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China)
2015-02-15
Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.
Rivera, María J; Molina, Juan A López; Trujillo, Macarena; Berjano, Enrique J
2009-07-01
Previous studies on computer modeling of RF ablation with cooled electrodes modeled the internal cooling circuit by setting surface temperature at the coolant temperature (i.e., Dirichlet condition, DC). Our objective was to compare the temperature profiles computed from different thermal boundary conditions at the electrode-tissue interface. We built an analytical one-dimensional model based on a spherical electrode. Four cases were considered: A) DC with uniform initial condition, B) DC with pre-cooling period, C) Boundary condition based on Newton's cooling law (NC) with uniform initial condition, and D) NC with a pre-cooling period. The results showed that for a long time (120 s), the profiles obtained with (Cases B and D) and without (Cases A and C) considering pre-cooling are very similar. However, for shorter times ( 30 s), Cases A and C overestimated the temperature at points away from the electrode-tissue interface. In the NC cases, this overestimation was more evident for higher values of the convective heat transfer coefficient (h). Finally, with NC, when h was increased the temperature profiles became more similar to those with DC. The results suggest that theoretical modeling of RF ablation with cooled electrodes should consider: 1) the modeling of a pre-cooling period, especially if one is interested in the thermal profiles registered at the beginning of RF application; and 2) NC rather than DC, especially for low flow in the internal circuit.
Turbulent dusty boundary layer in an ANFO surface-burst explosion
Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.
1992-01-01
This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.
Indian Academy of Sciences (India)
Thara V Prabha; R Venkatesan; Erich Mursch-Radlgruber; G Rengarajan; N Jayanthi
2002-03-01
Atmospheric boundary layer observations are conducted at a coastal site during a transition phase from winter to summer season over the Indian peninsula. Thermal Internal Boundary Layer (TIBL) characteristics in presence of an off-shore and a weakly in uenced on-shore synoptic wind are examined with the help of measurements carried out with a mini-SODAR (SOund Detection And Ranging), tethered balloon, and tower-based micrometeorological measurements. In uence of the changing synoptic scale conditions on turbulent characteristics of TIBL is discussed. Mini-SODAR data showed the development and decay of sea and land breeze. It is seen that the characteristics of TIBL over the coastal land after sea breeze onset are similar to that of a shallow convective boundary layer (CBL) commonly found over plain land. Inside the TIBL, a maximum wind speed was noted close to the surface due to the penetration of sea breeze. In the off-shore case, a distinct sea breeze circulation was observed unlike in the case of on-shore ow. In the presence of weak on-shore case, a `minor sea' breeze is noted before the establishment of sea breeze and a reduction in the momentum uxes gives rise to decrease in the turbulence intensity. Updraft in the sea breeze front was stronger during weak synoptic conditions. In uence of synoptic changes on the sea breeze-land breeze circulation such as onset, strength and duration of the sea-land breeze are also examined.
Christien, F.; Le Gall, R.
2011-09-01
Phosphorus surface segregation was measured by Auger Electron Spectroscopy on a 17-4 PH martensitic stainless steel at 450, 550 and 600 °C. Surface segregation was shown to be much faster than expected which was attributed to a high contribution of phosphorus diffusion along the former austenitic grain boundaries. A model of surface segregation was developed following the Darken-du Plessis approach and taking account of both bulk and grain boundary solute diffusion. The phosphorus grain boundary diffusion coefficient in 17-4 PH was estimated: DGB17-4 PH steel than in α-iron.
Mandrekar, Pratik
2011-01-01
We study the properties of least time trajectories for particles moving on a two dimensional surface which consists of piecewise homogeneous regions. The particles are assumed to move with different constant speeds on different regions and on the boundary between regions. The speed of the particle is assumed to be highest when it moves along the edges formed by the boundary of two regions. We get an analogous behavior to Snell's Law of light refraction, but in a more generalized form. The model could be used for studying properties of animal and insect trails which tend to form predominantly along edges. The model predicts three types of behavior for the trajectories near a corner forming edge: fully edge following, partial edge following and complete avoidance of the edge, which are indeed observed in natural ant trails.
Experimental Study of Turbulent Boundary Layers on Groove/Smooth Flat Surfaces
Institute of Scientific and Technical Information of China (English)
Hongwei MA; Qiao TIAN; Hui WU
2005-01-01
This paper presents an experimental investigation of the turbulent boundary layers on both groove and smooth flat surfaces. The flow structures were shown in a water tunnel using the hydrogen-bubble flow visualization technique. The measurement results indicate that: (1) the grooves can effectively reduce accumulation of low-speed fluids, decrease the number of the low-speed streaks and depress oscillation of the streaks in the sublayer; (2) the grooves can restrain forming of the horseshoe vortices in the buffer region; (3) the grooves bate oscillation and kinking of the quasi-streamwise vortices and restrain production of the hairpin vortices and the ring vortices, reducing both frequency and intensity of the turbulence bursting; (4) the grooves directly affect the flow structures in the sublayer of the boundary layer and then modulate the flow field up to the buffer region and the logarithmic region by restraining development and interaction of the vortices.
Wang, T.; Simon, T. W.
1987-01-01
The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.
Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.
2011-01-01
Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.
Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface
Institute of Scientific and Technical Information of China (English)
M. Sajid; K. Mahmood; Z. Abbas
2012-01-01
We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface.The power law non-Newtonian fluid is considered as a lubricant.The lubrication layer is thin and assumed to have a variable thickness.The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization.The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order RungeKutta method.The results are discussed to see the influence of pertinent parameters.The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.%We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface. The power law non-Newtonian fluid is considered as a lubricant. The lubrication layer is thin and assumed to have a variable thickness. The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization. The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order Runge Kutta method. The results arc discussed to see the influence of pertinent parameters. The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.
Brandt, Angelika; Vanreusel, Ann; Bracher, Astrid; Jule Marie Hoppe, Clara; Lins, Lidia; Meyer-Löbbecke, Anna; Altenburg Soppa, Mariana; Würzberg, Laura
2014-10-01
In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m-3 at surface, 9 mg Chl-a m-2 and 161 mg C m-2 d-1- integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m-3 at surface, 180 mg Chl-a m-2 and 2587 mg C m-2 d-1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.
Kawai, Shigeki; Haapasilta, Ville; Lindner, Benjamin D.; Tahara, Kazukuni; Spijker, Peter; Buitendijk, Jeroen A.; Pawlak, Rémy; Meier, Tobias; Tobe, Yoshito; Foster, Adam S.; Meyer, Ernst
2016-09-01
On-surface chemical reactions hold the potential for manufacturing nanoscale structures directly onto surfaces by linking carbon atoms in a single-step reaction. To fabricate more complex and functionalized structures, the control of the on-surface chemical reactions must be developed significantly. Here, we present a thermally controlled sequential three-step chemical transformation of a hydrocarbon molecule on a Cu(111) surface. With a combination of high-resolution atomic force microscopy and first-principles computations, we investigate the transformation process in step-by-step detail from the initial structure to the final product via two intermediate states. The results demonstrate that surfaces can be used as catalysing templates to obtain compounds, which cannot easily be synthesized by solution chemistry.
The role of atmospheric boundary layer-surface interactions on the development of coastal fronts
Directory of Open Access Journals (Sweden)
D. Malda
2007-03-01
Full Text Available Frictional convergence and thermal difference between land and sea surface are the two surface conditions that govern the intensity and evolution of a coastal front. By means of the mesoscale model MM5, we investigate the influence of these two processes on wind patterns, temperature and precipitation amounts, associated with a coastal front, observed on the west coast of The Netherlands in the night between 12 and 13 August 2004. The mesoscale model MM5 is further compared with available observations and the results of two operational models (ECMWF and HIRLAM. HIRLAM is not capable to reproduce the coastal front, whereas ECMWF and MM5 both calculate precipitation for the coastal region. The precipitation pattern, calculated by MM5, agrees satisfactorily with the accumulated radar image. The failure of HIRLAM is mainly due to a different stream pattern at the surface and consequently, a different behaviour of the frictional convergence at the coastline.
The sensitivity analysis of frictional convergence is carried out with the MM5 model, by varying land surface roughness length (z_{0}. For the sensitivity analysis of thermal difference between sea and land surface, we changed the sea surface temperature (SST. Increasing surface roughness implies stronger convergence near the surface and consequently stronger upward motions and intensification of the development of the coastal front. Setting land surface roughness equal to the sea surface roughness means an elimination of frictional convergence and results in a diminishing coastal front structure of the precipitation pattern. The simulation with a high SST produces much precipitation above the sea, but less precipitation in the coastal area above land. A small increment of the SST results in larger precipitation amounts above the sea; above land increments are calculated for areas near the coast. A decrease of the SST shifts the precipitation maxima inland, although the
Boundary layer flow on a moving surface in otherwise quiescent pseudo-plastic non-Newtonian fluids
Institute of Scientific and Technical Information of China (English)
Liancun Zheng; Liu Ting; Xinxin Zhang
2008-01-01
A theoretical analysis for the boundary layer flow over a continuous moving surface in an otherwise quiescent pseudo-plastic non-Newtonian fluid medium was presented. The types of potential flows necessary for similar solutions to the boundary layer equations were determined and the solutions were numerically presented for different values of power law exponent.
Energy Technology Data Exchange (ETDEWEB)
Langner, M.C.; Kantner, C.L.S.; Chu, Y.H.; Martin, L.M.; Yu, P.; Ramesh, R.; Orenstein, J.
2010-01-20
We use the time-resolved magneto-optical Kerr effect (TRMOKE) to measure the local temperature and heat flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the heat flow out of the film is limited by the film/substrate interface. We show that this behavior is consistent with an effective boundary resistance resulting from disequilibrium between the spin and phonon temperatures in the film.
Stick-slip control in nanoscale boundary lubrication by surface wettability.
Chen, Wei; Foster, Adam S; Alava, Mikko J; Laurson, Lasse
2015-03-06
We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic-scale details affect the wettability of the confining surfaces and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.
Local surface sampling step estimation for extracting boundaries of planar point clouds
Brie, David; Bombardier, Vincent; Baeteman, Grégory; Bennis, Abdelhamid
2016-09-01
This paper presents a new approach to estimate the surface sampling step of planar point clouds acquired by Terrestrial Laser Scanner (TLS) which is varying with the distance to the surface and the angular positions. The local surface sampling step is obtained by doing a first order Taylor expansion of planar point coordinates. Then, it is shown how to use it in Delaunay-based boundary point extraction. The resulting approach, which is implemented in the ModiBuilding software, is applied to two facade point clouds of a building. The first is acquired with a single station and the second with two stations. In both cases, the proposed approach performs very accurately and appears to be robust to the variations of the point cloud density.
Directory of Open Access Journals (Sweden)
M.S Uddin
2011-01-01
Full Text Available The paper is concerned to find the distribution of the chemically reactant solute in the MHD flow of an electrically conducting viscous incompressible fluid over a stretching surface. The first order chemical reaction and the variable solute distribution along the surface are taken into consideration. The governing partial differential equations along with appropriate boundary conditions for flow field and reactive solute are transformed into a set of non-linear self-similar ordinary differential equations by using scaling group of transformations. An exact analytic solution is obtained for the velocity field. Using this velocity field, we obtain numerical solution for the reactant concentration field. It reveals from the study that the values of concentration profile enhances with the increase of the magnetic field and decreases with increase of Schmidt number as well as the reaction rate parameter. Most importantly, when the solute distribution along the surface increases then the concentration profile decreases.
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil
Directory of Open Access Journals (Sweden)
P. Bala Anki Reddy
2016-06-01
Full Text Available This article investigates the theoretical study of the steady two-dimensional MHD convective boundary layer flow of a Casson fluid over an exponentially inclined permeable stretching surface in the presence of thermal radiation and chemical reaction. The stretching velocity, wall temperature and wall concentration are assumed to vary according to specific exponential form. Velocity slip, thermal slip, solutal slip, thermal radiation, chemical reaction and suction/blowing are taken into account. The proposed model considers both assisting and opposing buoyant flows. The non-linear partial differential equations of the governing flow are converted into a system of coupled non-linear ordinary differential equations by using the similarity transformations, which are then solved numerically by shooting method with fourth order Runge–Kutta scheme. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient and the Sherwood number are illustrated in tabular form and are discussed graphically.
Influence of grain boundary characteristics on thermal stability in nanotwinned copper
Niu, Rongmei; Han, Ke; Su, Yi-Feng; Besara, Tiglet; Siegrist, Theo M.; Zuo, Xiaowei
2016-08-01
High density grain boundaries provide high strength, but may introduce undesirable features, such as high Fermi levels and instability. We investigated the kinetics of recovery and recrystallization of Cu that was manufactured to include both nanotwins (NT) and high-angle columnar boundaries. We used the isothermal Johnson-Mehl-Avrami-Kolmogorov (JMAK) model to estimate activation energy values for recovery and recrystallization and compared those to values derived using the non-isothermal Kissinger equation. The JMAK model hinges on an exponent that expresses the growth mechanism of a material. The exponent for this Cu was close to 0.5, indicating low-dimensional microstructure evolution, which is associated with anisotropic twin coarsening, heterogeneous recrystallization, and high stability. Since this Cu was of high purity, there was a negligible impurity-drag-effect on boundaries. The twin coarsening and heterogeneous recrystallization resulted from migration of high-angle columnar boundaries with their triple junctions in one direction, assisted by the presence of high concentration vacancies at boundaries. Analyses performed by electron energy loss spectroscopy of atomic columns at twin boundaries (TBs) and in the interior showed similar plasma peak shapes and L3 edge positions. This implies that values for conductivity and Fermi level are equal for atoms at TBs and in the interior.
Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland
Fitzjarrald, David R.; Moore, Kathleen E.
1994-01-01
Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat
Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland
Fitzjarrald, David R.; Moore, Kathleen E.
1994-01-01
Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat
Ghadiri, Majid; Zajkani, Asghar; Akbarizadeh, Mohammad Reza
2016-12-01
In this article, thermal effect on free vibration behavior of composite laminated microbeams based on the modified couple stress theory is presented. The proposed anisotropic model is developed by using a variational formulation. The governing equations and boundary conditions are obtained based on a modified couple stress theory and using the principle of minimum potential energy and considering different beam theories, i.e., Euler-Bernoulli, Timoshenko and Reddy beam theories. Unlike the classical beam theories, this model contains a material length scale parameter and can capture the size effect. Free vibration of a simply supported beam is solved by utilizing Fourier series. In addition, the fundamental frequency is achieved by using the generalized differential quadrature method for four types of cross-ply laminations with clamped-clamped, clamped-hinged and hinged-hinged boundary conditions for different beam theories. For investigating different parameters including temperature changes, material length scale parameter, beam thickness, some numerical results on different cross-ply laminated beams are presented. The fundamental frequency of different thin and thick beam theories is investigated by increasing slenderness ratio and thermal loads. The results prove that the modified couple stress theory increases the natural frequency under the thermal effects for free vibration of composite laminated microbeams.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Directory of Open Access Journals (Sweden)
J. Vilà-Guerau de Arellano
2009-06-01
Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.
Directory of Open Access Journals (Sweden)
J. Vilà-Guerau de Arellano
2009-02-01
Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.
Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality.
Vingurt, Dima; Fuks, David; Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti
2013-09-21
The increase of the surface basicity-acidity of MgO material by factors of 1.8-3.0 due to consolidation of its nanocrystals was demonstrated by the indicator titration. It was shown that the parallel increase of surface acidity and basicity is attributed to the formation of grain boundaries (GB) after MgO aerogel densification. A simple model predicting the increase of surface acidity-basicity of MgO that correlates with the results of direct measurements was proposed. The model is based on the study of the fine atomic structure at GB surface areas in consolidated MgO nanocrystals in the framework of Density Functional Theory. It is found that the displacements of coordinatively unsaturated surface ions near the GB are significant at the distances ~3-4 atomic layers from the geometrical contact plane between nanocrystals. The detailed analysis of atomic positions inside GB demonstrated the coordination deficiency of surface atoms at the GB areas leading to the formation of stretched bonds and to creation of low coordinated surface ions due to splitting of coordination numbers of surface atoms belonging to GB areas. Density of states for electrons shows the existence of additional states in the band gap close to the bottom of the conduction band. The adsorption energy of CO2 molecules atop oxygen atoms exposed at surface GB areas is of the same order of magnitude as that reported for oxygen atoms at crystallographic edges and corners of MgO crystals. It provides additional options for bonding of molecules at the surface of nanocrystalline MgO increasing the adsorption capacity and catalytic activity.
Ma, Y.M.
2006-01-01
Keywords: satellite remote sensing, surface layer observations, atmospheric boundary layer observations, land surface variables, vegetation variables, land surface heat fluxes, validation, heterogeneous landscape, GAME/Tibet
Evaluation of thermal resistance of building insulations with reflective surfaces
Št'astník, S.
2012-09-01
The thermal resistance of advanced insulation materials, applied namely in civil engineering, containing reflective surfaces and air gaps, cannot be evaluated correctly using the valid European standards because of presence of the dominant nonlinear radiative heat transfer and other phenomena not included in the recommended computational formulae. The proper general physical analysis refers to rather complicated problems from classical thermodynamics, whose both existence theory and numerical analysis contain open questions and cannot be done in practice when the optimization of composition of insulation layers is required. This paper, coming from original experimental results, demonstrates an alternative simplified computational approach, taking into account the most important physical processes, useful in the design of modern insulation systems.
Directory of Open Access Journals (Sweden)
Gilles Carbou
2015-02-01
Full Text Available We study the Landau-Lifshitz system associated with Maxwell equations in a bilayered ferromagnetic body when super-exchange and surface anisotropy interactions are present in the spacer in-between the layers. In the presence of these surface energies, the Neumann boundary condition becomes nonlinear. We prove, in three dimensions, the existence of global weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions.
Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer
Indian Academy of Sciences (India)
Shishir Gupta; Rehena Sultana; Santimoy Kundu
2015-02-01
The present work illustrates a theoretical study on the effect of rigid boundary for the propagation of torsional surface wave in an inhomogeneous crustal layer over an inhomogeneous half space. It is believed that the inhomogeneity in the half space arises due to hyperbolic variation in shear modulus and density whereas the layer has linear variation in shear modulus and density. The dispersion equation has been obtained in a closed form by using Whittaker’s function, which shows the variation of phase velocity with corresponding wave number. Numerical results show the dispersion equations, which are discussed and presented by means of graphs. Results in some special cases are also compared with existing solutions available from analytical methods, which show a close resemblance. It is also observed that, for a layer over a homogeneous half space, the velocity of torsional waves does not coincide with that of Love waves in the presence of the rigid boundary, whereas it does at the free boundary. Graphical user interface (GUI) software has been developed using MATLAB 7.5 to generalize the effect of various parameter discussed.
Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid
Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar
2015-10-01
A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.
Planetary boundary layer depth in Global climate models induced biases in surface climatology
Davy, Richard
2014-01-01
The Earth has warmed in the last century with the most rapid warming occurring near the surface in the arctic. This enhanced surface warming in the Arctic is partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The warming of the surface air due to the extra heat depends upon the amount of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). In this way the depth of the ABL determines the effective response of the surface air temperature to perturbations in the climate forcing. The ABL depth can vary from tens of meters to a few kilometers which presents a challenge for global climate models which cannot resolve the shallower layers. Here we show that the uncertainties in the depth of the ABL can explain up to 60 percent of the difference between the simulated and observed surface air temperature trends and 50 percent of the difference in temperature variability...
Precision polyimide single surface thin film shell apertures and active boundary control
Flint, Eric M.; Lindler, Jason E.; Hall, Jonathan L.; Rankine, Charles; Reggelbrugge, Mark
2006-06-01
This paper discusses the current status of self supporting precision membrane optical shell technology (MOST) apertures based on thin (25 to 125 um thick) polyimide and polyester films primary shell. Optically relevant doubly curved reflective apertures are realized by inducing permanent curvature into thin substrates that can then be coated. The initial thin nature provides both very low areal density (20 to 200 grams/m2) and compatibility with compact roll stowage. The induced curvature/depth provides the ability to support the shell around the periphery at discrete locations and considerable structural and dynamic stiffness. The discrete mounts also provide an excellent location with which to improve the surface figure and to reject environmental and host structure induced errors. Material microroughness on the leading substrate/coating combination has been measured to down to 3 nm rms over small (100x100um's) sample sizes with white light interferometry. A variety of reflective coated substrates have also been shown to have sub micron rms surface roughness over up to 100mm diameter test apertures using interferometric measurements. Best materials currently have 20nm rms surface roughness noise floors at these sizes. The ability to fabricate shells over a range of prescriptions (R/0.9 to R/2.2) and a range of sizes (0.1 to 0.75m diameter) has been demonstrated. Global surface figure accuracies of 2 to 4 microns rms have been demonstrated at the 0.2m size, and further improvements are anticipated through ongoing improved fabrication techniques (preliminary results indicate sub-micron rms values). The ability of discrete boundary control to improve the shape and maintain it in the face of disturbances (gravity for example) is demonstrated as is the ability to implement high amplitude (multi-wave) Zernike mode surface figure control. Results extending boundary control to interferometric optical level are also presented.
Impacts of surface heterogeneity on dry planetary boundary layers in an urban-rural setting
Zhu, Xiaoliang; Ni, Guangheng; Cong, Zhentao; Sun, Ting; Li, Dan
2016-10-01
Understanding the impacts of land use and land-cover change such as urbanization is essential in many disciplines. This study investigates the impacts of urban-rural contrasts in terms of momentum roughness length (z0) and aerodynamic surface temperature (TSK) on dry planetary boundary layers (PBLs) using large-eddy simulations (LES) with the Weather Research and Forecasting (WRF) model. In addition, the impacts of small-scale heterogeneities within urban areas are also examined. The original WRF-LES is modified in order to use prescribed TSK as surface boundary conditions. Numerical simulations are then conducted to examine turbulence characteristics and mesoscale circulations resulting from large-scale urban-rural contrasts as well as small-scale heterogeneities in urban areas. The results indicate that (1) the urban-rural contrasts in z0 and TSK have significant but different impacts on surface heat fluxes, mesoscale circulations, and the wind and potential temperature profiles. Compared to the case where the whole domain is homogeneous, increases in z0 and/or TSK in urban areas in the center of domain induce stronger sensible heat fluxes, stronger urban circulations, and weaker inversions at the top of the PBL. (2) When the patch size that characterizes the urban heterogeneity scale is comparable to the size of the whole urban area, the simulated results are strongly dependent on both the heterogeneity scale and the specified surface temperature values. As the patch size decreases, the simulated results become more similar to those over a homogeneous urban surface.
On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces
Directory of Open Access Journals (Sweden)
H. G. Ouwersloot
2011-07-01
Full Text Available We have systematically studied the inability of boundary layer turbulence to efficiently mix reactive species. This creates regions where the species are accumulated in a correlated or anti-correlated way, thereby modifying the mean reactivity. Here, we quantify this modification by the intensity of segregation, I_{S}, and analyse the driving mechanisms: heterogeneity of the surface moisture and heat fluxes, various background wind patterns and non-uniform isoprene emissions. For typical conditions in the Amazon rain forest, applying homogeneous surface forcings, the isoprene-OH reaction rate is altered by less than 10 %. This is substantially smaller than the previously assumed I_{S} of 50 % in recent large-scale model analyses of tropical rain forest chemistry. Spatial heterogeneous surface emissions enhance the segregation of species, leading to alterations of the chemical reaction rates of up to 20 %. For these cases, spatial segregation is induced by heterogeneities of the surface properties: a cool and wet forested patch characterized by high isoprene emissions is alternated with a warm and dry patch that represents pasture with relatively low isoprene emissions. The intensities of segregation are enhanced when the background wind direction is parallel to the borders between the patches and reduced in case of a perpendicular wind direction. The effects of segregation on trace gas concentrations vary per species. For the highly reactive OH, the differences in concentration averaged over the boundary layer are less than 2 % compared to homogeneous surface conditions, while the isoprene concentration is increased by as much as 12 % due to the reduced chemical reaction rates. These processes take place at the sub-grid scale of chemistry transport models and therefore need to be parameterized.
Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer
Directory of Open Access Journals (Sweden)
I. N. Esau
2004-11-01
Full Text Available Modern large-scale models (LSMs rely on surface drag coefficients to parameterize turbulent exchange between surface and the first computational level in the atmosphere. A classical parameterization in an Ekman boundary layer is rather simple. It is based on a robust concept of a layer of constant fluxes. In such a layer (log-layer, the mean velocity profile is logarithmic. It results in an universal dependence of the surface drag coefficient on a single internal non-dimensional parameter, namely the ratio of a height within this layer to a surface roughness length scale. A realistic near-neutral planetary boundary layer (PBL is usually much more shallow than the idealized Ekman layer. The reason is that the PBL is developing against a stably stratified free atmosphere. The ambient atmospheric stratification reduces the PBL depth and simultaneously the depth of the log-layer. Therefore, the first computational level in the LSMs may be placed above the log-layer. In such a case, the classical parameterization is unjustified and inaccurate.
The paper proposes several ways to improve the classical parameterization of the surface drag coefficient for momentum. The discussion is focused on a conventionally neutral PBL, i.e. on the neutrally stratified PBL under the stably stratified free atmosphere. The analysis is based on large eddy simulation (LES data. This data reveals that discrepancy between drag coefficients predicted by the classical parameterization and the actual drag coefficients can be very large in the shallow PBL. The improved parameterizations provide a more accurate prediction. The inaccuracy is reduced to one-tenth of the actual values of the coefficients.
Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer
Energy Technology Data Exchange (ETDEWEB)
Esau, I.N. [Nansen Environmental and Remote Sensing Center, Bergen (Norway)
2004-07-01
Modern large-scale models (LSMs) rely on surface drag coefficients to parameterize turbulent exchange between surface and the first computational level in the atmosphere. A classical parameterization in an Ekman boundary layer is rather simple. It is based on a robust concept of a layer of constant fluxes. In such a layer (log-layer), the mean velocity profile is logarithmic. It results in an universal dependence of the surface drag coefficient on a single internal non-dimensional parameter, namely the ratio of a height within this layer to a surface roughness length scale. A realistic near-neutral planetary boundary layer (PBL) is usually much more shallow than the idealized Ekman layer. The reason is that the PBL is developing against a stably stratified free atmosphere. The ambient atmospheric stratification reduces the PBL depth and simultaneously the depth of the log-layer. Therefore, the first computational level in the LSMs may be placed above the log-layer. In such a case, the classical parameterization is unjustified and inaccurate. The paper proposes several ways to improve the classical parameterization of the surface drag coefficient for momentum. The discussion is focused on a conventionally neutral PBL, i.e. on the neutrally stratified PBL under the stably stratified free atmosphere. The analysis is based on large eddy simulation (LES) data. This data reveals that discrepancy between drag coefficients predicted by the classical parameterization and the actual drag coefficients can be very large in the shallow PBL. The improved parameterizations provide a more accurate prediction. The inaccuracy is reduced to one-tenth of the actual values of the coefficients. (orig.)
The boundary condition for vertical velocity and its interdependence with surface gas exchange
Kowalski, Andrew S.
2017-07-01
The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.
Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning
Directory of Open Access Journals (Sweden)
N. A. Brunsell
2011-04-01
Full Text Available The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model (approximately 0.25, 1.2 and 9.5 times boundary layer height. The simulations exhibit little variation in net radiation. Rather, there is a pronounced change in the partitioning of the surface energy between sensible and latent heat flux. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The simulations showed approximately 50 Wm^{−2} difference in the spatially averaged latent heat flux. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to variations in surface heterogeneity than water vapor, which implies that the role of surface heterogeneity may be to maximize convective heat fluxes through modifying and maintaining local temperature gradients. More homogeneous surface conditions (i.e. smaller length scales, on the other hand, tend to maximize latent heat flux. The intermediate scale (1600 m this does not hold, and is a more complicated interaction of scales. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier
Institute of Scientific and Technical Information of China (English)
Lin Jian-Zhong; Li Hui-Jun; Zhang Kai
2007-01-01
An alternative model for the prediction of surface roughness length is developed. In the model a new factor is introduced to compensate for the effects of wake diffusion and interactions between the wake and roughness obstacles.The experiments are carried out by the use of the hot wire anemometry in the simulated atmospheric boundary layer in a wind tunnel. Based on the experimental data, a new expression for the zero-plane displacement height is proposed for the square arrays of roughness elements, which highlights the influence of free-stream speed on the roughness length. It appears that the displacement height increases with the wind speed while the surface roughness length decreases with Reynolds number increasing. It is shown that the calculation results based on the new expressions are in reasonable agreement with the experimental data.
Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform
Directory of Open Access Journals (Sweden)
J. Hong
2009-10-01
Full Text Available Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.
Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform
Directory of Open Access Journals (Sweden)
J. Hong
2010-04-01
Full Text Available Turbulence statistics such as flux-variance relationship are critical information in measuring and modeling ecosystem exchanges of carbon, water, energy, and momentum at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environments such as nocturnal stable boundary layer.
EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR
Energy Technology Data Exchange (ETDEWEB)
REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory
2007-01-16
Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.
A rigid surface boundary element for soil-structure interaction analysis in the direct time domain
Rizos, D. C.
Many soil-structure interaction problems involve studies of single or multiple rigid bodies of arbitrary shape and soil media. The commonly used boundary element methods implement the equations of the rigid body in a form that depends on the particulars of the geometry and requires partitioning and condensation of the associated algebraic system of equations. The present work employs the direct time domain B-Spline BEM for 3D elastodynamic analysis and presents an efficient implementation of rigid bodies of arbitrary shape in contact with, or embedded in, elastic media. The formulation of a rigid surface boundary element introduced herein is suitable for direct superposition in the BEM system of algebraic equations. Consequently, solutions are computed in a single analysis step, eliminating, thus, the need for partitioning of the system of equations. Computational efficiency is also achieved due to the extremely sparse form of the associated coefficient matrices. The proposed element can be used for the modeling of single or multiple rigid bodies of arbitrary shape within the framework of the BEM method. The efficiency and general nature of the proposed element is demonstrated through applications related to the dynamic analysis of rigid surface and embedded foundations and their interaction with embedded rigid bodies of arbitrary shape.
Energy Technology Data Exchange (ETDEWEB)
Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)
2015-10-06
Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.
Drag reduction by means of dimpled surfaces in turbulent boundary layers
van Nesselrooij, M.; Veldhuis, L. L. M.; van Oudheusden, B. W.; Schrijer, F. F. J.
2016-09-01
Direct force measurements and particle image velocimetry (PIV) were used to investigate the drag and flow structure caused by surfaces with patterns of shallow spherical dimples with rounded edges subject to turbulent boundary layers. Drag reduction of up to 4 % is found compared to a flat surface. The largest drag reduction was found at the highest tested Reynolds number of 40,000 (based on dimple diameter). A favorable trend promises further improvements at higher Reynolds numbers. PIV revealed the absence of significant separation inside the dimples but did show the existence of a converging/diverging flow in the upstream and downstream dimple half, respectively. This leads to the rejection of theories proposed by other authors concerning the mechanism responsible for drag reduction. Instead, a fundamental dependence on pattern orientation is observed. Furthermore, preliminary Reynolds-averaged Navier-Stokes (RANS) simulations have been compared with the PIV data. Although the large-scale mean flows show good agreement, the numerical simulation predicts no drag reduction. As the RANS approach is inherently incapable of resolving effects on the behavior of small-scale turbulence structure, the origin of drag reduction is attributed to effects on the small-scale turbulence, which is not resolved in the simulations. It is argued that dimples, when placed in well-designed patterns to create the necessary large-scale flow structure, lead to drag reduction by affecting the turbulent structures in the boundary layer, possibly in a way similar to spanwise oscillations of the wall.
Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations
Wang, LiYa; Wang, FengChao; Yang, FuQian; Wu, HengAn
2014-11-01
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.
Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations
Institute of Scientific and Technical Information of China (English)
WANG LiYa; WANG FengChao; YANG FuQian; WU HengAn
2014-01-01
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.
Improvements to a Response Surface Thermal Model for Orion
Miller, Stephen W.; Walker, William Q.
2011-01-01
A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that predict Orion vehicle temperatures within 10 F. The study used the Orion Outer Mold Line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty-three external Orion components were selected and their minimum and maximum temperatures captured over a period of two orbits. Thus, there are 46 responses. A DOE case matrix of 145 runs was developed. The data from these cases were analyzed to produce a fifth order RSE for each of the temperature responses. For the 145 cases in the DOE matrix, the agreement between the engineering data and the RSE predictions was encouraging with 40 of the 46 RSEs predicting temperatures within the goal band. However, the verification cases showed most responses did not meet the 10 F goal. After reframing the focus of the study to better align the RSE development with the purposes of the model, a set of RSEs for both the minimum and maximum radiator temperatures was produced which predicted the engineering model output within +/-4 F. Therefore, with the correct application of the DOE/RSE methodology, RSEs can be developed that provide analysts a fast and easy way to screen large numbers of environments and assess proposed changes to the RSE factors.
Talento, Stefanie; Barreiro, Marcelo
2016-08-01
This study investigates the Intertropical Convergence Zone (ITCZ) response to extratropical thermal forcing applied to an atmospheric general circulation model coupled to slab ocean and land models. We focus on the relative roles of the atmosphere, tropical sea surface temperatures (SSTs) and continental surface temperatures in the ITCZ response to the imposed forcing. The forcing consists of cooling in one hemisphere and warming in the other poleward of 40°, with zero global average. Three sets of experiments are performed: in the first the slab ocean and land models are applied globally; in the second the tropical SSTs are kept fixed while the slab land model is applied globally; in the third, in addition, surface temperatures over Africa are kept fixed. Realistic boundary surface conditions are used. We find that the ITCZ shifts towards the warmer hemisphere and that the stronger the forcing, the larger the shift. When the constraint of fixed tropical SST is imposed we find that the ITCZ response is strongly weakened, but it is still not negligible in particular over the Atlantic Ocean and Africa where the precipitation anomalies are of the order of 20 and 60 %, respectively, of the magnitude obtained without the SST restriction. Finally, when the constraint of the African surface temperature is incorporated we find that the ITCZ response completely vanishes, indicating that the ITCZ response to the extratropical forcing is not possible just trough purely atmospheric processes, but needs the involvement of either the tropical SST or the continental surface temperatures. The clear-sky longwave radiation feedback is highlighted as the main physical mechanism operating behind the land-based extratropical to tropical communication.
Wang, Jiong; Ouyang, Wanlu
2017-02-01
Inefficient mitigation of excessive heat is attributed to the discrepancy between the scope of climate research and conventional planning practice. This study approaches this problem at both domains. Generally, the study, on one hand, claims that the climate research of the temperature phenomenon should be at local scale, where implementation of planning and design strategies can be more feasible. On the other hand, the study suggests that the land surface factors should be organized into zones or patches, which conforms to the urban planning and design manner. Thus in each zone, the land surface composition of those excessively hot places can be compared to the zonal standard. The comparison gives guidance to the modification of the land surface factors at the target places. Specifically, this study concerns the Land Surface Temperature (LST) in Wuhan, China. The land surface is classified into Local Thermal Zones (LTZ). The specifications of temperature sensitive land surface factors are relative homogeneous in each zone and so is the variation of the LST. By extending the city scale analysis of Urban Heat Island into local scale, the Local Surface Urban Heat Islands (LSUHIs) are extracted. Those places in each zone that constantly maintain as LSUHI and exceed the homogenous LST variation are considered as target places or hotspots with higher mitigation or adaptation priority. The operation is equivalent to attenuate the abnormal LST variation in each zone. The framework is practical in the form of prioritization and zoning, and mitigation strategies are essentially operated locally.
Thermal expansion compensator having an elastic conductive element bonded to two facing surfaces
Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)
2012-01-01
A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.
Mars Thermal History: Core, Atmosphere, Mantle, Phobos and Surface (MaTH CAMPS)
Wicks, J. K.; Weller, M. B.; Towles, N. J.; Thissen, C.; Knezek, N. R.; Johnston, S.; Hongsresawat, S.; Duncan, M. S.; Black, B. A.; Schmerr, N. C.; Panning, M. P.; Montesi, L.; Manga, M.; Lognonne, P. H.
2014-12-01
The death of the Martian dynamo ~4.1 Ga and sustained volcanism throughout Martian history place fundamental constraints on the thermal history of the planet. To explore the implications for mantle structure, we constructed holistic models of Mars that include the core, mantle, lithosphere/surface, atmosphere, and an atmospheric capture of Phobos in a collaborative effort begun at the CIDER 2014 summer program. For our thermal model of the core, we employ an iterative solver and parameterized phase diagram to compute pressure, density, and temperature in the core for a variety of initial accretion temperatures and bulk compositions. We use this model to constrain core-mantle boundary (CMB) temperature and heat flow. We couple this model for the evolution of the core with a one-dimensional parameterized convection model for the mantle. The upper boundary condition is set by the state of the Martian atmosphere. We consider the effect of a distinct compositional layer at the base of the mantle that may represent dense magma ocean crystallization products or a primitive layer untouched by magma ocean processes. We find successful models that allow sufficient CMB heat flow to power an early dynamo and the potential of melt generation through extended periods of Mars' history. In addition to dynamo and magmatism timing, other diagnostics allow us to compare model outputs to modern observables. The mass, moment of inertia, and tidal Love number of our model planet are compared directly to measured values. Additionally, deformation and stress on the lithosphere due to internal volume changes and changes in surface loading predicted by our thermal evolution models could be recorded in the Martian crust. Finally, coupling temperature-dependent tidal dissipation affects Phobos' orbital secular evolution and gives constraint on mantle temperatures. These constraints are discussed for the different scenarios of Phobos capture. We present a suite of models that satisfy the
Directory of Open Access Journals (Sweden)
Ryan G. Banal
2015-09-01
Full Text Available AlN epilayers were grown on (0001 sapphire substrates by metal-organic vapor phase epitaxy, and the influence of the substrate’s surface structure on the formation of in-plane rotation domain is studied. The surface structure is found to change with increasing temperature under H2 ambient. The ML steps of sapphire substrate formed during high-temperature (HT thermal cleaning is found to cause the formation of small-angle grain boundary (SAGB. To suppress the formation of such structure, the use of LT-AlN BL technique was demonstrated, thereby eliminating the SAGB. The BL growth temperature (Tg is also found to affect the surface morphology and structural quality of AlN epilayer. The optical emission property by cathodoluminescence (CL measurement showed higher emission intensity from AlN without SAGB. The LT-AlN BL is a promising technique for eliminating the SAGB.
Boundary|Time|Surface: Art and Geology Meet in Gros Morne National Park, NL, Canada
Lancaster, Sydney; Waldron, John
2015-04-01
Environmental Art works range in scope from major permanent interventions in the landscape to less intrusive, more ephemeral site-specific installations constructed of materials from the local environment. Despite this range of intervention, however, these works all share in a tradition of art making that situates the artwork in direct response to the surrounding landscape. Andy Goldsworthy and Richard Long, for example, both favour methods that combine elements of both sculpture and performance in the creation of non-permanent interventions in the landscape, and both rely upon photographic, text-based, or video documentation as the only lasting indication of the works' existence. Similarly, Earth Scientists are responsible for interventions in the landscape, both physical and conceptual. For example, in Earth science, the periods of the geologic timescale - Cambrian, Ordovician, Silurian, etc. - were established by 19th century pioneers of geology at a time when they were believed to represent natural chapters in Earth history. Since the mid-20th century, stratigraphers have attempted to resolve ambiguities in the original definitions by defining stratotypes: sections of continuously deposited strata where a single horizon is chosen as a boundary. One such international stratotype, marking the Cambrian-Ordovician boundary, is defined at Green Point in Gros Morne National Park, Newfoundland. Boundary|Time|Surface was an ephemeral sculptural installation work constructed in June 2014. The main installation work was a fence of 52 vertical driftwood poles, 2-3 m tall, positioned precisely along the boundary stratotype horizon at Green Point in Newfoundland. The fence extended across a 150 m wave-cut platform from sea cliffs to the low-water mark, separating Ordovician from Cambrian strata. The installation was constructed by hand (with volunteer assistance) on June 22, as the wave-cut platform was exposed by the falling tide. During the remainder of the tidal cycle
Casimir-Polder forces in the presence of thermally excited surface modes
Laliotis, Athanasios; Maurin, Isabelle; Ducloy, Martial; Bloch, Daniel
2014-01-01
The temperature dependence of the Casimir-Polder interaction addresses fundamental issues for understanding vacuum and thermal fluctuations. It is highly sensitive to surface waves which, in the near field, govern the thermal emission of a hot surface. Here we use optical reflection spectroscopy to monitor the atom-surface interaction between a Cs*(7D3/2) atom and a hot sapphire surface at a distance ~ 100 nm. In our experiments, that explore a large range of temperatures (500-1000K) the hot surface is at thermal equilibrium with the vacuum. The observed increase of the interaction with temperature, by up to 50 %, relies on the coupling between atomic virtual transitions in the infrared range and thermally excited surface-polariton modes. We extrapolate our findings to a broad distance range, from the isolated free atom to the short distances relevant to physical chemistry. Our work also opens the prospect of controlling atom surface interactions by engineering thermal fields.
Indian Academy of Sciences (India)
K K Reddy; M Naja; N Ojha; P Mahesh; S Lal
2012-08-01
Collocated measurements of the boundary layer evolution and surface ozone, made for the first time at a tropical rural site (Gadanki 13.5°N, 79.2°E, 375 m amsl) in India, are presented here. The boundary layer related observations were made utilizing a lower atmospheric wind profiler and surface ozone observations were made using a UV analyzer simultaneously in April month. Daytime average boundary layer height varied from 1.5 km (on a rainy day) to a maximum of 2.5 km (on a sunny day). Correlated day-to-day variability in the daytime boundary layer height and ozone mixing ratios is observed. Days of higher ozone mixing ratios are associated with the higher boundary layer height and vice versa. It is shown that higher height of the boundary layer can lead to the mixing of near surface air with the ozone rich air aloft, resulting in the observed enhancements in surface ozone. A chemical box model simulation indicates about 17% reduction in the daytime ozone levels during the conditions of suppressed PBL in comparison with those of higher PBL conditions. On a few occasions, substantially elevated ozone levels (as high as 90 ppbv) were observed during late evening hours, when photochemistry is not intense. These events are shown to be due to southwesterly wind with uplifting and northeasterly winds with downward motions bringing ozone rich air from nearby urban centers. This was further corroborated by backward trajectory simulations.
Seismic and Gravitational Studies of Melting in the Mantle’s Thermal Boundary Layers
2007-06-01
1993a]). However, the transition from layer 2c to layer 3 (commonly identified as the transition from sheeted dikes to gabbros formed by crystallization...except the region of interest (in our case. the core-inaiitle boundary). The lack of real- world heterogeneity and attenuation in the upper mantle...structures is to be of use in understanding CMB structure in the real world , the collection and creative exploitation of 2-D and 3-D array data sets with
The Thermal Behavior of Film Cooled Turbulent Boundary Layers as Affected by Longitudinal Vortices.
1987-09-01
lomhomhflmommo $111514 . =l-R( ,RSOUIN TS H LI% % %1 2II K III% ! ’ ’ 1IIal i lt czt ,- NAVAL POSTGRADUATE SCHOOL Monterey, California In VS JUN 14 1988 ’ THESIS...complex geometries and flows involved near blades and end - walls, accurate convective heat transfer rates are difficult to obtain. IRef. 31 Ongoren, [Ref...41, described the flow in a turbine cascade. As the inlet boundary layer approaches the blade, just in front of the blade, a horseshoe vortex forms
Impact of various surface covers on water and thermal regime of Technosol
Kodešová, Radka; Fér, Miroslav; Klement, Aleš; Nikodem, Antonín; Teplá, Daniela; Neuberger, Pavel; Bureš, Petr
2014-11-01
Different soil covers influence water and thermal regimes in soils within urban areas. Knowledge of these regimes is needed, particularly when assessing effectiveness of energy gathering from soils using horizontal ground heat exchangers. The goal of this study was to calibrate the model HYDRUS-1D for simulating coupled water and thermal regime in Technosol type soils with grass cover, and to use this model for predicting water and thermal regimes under different materials covering the soil surface. For this purpose soil water contents were measured at depths of 10, 20, 30, 40, 60 and 100 cm at 4 locations and temperatures were measured at depths of 20, 40, 80, 120, 150 and 180 cm at three locations (all covered by grass) from June 2011 to December 2012. In addition sensors for simultaneous measuring soil water contents and temperatures were installed under different soil covers (grass, bark chips, sand, basalt gravel and concrete paving) at a depth of 7. The parameters of soil hydraulic properties were obtained on the 100-cm3 undisturbed soil samples using the multi-step outflow experiment and numerical inversion of the measured transient flow data using HYDRUS-1D. HYDRUS-1D was then used to simulated the water regime within the soil profile under the grass cover using climatic data from June 2011 to December 2012 and some of the soil hydraulic parameters were additionally numerically optimized using soil water contents measured at all depths. Water flow and heat transport were then simulated using these parameters, measured thermal properties and temperatures measured close to the surface applied as a top boundary condition. Simulated temperatures at all depths successfully approximated the measured data. Next, water and thermal regimes under another 4 different surface covers were simulated. Soil hydraulic properties of different materials were partly measured and partly optimized when simulating soil water regime from June 2011 to December 2012 using the soil
Institute of Scientific and Technical Information of China (English)
Guan Dexin; Zhu Tingyao; Han Shijie
1999-01-01
Sparse-tree land is one of the typical lands and can be considered as one typical rough surface in boundary layer meteorology. Many lands can be classified into the kind surface in the view of scale and distribution feature of the roughness elements such as agroforest, scatter planted or growing trees, savanna and so on. The structure of surface boundary layer in sparse-tree land is analyzed and the parameters, friction velocity u* and roughness length z0 are deduced based on energy balance law and other physical hypothesis. The models agree well with data of wind tunnel experiments and field measurements.
Heat and mass transfer boundary conditions at the surface of a heated sessile droplet
Ljung, Anna-Lena; Lundström, T. Staffan
2017-07-01
This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.
Experimental Investigation of Zinc Antimonide Thin Films under Different Thermal Boundary Conditions
DEFF Research Database (Denmark)
Mir Hosseini, Seyed Mojtaba; Rosendahl, Lasse Aistrup; Rezaniakolaei, Alireza;
Zinc antimonide compound ZnxSby is one of the most efficient thermoelectric (TE) materials known at high temperatures regarding to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research. However, before practical use in actual conditions...
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1982-01-01
The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
暖体假人表面温度的均匀性%Surface temperature uniformity of thermal manikin
Institute of Scientific and Technical Information of China (English)
王毅; 王铭; 邹钺; 李书政; 刘赟
2012-01-01
Thermal manikin is equipped with heating wire which serves as internal heat source to simulate the human body heat dissipating, and mainly used for testing the thermal resistance of garments, whose surface temperature uniformity is critical. The aim of this study is to find out the main factors influencing the uniformity of the temperature on the surface of thermal manikin and how to meet the requirement of uniform distribution of the temperature. The arrangement of the heating wire and test method of the temperature are presented. Comparative experiments are conducted and temperature distribution rule on the surface of the thermal manikin is observed. The test results indicate that the laying interval of heating wire, thickness of thermal manikin's skin cover, and the side boundary conditions on the surface all have influence on the temperature uniformity to different extents.%暖体假人是以电热丝作为内热源来模拟人体散热的一种设备,主要用于测试服装热阻,对表面温度均匀性要求极高.为找出影响假人表面温度均匀性的主要因素,达到假人表面温度分布均匀的要求,提出假人表面电热丝的敷设方案和温度测试方案.通过对比实验,观察假人皮肤表面的温度分布规律.结果表明:电热丝的敷设间隔、假人皮肤的覆盖厚度以及侧面边界条件对假人表面温度均匀性都有不同程度的影响.
Rostkier-Edelstein, Dorita; Hacker, Joshua
2013-04-01
Surface observations comprise a wide, non-expensive and reliable source of information about the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems have encountered several difficulties in effectively assimilating them, among others due to their local-scale representativeness, the transient coupling between the surface and the atmosphere aloft and the balance constraints usually used. A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that can be employed wherever surface observations are present. Earlier work showed that surface observations can be an important source of information with a single column model (SCM) and an ensemble filter (EF). Here we extend that work to quantify the probabilistic skill of ensemble SCM predictions with a model including added complexity. We adopt a factor separation analysis to quantify the contribution of surface assimilation relative to that of selected model components (parameterized radiation and externally imposed horizontal advection) to the probabilistic skill of the system, and of any beneficial or detrimental interactions between them. To assess the real utility of the flow-dependent covariances estimated with the EF and of the SCM of the PBL we compare the skill of the SCM/EF system to that of a reference one based on climatological covariances and a 30-min persistence model. It consists of a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. from WRF model) is adjusted and dressed with uncertainty using a seasonal sample of mesoscale forecasts and surface forecast errors. Results show that assimilation of surface observations can improve deterministic and probabilistic profile predictions more significantly than major model improvements. Flow-dependent covariances estimated with the SCM/EF show clear advantage over the use of climatological covariances when the flow is characterized by wide variability, when
Directory of Open Access Journals (Sweden)
anjali devi
2015-01-01
Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.
On the Boundary Condition for Water at a Hydrophobic, Dense Surface
Walther, J. H.; Jaffe, R. L.; Werder, T.; Halicioglu, T.; Koumoutsakos, P.
2002-01-01
We study the no-slip boundary conditions for water at a hydrophobic (graphite) surface using non-equilibrium molecular-dynamics simulations. For the planar Couette flow, we find a slip length of 64 nm at 1 bar and 300 K, decreasing with increasing system pressure to a value of 31 nm at 1000 bar. Changing the properties of the interface to from hydrophobic to strongly hydrophilic reduces the slip to 14 nm. Finally, we study the flow of water past an array of carbon nanotubes mounted in an inline configuration with a spacing of 16.4 x 16.4 nm. For tube diameters of 1.25 and 2.50 nm we find drag coefficients in good agreement with the macroscopic, Navier-Stokes values. For carbon nanotubes, the no-slip condition is valid to within the definition of the position of the interface.
Accurate computation of Galerkin double surface integrals in the 3-D boundary element method
Adelman, Ross; Duraiswami, Ramani
2015-01-01
Many boundary element integral equation kernels are based on the Green's functions of the Laplace and Helmholtz equations in three dimensions. These include, for example, the Laplace, Helmholtz, elasticity, Stokes, and Maxwell's equations. Integral equation formulations lead to more compact, but dense linear systems. These dense systems are often solved iteratively via Krylov subspace methods, which may be accelerated via the fast multipole method. There are advantages to Galerkin formulations for such integral equations, as they treat problems associated with kernel singularity, and lead to symmetric and better conditioned matrices. However, the Galerkin method requires each entry in the system matrix to be created via the computation of a double surface integral over one or more pairs of triangles. There are a number of semi-analytical methods to treat these integrals, which all have some issues, and are discussed in this paper. We present novel methods to compute all the integrals that arise in Galerkin fo...
Park, Sungoh; Liu, Qingkun; Smalyukh, Ivan I.
2016-12-01
Self-assembly of colloidal particles is poised to become a powerful composite material fabrication technique, but remains challenged by a limited control over the ensuing structures. We develop a new breed of nematic colloids that are physical analogs of a mathematical surface with boundary, interacting with the molecular alignment field without inducing defects when flat. However, made from a thin nanofoil, they can be shaped to prompt formation of self-compensating defects that drive preprogramed elastic interactions mediated by the nematic host. To show this, we wrap the nanofoil on all triangular side faces of a pyramid, except its square base. The ensuing pyramidal cones induce point defects with fractional hedgehog charges of opposite signs, spontaneously align with respect to the far-field director to form elastic dipoles and nested assemblies with tunable spacing. Nanofoils shaped into octahedrons interact as elastic quadrupoles. Our findings may drive realization of low-symmetry colloidal phases.
Energy Technology Data Exchange (ETDEWEB)
Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics
2012-05-15
This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)
The response of the Ocean Surface Boundary Layer and Langmuir turbulence to tropical cyclones
Wang, Dong; Kukulka, Tobias; Reichl, Brandon; Hara, Tetsu; Ginis, Isaac
2016-11-01
The interaction of turbulent ocean surface boundary layer (OSBL) currents and the surface waves' Stokes drift generates Langmuir turbulence (LT), which enhances OSBL mixing. This study investigates the response of LT to extreme wind and complex wave forcing under tropical cyclones (TCs), using a large eddy simulation (LES) approach based on the wave-averaged Navier-Stokes equations. We simulate the OSBL response to TC systems by imposing the wind forcing of an idealized TC storm model, covering the entire horizontal extent of the storm systems. The Stokes drift vector that drives the wave forcing in the LES is determined from realistic spectral wave simulations forced by the same wind fields. We find that the orientations of Langmuir cells are vertically uniform and aligned with the wind in most regions despite substantial wind-wave misalignment in TC conditions. LT's penetration depth is related to Stokes drift depth and limited by OSBL depth. A wind-projected surface layer Langmuir number is proposed and successfully applied to scale turbulent vertical velocity variance in extreme TC conditions. Current affiliation: Princeton University/NOAA GFDL.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho
2014-12-04
Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.
A numerical study of turbulent boundary layer flow over a dimpled surface
Energy Technology Data Exchange (ETDEWEB)
Kithcart, M.E. [North Carolina A and T State Univ., CAR, Greensboro, North Carolina (United States)]. E-mail: kithcart@ncat.edu; Klett, D.E. [North Carolina A and T State Univ., Mechanical Engineering, Greensboro, North Carolina (United States)]. E-mail: klett@ncat.edu
2002-07-01
Turbulent boundary layer flow over a flat surface with a single dimple, and a surface with two dimples in tandem has been investigated numerically using the FLUENT CFD software package, and compared to an experiment, which studied the same configuration. The impetus for this work came as a result of previous studies, which indicate that dimple surfaces enhance heat transfer comparably to protrusion roughness elements, but the heat transfer augmentation does come with the penalty of increased drag. However, the exact physical mechanisms involved in the effects associated with dimples were not well known prior this study. Results for the single dimple configuration are in good agreement with an experiment, which studied the same configuration, particularly the confirmation of the existence of a region of enhanced heat transfer created by the dimple. In addition, it can be determined from the numerical study that the heat transfer enhancement is a consequence of the development of a stagnation flow region within the dimple geometry. In the two-dimple roughness simulation, the elements were spaced one half diameter apart, in order to observe any possible interaction. The results of the simulation indicate that the local flow-field in the vicinity of a dimple is unaffected by the presence of a neighboring element. (author)
Practical Calculation of Thermal Deformation and Manufacture Error uin Surface Grinding
Institute of Scientific and Technical Information of China (English)
周里群; 李玉平
2002-01-01
The paper submits a method to calculate thermal deformation and manufacture error in surface grinding.The author established a simplified temperature field model.and derived the thermal deformaiton of the ground workpiece,It is found that there exists not only a upwarp thermal deformation,but also a parallel expansion thermal deformation.A upwarp thermal deformation causes a concave shape error on the profile of the workpiece,and a parallel expansion thermal deformation causes a dimension error in height.The calculations of examples are given and compared with presented experiment data.
Institute of Scientific and Technical Information of China (English)
2007-01-01
We have observed the dominant wing spectroscopy of energy pooling collision near the boundary layer involving Cs atoms under the condition of moderate-to-high optical depths at line-centre. It appears from our experimental investigations that the energy-pooling fluorescence presents about 16 spectral lines, and all the lines can be assigned to the Cs atomic transitions. We find that all lines of the energy-pooling retrofluorescence from the heated Cs atomic vapour cell show two-peak profiles. In addition, its pumping power linear dependence in the energy pooling process has been measured and analysed.
DEFF Research Database (Denmark)
Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren
2015-01-01
This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux...
Rozitis, Ben
2012-01-01
We present a new rough-surface thermophysical model (Advanced Thermophysical Model or ATPM) that describes the observed directional thermal emission from any atmosphereless planetary surface. It explicitly incorporates partial shadowing, scattering of sunlight, selfheating and thermal-infrared beaming (re-radiation of absorbed sunlight back towards the Sun as a result of surface roughness). The model is verified by accurately reproducing ground-based directional thermal emission measurements of the lunar surface using surface properties that are consistent with the findings of the Apollo missions and roughness characterised by an RMS slope of ~32 degrees. By considering the wide range of potential asteroid surface properties, the model implies a beaming effect that cannot be described by a simple parameter or function. It is highly dependent on the illumination and viewing angles as well as surface thermal properties and is predominantly caused by macroscopic rather than microscopic roughness. Roughness alter...
Wright, Louise; Robinson, Stephen P; Humphrey, Victor F
2009-03-01
This paper presents a computational technique using the boundary element method for prediction of radiated acoustic waves from axisymmetric surfaces with nonaxisymmetric boundary conditions. The aim is to predict the far-field behavior of underwater acoustic transducers based on their measured behavior in the near-field. The technique is valid for all wavenumbers and uses a volume integral method to calculate the singular integrals required by the boundary element formulation. The technique has been implemented on a distributed computing system to take advantage of its parallel nature, which has led to significant reductions in the time required to generate results. Measurement data generated by a pair of free-flooding underwater acoustic transducers encapsulated in a polyurethane polymer have been used to validate the technique against experiment. The dimensions of the outer surface of the transducers (including the polymer coating) were an outer diameter of 98 mm with an 18 mm wall thickness and a length of 92 mm. The transducers were mounted coaxially, giving an overall length of 185 mm. The cylinders had resonance frequencies at 13.9 and 27.5 kHz, and the data were gathered at these frequencies.
Directory of Open Access Journals (Sweden)
K. Gangadhar
2016-01-01
Full Text Available The problem of laminar radiation and viscous dissipation effects on laminar boundary layer flow over a vertical plate with a convective surface boundary condition is studied using different types of nanoparticles. The general governing partial differential equations are transformed into a set of two nonlinear ordinary differential equations using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the Nachtsheim-Swigert Shooting iteration technique along with the fourth order Runga Kutta method. Two different types of nanoparticles copper water nanofluid and alumina water nanofluid are studied. The effects of radiation and viscous dissipation on the heat transfer characteristics are discussed in detail. It is observed that as Radiation parameter increases, temperature decreases for copper water and alumina water nanofluid and the heat transfer coefficient of nanofluids increases with the increase of convective heat transfer parameter for copper water and alumina water nanofluids.
Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model
Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-P.; McCord, T. B.; Li, J.-Y.; Russell, C. T.; Ryamond, C. A.; Mittlefehldt, D.; Toplis, M.; Forni, O.; Sykes, M. V.
2012-01-01
In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.
Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.
Hayat, Tasawar; Shafiq, Anum; Alsaedi, Ahmed
2014-01-01
This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.
Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.
Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.
Kostopoulos, V E; Helmis, C G
2014-10-01
Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.
Use of Sensor Imagery Data for Surface Boundary Conditions in Regional Climate Modeling
Choi, Hyun Il
2011-01-01
Mesoscale climate and hydrology modeling studies have increased in sophistication and are being run at increasingly higher resolutions. Data resolution sufficiently finer than that of the computational model is required not only to support sophisticated linkages and process interactions at small scales but to assess their cumulative impact at larger scales. The global distributions at fine spatial and temporal scales can be described by means of various senor imagery data collected through remote sensing techniques, sensor image and photo programs, scanning and digitizing skills for existing maps, etc. The availability of global sensor imagery maps facilitates assimilation in land surface models to account for terrestrial dynamics. This study focuses on the use of global imagery data for development and construction of surface boundary conditions (SBCs) specifically designed for mesoscale regional climate model (RCM) applications. The several SBCs are currently presented in a RCM domain for the continent of Asia at 30-km spacing by using sensor imagery data. Geographic Information System (GIS) software application tools are mainly used to convert data information from various raw data onto RCM-specific grids. The raw data sources and processing procedures are elaborated in detail, by which the SBCs can be readily constructed for any specific RCM domain anywhere in the world. PMID:22163982
The influence of thermal effects on the wind speed profile of the coastal marine boundary layer
DEFF Research Database (Denmark)
Lange, B.; Larsen, Søren Ejling; Højstrup, Jørgen;
2004-01-01
The wind speed profile in a coastal marine environment is investigated with observations from the measurement program Rodsand, where meteorological data are collected with a 50 m high mast in the Danish Baltic Sea, about 11 km from the coast. When compared with the standard Monin-Obukhov theory...... the measured wind speed increase between 10 m and 50 m height is found to be systematically larger than predicted for stable and near-neutral conditions. The data indicate that the deviation is smaller for short (10 - 20 km) distances to the coast than for larger (> 30 km) distances. The theory...... of the planetary boundary layer with an inversion lid offers a qualitative explanation for these findings. When warm air is advected over colder water, a capping inversion typically develops. The air below is constantly cooled by the water and gradually develops into a well-mixed layer with near...
Bagheri, Nader; White, Bruce R.; Lei, Ting-Kwo
1994-01-01
Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a heated flat plate under equilibrium adverse-pressure-gradient conditions (beta = 1.8) were made for two different temperature difference cases (10 and 15 C) between the wall and the freestream. Space-time correlations of temperature fluctuations (T') were obtained with a pair of subminiature temperature fluctuation probes. The mean convection velocities, the mean inclination angles, and coherence characteristics of the T' large-scale structure were determined. The present temperature structures measurements for a nonisothermal boundary layer are compared to the zero-pressure-gradient case with identical temperature differences previously reported, in which the mean convection velocity of the T' structure was a function of position y(sup +) and independent of the limited temperature-difference cases tested. The three major findings of the present study, as compared to the zero-pressure-gradient case, are (1) the mean convection speed of the T' structure under beta = 1.8 pressure-gradient conditions was found to be substantially lower in the logarithmic core region than the zero-pressure-gradient case. Additionally, the mean convection speed is felt by the authors to be a function of pressure-gradient parameter beta; (2) the mean inclination angle of the T' structure to the wall under the adverse-pressure-gradient flow was 32 deg, which compares favorably to the 30-deg value of the zero-pressure-gradient case; and (3) the limited data suggests that the mean convection velocity of the T' structure is a function of y(sup +) and independent of the limited temperature-difference cases tested.
Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming
2017-02-08
By carefully and systematically performing Green-Kubo equilibrium molecular dynamics simulations, we report that the thermal conductivity (κ) of Si nanowires (NWs) does not diverge but converges and increases steeply when NW diameter (D) becomes extremely small (dκ/dD < 0), a long debate of one-dimensional heat conduction in history. The κ of the thinnest possible Si NWs reaches a superhigh level that is as large as more than 1 order of magnitude higher than its bulk counterpart. The abnormality is explained in terms of the dominant normal (N) process (energy and momentum conservation) of low frequency acoustic phonons that induces hydrodynamic phonon flow in the Si NWs without being scattered. With D increasing, the downward shift of optical phonons triggers strong Umklapp (U) scattering with acoustic phonons and attenuates the N process, leading to the regime of phonon boundary scattering (dκ/dD < 0). The two competing mechanisms result in nonmonotonic diameter dependence of κ with minima at critical diameter of 2-3 nm. Our results unambiguously demonstrate the converged κ and the clear trend of κ ∼ D for extremely thin Si NWs by fully elucidating the competition between the hydrodynamic phonon flow and phonon boundary scattering.
Crocker, Ryan; Desjardins, Olivier
2014-01-01
A conjugate heat transfer (CHT) immersed boundary (IB and CHTIB) method is developed for use with laminar and turbulent flows with low to moderate Reynolds numbers. The method is validated with the canonical flow of two co-annular rotating cylinders at $Re=50$ which shows second order accuracy of the $L_{2}$ and $L_{\\infty}$ error norms of the temperature field over a wide rage of solid to fluid thermal conductivities, $\\kappa_{s}/\\kappa_{f} = \\left(9-100\\right)$. To evaluate the CHTIBM with turbulent flow a fully developed, heated, turbulent channel $\\left(Re_{u_{\\tau}}=150\\text{ and } \\kappa_{s}/\\kappa_{f}=4 \\right)$ is used which shows near perfect correlation to previous direct numerical simulation (DNS) results. The CHTIB method is paired with a momentum IB method (IBM), both of which use a level set field to define the wetted boundaries of the fluid/solid interfaces and are applied to the flow solver implicitly with rescaling of the difference operators of the finite volume (FV) method (FVM).
Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
Neogi, Sanghamitra; Reparaz, J Sebastian; Pereira, Luiz Felipe C; Graczykowski, Bartlomiej; Wagner, Markus R; Sledzinska, Marianna; Shchepetov, Andrey; Prunnila, Mika; Ahopelto, Jouni; Sotomayor-Torres, Clivia M; Donadio, Davide
2015-04-28
A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.
Effective boundary condition at a rough surface starting from a slip condition
Dalibard, Anne-Laure
2010-01-01
We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength $\\epsilon$. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit $\\epsilon = 0$ is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in previous works, in which the special case of a Dirichlet condition at the rough boundary was examined.
Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems
Directory of Open Access Journals (Sweden)
V. Rossi
2009-08-01
Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.
Thakur, Sanchari; Chudasama, Bijal; Porwal, Alok; González-Álvarez, Ignacio
2016-05-01
Thermal Infrared (TIR) remote sensing measures emitted radiation of Earth in the thermal region of electromagnetic spectrum. This information can be useful in studying sub-surface features such as buried palaeochannels, which are ancient river systems that have dried up over time and are now buried under soil cover or overlying sediments in the present landscape. Therefore they have little or no expression on the surface topography. Study of these paleo channels has wide applications in the fields of uranium exploration and ground water hydrology. Identifying paleo channels using remote sensing technique is a cost-effective means of narrowing down search areas and thereby aids in ground exploration. The difference in thermal properties between the paleo channel-fill sediments and the surrounding bed-rock is the key to demarcate these channels. This study uses five TIR bands of day-time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) L1A data for delineation of paleo-systems in the DeGrussa area of the Capricorn Orogen in Western Australia. The temperature-emissivity separation algorithm is applied to obtain kinetic temperature and emissivity images. Sharp contrasts in kinetic temperature and emissivity values are used to demarcate the channel boundaries. Profiles of topographic elevation, temperature and emissivity values are plotted for different sections of the interpreted channels and compared to distinguish the surface channels from sub-surface channels, and also to interpret the thickness and nature of the paleo channel-fill sediments. The results are validated using core-drilling litho logs and field exploration data.
Numerical analysis of energy piles under different boundary conditions and thermal loading cycles
Directory of Open Access Journals (Sweden)
Khosravi Ali
2016-01-01
Full Text Available The thermo- mechanical behavior of energy piles has been studied extensively in recent years. In the present study, a numerical model was adapted to study the effect of various parameters (e.g. heating/cooling temperature, head loading condition and soil stiffness on the thermo-mechanical behavior of an energy pile installed in unsaturated sandstone. The results from the simulations were compared with measurements from a thermal response test on a prototype energy pile installed beneath a 1-story building at the US Air Force Academy (USAFA in Colorado Springs, CO. A good agreement was achieved between the results obtained from the prototype and the numerical models. A parametric evaluation were also carried out which indicated the significance of the stiffness of the unsaturated sandstone and pile’s head loading condition on stress-strain response of the energy pile during heating/cooling cycles.
Jiang, Li; Zhan, Wang; Loew, Murray H.
2009-02-01
Understanding the complex relationship between the thermal contrasts on the breast surface and the underlying physiological and pathological factors is important for thermogram-based breast cancer detection. Our previous work introduced a combined thermal-elastic modeling method with improved ability to simultaneously characterize both elastic-deformation-induced and tumor-induced thermal contrasts on the breast. In this paper, the technique is further extended to investigate the dynamic behaviors of the breast thermal contrasts during cold stress and thermal recovery procedures in the practice of dynamic thermal imaging. A finite-element method (FEM) has been developed for dynamic thermal and elastic modeling. It is combined with a technique to address the nonlinear elasticity of breast tissues, as would arise in the large deformations caused by gravity. Our simulation results indicate that different sources of the thermal contrasts, such as the presence of a tumor, and elastic deformation, have different transient time courses in dynamic thermal imaging with cold-stress and thermal-recovery. Using appropriate quantifications of the thermal contrasts, we find that the tumor- and deformation-induced thermal contrasts show opposite changes in the initial period of the dynamic courses, whereas the global maxima of the contrast curves are reached at different time points during a cold-stress or thermal-recovery procedure. Moreover, deeper tumors generally lead to smaller peaks but have larger lags in the thermal contrast time course. These findings suggest that dynamic thermal imaging could be useful to differentiate the sources of the thermal contrast on breast surface and hence to enhance tumor detectability.
Daffara, C.; Parisotto, S.; Mariotti, P. I.
2015-06-01
Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.
Directory of Open Access Journals (Sweden)
KHEM CHAND
2011-07-01
Full Text Available The heat transfer and hydromagnetic boundary layer flow of an electrically conducting viscous ,incompressible fluid over a continuous flat surface moving in a parallel free stream is investigated. The porous infinite surface is subjected to a slightly sinusoidal transverse suction velocity distribution. The flow becomes three dimensional due to this type of suction velocity without taking into account the induced magnetic field; the mathematical analysis is presented for the hydromagnetic laminar boundary layer flow. For the asymptotic flow condition, the components of the surface skin friction and the rate of heat transfer are obtained. During discussion it is found that with the increase of Hartmann number M, the skin friction factor F1 increase sharply for lower values of theReynolds number, but for the large value it increases steadily. But if the surface velocity is more than that of free stream velocity then the reverse trend is observed.
Fraggedakis, D.; Papaioannou, J.; Dimakopoulos, Y.; Tsamopoulos, J.
2017-09-01
A new boundary-fitted technique to describe free surface and moving boundary problems is presented. We have extended the 2D elliptic grid generator developed by Dimakopoulos and Tsamopoulos (2003) [19] and further advanced by Chatzidai et al. (2009) [18] to 3D geometries. The set of equations arises from the fulfillment of the variational principles established by Brackbill and Saltzman (1982) [21], and refined by Christodoulou and Scriven (1992) [22]. These account for both smoothness and orthogonality of the grid lines of tessellated physical domains. The elliptic-grid equations are accompanied by new boundary constraints and conditions which are based either on the equidistribution of the nodes on boundary surfaces or on the existing 2D quasi-elliptic grid methodologies. The capabilities of the proposed algorithm are first demonstrated in tests with analytically described complex surfaces. The sequence in which these tests are presented is chosen to help the reader build up experience on the best choice of the elliptic grid parameters. Subsequently, the mesh equations are coupled with the Navier-Stokes equations, in order to reveal the full potential of the proposed methodology in free surface flows. More specifically, the problem of gas assisted injection in ducts of circular and square cross-sections is examined, where the fluid domain experiences extreme deformations. Finally, the flow-mesh solver is used to calculate the equilibrium shapes of static menisci in capillary tubes.
England, C.
2000-01-01
For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.
England, C.
2000-01-01
For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.
Eppel, Sagi; Kachman, Tal
2014-01-01
The ability to recognize the liquid surface and the liquid level in transparent containers is perhaps the most commonly used evaluation method when dealing with fluids. Such recognition is essential in determining the liquid volume, fill level, phase boundaries and phase separation in various fluid systems. The recognition of liquid surfaces is particularly important in solution chemistry, where it is essential to many laboratory techniques (e.g., extraction, distillation, titration). A gener...
Directory of Open Access Journals (Sweden)
K. G. McNaughton
2007-06-01
Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".
We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (z_{i} ε_{o}^{2/3}, where z_{i} is inversion height and ε_{o} is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z ε_{o}^{2/3} where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.
We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z^{1/2} z_{i}^{1/2}. That is, the lengths of the thermal structures depend on both the lengths of the
Numerical simulations of sink-flow boundary layers over rough surfaces
Yuan, J.; Piomelli, U.
2014-01-01
Turbulent sink flows over smooth or rough walls with sand-grain roughness are studied using large-eddy and direct numerical simulations. Mild and strong levels of acceleration are applied, yielding a wide range of Reynolds number (Reθ = 372 - 2748) and cases close to the reverse-transitional state. Flow acceleration and roughness are shown to exert opposite effects on boundary-layer integral parameters, on the Reynolds stresses, budgets of turbulent kinetic energy, and properties of turbulent structures in the vicinity of the rough surface; statistics exhibit similarity when plotted using inner scaling for cases with the same roughness Reynolds number, k+. Acceleration leads to a decrease of k+, while roughness increases it. For cases with higher k+, the low-speed streaks become destabilized, and turbulent structures near the wall are distributed more uniformly in the wall-parallel plane; they are less extended in the streamwise direction, but more densely packed. Higher k+ also causes decorrelation of the outer-layer hairpin packets with the near-wall structures, probably due to the direct impact of random roughness elements on the hairpin legs. Wall-similarity applies for the fully turbulent cases, in which the outer-layer turbulent statistics are affected by acceleration only. It is shown that being in the hydraulically smooth regime is a necessary condition for reverse-transition, supporting the idea that relaminarization starts from the inner region, where roughness effects dominate.
Eddy Surface properties and propagation at Southern Hemisphere western boundary current systems
Directory of Open Access Journals (Sweden)
G. S. Pilo
2015-02-01
Full Text Available Oceanic eddies occur in all world oceans, but are more energetic when associated to western boundary currents (WBC systems. In these regions, eddies play an important role on mixing and energy exchange. Therefore, it is important to quantify and qualify eddies occurring within these systems. Previous studies performed eddy censuses in Southern Hemisphere WBC systems. However, important aspects of local eddy population are still unknown. Main questions to be answered relate to eddies' spatial distribution, propagation and lifetime within each system. Here, we use a global eddy dataset to qualify eddies based on their surface characteristics at the Agulhas Current (AC, the Brazil Current (BC and the East Australian Current (EAC Systems. We show that eddy propagation within each system is highly forced by the local mean flow and bathymetry. In the AC System, eddy polarity dictates its propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC System eddies from both polarities cross south of Tasmania, but only anticyclonics reach the Great Australian Bight. Eddies in all systems and from both polarities presented a geographical segregation according to size. Large eddies occur along the Agulhas Retroflection, the Agulhas Return Current, the Brazil-Malvinas Confluence and the Coral Sea. Small eddies occur in the systems southernmost domains. Understanding eddies' propagation helps to establish monitoring programs, and to better understand how these features would affect local mixing.
Ao, C. O.; Shume, E. B.; Hajj, G. A.; Meehan, T. K.
2016-12-01
In an earlier study, we demonstrated that grazing surface reflection observed from GNSS radio occultation (RO) data yields frequency shifts that are sensitive to refractivity within the planetary boundary layer (PBL). In this presentation, we show our latest progress in retrieving PBL refractivity using a combination of direct and reflected RO data. Through forward simulations, we first assess how the reflected Doppler frequency will vary as a function of refractivity parameters in the PBL. Next, we describe our method for extracting the reflected Doppler signal from actual COSMIC and TerraSAR-X observations and discuss its associated uncertainty. We focus our attention to RO soundings from the subtropical Eastern oceans where large negative refractivity biases within the PBL have been reported. We investigate the feasibility of using the inferred reflected signal to correct the negative bias. Finally, we discuss how future RO observations such as those from COSMIC-2 can be enhanced to provide stronger reflection signals through changes in the GNSS receiver configurations.
Sun, Wenjuan; Jia, Xianghong; Xie, Tianwu; Xu, Feng; Liu, Qian
2013-03-01
With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm(3)for radioactive particle transport simulations from isotropic protons with energies of 5000-10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO).
Localized electronic states at grain boundaries on the surface of graphene and graphite
Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Toft Falkenberg, Jesper; Autès, Gabriel; Cummings, Aron W.; Soriano, David; Li, Guohong; Brandbyge, Mads; Yazyev, Oleg V.; Roche, Stephan; Andrei, Eva Y.
2016-09-01
Recent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morphology affects the electronic properties is crucial for the development of applications such as flexible electronics, energy harvesting devices or sensors. We here report on atomic scale characterization of several GBs and on the structural-dependence of the localized electronic states in their vicinity. Using low temperature scanning tunneling microscopy and spectroscopy, together with tight binding and ab initio numerical simulations we explore GBs on the surface of graphite and elucidate the interconnection between the local density of states and their atomic structure. We show that the electronic fingerprints of these GBs consist of pronounced resonances which, depending on the relative orientation of the adjacent crystallites, appear either on the electron side of the spectrum or as an electron-hole symmetric doublet close to the charge neutrality point. These two types of spectral features will impact very differently the transport properties allowing, in the asymmetric case to introduce transport anisotropy which could be utilized to design novel growth and fabrication strategies to control device performance.
Blocking effect of twin boundaries on partial dislocation emission from void surfaces.
Zhang, Lifeng; Zhou, Haofei; Qu, Shaoxing
2012-03-02
Recent discovery that nanoscale twin boundaries can be introduced in ultrafine-grained metals to improve strength and ductility has renewed interest in the mechanical behavior and deformation mechanisms of these nanostructured materials. By controlling twin boundary spacing, the effect of twin boundaries on void growth is investigated by using atomistic simulation method. The strength is significantly enhanced due to the discontinuous slip system associated with these coherent interfaces. Atomic-scale mechanisms underlying void growth, as well as the interaction between twin boundaries and the void, are revealed in details.
Directory of Open Access Journals (Sweden)
Sieres Jaime
2016-01-01
Full Text Available This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle φ is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles φ (= 15º, 30º and 45º and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.
Liu, Yan; Li, Yanqiu
2016-09-01
At present, few projection objectives for extreme ultraviolet (EUV) lithography pay attention to correct thermal aberration in optical design phase, which would lead to poor image quality in a practical working environment. We present an aspherical modification method for helping the EUV lithographic objective additionally correct the thermal aberration. Based on the thermal aberration and deformation predicted by integrated optomechanical analysis, the aspherical surfaces in an objective are modified by an iterative algorithm. The modified aspherical surfaces could correct the thermal aberration and maintain the initial high image quality in a practical working environment. A six-mirror EUV lithographic objective with 0.33-numerical aperture is taken as an example to illustrate the presented method. The results show that the thermal aberration can be corrected effectively, and the image quality of the thermally deformed system is improved to the initial design level, which proves the availability of the method.
Amiri Delouei, A; Nazari, M; Kayhani, M H; Succi, S
2014-05-01
In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.
Surface Coatings for Low Emittance in the Thermal Surveillance Band
1984-08-01
radiation emanating from the sky during the day and at night [13]; 2 - (2) -the geometry, surface topography, and surface cleanliness of the target and the... surface cleanliness . A description of terms and definitions used in reflectometry is provided by Judd [19] and Overington (20]. Measurement standards
Directory of Open Access Journals (Sweden)
K. GANGADHAR
2015-01-01
Full Text Available This study is devoted to investigate the radiation, heat generation viscous dissipation and magnetohydrodynamic effects on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow, and about a moving plate in a quiescent ambient fluid (Sakiadis flow both under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting technique alongside with the forth order of Runge-Kutta method and the variations of dimensionless surface temperature and fluid-solid interface characteristics for different values of Magnetic field parameter M, Grashof number Gr, Prandtl number Pr, radiation parameter NR, Heat generation parameter Q, Convective parameter and the Eckert number Ec, which characterizes our convection processes are graphed and tabulated. Quite different and interesting behaviors were encountered for Blasius flow compared with a Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent agreement.
Fucugauchi, J. U.; Perez-Cruz, L. L.
2015-12-01
Chicxulub formed 66 Ma ago by an asteroid impact on the Yucatan carbonate platform, southern Gulf of Mexico. Impact produced a 200 km diameter crater, platform fracturing, deformation and ejecta emplacement. Carbonate sedimentation restarted and crater was covered by up to 1 km of sediments. Drilling programs have sampled the Paleogene sediments, which record the changing sedimentation processes in the impact basin and platform. Here, results of a study of the Paleocene-Eocene sediments cored in the Santa Elena borehole are used to characterize the K/Pg and PETM. The borehole reached a depth of 504 m and was continuously cored, sampling the post-impact sediments and impact breccias, with contact at 332 m. For this study, we analyzed the section from ~230 to ~340 m, corresponding to the upper breccias and Paleocene-Eocene sediments. The lithological column, constructed from macroscopic and thin-section petrographic analyses, is composed of limestones and dolomitized limestones with several thin clay layers. Breccias are melt and basement clast rich, described as a suevitic unit. Section is further investigated using paleomagnetic, rock magnetic, X-ray fluorescence geochemical and stable isotope analyses. Magnetic polarities define a sequence of reverse to normal, which correlate to the geomagnetic polarity time scale from chrons 29r to 26r. The d13 C values in the first 20 m interval range from 1.2 to 3.5 %0 and d18 O values range from -1.4 to -4.8 %0. Isotope values show variation trends that correlate with the marine carbon and oxygen isotope patterns for the K-Pg boundary and early Paleocene. Positive carbon isotopes suggest relatively high productivity, with apparent recovery following the K-Pg extinction event. Geochemical data define characteristic trends, with Si decreasing gradually from high values in the suevites, low contents in Paleocene sediments with intervals of higher variability and then increased values likely marking the PETM. Variation trends are
Energy Technology Data Exchange (ETDEWEB)
Kirtzel, H.J. [METEK GmbH, Elmshorn (Germany); Hennemuth, B.
2008-06-15
A method for the derivation of boundary layer height from measurements of sodar, RASS and sonic anemometer-thermometer data is presented. Datasets of the years 2004 and 2005 measured at the Meteorological Observatory Lindenberg (Germany) are used. The time resolution is 15 min. Special emphasis is laid on air pollution issues where mixing heights shallower than 500 m are important. A difference to the numerous methods already presented in the literature is twofold. Firstly, not only single vertical profiles of measured or derived parameters are used but also bulk information, e.g. histograms and boundary layer evolution over time intervals, is considered. Secondly, the presented method analyses sodar data and confirms or corrects the results by use of temperature profiles from RASS and by sonic surface heat flux data. The results are presented as frequency distributions for the whole period and for the four seasons, stratified by the hour of the day. The additional analysis of temperature profiles and surface heat flux is particularly helpful for the detection of stable boundary layers and increases the number of shallow boundary layers particularly in the evening. The comparison with radiosonde-derived boundary layer heights shows a good agreement, deviations are mostly due to a complicated boundary layer structure. Boundary layer depths derived after a formalism given in the German administrative regulation TA-Luft show - compared to the sodar/RASS-derived values - too many very small or partly very large values. The height range between 100 m and 300 m which is essential for pollutant dispersion issues is nearly missing. Requirements for a future operational use of the method are formulated. (orig.)
Directory of Open Access Journals (Sweden)
Badr Alkahtani
2015-12-01
Full Text Available The present model is committed to the study of MHD boundary layer flow and heat transfer past a nonlinear vertically stretching porous stretching sheet with the effects of hydrodynamic and thermal slip. The boundary value problem, consisting of boundary layer equations of motion and heat transfer, which are nonlinear partial differential equations are transformed into nonlinear ordinary differential equations, with the aid of similarity transformation. This problem has been solved, using Runge Kutta fourth order method with shooting technique. The effects of various physical parameters, such as, stretching parameter m, magnetic parameter M, porosity parameter fw, buoyancy parameter λ, Prandtl number Pr, Eckert number Ec, hydrodynamic slip parameter γ, and thermal slip parameter δ, on flow and heat transfer characteristics, are computed and represented graphically.
Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures
Roberto Fioretti; Paolo Principi
2014-01-01
External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been invest...
Directory of Open Access Journals (Sweden)
V. K. Bityukov
2016-01-01
Full Text Available Analytical study of the processes of heat conduction is one of the main topics of modern engineering research in engineering, energy, nuclear industry, process chemical, construction, textile, food, geological and other industries. Suffice to say that almost all processes in one degree or another are related to change in the temperature condition and the transfer of warmth. It should also be noted that engineering studies of the kinetics of a range of physical and chemical processes are similar to the problems of stationary and nonstationary heat transfer. These include the processes of diffusions, sedimentation, viscous flow, slowing down the neutrons, flow of fluids through a porous medium, electric fluctuations, adsorption, drying, burning, etc. There are various methods for solving the classical boundary value problems of nonstationary heat conduction and problems of the generalized type: the method of separation of variables (Fourier method method; the continuation method; the works solutions; the Duhamel's method; the integral transformations method; the operating method; the method of green's functions (stationary and non-stationary thermal conductivity; the reflection method (method source. In this paper, based on the consistent application of the Laplace transform on the dimensionless time θ and finite sine integral transformation in the spatial coordinates X and Y solves the problem of unsteady temperature distribution on the mechanism of heat conduction in a parallelepiped with boundary conditions of first kind. As a result we have the analytical solution of the temperature distribution in the parallelepiped to a conductive mode free convection, when one of the side faces of the parallelepiped is maintained at a constant temperature, and the others with the another same constant temperature.
Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures
Directory of Open Access Journals (Sweden)
Roberto Fioretti
2014-10-01
Full Text Available External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been investigated. The purpose of this application is to obtain a reduction in the thermal conductivity of the block by lowering the radiative heat exchange in the enclosures. The aims of this paper are to indicate a methodology for evaluating the thermal performance of the brick and to provide information about the benefits that should be obtained. Theoretical evaluations are carried out on several bricks (12 geometries simulated with two different thermal conductivities of the clay, using a finite elements model. The heat exchange procedure is implemented in accordance with the standard, so as to obtain standardized values of the thermal characteristics of the block. Several values of emissivity are hypothesized, related to different kinds of coating. Finally, the values of the thermal transmittance of walls built with the evaluated blocks have been calculated and compared. The results show how coating the internal surface of the cavity provides a reduction in the thermal conductivity of the block, of between 26% and 45%, for a surface emissivity of 0.1.
The Benefit of Surface Uniformity for Encoding Boundary Features in Visual Working Memory
Kim, Sung-Ho; Kim, Jung-Oh
2011-01-01
Using a change detection paradigm, the present study examined an object-based encoding benefit in visual working memory (VWM) for two boundary features (two orientations in Experiments 1-2 and two shapes in Experiments 3-4) assigned to a single object. Participants remembered more boundary features when they were conjoined into a single object of…
The thermal energy of a scalar field on a unidimensional Riemann surface
Elizalde, E
2002-01-01
We discuss some controverted aspects of the evaluation of the thermal energy of a scalar field on a unidimensional Riemann surface. The calculations are carried out using a generalised zeta function approach.
Thermal diffusion of potassium on the modified iron surface
Energy Technology Data Exchange (ETDEWEB)
Narkiewicz, U. [Institute of Chemical and Environment Engineering, Technical University of Szczecin, PuIaskiego 10, 70-322 Szczecin (Poland)]. E-mail: urszula.narkiewicz@ps.pl; Moszynski, D. [Institute of Chemical and Environment Engineering, Technical University of Szczecin, PuIaskiego 10, 70-322 Szczecin (Poland); BrosIawski, M. [Institute of Chemical and Environment Engineering, Technical University of Szczecin, PuIaskiego 10, 70-322 Szczecin (Poland)
2005-10-31
The diffusion of potassium on the polycrystalline iron surface modified by adsorbed oxygen and nitrogen has been studied by means of AES. The migration of potassium atoms has been observed independently on the constitution of the iron surface in the temperature range between 300 and 450 deg. C. The final concentration of potassium on the iron surface increases with temperature from 300 to 400 deg. C, irrespective of what atoms accompany potassium on the surface. At 450 deg. C, the final level of potassium concentration is decreased. The profiles of the concentration on the surface along the line crossing the source of potassium were also acquired. Applying the diffusion model of finite source, the diffusion coefficient of potassium for oxygen-covered and nitrogen-covered surfaces were evaluated.
Investigation of thermal effect on exterior wall surface of building material at urban city area
Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao
2012-01-01
This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat gre...
Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob
2015-04-01
Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.
Daba, Mitiku; Devaraj, P.
2016-05-01
In this paper, we investigated numerically an unsteady boundary layer flow of a nanofluid over a stretching sheet in the presence of thermal radiation with variable fluid properties. Using a set of suitable similarity transformations, the governing partial differential equations are reduced into a set of nonlinear ordinary differential equations. System of the nonlinear ordinary differential equations are then solved by the Keller-box method. The physical parameters taken into consideration for the present study are: Prandtl number Pr, Lewis number Le, Brownian motion parameter N b, thermophoresis parameter N t, radiation parameter N r, unsteady parameter M. In addition to these parameters, two more new parameters namely variable thermophoretic diffusion coefficient parameter e and variable Brownian motion diffusion coefficient parameter β have been introduced in the present study. Effects of these parameters on temperature, volume fraction of the nanoparticles, surface heat and mass transfer rates are presented graphically and discussed briefly. To validate our method, we have compared the present results with some previously reported results in the literature. The results are found to be in a very good agreement.
Energy Technology Data Exchange (ETDEWEB)
White, D; Fasenfest, B; Rieben, R; Stowell, M
2006-09-08
We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretized Biot-Savart law.
Near-surface Thermal Infrared Imaging of a Mixed Forest
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will
The surface roughness of (433) Eros as measured by thermal-infrared beaming
Rozitis, B.
2017-01-01
In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.
A novel approach to generate random surface thermal loads in piping
Energy Technology Data Exchange (ETDEWEB)
Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon
2014-07-01
Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.
Infrared thermal mapping of the martian surface and atmosphere: first results.
Kieffer, H H; Chase, S C; Miner, E D; Palluconi, F D; Münch, G; Neugebauer, G; Martin, T Z
1976-08-27
The Viking infrared thermal mapper measures the thermal emission of the martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO(2) condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO(2) clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.
Infrared thermal mapping of the Martian surface and atmosphere - First results
Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.; Muench, G.; Neugebauer, G.
1976-01-01
The Viking infrared thermal mapper measures the thermal emission of the Martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO2 condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO2 clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.
Thermally tailored gradient topography surface on elastomeric thin films.
Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata
2014-05-14
We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.
Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings
2015-07-01
Deposition 4 3. Results/ Analysis 5 4. Conclusion 7 5. References 8 Distribution List 9 iv List of Figures Fig. 1 Contact angle...by measuring the contact angle (σ) formed between a droplet of liquid and the surface (Fig. 1). Qualitatively , surfaces with a water contact angle...several seconds and dried with filtered nitrogen. The samples were then immersed in 0.01-M aqueous solution of silver nitrate for 20 s. The deposition
Thermal desorption from surfaces with laser-induced defects
Energy Technology Data Exchange (ETDEWEB)
Szabelski, Pawel; Panczyk, Tomasz; Rudzinski, Wladyslaw
2002-12-30
Monte Carlo simulation method was used to mimic surface damage development caused by short laser pulses. The influence of pulsed laser irradiation on the creation of defect concentration was examined in the case of a model surface. In particular, the dependence of the intact surface area on a number of laser scans was studied and compared with the experimental results obtained for Rh(1 1 1) crystal face. Changes in the adsorptivoperties of the surface produced by laser irradiation are explained with the help of a simple geometric model connecting the laser intensity and the disordered area generated by a single laser shot. It was demonstrated that exponential decay of the Low Energy Electron Diffraction (LEED) signal with the number of laser scans, which is observed experimentally, may result directly from the overlapping of the laser spots created on the surface. This effect becomes enhanced when the laser intensity, hence the spot size, increases. The importance of laser-induced defects in the kinetics of catalytic/separation processes was examined in the case of temperature programmed desorption (TPD) spectra from surfaces subjected to a different number of laser shots. The spectra were simulated by employing the Monte Carlo method as well as by application of the absolute rate theory (ART) coupled with the mean field approximation. The results obtained with both methods were in a good agreement even when weak lateral interactions in the adsorbed phase were allowed.
Sharma, Kalpna; Gupta, Sumit
2017-06-01
This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.
Goza, Andres
2016-01-01
We present a strongly-coupled immersed-boundary method for flow-structure interaction problems involving thin deforming bodies. The method is stable for arbitrary choices of solid-to-fluid mass ratios and for large body motions. As with many strongly-coupled immersed-boundary methods, our method requires the solution of a nonlinear algebraic system at each time step. The system is solved through iteration, where the iterates are obtained by linearizing the system and performing a block LU factorization. This restricts all iterations to small-dimensional subsystems that scale with the number of discretization points on the immersed surface, rather than on the entire flow domain. Moreover, the iteration procedure we propose does not involve heuristic regularization parameters, and has converged in a small number of iterations for all problems we have considered. We derive our method for general deforming surfaces, and verify the method with two-dimensional test problems of geometrically nonlinear beams undergoi...
Lin, Psang Dain
2014-05-10
In a previous paper [Appl. Opt.52, 4151 (2013)], we presented the first- and second-order derivatives of a ray for a flat boundary surface to design prisms. In this paper, that scheme is extended to determine the Jacobian and Hessian matrices of a skew ray as it is reflected/refracted at a spherical boundary surface. The validity of the proposed approach as an analysis and design tool is demonstrated using an axis-symmetrical system for illustration purpose. It is found that these two matrices can provide the search direction used by existing gradient-based schemes to minimize the merit function during the optimization stage of the optical system design process. It is also possible to make the optical system designs more automatic, if the image defects can be extracted from the Jacobian and Hessian matrices of a skew ray.
Institute of Scientific and Technical Information of China (English)
Zhang-Rui Li; Lei Sun; Zhi Zong; Jing Dong
2012-01-01
The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method.The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule.The solid angle for the open surface is treated in direct method based on its definition.Several kinds of configurations for the bubbles and free surface have been investigated.The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface.The bubble dynamics and their interactions have close relation with the standoff distances,buoyancy parameters and initial sizes of bubbles.Completely different bubble shapes,free surface motions,jetting patterns and pressure distributions under different parameters can be observed in our model,as demonstrated in our calculation results.
Thermal dynamics of silver clusters grown on rippled silica surfaces
Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Lloyd, Adam; Smith, Roger; Mukherjee, Subroto
2017-02-01
Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica surface which has a lower ripple height than the longer wavelength structures. Calculations carried out on a surface with such a lower ripple height also demonstrate a similar effect.
2014-04-01
2006). The far-field temperature and humidity are based on Jordan’s Caribbean sounding for the hurricane season (Jordan, 1958). For the purpose of...in this direction. Key Words: hurricanes ; tropical cyclones; typhoons; surface drag coefficient; frictional drag; boundary layer Received 16 June 2010...using one of five available schemes were compared, not only between themselves, but where possible with recent observational analyses of hurricane
Birrer, Marcel; Stemmer, Christian; Adams, Nikolaus N.
2011-05-01
Investigations of hypersonic boundary-layer flows around a cubical obstacle with a height in the order of half the boundary layer thickness were carried out in this work. Special interest was laid on the influence of chemical non-equilibrium effects on the wake flow of the obstacle. Direct numerical simulations were conducted using three different gas models, a caloric perfect, an equilibrium and a chemical non-equilibrium gas model. The geometry was chosen as a wedge with a six degree half angle, according to the aborted NASA HyBoLT free flight experiment. At 0.5 m downstream of the leading edge, a surface trip was positioned. The free-stream flow was set to Mach 8.5 with air conditions taken from the 1976 standard atmosphere at an altitude of 42 km according to the predicted flight path. The simulations were done in three steps for all models. First, two-dimensional calculations of the whole configuration including the leading edge and the obstacle were conducted. These provide constant span-wise profiles for detailed, steady three-dimensional simulations around the close vicinity of the obstacle. A free-stream Mach number of about 6.3 occurs behind the shock. A cross-section in the wake of the object then delivers the steady inflow for detailed unsteady simulations of the wake. Perturbations at unstable frequencies, obtained from a bi-global secondary stability analysis, were added to these profiles. The solutions are time-Fourier transformed to investigate the unsteady downstream development of the different modes due to the interaction with the base-flow containing two counter-rotating vortices. Results will be presented that show the influence of the presence of chemical non-equilibrium on the instability in the wake of the object leading to a laminar or a turbulent wake.
Chirdon, William M.; Patil, Abhijeet P.
2011-10-01
An oscillating boundary temperature (OBT) method is proposed to simultaneously determine transient thermal properties including thermal conductivity, thermal diffusivity, internal heat generation, and volumetric heat capacity for exothermic solids and semi-solids over a narrow, controlled temperature range by using internal temperature measurements of the thermal wave. A comparison of this method and a transient hot-wire (THW) method is conducted in the presence of heat generation using physical properties which change over time. The advantages and disadvantages of both methods are discussed. The OBT method is potentially useful for the analysis of exothermic solid or semi-solid materials such as hydrating (freshly mixed) cement and concrete, polymers and composites undergoing polymerization reactions, and biological tissues.
The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals
Wen, QingFeng; Liu, Ying; Huang, WeiFeng; Suo, ShuangFu; Wang, YuMing
2013-10-01
In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure deformation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal deformation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 μm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.
Energy Technology Data Exchange (ETDEWEB)
Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.
1982-08-01
The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
Shan, Xin; Yu, Xinghe; Clift, Peter D.; Wang, Tianyi; Tan, Chengpeng; Jin, Lina
2016-09-01
Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made, that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record. A four-fold hierarchy bounding-surface model, representing different levels of impact and genesis, is defined. Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features, sedimentary characteristics (color, grain size, sorting, rounding and sedimentary structures) and origin. We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.
Hamid, Rohana Abdul; Nazar, Roslinda
2017-08-01
In this paper, the problem of magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a nanofluid with the influences of the chemical reaction and thermal radiation over an exponentially shrinking sheet is studied numerically. The model used for the nanofluid is called the Buongiorno model which incorporates the effects of the Brownian motion and thermophoresis. The governing dimensionless ordinary differential equations are solved using the bvp4c method. The effects of the magnetic field parameter, thermal radiation parameter and chemical reaction parameter on the velocity, temperature and concentration profiles of the nanofluid over an exponentially permeable shrinking sheet are discussed and presented through graphs and tables.
Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)
Digital Repository Service at National Institute of Oceanography (India)
Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.
relatively cooler near-surface thermal regime persisted owing to prolonged upwelling until November 2005. In addition, the observed local surface wind field was relatively stronger, and the net surface heat gain to the ocean was weaker over the Lakshadweep...
Effect of deformation on the thermal conductivity of granular porous media with rough grain surface
Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad
2017-08-01
Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.
Institute of Scientific and Technical Information of China (English)
Kazuyuki Kage; Katsuya Ishimatsu; Toyoyasu Okubayashi
2003-01-01
The interactions of the shock with the boundary layer of the cold gas behind the contact in many different conditions, i.e. three kinds of test gases and three kinds of sound speed ratios across the contact, were explored by numerical study. The trajectories of the transmitted shock in cold gas flow and the development of shock bifurcation in the process of interaction with boundary layer are illustrated by many kinds of figures (e.g. the time-distance diagrams of the acoustic impedance contours on the axis, the pressure and density contours and the static pressure distributions on the axis).
Khanday, M. A.; Hussain, Fida
2015-07-01
To predict the behaviour of thermal physiology of a finite biological tissue in severe cold climatic conditions, a mathematical model has been established based on Pennes' bio-heat transfer equation with oscillatory boundary condition and time dependent heat source term. Crank-Nicholson scheme has been employed to obtain the solution of the boundary value problem to understand the change in stable temperature profiles at the peripheral tissues of human body subjected to forced convection due to cold. Thermal stress at these regions with respect to different input parameters has been computed under extreme environmental conditions using MATLAB Software. The results have shown a relative significance and provide a reasonable outcome in terms of variable metabolic heat generation and oscillatory heat source. The oscillations of the temperature profiles from the mean temperatures were computed in relation with tissue medium and other physiological parameters.
The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming
Rozitis, Ben
2016-01-01
In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an "almost pole-on" illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterised by an RMS slope of 38 $\\pm$ 8{\\deg} at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the RMS slope of 25 $\\pm$ 5{\\deg} implied by the NEAR Shoemaker laser ran...
Modeling the surface stored thermal energy in asphalt concrete pavements
Directory of Open Access Journals (Sweden)
Matić Bojan J.
2016-01-01
Full Text Available Regression analysis is used to develop models for minimal daily pavement surface temperature, using minimal daily air temperature, day of the year, wind speed and solar radiation as predictors, based on data from Awbari, Lybia,. Results were compared with existing SHRP and LTPP models. This paper also presents the models to predict surface pavement temperature depending on the days of the year using neural networks. Four annual periods are defined and new models are formulated for each period. Models using neural networks are formed on the basis of data gathered on the territory of the Republic of Serbia and are valid for that territory. [Projekat Ministarstva nauke Republike Srbije, br. TR 36017
Radar, visual and thermal characteristics of Mars - Rough planar surfaces
Schaber, G. G.
1980-05-01
High-resolution Viking Orbiter images contain significant information on Martian surface roughness at 25- to 100-m lateral scales, while earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns are qualitatively confirmed by the Viking image data. Large-scale, curvilinear ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.
Thermal Conductance of a Surface Phonon-Polariton Crystal Made up of Polar Nanorods
Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes
2017-02-01
We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW·K-1, which is comparable to the quantum of thermal conductance of polar nanowires.
Dhar, Purbarun; Narasimhan, Arunn; Das, Sarit K
2015-01-01
Knowledge of thermal history in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour orcarcinoma cells. A semi analytical model to predict sub surface thermal history in translucent, soft, bio tissue mimics has been proposed. The model can accurately predict the spatio temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub surface temperature peaks. Based on opto thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorbance coefficient of nano graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and ...
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
Sridhar, A.; Pullin, D. I.; Cheng, W.
2016-11-01
An empirical model is presented, after Rotta (1962), that describes the development of a fully-developed turbulent boundary layer in the presence of surface roughness with nominal roughness length-scale ks that varies with stream-wise distance x. For Rex =Ue (x) x / ν large, use is made of the log-wake model of the local turbulent mean-velocity profile that contains the Hama roughness correction ΔU+ (ks+) for the asymptotic, fully rough regime. It is shown that the skin friction coefficient Cf is constant in x only for ks = αx , where α is a dimensionless number. For Ue (x) = Axm , this then gives a two-parameter (α , m) family of solutions for boundary-layer flows that are self similar in the variable z / (α x) where z is the wall-normal co-ordinate. Trends observed in this model are supported by wall-modeled LES of the zero-pressure-gradient turbulent boundary layer (m = 0) at very large Rex . It is argued that the present results suggest that, in the sense that Cf is spatially constant and independent of Rex , this class of flows can be interpreted as providing the asymptotically-rough equivalent of Moody-like diagrams for boundary layers in the presence of small-scale roughness. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605.