WorldWideScience

Sample records for surface sulfur-to-metal bonding

  1. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.;

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  2. DICOR surface treatments for enhanced bonding.

    Science.gov (United States)

    Bailey, L F; Bennett, R J

    1988-06-01

    Treatments for preparing castable ceramic surfaces for enhanced bonding to specially formulated resin-based cements were examined. An ammonium bifluoride etch combined with gamma-methacryloxypropyl-trimethoxysilane produced shear bond strengths higher than when an ammonium bifluoride treatment was used alone. The method of curing the silane was highly significant in the contribution to the cement/substrate bond strength, with the heat-cure producing the highest values. Long-term water storage tests indicated that the cement bond with etch plus silane-treated castable ceramic surfaces (whether heat or chemically cured silane was used) demonstrated no significant decrease in strength after a one-year period.

  3. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...

  4. Mirror Surface Grinding of Steel Bonded Carbides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The steel bonded carbide, a composite material, is very difficult to be machined to a fine finish mirror surface. In this paper, an electrolytic in-process dressing (ELID) grinding with metallic bond super-hard abrasive wheel was developed for grinding steel bonded carbide GT35. Factors affecting ELID grinding performance were analyzed by an atomic force microscope (AFM). Based on the analysis of AFM topography of the fine ground mirror surface of the steel bonded carbide, a schematic diagram of the mechanism of micro-removal of the ground surface was described. The AFM topography also shows that the hard brittle carbide particles, on the surface of steel bonded carbide, were machined out by ductile cutting. Since the grinding cracks in the ground surface are due to temperature gradient, temperature distribution in the grinding area was analyzed by finite element method (FEM). Experimental results indicate that a good mirror surface with Ra<0.02pm can be obtained by the developed ELID grinding system.

  5. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  6. Effect of panel alignment and surface finish on bond strength

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J. [Los Alamos National Lab., NM (United States); Baker, W.E. [New Mexico Univ., Albuquerque, NM (United States)

    1991-10-01

    The flexural strength of bonded acrylic is tested as a function of panel alignment and bond surface finish. Bond strength was shown to be highly dependent on both parameters with only a narrow range of values yielding a high strength bond. This study was performed for the heavy water-containing acrylic vessel for the Sudbury Neutrino Observatory detector.

  7. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  8. Surfaces. [characterization of surface properties for predicting bond quality

    Science.gov (United States)

    Buckley, D. H.

    1983-01-01

    Techniques for the characterization of surface cleanliness and roughness for predicting the quality of an adhesive bond are outlined. Generally, smooth surfaces are only available from cleavage of crystalline materials along a natural cleavage plane. Films must be deposited on metal surfaces to achieve the same smoothness. Once the surfaces are clean, however, reaction with the ambient atmosphere becomes likely through diffusive and absorption processes, producing asperities. Electron diffraction, Auger electron, and X ray emission spectroscopy are used to characterize surface condition. Once the surface is observed to be clean, the application of an adhesive will usually prohibit separation along the adhesive; separation is then confined to the weaker of the two materials. Finally, the use of polytetrafluorothylene adhesive to test the adhesion between polymers and metal surfaces is described.

  9. Competition between Hydrogen Bonds and Coordination Bonds Steered by the Surface Molecular Coverage.

    Science.gov (United States)

    Cai, Liangliang; Sun, Qiang; Bao, Meiling; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2017-04-25

    In addition to the choices of metal atoms/molecular linkers and surfaces, several crucial parameters, including surface temperature, molecular stoichiometric ratio, electrical stimulation, concentration, and solvent effect for liquid/solid interfaces, have been demonstrated to play key roles in the formation of on-surface self-assembled supramolecular architectures. Moreover, self-assembled structural transformations frequently occur in response to a delicate control over those parameters, which, in most cases, involve either conversions from relatively weak interactions to stronger ones (e.g., hydrogen bonds to coordination bonds) or transformations between the comparable interactions (e.g., different coordination binding modes or hydrogen bonding configurations). However, intermolecular bond conversions from relatively strong coordination bonds to weak hydrogen bonds were rarely reported. Moreover, to our knowledge, a reversible conversion between hydrogen bonds and coordination bonds has not been demonstrated before. Herein, we have demonstrated a facile strategy for the regulation of stepwise intermolecular bond conversions from the metal-organic coordination bond (Cu-N) to the weak hydrogen bond (CH···N) by increasing the surface molecular coverage. From the DFT calculations we quantify that the loss in intermolecular interaction energy is compensated by the increased molecular adsorption energy at higher molecular coverage. Moreover, we achieved a reversible conversion from the weak hydrogen bond to the coordination bond by decreasing the surface molecular coverage.

  10. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  11. Effect of surface treatments and bonding agents on the bond strength of repaired composites.

    Science.gov (United States)

    Cavalcanti, Andrea Nóbrega; De Lima, Adriano Fonseca; Peris, Alessandra Rezende; Mitsui, Fabio Hiroyuki Ogata; Marchi, Giselle Maria

    2007-01-01

    An adequate repair procedure depends on high bond strength between the existing composite and the new composite. To evaluate the effect of surface treatments and bonding procedures on the bond strength of repairs performed 24 hours after composite polymerization. Composite specimens were stored in distilled water at 37 degrees C for 24 hours. Specimens were allocated into 12 groups (N=10) according to the combination of surface treatment (none, air abrasion, diamond bur) and bonding procedure (none, Single Bond after H(3)PO(4) cleansing, Clearfil SE Bond after H(3)PO(4) cleansing, Clearfil SE Bond without H(3)PO(4) cleansing). The ultimate tensile strength (UTS) of the composite was tested in nonrepaired specimens. Twenty-four hours after repair, specimens were sectioned into three slabs and trimmed to an hourglass shape (1 mm(2) area). Slabs were tested under tension and mean bond strengths analyzed with two-way analysis of variance/Tukey and Dunnett tests (alpha=5%). Two groups resulted in repair bond strengths similar to composite UTS: air abrasion combined with Clearfil SE Bond after H(3)PO(4) cleansing, and air abrasion combined with Clearfil SE Bond without H(3)PO(4) cleansing. Combinations of surface treatments and bonding procedures were not statistically different. When repair procedure was performed 24 hours after composite polymerization, different combinations of surface treatments and bonding procedures affected repair bond strength similarly. There was no statistical difference between the repair bond strength of groups air-abraded and bonded with the self-etching system and composite UTS. Only air abrasion associated with a self-etching system provided repair bond strength comparable to composite UTS.

  12. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed tec

  13. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed

  14. Excimer surface treatment to enhance bonding in coated steels

    Science.gov (United States)

    Mueller, Robert E.; Olfert, M.; Duley, Walter W.; North, T.; Hood, J.; Sakai, D.

    1996-04-01

    Zinc coated sheet steel in the form of temper rolled galvanize and galvanneal are used extensively in the automotive industry. Through a process of excimer laser surface treatment, we have succeeded in significantly enhancing the adhesion characteristics of these coated steels. The laser treatment is performed by scanning focused excimer laser radiation in a raster pattern over the surface to be bonded. Adhesion tests have been carried out in the form of T peel tests, using either a hot melt nylon resin or an epoxy as the adhesive. An increase in bond strength was observed over a substantial range of surface treatment conditions. The largest improvement observed was more than a factor of three greater than for untreated surfaces. With the improved surface condition, the bond strength became limited by the cohesive strength of the adhesive. The physical structure and chemical composition of the parent and excimer treated surfaces have been examined using scanning electron microscopy and X-ray photoelectron spectroscopy to determine the nature and extent of the changes caused by the surface treatment. The effects of the observed changes on the bonding performance will be discussed. Surfaces have been processed under an inert atmosphere to isolate the effects of physical surface modification and surface oxidation. An attempt will be made to correlate the surface changes with the bonding characteristics and thereby indicate which changes are most beneficial. The ultimate goal is to optimize the surface condition for bonding and maximize the process rate.

  15. Structure of adsorbed monolayers. The surface chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table.

  16. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  17. Contamination and Surface Preparation Effects on Composite Bonding

    Science.gov (United States)

    Kutscha, Eileen O.; Vahey, Paul G.; Belcher, Marcus A.; VanVoast, Peter J.; Grace, William B.; Blohowiak, Kay Y.; Palmieri, Frank L.; Connell, John W.

    2017-01-01

    Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment.

  18. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  19. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Science.gov (United States)

    Wendler, Michael; Belli, Renan; Panzer, Reinhard; Skibbe, Daniel; Petschelt, Anselm; Lohbauer, Ulrich

    2016-01-01

    The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS) of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand), as well as bonding protocols (Primer/Adhesive) were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA) and the Student–Newman–Keuls test (α = 0.05). Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role. PMID:28773669

  20. Bonding to a porcelain surface: Factors affecting the shear bond strength

    Directory of Open Access Journals (Sweden)

    Shishir Singh

    2013-01-01

    Full Text Available Objectives: Bonding to porcelain veneers, crowns or restorations is a major challenge for an orthodontist. A study was undertaken wherein, the shear bond strengths of metal and ceramic brackets on porcelain were compared and the effects of debonding on the debonded surfaces were evaluated. Materials and Methods: A total of 50 acrylic duplicate samples were fabricated from a therapeutically extracted maxillary first premolar, duly prepared for metal crown with porcelain facing. The samples were divided into two equal groups for bonding of metal and ceramic brackets. The shear bond strength of the samples was measured with a universal testing machine. Results: The metal brackets showed shear bond strengths with a mean of 12.21 ± 1.4 MPa, whereas the ceramic brackets displayed shear bond strengths with a mean of 17.45 ± 2.36 MPa. Visual and scanning electron microscope examination revealed multiple failure patterns with more of porcelain fractures in the ceramic brackets group. Conclusion: Bonding of metal and ceramic brackets to porcelain can be achieved with bond strengths comparable to that when bonded to enamel surface. Porcelain fractures are more commonly associated with debonding of ceramic brackets.

  1. Influence of surface preparation on fusion bonding of thermoplastic composites

    NARCIS (Netherlands)

    Sacchetti, F.; Grouve, W.J.B.; Warnet, L.L.; Fernandez Villegas, I.

    2015-01-01

    Carbon fibre-reinforced thermoplastic composites laminates (CFRP) meant for fusion bonding have been moulded using different release media. The potential contamination of the laminate surface by the release media and its effect on the mechanical performance of fusion bonded joints was studied. The p

  2. An extension of computations for bond dissociation on surfaces

    Science.gov (United States)

    Baetzold, R. C.; Shustorovich, E. M.

    1986-01-01

    An extension of the computational method for bond dissociation [R.C. Baetzold, J. Chem. Phys. 82 (1985) 5724] is presented. Total bond order is conserved to unity for the system {diatomic molecules plus surface} through chemisorption and eventual dissociation to atomic fragments. A complete potential energy curve for this profile shows an activation barrier ( ΔE) in accord with earlier analytic formulas [E.M. Shustorovich, Surface Sci. 150 (1985) L115].

  3. Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.

    Science.gov (United States)

    Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S

    2010-09-01

    The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.

  4. Intramolecular amide bonds stabilize pili on the surface of bacilli

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jonathan M.; Poor, Catherine B.; Faull, Kym F.; Whitelegge, Julian P.; He, Chuan; Schneewind, Olaf; (UC); (UCLA-MED)

    2010-01-12

    Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA{sub 2} and CNA{sub 3}) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA{sub 1}, is formed only after pilin subunits have been incorporated into pili. We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.

  5. Surface treatments to improve bond strength in removable partial dentures.

    Science.gov (United States)

    Kim-Hai, Nguyen; Esquivel-Upshaw, Josephine; Clark, Arthur E

    2003-01-01

    The metal and resin interface of removable partial dentures is weakened by the poor bond strength between the two materials. This study was designed to test the hypothesis that surface treatments--consisting of air abrasion, with aluminum oxide, tin plating and oxidation, and silanation, either alone or in combination--will improve the bond strength of acrylic resin to metal. Statistical analysis revealed that air abrasion, tin plating/oxidation, and silanation all showed significantly higher bond strength than either abrasion and tin plating, abrasion and silanation, or abrasion alone. Air abrasion demonstrated the greatest effect on improving bond strength. The mean bond strength of samples subjected to a combination of air abrasion, tin plating and oxidation, and silanation was significantly greater than any other combination treatment.

  6. Surface smoothness and marginal fit with phosphate-bonded investments.

    Science.gov (United States)

    Cooney, J P; Doyle, T M; Caputo, A A

    1979-04-01

    Two phosphate-bonded investments and one calcium sulfate investment were evaluated for the surface smoothness and marginal fit they impart to gold castings. A modified technique was also evaluated for each phosphate-bonded investment, where the silica sol was not diluted and the spatulation time was reduced. The results of this study lead to the following conclusions: 1. The marginal fits obtained with all four phosphate-bonded methods were comparable to each other and superior to that obtained with the calcium sulfate investment. 2. The presence of nodules on the surface of the castings was more prevalent with the phosphate-bonded investments. However, this effect was not statistically significant. 3. Clinical assessment of the roughness of the castings revealed that all the methods tested produced clinically acceptable castings. 4. Visual observation by five dentists revealed that both the recommended and modified techniques for one of the phosphate-bonded investments (Ceramigold) produced a smoother surface than any other investment tested. Rating of scanning electron microscope photographs (X600) revealed no difference in the surface roughness between any of the castings. Consequently, no definitive relation between investment type or technique and surface roughness was established. 5. No correlation was demonstrated between surface roughness, as evaluated by either clinical observation or scanning electron microscope photography, and marginal fit of the castings.

  7. Effect of dentin surface roughness on the shear bond strength of resin bonded restorations

    Science.gov (United States)

    Koodaryan, Roodabeh; Poursoltan, Sajjad

    2016-01-01

    PURPOSE This study aimed to investigate whether dentin surface preparation with diamond rotary instruments of different grit sizes affects the shear bond strength of resin-bonded restorations. MATERIALS AND METHODS The buccal enamel of 60 maxillary central incisors was removed with a low speed diamond saw and wet ground with silicon carbide papers. The polished surfaces of the teeth were prepared with four groups of rotary diamond burs with super-coarse (SC), coarse (C), medium (M), and fine (F) grit sizes. Following surface preparation, 60 restorations were casted with nickel-chromium alloy and bonded with Panavia cement. To assess the shear bond strength, the samples were mounted on a universal testing machine and an axial load was applied along the cement-restoration interface at the crosshead speed of 0.5 mm/min. The acquired data was analyzed with one way ANOVA and Tukey post hoc test (α=.05). RESULTS The mean ± SD shear bond strengths (in MPa) of the study groups were 17.75 ± 1.41 for SC, 13.82 ± 1.13 for C, 10.40 ± 1.45 for M, and 7.13 ± 1.18 for F. Statistical analysis revealed the significant difference among the study groups such that the value for group SC was significantly higher than that for group F (P<.001). CONCLUSION Dentin surface roughness created by diamond burs of different grit sizes considerably influences the shear bond strength of resin bonded restorations. PMID:27350858

  8. Adhesion between silica surfaces due to hydrogen bonding

    Science.gov (United States)

    Bowen, James; Rossetto, Hebert L.; Kendall, Kevin

    2016-09-01

    The adhesion between surfaces can be enhanced significantly by the presence of hydrogen bonding. Confined water at the nanoscale can display behaviour remarkably different to bulk water due to the formation of hydrogen bonds between two surfaces. In this work we investigate the role of confined water on the interaction between hydrophilic surfaces, specifically the effect of organic contaminants in the aqueous phase, by measuring the peak adhesive force and the work of adhesion. Atomic force microscope cantilevers presenting hemispherical silica tips were interacted with planar single crystals of silica in the presence of dimethylformamide, ethanol, and formamide; solution compositions in the range 0-100 mol% water were investigated for each molecule. Each molecule was chosen for its ability to hydrogen bond with water molecules, with increasing concentrations likely to disrupt the structure of surface-bound water layers. With the exception of aqueous solutions containing low concentrations of ethanol, all molecules decreased the ability of confined water to enhance the adhesion between the silica surfaces in excess of the predicted theoretical adhesion due to van der Waals forces. The conclusion was that adhesion depends strongly on the formation of a hydrogen-bonding network within the water layers confined between the silica surfaces.

  9. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  10. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  11. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  12. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  13. Surface Monitoring of CFRP Structures for Adhesive Bonding

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  14. Microshear bond strength evaluation of surface pretreated zirconia ceramics bonded to dentin

    Science.gov (United States)

    Anand, Shenbagakuttalam; Ebenezar, Ambrose Vedamanickam Rajesh; Anand, Nirupa; Rajkumar, Kothandaraman; Mahalaxmi, Sekar; Srinivasan, Narasimhan

    2015-01-01

    Objectives: To comparatively assess the micro shear bond strength (MSBS) of dentin bonded surface pre-treated zirconia ceramics. Materials and Methods: Zirconia blocks were sectioned into 50 cubical blocks. The blocks were further categorized into five groups (n = 10 each). Group I: No treatment was performed on zirconia samples; Group II: The zirconia samples were sand-blasted; Group III: Group II + etched with 9.8% of hydrofluoric (HF) acid for 60 s; Group IV: The sandblasted zirconia samples were selectively infiltrated with low fusing porcelain; and Group V: Group IV + etched using 9.8% HF acid gel. The zirconia specimens were then bonded to dentin samples, and the samples were tested for MSBS evaluation using universal testing machine. Results: The MSBS of all the four experimental groups shows greater value than group I. Among the experimental groups, group V and group IV do not show any statistical significant difference, whereas the mean MSBS of groups IV and V were statistically greater than group III and group II. However, groups I, II, and III do not show any statistical significant difference in mean MSBS values between them. Conclusion: Selective infiltration etching of zirconia ceramics provides the highest bond strength with resin cement. PMID:26038654

  15. SHEAR BOND STRENGTH OF BRACKETS BONDED TO PORCELAIN SURFACE: IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Fidan Alakuş Sabuncuoğlu

    2016-01-01

    Full Text Available Purpose: To compare the effects of different porcelain surface treatment methods on the shear bond strength (SBS and fracture mode of orthodontic brackets. Materials and Methods: Seventy feldspathic porcelain disk samples mounted in acrylic resin blocks were divided into seven groups (n=10 according to type of surface treatment: I, Diamond bur; II, Orthosphoric acid (OPA; III, hydrofluoric acid (HFA; IV, sandblasted with aluminum oxide (SB; V, SB+HFA; VI, Neodymium:yttrium-aluminum-garnet (Nd:YAG laser; VII, Erbium:yttrium-aluminum-garnet (Er:YAG laser. Brackets were affixed to treated all-porcelain surfaces with a silane bonding agent and adhesive resin and subjected to SBS testing. Specimens were evaluated according to the adhesive remnant index (ARI, and failure modes were assessed quantitatively under a stereomicroscope and morphologically under a scanning electron microscope (SEM. Statistical analysis was performed using one-way analysis of variance and the post-hoc Tukey test, with the significance level set at 0.05. Results: The highest SBS values were observed for Group V, with no significant difference between Groups V and III. SBS values for Group I were significantly lower than those of all other groups tested. The porcelain/resin interface was the most common site of failure in Group V (40% and Group III (30%, whereas other groups showed various types of bond failure, with no specific location pre-dominating, but with some of the adhesive left on the porcelain surfaces (ARI scores 2 or 3 in most cases. Conclusion: The current findings indicate that a diamond bur alone is unable to sufficiently etch porcelain surfaces for bracket bonding. Moreover, SB and HFA etching used in combination results in a significantly higher shear-bond strength than HFA or SB alone. Finally, laser etching with either an Nd:YAG or Er:YAG laser was found to be more effective and less time-consuming than both HFA acid and SB for the treatment of deglazed

  16. Unveiling nickelocene bonding to a noble metal surface

    Science.gov (United States)

    Bachellier, N.; Ormaza, M.; Faraggi, M.; Verlhac, B.; Vérot, M.; Le Bahers, T.; Bocquet, M.-L.; Limot, L.

    2016-05-01

    The manipulation of a molecular spin state in low-dimensional materials is central to molecular spintronics. The designs of hybrid devices incorporating magnetic metallocenes are very promising in this regard, but are hampered by the lack of data regarding their interaction with a metal. Here, we combine low-temperature scanning tunneling microscopy and density functional theory calculations to investigate a magnetic metallocene at the single-molecule level—nickelocene. We demonstrate that the chemical and electronic structures of nickelocene are preserved upon adsorption on a copper surface. Several bonding configurations to the surface are identified, ranging from the isolated molecule to molecular layers governed by van der Waals interactions.

  17. Surface-phosphorylated copolymer promotes direct bone bonding.

    Science.gov (United States)

    Gopalakrishnanchettiyar, Sailaja S; Mohanty, Mira; Kumary, Thrikkovil V; Valappil, Mohanan P; Parameshwaran, Ramesh; Varma, Harikrishna K

    2009-10-01

    The bone bonding potential of surface-phosphorylated poly (2-hydroxyethyl methacrylate-co-methyl methacrylate) [poly (HEMA-co-MMA)] has been investigated and compared with commercially available poly (methyl methacrylate) bone cement (CMW1 radiopaque, Depuy; Johnson & Johnson, Blackpool, Lancashire, England, United Kingdom) as control. Poly (HEMA-co-MMA) is synthesized by free radical-initiated copolymerization and surface functionalized by phosphorylation. The X-ray photoelectron spectroscopy confirms the presence of surface-bound phosphate groups on poly (HEMA-co-MMA). The surface-phosphorylated poly (HEMA-co-MMA) promotes in vitro biomineralization, cell viability, cell adhesion, and expression of bone-specific markers such as osteocalcin and alkaline phosphatase. The bone implantation study performed in rabbits as per ISO 10993-6; 1994 (E) shows that surface-phosphorylated poly (HEMA-co-MMA) elicits bone bonding and new bone formation. New woven bone trabeculae are formed at the defect site of surface-phosphorylated poly (HEMA-co-MMA) within 1 week, while for control sample, inflammatory cells--predominantly, macrophages, fibroblasts, and fibrocytes--are present at the cortical margins around the defect. The 4 and 12 weeks postimplantation results show that the major part of the defects around the surface-phosphorylated poly (HEMA-co-MMA) implant is bridged with new woven bone, with significant remodeling (evident from resorption bays) along both the margins of the defect, but for control implants, the defects are only partially closed, with slight remodeling along the margins, but most of them are separated by fibrous tissue.

  18. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  19. Evaluation of push-out bond strength of surface treatments of two esthetic posts

    Directory of Open Access Journals (Sweden)

    Cherif Adel Mohsen

    2012-01-01

    Conclusions: Glass fiber posts recorded higher bond strength than glass ceramic post to both root canal and resin core. Surface treatments increase bond strength for glass fiber and zirconia ceramic posts to both root canal and resin core. SB+SIC+SC gave higher bond strength than E+SC. Bond strength at the cervical section is higher than at the apical section.

  20. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  1. Enhanced Cu-to-Cu direct bonding by controlling surface physical properties

    Science.gov (United States)

    Chiang, Po-Hao; Liang, Sin-Yong; Song, Jenn-Ming; Huang, Shang-Kun; Chiu, Ying-Ta; Hung, Chih-Pin

    2017-03-01

    Cu-to-Cu direct bonding is one of the key technologies for three-dimensional (3D) chip stacking. This research proposes a new concept to enhance Cu-to-Cu direct bonding through the control of surface physical properties. A linear relationship between bonding strength and the H/\\sqrt{R} value of the bonding face (H: subsurface hardness, R: surface roughness) was found. Low vacuum air plasma and thermal annealing were adopted to adjust the surface physical conditions. Instead of surface activation, an acceleration in copper atom diffusion due to plasma-induced compressive stress accounts for the improvement in bonding strength.

  2. Evaluation of various concentrations of alkaline surface treatment on interfacial bond strengths of amalgam bonded to amalgam.

    Science.gov (United States)

    Mirza, Asaad Javaid; Ahmad, Asif; Mohammad, Taqi; Khan, Zahid Akhter

    2013-09-01

    This study was done to assess the influence of alkaline surface modification on interfacial bond strength of existing fractured (old) amalgam restoration bonded to fresh amalgam. Old and Fresh amalgam interfaced samples were prepared by applying a 4-methacryloyloxyethy trimellitate anhydride (4-META) containing adhesive. The adhesive used was Amalgabond (Parkell, Farmingdale, NY 11735, USA). Four concentrations of calcium hydroxide Ca(OH)2 solutions were used as a surface modifiers for old amalgam to increase the pH of the amalgam surfaces. The concentrations used were 2.5, 5, 10 and 15%. Direct measurement of the interfacial bond strength was carried out using an electromechanical universal tensile testing machine at crosshead speed of 10mm per minute. Results show that all the calcium hydroxide modified samples produced the increased tensile bond strength (TBS) as compared to their control group. The highest values of bond strength were achieved using 15% Ca(OH)2 solution as surface modifier. Pretreatment of fractured amalgam with calcium hydroxide improves the bond strength of 4-META adhesives. Its use in repair of amalgam may therefore be considered.

  3. Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    2010-01-01

    Objectives: To evaluate immediate repair bond strengths and failure types of resin composites with and without surface conditioning and characterize the interacting composite surfaces by their surface composition and roughness. Methods: Microhybrid, nanohybrid and nanofilled resin composites were ph

  4. A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection

    Science.gov (United States)

    Gause, Raymond L.

    1989-01-01

    Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.

  5. Effects of surface treatment of provisional crowns on the shear bond strength of brackets

    Directory of Open Access Journals (Sweden)

    Josiane Xavier de Almeida

    2013-08-01

    Full Text Available OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30 according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.

  6. Surface bonding on silicon surfaces as probed by tip-enhanced Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Tip-enhanced Raman spectroscopy (TERS) has been used to obtain the Raman signal of surface species on silicon single crystal surfaces without the necessity for surface enhancement by addition of Ag nanoparticles. By illuminating the hydrogen terminated silicon surface covered with a droplet of 4-vinylpyridine with UV light, a 4-ethylpyridine modified silicon surface can be easily obtained. By bringing a scanning tunneling microscope (STM) Au tip with a nanoscale tip apex to a distance of ca. 1 nm from the modified silicon surface, enhanced Raman signals of the silicon phonon vibrations and the surface-bonded 4-ethylpyridine were obtained. The Raman enhancement factor was estimated to be close to 107. By comparing the surface enhanced Raman scattering (SERS) signal obtained after surface enhancement with Ag nanoparticles and the TERS signal of the surface, the advantage of TERS over SERS for characterizing the surface species on substrates becomes apparent: TERS readily affords vibrational information about the system without disturbing it by surface enhancement. In this sense, TERS can be considered a truly non-invasive tool which is ideal for characterizing the actual surface species on substrates.

  7. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  8. Bonding durability between acrylic resin adhesives and titanium with surface preparations.

    Science.gov (United States)

    Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki

    2017-01-31

    The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.

  9. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    OpenAIRE

    Akkuş Emek; Turker Sebnem Begum

    2015-01-01

    Objectives: To compare the effects of airborne-particle abrasion (APA) and tribochemical silica coating (TSC) surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  10. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  11. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    NARCIS (Netherlands)

    Schmage, P; Nergiz, [No Value; Herrmann, W; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    2003-01-01

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface co

  12. The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips

    Science.gov (United States)

    Jamaati, Roohollah; Toroghinejad, Mohammad Reza

    2011-03-01

    It is the objective of this article to investigate the influence of surface preparation on the cold roll bonding (CRB) process. In this context, the effects of surface preparation parameters consisting of surface preparation method, surface roughness, scratch-brushing parameters, and the delay time between surface preparation and rolling are investigated on the bond strength of aluminum strips. The bond strength of two adjacent aluminum strips produced by the CRB process is evaluated by the peeling test. Furthermore, the interface region is investigated by metallographic observations. Our findings indicate that higher surface roughness values and shorter delay times improve the bond strength. It is also found that degreasing followed by scratch-brushing yield the best bonding properties.

  13. Bond-Energy and Surface-Energy Calculations in Metals

    Science.gov (United States)

    Eberhart, James G.; Horner, Steve

    2010-01-01

    A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…

  14. Effect of ceramic surface treatment on tensile bond strength to a resin cement.

    Science.gov (United States)

    Della Bona, Alvaro; Anusavice, Kenneth J; Hood, James A A

    2002-01-01

    The objective of this study was to test the following hypotheses: (1) hydrofluoric acid (HF)-treated ceramic surfaces produce the highest tensile bond strength to resin cements, independent of the ceramic microstructure and composition; and (2) the tensile bond strength test is appropriate for analysis of interfacial adhesion for ceramic-bonded-to-resin systems. Ceramic specimens were polished with 1-micron alumina abrasive and divided into four groups of 10 specimens for each of seven ceramic types. One of the following surface treatments was applied: (1) 10% ammonium bifluoride (ABF) for 1 minute; (2) 9.6% HF for 2 minutes; (3) 4% acidulated phosphate fluoride (APF) for 2 minutes; and (4) a silane coupling agent. The surface-treated areas were coated with an adhesive resin and bonded to a resin cement. Specimens were loaded to failure in tension using a testing machine. Tensile bond strength data were statistically analyzed, and fracture surfaces were examined to determine the mode of failure. Silane-treated surfaces showed statistically higher mean tensile bond strength values than surfaces treated with any etchant (HF, ABF, APF). HF produced statistically higher mean tensile bond strengths than ABF and APF. All failures occurred in the adhesion zone. The tensile bond strength test is adequate for analysis of the adhesive zone of resin-ceramic systems. The chemical adhesion produced by silane promoted higher mean bond strength values than the micromechanical retention produced by any etchant for the resin-ceramic systems used in this study.

  15. Influence of ceramic surface treatment on shear bond strength of ceramic brackets

    Directory of Open Access Journals (Sweden)

    Tatiana Fernandes Ramos

    2012-01-01

    Full Text Available Objective: To compare four different surface treatment methods and determine which produces adequate bond strength between ceramic brackets and facets of porcelain (feldspathic, and evaluate the Adhesive Remnant Index (ARI scores. Materials and Methods: Ten facets of porcelain specimens with glazed surfaces were used for each group. The specimens were randomly assigned to one of the following treatment conditions of the porcelain surface: (1 no surface treatment (control group, (2 fine diamond bur + orthophosphoric acid gel 37%, (3 hydrofluoric acid (HFL 10%, and (4 HFL 10% + silane. Ceramic brackets were bonded with the adhesive cement Transbond XT. The shear bond strength values were measured on a universal testing machine at a crosshead speed of 0.5 mm/min. Results: There was a significant difference (P<0.05 between the control group and all other groups. There was no significant difference (P<0.05 between treated porcelain surface with diamond bur + orthophosphoric acid gel 37% (4.8 MPa and HFL 10% (6.1 MPa, but the group treated with HFL 10% had clinically acceptable bond strength values. The group treated with HFL 10% + silane (17.5 MPa resulted in a statistically significant higher tensile bond strength (P<0.05. In group 4, 20% of the porcelain facets displayed damage. Conclusion: Etching of the surface with HFL increased the bond strength values. Silane application was recommended to bond a ceramic bracket to the porcelain surface in order to achieve bond strengths that are clinically acceptable.

  16. Effect of surface treatments on resin-zirconia bonding

    OpenAIRE

    Yan, Fung; 忻峰

    2015-01-01

    Zirconia offers a favorable choice for esthetic indirect dental restorations with excellent mechanical properties and biocompatibility. In the hostile oral environment, the longevity of dental restorations relies heavily on whether a strong and stable bond between the restoration and underlying supporting tooth structures can be achieved. However, unlike conventional ceramics, zirconia is a chemically inert material which makes it notoriously difficult to bond with any dental composite resin ...

  17. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    Science.gov (United States)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  18. Bonding of dental porcelain to non-cast titanium with different surface treatments.

    Science.gov (United States)

    Lin, Mau-Chin; Tung, Kuo-Lung; Lin, Sheng-Chieh; Huang, Her-Hsiung

    2012-01-01

    This study investigated the bonding of dental porcelain to non-cast Ti surface with different treatments. Mechanically ground non-cast Ti strips, simulating surface conditions produced by CAD/CAM, were Al(2)O(3)-sandblasted, then subjected to different surface treatments, including immersion in HNO(3)-containing acid, NaOH-containing alkaline, and NaOH-containing alkaline then HNO(3)-containing acid. Ti-porcelain specimens preparations and their bend strength measurements were based on ISO 9693. Ti surface treatment changed not only surface roughness but also surface chemistry, leading to influence on bond strength. Bond strengths of all Ti-porcelain groups were higher than ISO 9693 minimum requirement. The sandblasted/acid-treated Ti surface showed the highest bond strength (34.60 MPa) with porcelain; no significant difference in bond strength (27.92-29.63 MPa) was found among other Tiporcelain groups. All Ti-porcelain specimens showed adhesive bond failure. Bonding between non-cast Ti and dental porcelain was strengthened by a simple and practical sandblasting/acid-etching treatment of the Ti surface prior to porcelain sintering.

  19. Evaluation of shear bond strength of orthodontic brackets bonded on the tooth surface after internal bleaching

    Directory of Open Access Journals (Sweden)

    Nadia de Souza FERREIRA

    Full Text Available Introduction: There is great demand for esthetic treatment by patients who have discolored teeth, because currently aesthetic standards have become stricter and many patients have tooth bleaching procedures performed before or during orthodontic treatment. Objective: To evaluate the bonding of orthodontic brackets to human molars after internal tooth bleaching. Material and method: Forty molars were divided into four groups according to the bleaching agent used: PS sodium perborate + water; PC carbamide peroxide; PC + PS carbamide peroxide + sodium perborate; Cont water (control group. Bleaching agents placed inside the pulp chambers were replaced every 7 days for 2 weeks, and the brackets were bonded 30 days after the end of bleaching. The shear strength test was performed in a universal testing machine (Emic. Result: ANOVA with a significance level of 5% (p > 0.05, showed no statistically significant difference between groups (p = 0.1214. Conclusion: It was concluded that the different bleaching agents studied did not interfere with the bond strength of brackets to enamel and bonding the brackets 30 days after internal bleaching is a safe procedure.

  20. Effect of a New Surface Treatment Solution on the Bond Strength of Composite to Enamel

    Science.gov (United States)

    2016-06-01

    Bond Strength of Composite to Enamel " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner...Solution on the Bond Strength of Composite to Enamel ABSTRACT Clean & Boost (Apex Dental Materials) is a novel surface treatment solution...designed to be used in place of phosphoric acid to increase the bond strength of self-etch adhesives to enamel and more effectively remove contaminants

  1. Hydrogen-Bonding Liquids at Mineral Surfaces: From Fundamentals to Applications

    OpenAIRE

    Phan, A. T. V.

    2016-01-01

    Molecular-level understanding of properties of hydrogen-bonding liquids and their mixtures at solid-liquid interfaces plays a significant role in several applications including membrane-based separations, shale gas production, etc. Liquid water and ethanol are common hydrogen-bonding fluids. All-atom equilibrium molecular dynamics simulations were employed to gain insights regarding the structure and dynamics of these hydrogen-bonding liquids on various free-standing solid surfaces. Models fo...

  2. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  3. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  4. Bonding strength of resin cement to silicate glass ceramics for dental CAD/CAM systems is enhanced by combination treatment of the bonding surface.

    Science.gov (United States)

    Shimakura, Yusuke; Hotta, Yasuhiro; Fujishima, Akihiro; Kunii, Jun; Miyazaki, Takashi; Kawawa, Tadaharu

    2007-09-01

    To increase the bond strength of CAD/CAM-fabricated, leucite-reinforced glass ceramics with a resin cement, the effects of the following were investigated: surface modification by tribochemical (TBC) treatment, followed by combined application of a silane coupling agent and a functional monomer as a primer. Bond strength was evaluated by a shear bond test. It was found that a silane coupling agent was useful for all the surfaces, particularly for the TBC-treated surface. This was because of the presence of a silica layer on the modified surface. The combination of a silane coupling agent and a functional monomer on the TBC surface allowed marked improvement in bonding, whereby the bonding endured 20,000 cycles of thermal cycling. Therefore, TBC treatment in combination with a silane coupling agent and a functional monomer as a primer substantially increased the bond strength of CAD/CAM-fabricated glass ceramics with resin cement, if the treatment conditions were appropriate.

  5. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan;

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  6. Bond strength durability of direct and indirect composite systems following surface conditioning for repair

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Ozcan, Mutlu; Vanderlei, Aleska Dias; Leite, Fabiola Pessoa Pereira; Kimpara, Estevao Tomomitsu; Bottino, Marco Antonio

    2007-01-01

    Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sin

  7. Molecular Adsorption Bond Lengths at Metal Oxide Surfaces: Failure of Current Theoretical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hoeft, J.-T.; Kittel, M.; Polcik, M.; Bao, S.; Toomes, R. L.; Kang, J.-H.; Woodruff, D. P.; Pascal, M.; Lamont, C. L. A.

    2001-08-20

    New experimental structure determinations for molecular adsorbates on NiO(100) reveal much shorter Ni-C and Ni-N bond lengths for adsorbed CO and NH{sub 3} as well as NO (2.07, 1.88, 2.07{angstrom}) than previously computed theoretical values, with discrepancies up to 0.79{angstrom}, highlighting a major weakness of current theoretical descriptions of oxide-molecule bonding. Comparisons with experimentally determined bond lengths of the same species adsorbed atop Ni on metallic Ni(111) show values on the oxide surface that are consistently larger (0.1--0.3{angstrom}) than on the metal, indicating somewhat weaker bonding.

  8. Reprogrammable Assembly of Molecular Motor on Solid Surfaces via Dynamic Bonds.

    Science.gov (United States)

    Yu, Li; Sun, Jian; Wang, Qian; Guan, Yan; Zhou, Le; Zhang, Jingxuan; Zhang, Lanying; Yang, Huai

    2017-06-01

    Controllable assembly of molecular motors on solid surfaces is a fundamental issue for providing them to perform physical tasks. However, it can hardly be achieved by most previous methods due to their inherent limitations. Here, a general strategy is designed for the reprogrammable assembly of molecular motors on solid surfaces based on dynamic bonds. In this method, molecular motors with disulfide bonds can be remotely, reversibly, and precisely attached to solid surfaces with disulfide bonds, regardless of their chemical composition and microstructure. More importantly, it not only allows encoding geometric information referring to a pattern of molecular motors, but also enables erasing and re-encoding of geometric information via hemolytic photocleavage and recombination of disulfide bonds. Thus, solid surfaces can be regarded as "computer hardware", where molecular motors can be reformatted and reprogramed as geometric information. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  10. COMPARISON OF THE SHEAR BOND STRENGTH OF BRACKETS USING TWO SURFACE CONDITIONING METHODS FOR PORCELAIN

    OpenAIRE

    Ballesteros-Pinzón, Claudia; Bermúdez-Lozano, Jesús A.; Coronel-Corzo, Nelly; de-León-Goenaga, Edwin; Delgado, Linda P.; Báez-Quintero, Liliana

    2014-01-01

    Introduction: During 2010 the degree research “Comparison of the shear bond strength of brackets using two surface conditioning methods for porcelain” was carried out at Universidad Cooperativa de Colombia in Bogota. Objective: To determine the shear bond strength of metal brackets cemented on porcelain using two surface conditioning methods. Materials and methods: Forty human premolars were used and prepared for further cementing porcelain-metal crowns. There were two groups of 20 teeth each...

  11. Comparative evaluation of the shear bond strength of metal brackets bonded to porcelain using different porcelain surface treatments

    Directory of Open Access Journals (Sweden)

    Eslami Amirabadi GH

    2011-02-01

    Full Text Available "nBackground and Aims: The aim of this in vitro study was to compare shear bond strength of metal brackets bonded to dental porcelain on the basis of presence or absence of silane, type of acid [hydrofluoric acid (HF or phosphoric acid (H3PO4] and roughness of porcelain surface (glazed or deglazed within mouth-like environment."nMaterials and Methods: Eighty glazed ceramic disks were randomly divided into 8 groups of 10 disks: group 1 [HF+silane], group 2 [deglazed+HF+silane], group 3 [HF], group 4 [deglazed+HF], group 5 [H3PO4+silane], group 6 [deglazed+H3PO4+silane], group 7 [H3PO4], group 8 [deglazed+H3PO4]. Then the brackets were bonded and thermocycled. After that, shear bond strength test was done using the Zwick device and the type of bond failure was determined under stereomicroscope at 4X magnification. 3-way ANOVA and Kruskal-Wallis were used for statistical analyses."nResults: The shear bond strength for the test groups were as follows: group (1:13.05±7.7 MPa , group (2:25.16±10.66 MPa, group (3:6.7±5.86 MPa, group (4:15.39±8.97 MPa, group (5:12.76±7.91 MPa, group (6:13.57±7.85 MPa, group (7:0.54±0.67 MPa, group (8: 9.34±6.52 MPa. The type of bond failure in all groups was adhesive failure except for group 2. No significant difference in the interaction between (glazed or deglazed, (presence or absence of silane, and type of acid was found (P>0.05."nConclusion: Under the conditions of this study, the best clinical method was the use of 37% phosphoric acid and silane that resulted in the optimal clinical strength and adhesive bond failure.

  12. Effects of surface-conditioning methods on shear bond strength of brackets bonded to different all-ceramic materials.

    Science.gov (United States)

    Saraç, Y Şinasi; Külünk, Tolga; Elekdağ-Türk, Selma; Saraç, Duygu; Türk, Tamer

    2011-12-01

    The aims of this study were to investigate the effects of two surface-conditioning methods on the shear bond strength (SBS) of metal brackets bonded to three different all-ceramic materials, and to evaluate the mode of failure after debonding. Twenty feldspathic, 20 fluoro-apatite, and 20 leucite-reinforced ceramic specimens were examined following two surface-conditioning methods: air-particle abrasion (APA) with 25 μm Al(2)O(3) and silica coating with 30 μm Al(2)O(3) particles modified by silica. After silane application, metal brackets were bonded with light cure composite and then stored in distilled water for 1 week and thermocycled (×1000 at 5-55°C for 30 seconds). The SBS of the brackets was measured on a universal testing machine. The ceramic surfaces were examined with a stereomicroscope to determine the amount of composite resin remaining using the adhesive remnant index. Two-way analysis of variance, Tukey's multiple comparison test, and Weibull analysis were used for evaluation of SBS. The lowest SBS was with APA for the fluoro-apatite ceramic (11.82 MPa), which was not significantly different from APA for the feldspathic ceramic (13.58 MPa). The SBS for the fluoro-apatite ceramic was significantly lower than that of leucite-reinforced ceramic with APA (14.82 MPa). The highest SBS value was obtained with silica coating of the leucite-reinforced ceramic (24.17 MPa), but this was not significantly different from the SBS for feldspathic and fluoro-apatite ceramic (23.51 and 22.18 MPa, respectively). The SBS values with silica coating showed significant differences from those of APA. For all samples, the adhesive failures were between the ceramic and composite resin. No ceramic fractures or cracks were observed. Chairside tribochemical silica coating significantly increased the mean bond strength values.

  13. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  14. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    Science.gov (United States)

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  15. Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers

    Science.gov (United States)

    Matsumae, Takashi; Fujino, Masahisa; Suga, Tadatomo

    2015-10-01

    A sealing method for polymer substrates to be used in flexible electronics is studied. For this application, a low-temperature sealing method that achieves flexible bonding of inorganic bonding material is required, but no conventional technique satisfies these requirements simultaneously. In this study, a new polymer bonding method using thin Si and Fe layers and the surface activated bonding (SAB) method are applied to bond poly(ethylene naphthalate) (PEN) films to each other. PEN films can be bonded via the proposed method without voids at room temperature, and the bonded samples are bendable. The adhesion strength of the bonded samples is so strong that fracture occurs in the polymer bulk rather than at the bond interface. Investigations of the bonded samples by transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) reveal that bonding is achieved by chemical interactions between the polymer surface and deposited atoms.

  16. Thermal expansion compensator having an elastic conductive element bonded to two facing surfaces

    Science.gov (United States)

    Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)

    2012-01-01

    A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.

  17. Laser Surface Preparation of Epoxy Composites for Secondary Bonding: Optimization of Ablation Depth

    Science.gov (United States)

    Palmieri, Frank L.; Hopkins, John; Wohl, Christopher J.; Lin, Yi; Connell, John W.; Belcher, Marcus A.; Blohowiak, Kay Y.

    2015-01-01

    Surface preparation has been identified as one of the most critical aspects of attaining predictable and reliable adhesive bonds. Energetic processes such as laser ablation or plasma treatment are amenable to automation and are easily monitored and adjusted for controlled surface preparation. A laser ablation process was developed to accurately remove a targeted depth of resin, approximately 0.1 to 20 micrometers, from a carbon fiber reinforced epoxy composite surface while simultaneously changing surface chemistry and creating micro-roughness. This work demonstrates the application of this process to prepare composite surfaces for bonding without exposing or damaging fibers on the surface. Composite panels were prepared in an autoclave and had a resin layer approximately 10 micrometers thick above the fiber reinforcement. These composite panels were laser surface treated using several conditions, fabricated into bonded panels and hygrothermally aged. Bond performance of aged, experimental specimens was compared with grit blast surface treated specimens using a modified double cantilever beam test that enabled accelerated saturation of the specimen with water. Comparison of bonded specimens will be used to determine how ablation depth may affect average fracture energies and failure modes.

  18. Bond strength of resin cement to zirconia ceramic with different surface treatments.

    Science.gov (United States)

    Usumez, Aslıhan; Hamdemirci, Nermin; Koroglu, Bilge Yuksel; Simsek, Irfan; Parlar, Ozge; Sari, Tugrul

    2013-01-01

    Zirconia-based ceramics offer strong restorations in dentistry, but the adhesive bond strength of resin cements to such ceramics is not optimal. This study evaluated the influence of surface treatments on the bond strength of resin cement to yttrium-stabilized tetragonal zirconia (Y-TZP) ceramic. Seventy-five plates of Y-TZP ceramic were randomly assigned to five groups (n = 15) according to the surface treatments [airborne particle abrasion, neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation (Fidelis Plus 3, Fotona; 2 W, 200 mJ, 10 Hz, with two different pulse durations 180 or 320 μs), glaze applied, and then 9.5 % hydrofluoric acid gel conditioned, control]. One specimen from each group was randomly selected, and specimens were evaluated with x-ray diffraction and SEM analysis. The resin cement (Clearfil Esthetic Cement, Kuraray) was adhered onto the zirconia surfaces with its corresponding adhesive components. Shear bond strength of each sample was measured using a universal testing machine at a crosshead speed of 1 mm/min. Bond strengths were analyzed through one-way ANOVA/Tukey tests. Surface treatments significantly modified the topography of the Y-TZP ceramic. The Nd:YAG laser-irradiated specimens resulted in both increased surface roughness and bond strength of the resin cement. The highest surface roughness and bond strength values were achieved with short pulse duration. Nd:YAG laser irradiation increased both surface roughness of Y-TZP surfaces and bond strength of resin cement to the zirconia surface.

  19. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds.

    Science.gov (United States)

    Hendrickx, Antoni P A; Budzik, Jonathan M; Oh, So-Young; Schneewind, Olaf

    2011-03-01

    The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.

  20. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces.

    Science.gov (United States)

    Schmage, Petra; Nergiz, Ibrahim; Herrmann, Wolfram; Ozcan, Mutlu

    2003-05-01

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface conditioning methods: fine diamond bur, sandblasting, 5% hydrofluoric acid, and silica coating for bonding metal brackets to ceramic surfaces of feldspathic porcelain. Sandblasting and hydrofluoric acid were further tested after silane application. A total of 120 ceramic disc samples were produced, and 50 were used for surface roughness measurements. The glazed ceramic surfaces were used as controls. Metal brackets were bonded to the ceramic substrates with a self-curing composite. The samples were stored in 0.9% NaCl solution for 24 hours and then thermocycled (5000 times, 5 degrees C to 55 degrees C, 30 seconds). Shear bond tests were performed with a universal testing device, and the results were statistically analyzed. Chemical surface conditioning with either hydrofluoric acid (4.3 microm) or silicatization (4.4 microm) resulted in significantly lower surface roughness than mechanical conditioning (9.3 microm, diamond bur; 9.7 microm, sandblasting) (P <.001). The surface roughness values reflect the mean peak-and-valley distances. The bond strengths of the brackets bonded to the ceramic surfaces treated by hydrofluoric acid with and without silane (12.2 and 14.7 MPa, respectively), silicatization (14.9 MPa), and sandblasting with silane (15.8 MPa) were significantly higher (P <.001) than those treated by mechanical roughening with fine diamond burs (1.6 MPa) or sandblasting (2.8 MPa). The highest bond strength values were obtained with sandblasting and silicatization with silane or hydrofluoric acid without silane; these fulfilled the required threshold. The use of silane after hydrofluoric acid etching did not increase the bond strength. Diamond roughening and

  1. Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength

    Directory of Open Access Journals (Sweden)

    Pin Lv

    2015-11-01

    Full Text Available This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm were randomly divided into 12 groups (n = 10 according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching and different resin cements (Panavia F2.0; Superbond C and B and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm. All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05. Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05. Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement.

  2. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  3. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic.

    Science.gov (United States)

    Moradabadi, Ashkan; Roudsari, Sareh Esmaeily Sabet; Yekta, Bijan Eftekhari; Rahbar, Nima

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30× magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments.

  4. Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.

    2013-01-01

    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.

  5. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    Science.gov (United States)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  6. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    Science.gov (United States)

    2015-06-23

    Characterization of these ligand- coated oxides included laser desorption mass spectrometry, infrared, Raman and UV - visible spectroscopy ...desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV - visible absorption and...clusters are studied with laser desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV

  7. Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

    Science.gov (United States)

    Anuar, Norsamihah; Ahmad, Marlynda

    2016-01-01

    PURPOSE Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS Mean shear bond strengths were obtained for MA (19.00 ± 6.39 MPa), ZO (24.45 ± 5.14 MPa) and LD (13.62 ± 5.12 MPa). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group. PMID:27826383

  8. Surface Bonding Effects in Compound Semiconductor Nanoparticles: II

    Energy Technology Data Exchange (ETDEWEB)

    Helen H. Farrell

    2008-07-01

    Small nanoparticles have a large proportion of their atoms either at or near the surface, and those in clusters are essentially all on the surface. As a consequence, the details of the surface structure are of paramount importance in governing the overall stability of the particle. Just as with bulk materials, factors that determine this stability include “bulk” structure, surface reconstruction, charge balance and hybridization, ionicity, strain, stoichiometry, and the presence of adsorbates. Needless to say, many of these factors, such as charge balance, hybridization and strain, are interdependent. These factors all contribute to the overall binding energy of clusters and small nanoparticles and play a role in determining the deviations from an inverse size dependence that we have previously reported for compound semiconductor materials. Using first-principles density functional theory calculations, we have explored how these factors influence particle stability under a variety of conditions.

  9. Deproteinization of tooth enamel surfaces to prevent white spot lesions and bracket bond failure: A revolution in orthodontic bonding

    Directory of Open Access Journals (Sweden)

    Roberto Justus

    2016-01-01

    Full Text Available Orthodontic treatment success is jeopardized by the risk of development of white spot lesions (WSLs around orthodontic brackets. Unfortunately, the formation of WSLs still remains a common complication during treatment in patients with poor oral hygiene. Nearly 75% of orthodontic patients are reported to develop enamel decalcification because of prolonged plaque retention around brackets. It is the orthodontist′s responsibility to minimize the risk of patients having enamel decalcifications as a consequence of orthodontic treatment. This can be achieved by using hybrid, fluoride-releasing, glass ionomer cement to bond brackets, with deproteinization of the enamel surface before phosphoric acid etching.

  10. Shear bond strength of orthodontic brackets to enamel under different surface treatment conditions

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2007-04-01

    Full Text Available The purpose of the present study was to evaluate the shear bond strength to enamel and the adhesive remnant index (ARI of both metallic and polycarbonate brackets bonded under different conditions. Ninety bovine permanent mandibular incisors were embedded in acrylic resin using PVC rings as molds and assigned to 6 groups (n=15. In Groups 1 (control and 3, metallic and polycarbonate orthodontic brackets were, respectively, bonded to the enamel surfaces using Transbond XT composite according to the manufacturer's recommendations. In Groups 2 and 4, both types of brackets were bonded to enamel with Transbond XT composite, but XT primer was replaced by the OrthoPrimer agent. In Groups 5 and 6, the polycarbonate bracket bases were sandblasted with 50-mm aluminum-oxide particle stream and bonded to the enamel surfaces prepared under the same conditions described in Groups 3 and 4, respectively. After bonding, the specimens were stored in distilled water at 37ºC for 24 hours and then submitted to shear bond strength test at a crosshead speed of 0.5 mm/min. The results (MPa showed no statistically significant difference between Groups 4 and 6 (p>0.05. Likewise, no statistically significant differences (p>0.05 were found among Groups 1, 2, and 5, although their results were significantly lower than those of Groups 4 and 6 (p<0.05. Group 3 had statistically significant lower bond strength than Groups 2, 4, and 6, but no statistically significant differences were found on comparison to Groups 1 and 5. A larger number of fractures at the bracket/composite interface were evidenced by the ARI scores. OrthoPrimer bonding agent yielded higher bond strength in the groups using either conventional or sandblasted polycarbonate brackets, which was not observed in the groups using metallic brackets.

  11. Simulating increased Lamb wave detection sensitivity of surface bonded fiber Bragg grating

    Science.gov (United States)

    Wee, J.; Hackney, D. A.; Bradford, P. D.; Peters, K. J.

    2017-04-01

    Fiber Bragg grating (FBG) sensors are excellent transducers for collecting ultrasonic wave signals for structural health monitoring (SHM). Typically, FBG sensors are directly bonded to the surface of a structure to detect signals. Unfortunately, demodulating relevant information from the collected signal demands a high signal-to-noise ratio because the structural ultrasonic waves have low amplitudes. Our previous experimental work demonstrated that the optical fiber could be bonded at a distance away from the FBG location, referred to here as remote bonding. This remote bonding technique increased the output signal amplitude compared to the direct bonding case, however the mechanism causing the increase was not explored. In this work, we simulate the previous experimental work through transient analysis based on the finite element method, and the output FBG response is calculated through the transfer matrix method. The model is first constructed without an adhesive to assume an ideal bonding condition, investigating the difference in excitation signal coherence along the FBG length between the two bonding configurations. A second model is constructed with an adhesive to investigate the effect of the presence of the adhesive around the FBG. The results demonstrate that the amplitude increase is originated not from the excitation signal coherence, but from the shear lag effect which causes immature signal amplitude development in the direct bonding case compared to the remote bonding case. The results also indicate that depending on the adhesive properties the surface-bonded optical fiber manifests varying resonant frequency, therefore resulting in a peak amplitude response when the input excitation frequency is matched. This work provides beneficial reference for selecting adhesive and calibrating sensing system for maximum ultrasonic detection sensitivity using the FBG sensor.

  12. Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface

    Science.gov (United States)

    Labidi, Hatem; Koleini, Mohammad; Huff, Taleana; Salomons, Mark; Cloutier, Martin; Pitters, Jason; Wolkow, Robert A.

    2017-02-01

    The origin of bond-resolved atomic force microscope images remains controversial. Moreover, most work to date has involved planar, conjugated hydrocarbon molecules on a metal substrate thereby limiting knowledge of the generality of findings made about the imaging mechanism. Here we report the study of a very different sample; a hydrogen-terminated silicon surface. A procedure to obtain a passivated hydrogen-functionalized tip is defined and evolution of atomic force microscopy images at different tip elevations are shown. At relatively large tip-sample distances, the topmost atoms appear as distinct protrusions. However, on decreasing the tip-sample distance, features consistent with the silicon covalent bonds of the surface emerge. Using a density functional tight-binding-based method to simulate atomic force microscopy images, we reproduce the experimental results. The role of the tip flexibility and the nature of bonds and false bond-like features are discussed.

  13. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    Science.gov (United States)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  14. Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface

    Science.gov (United States)

    Labidi, Hatem; Koleini, Mohammad; Huff, Taleana; Salomons, Mark; Cloutier, Martin; Pitters, Jason; Wolkow, Robert A.

    2017-01-01

    The origin of bond-resolved atomic force microscope images remains controversial. Moreover, most work to date has involved planar, conjugated hydrocarbon molecules on a metal substrate thereby limiting knowledge of the generality of findings made about the imaging mechanism. Here we report the study of a very different sample; a hydrogen-terminated silicon surface. A procedure to obtain a passivated hydrogen-functionalized tip is defined and evolution of atomic force microscopy images at different tip elevations are shown. At relatively large tip-sample distances, the topmost atoms appear as distinct protrusions. However, on decreasing the tip-sample distance, features consistent with the silicon covalent bonds of the surface emerge. Using a density functional tight-binding-based method to simulate atomic force microscopy images, we reproduce the experimental results. The role of the tip flexibility and the nature of bonds and false bond-like features are discussed. PMID:28194036

  15. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  16. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty di

  17. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  18. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  19. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

    Science.gov (United States)

    Park, Joon-Ho

    2016-01-01

    PURPOSE The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (α=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (α=.05). The roughness and elemental proportion were evaluated by Kruskal–Wallis test and Mann–Whitney U test. RESULTS Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required. PMID:27555896

  1. Confinement effects in π-bonded chains at group IV semiconductor (111) surfaces.

    Science.gov (United States)

    Bonanni, B; Bussetti, G; Violante, A; Chiaradia, P; Goletti, C

    2013-12-04

    The degree of 1D character of surface chains at group IV (111)-2 × 1 reconstructed surfaces is established by surface sensitive optical spectroscopy. Optical experiments on a diamond C(111)-2 × 1 surface show that the absorption peak related to dangling-bond transitions exhibits a marked blueshift upon oxygen exposure of the clean surface. Such behaviour is analogous to that observed on a clean Si(111)-2 × 1 surface. For both surfaces the experimental finding is interpreted in terms of quantum confinement of surface electrons in quasi-one-dimensional π-bonded chains, whose length decreases with oxygen uptake. A different behaviour is observed in Ge(111)-2 × 1, where only a very slight blueshift of the surface-state optical transition is detected upon oxidation. The almost negligible blueshift in Ge(111)-2 × 1 is consistent with a significant coupling between the π-bonded chains resulting in a much less pronounced one-dimensional character of Ge(111)-2 × 1 surface electrons compared to diamond and silicon reconstructed surfaces.

  2. THE EFFECT OF BONDING AND SURFACE SEALANT APPLICATION ON POSTOPERATIVE SENSITIVITY FROM POSTERIOR COMPOSITES

    Directory of Open Access Journals (Sweden)

    Neslihan TEKÇE

    2015-10-01

    Full Text Available Purpose: The purpose of the study was to evaluate the postoperative sensitivity of posterior Class I composite restoration at short-term, restorated with two different all-in-one self-etch adhesives with or without surface sealant application. Materials and Methods: 44 restorations were inserted in 11 patients who required Class I restorations in their molars. Each patient received 4 restorations, thus four groups were formed; (1 G-Aenial Bond (GC, Japan; (2 Clearfil S3 Bond (Kuraray, Japan; (3 G-Aenial Bond+Fortify Plus (Bisco, USA, (4 Clearfil S3 Bond+Fortify Plus. Sensitivity was evaluated at 24h, 7, 15, and 30 days using cold air, ice, and pressure stimuli using a visual analog scale. Comparisons of continuous variables between the sensitivity evaluations were performed using the Friedman’s One-Way Analysis of Variance with repeated measures test (p0.05. The use of Clearfil S3 Bond resulted in almost the same level of postoperative sensitivity as did the use of G-Aenial Bond. The highest sensitivity scores were observed for the surface sealant applied teeth without any statistical significance (p>0.05. Conclusions: Self etch adhesives displayed postoperative sensitivity. The sensitivity scores slightly decreased at the end of 30 days (p>0.05. Surface sealant application did not result in a decrease in sensitivity scores for either dentin adhesives.

  3. Shear bond strength of veneering ceramic to zirconia core after different surface treatments.

    Science.gov (United States)

    Kirmali, Omer; Akin, Hakan; Ozdemir, Ali Kemal

    2013-06-01

    The aim of this study was to evaluate the effect of different surface treatments: sandblasting, liners, and different laser irradiations on shear bond strength (SBS) of pre-sintered zirconia to veneer ceramic. The SBS between veneering porcelain and zirconium oxide (ZrO2) substructure was weak. Various surface treatment methods have been suggested for zirconia to obtain high bond strength to veneering porcelain. There is no study that evaluated the bond strength between veneering porcelain and the different surface treatments on pre-sintered ZrO2 substructure. Two hundred specimens with 7 mm diameter and 3 mm height pre-sintered zirconia blocks were fabricated. Specimens were randomly divided into 10 groups (n=20) according to surface treatments applied. Group C, untreated (Control); Group E, erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiated; Group N, neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiated; Group SB, sandblasted; Group L, liner applied; Group NL, Nd:YAG laser irradiated+liner applied; Group EL, Er:YAG laser irradiated+liner applied; Group SN, sandblasted+Nd:YAG laser irradiated; Group SE, sandblasted+Er:YAG laser irradiated; and Group SL, sandblasted+liner applied. The disks were then veneered with veneering porcelain. Before the experiment, specimens were steeped in 37°C distilled water for 24 h. All specimens were thermocycled for 5000 cycles between 5°C and 55°C with a 30 sec dwell time. Shear bond strength test was performed at a crosshead speed of 1 mm/min. The fractured specimens were examined under a stereomicroscope to evaluate the fracture pattern. Surface treatments significantly changing the topography of the yttrium-stabilized tetragonal zirconia (Y-TZP) ceramic according to scanning electron microscopic (SEM) images. The highest mean bond strength value was obtained in Group SE, and the lowest bond strength value was observed in NL group. Bond strength values of the other groups were similar to each other. This

  4. Excimer laser surface modification of coated steel for enhancement of adhesive bonding

    Science.gov (United States)

    Jahani, Hamid R.; Moffat, B.; Mueller, R. E.; Fumo, D.; Duley, W.; North, T.; Gu, Bo

    1998-05-01

    Zinc coated sheet steel in the form of temper rolled galvanize and galvanneal are used extensively in the automotive industry. Through a process of excimer laser surface treatment, we have developed a procedure to significantly enhance the adhesion characteristics of these coated steels. We report here results of processing trials using both XeCl (308 nm) and KrF (248 nm) excimer lasers and a two-part epoxy adhesive (3M DP-460) with a range of processing conditions. Bond strengths are measured by T-peel and shear test methods. Using T-peel tests, bond strength improvements greater than five times than for untreated surfaces have been observed. With the improved surface condition, the bond strength becomes limited by the cohesive strength of the adhesive. Detailed measurements of the physical structure and chemical composition of the excimer laser processed surfaces are presented. The enhancement in bond strength is correlated with the observed changes in physical and chemical structure of the laser processed surfaces. Surface structure is observed using SEM and physical characteristics are quantified using a Talysurf profilometer. The chemical composition of the treated surface has been analysed using XPS and time-of-flight mass spectroscopy.

  5. [Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite].

    Science.gov (United States)

    Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao

    2014-04-01

    The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could meet the clinical requirements.

  6. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  7. Room temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films

    Science.gov (United States)

    Utsumi, Jun; Ide, Kensuke; Ichiyanagi, Yuko

    2016-02-01

    The bonding of metal electrodes and insulator hybrid interfaces is one of the key techniques in three-dimensional integration technology. Metal materials such as Cu or Al are easily directly bonded by surface activated bonding at room temperature, but insulator materials such as SiO2 or SiN are not. Using only Si ultrathin films, we propose a new bonding technique for SiO2/SiO2 bonding at room temperature. Two SiO2 surfaces, on which Si thin films were deposited, were contacted in vacuum. We confirmed that the thickness of the layer was about 7 nm by transmission electron microscopy observation and that the layer was non crystalline by electron energy loss spectroscopy analysis. No metal material was found in the bonding interface by energy-dispersive X-ray spectroscopy analysis. The surface energy was about 1 J/m2, and the bonding strength was more than 25 MPa. This bonding technique was successfully realized to enable SiO2/SiO2 bonding without a metal adhesion layer.

  8. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three steps: abrasive paper scraping, adhesive tape bonding and 90° peeling. Scraping increases the roughness and enhence water contact angles (CAs on polyolefin surfaces. It increases more when the scraped surface are bonded with adhesive types and then then 90° peeled. The CA variation depends on the types of polyolefin and abrasive paper. Superhydrophobic lowdensity polyethylene (LDPE, high-density polyethylene (HDPE and polypropylene (PP surfaces (CA>150° are obtained and they all exhibit very low adhesive force and high resistance to strong acids and bases.

  9. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  10. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Litong, E-mail: guolitong810104@163.com [China University of Mining and Technology, Xuzhou 221116 (China); ustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei [China University of Mining and Technology, Xuzhou 221116 (China); Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai [China University of Mining and Technology, Xuzhou 221116 (China)

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO{sub 2} nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO{sub 2} content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO{sub 2} content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity. - Highlights: • Surface roughness of Ti was increased by surface modification of Ti. • Corrosion resistance was enhanced by surface modification of Ti. • Porous nano-composite coatings were synthesized on Ti by sol–gel process. • TiO{sub 2} nanoparticles were added into the coating to avoid formation of cracks. • The nano-composite coatings increased the bonding strength of about 24%.

  11. Ab initio modeling of the bonding of benzotriazole corrosion inhibitor to reduced and oxidized copper surfaces.

    Science.gov (United States)

    Kokalj, Anton

    2015-01-01

    The bonding of benzotriazole-an outstanding corrosion inhibitor for copper-on reduced and oxidized copper surfaces is discussed on the basis of density functional theory (DFT) calculations. Calculations reveal that benzotriazole is able to bond with oxide-free and oxidized copper surfaces and on both of them it bonds significantly stronger to coordinatively unsaturated Cu sites. This suggests that benzotriazole is able to passivate the reactive under-coordinated surface sites that are plausible microscopic sites for corrosion attack. Benzotriazole can adsorb in a variety of different forms, yet it forms a strong molecule-surface bond only in deprotonated form. The bonding is even stronger when the deprotonated form is incorporated into organometallic adcomplexes. This is consistent with existing experimental evidence that benzotriazole inhibits corrosion by forming protective organometallic complexes. It is further shown that adsorption of benzotriazole considerably reduces the metal work function, which is a consequence of a large permanent molecular dipole and a properly oriented adsorption structure. It is argued that such a pronounced effect on the work function might be relevant for corrosion inhibition, because it should diminish the anodic corrosion reaction, which is consistent with existing experimental evidence that benzotriazole, although a mixed type inhibitor, predominantly affects the anodic reaction.

  12. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  13. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Directory of Open Access Journals (Sweden)

    João Paulo Fragomeni Stella

    2015-08-01

    Full Text Available OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding.METHODS: Four experimental groups (n = 13 were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek. Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%.RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively, followed by G1 (16.42 ± 3.61 MPa and G2 (9.29 ± 1.95 MPa. As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2 produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased.CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2 resulted in the least damage to the ceramic surface.

  14. Effect of different laser surface treatment on microshear bond strength between zirconia ceramic and resin cement.

    Science.gov (United States)

    Akhavan Zanjani, Vagharaldin; Ahmadi, Hadi; Nateghifard, Afshin; Ghasemi, Amir; Torabzadeh, Hassan; Abdoh Tabrizi, Maryam; Alikhani, Farnaz; Razi, Reza; Nateghifard, Ardalan

    2015-11-01

    The purpose of this study was to evaluate the effect of sandblasting, carbon dioxide (CO₂), and erbium,chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers on the microshear bond strength of zirconia to resin cement. Sixty-one sintered yttria stabilized tetragonal zirconia blocks (10 × 5 × 2 mm) were prepared and divided into four experimental groups (n = 15); one sample was retained as a control. The samples were treated by aluminium oxide air abrasion, CO₂4W, Er,Cr:YSGG 3W, and Er,Cr:YSGG 2W, respectively. One sample from each group and the control sample were analyzed by scanning electron microscope. Panavia F2.0 resin microcylinders were prepared and placed on treated surfaces, light cured, and incubated for 48 h. Microshear bond strength testing was done by a microtensile tester machine, and the type of bond failures were determined by stereomicroscope. Data were analyzed by one-way anova and Tukey's test at a significance level of P laser showed significantly higher bond strength than Er,Cr:YSGG 2W (P laser-treated surfaces, the roughness was much less than the air abrasion-treated surfaces, and the mode of failure was almost pure adhesive. Air abrasion has a greater effect than CO₂and Er,Cr:YSGG lasers in the treatment of zirconia ceramic surfaces to enhance the bonding strength of resin cement to zirconia. CO₂laser at 4W and Er,Cr:YSGG laser at only 3-W output power can be regarded as surface treatment options for roughening the zirconia surface to establish better bond strength with resin cements. © 2014 Wiley Publishing Asia Pty Ltd.

  15. Effect of Different Surface Treatment on Shear Bond Strength of Veneering Composite to Polyetherketone Core Material

    Directory of Open Access Journals (Sweden)

    Hossein Pourkhalili

    2016-12-01

    Full Text Available Background and Objective:The purpose of this in vitro study was to assess the effect of different surface treatment methods on shear bond strength of the veneering composite to polyetheretherketone (PEEK core material. Materials and Methods::In this in vitro, experimental study, 60 PEEK discs were fabricated, polished with silicon carbide abrasive paper and divided into five surface treatment groups (n=12 namely air abrasion with 110µm alumina particles at 0.2MPa pressure for 10 seconds, 98% sulfuric acid etching for one minute, air abrasion plus sulfuric acid etching, application of cyanoacrylate resin and a no surface treatment control group. Visio.link adhesive and GC Gradia veneering composite were applied on PEEK surfaces and light-cured. Shear bond strength was measured using a universal testing machine and the data were analyzed by one-way ANOVA and Tukey’s test. Results:The mean ± standard deviation (SD values of shear bond strength of the veneering composite to PEEK surfaces were 8.85±3.03, 15.6±5.02, 30.42±5.43, 26.14±4.33 and 5.94±4.49MPa in the control, air-abrasion, sulfuric acid etching, air-abrasion plus sulfuric acid etching and cyanoacrylate resin groups, respectively. The control and cyanoacrylate groups had significant differences with air abrasion, sulfuric acid etching and air abrasion plus sulfuric acid etching groups in terms of shear bond strength (P<0.0001. Higher bond strength values were noted in sulfuric acid etching, air-abrasion plus sulfuric acid etching and air abrasion groups compared to the control and cyanoacrylate groups (P<0.0001. Conclusion:Sulfuric acid etching, air abrasion and a combination of both are recommended as efficient surface treatments to increase the shear bond strength of the veneering composite to PEEK core material.

  16. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain.

    Science.gov (United States)

    Guo, Litong; Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei; Li, Baoe; Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO2 nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO2 content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO2 content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity.

  17. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Science.gov (United States)

    2016-01-01

    This study evaluates tensile bond strength (TBS) of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36) feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF), Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI) scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa) and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  18. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Directory of Open Access Journals (Sweden)

    Amitoj S. Mehta

    2016-01-01

    Full Text Available This study evaluates tensile bond strength (TBS of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36 feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF, Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  19. Effect of Four Methods of Surface Treatment on Shear Bond Strength of Orthodontic Brackets to Zirconium

    Science.gov (United States)

    Yassaei, Soghra; Aghili, Hossein Agha; Davari, Abdolrahim

    2015-01-01

    Objectives: Providing reliable attachment between bracket base and zirconia surface is a prerequisite for exertion of orthodontic force. The purpose of the present study was to evaluate the effect of four zirconium surface treatment methods on shear bond strength (SBS) of orthodontic brackets. Materials and Methods: One block of zirconium was trimmed into four zirconium surfaces, which served as our four study groups and each had 18 metal brackets bonded to them. Once the glazed layer was removed, the first group was etched with 9.6% hydrofluoric acid (HF), and the remaining three groups were prepared by means of sandblasting and 1W, and 2W Er: YAG laser, respectively. After application of silane, central incisor brackets were bonded to the zirconium surfaces. The SBS values were measured by a Dartec testing machine with a crosshead speed of 1 mm/min. Data were analyzed using one-way ANOVA and Tukey’s HSD for multiple comparisons. Results: The highest SBS was achieved in the sandblasted group (7.81±1.02 MPa) followed in a descending order by 2W laser group (6.95±0.87 MPa), 1W laser group (6.87±0.92 MPa) and HF acid etched group (5.84±0.78 MPa). The differences between the study groups were statistically significant except between the laser groups (Pacid etching for zirconium surface treatment prior to bracket bonding. PMID:26622283

  20. Can surface preparation with CVD diamond tip influence on bonding to dental tissues?

    Science.gov (United States)

    Aparecido Kawaguchi, Fernando; Brossi Botta, Sergio; Nilo Vieira, Samuel; Steagall Júnior, Washington; Bona Matos, Adriana

    2008-04-01

    This study evaluated the influence of chemical vapor deposition (CVD) tips surface treatments of enamel and dentin on bonding resistance of two adhesive systems. Thirty embedded samples were divided in 12 groups ( n = 10), according to factors: substrate (enamel and dentin), adhesive system [etch-and-rinse (SB) and self-etch]; and the surface treatments (paper discs, impact CVD tips and tangential CVD tip). When CVD tip was used in the impact mode the tip was applied perpendicular to dental surface, while at tangential mode, the tip worked parallel to dental surface. Specimens were tested in tension after 24 h at 0.5 mm/min of cross-head speed. ANOVA results, in MPa showed that in enamel, only adhesive system factor was statistically significant ( p = 0.015) under tested conditions, with higher bond strength observed for SB groups. However, in dentin the best bonding performance was obtained in SE groups ( p = 0.00). In both tested substrates, results did not show statistically significant difference for factors treatment and its interactions. ConclusionsIt may be concluded that CVD-tip surface treatment, in both tested modes, did not influence on adhesion to enamel and dentin. But, it is important to choose adhesive system according to the tissue available to bonding.

  1. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (phybrid composite resin surfaces.

  2. Evaluation of Alternative Peel Ply Surface Preparation Methods of SC-15 Epoxy / Fiberglass Composite Surfaces for Secondary Bonding

    Science.gov (United States)

    2014-01-01

    surface preparation, secondary bonding, peel ply, film adhesive, toughened epoxy, VARTM 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...for the VARTM process. .......................6 Figure 2. Vacuum-bagged laminate during the debulk process...processing temperature. .........................3 Table 2. ARL cure schedule for VARTM processing of SC-15

  3. Unusual Fe-H bonding associated with oxygen vacancies at the (001) surface of Fe3O4

    Science.gov (United States)

    Liu, Fangyang; Chen, Chen; Guo, Hangwen; Saghayezhian, Mohammad; Wang, Gaomin; Chen, Lina; Chen, Wei; Zhang, Jiandi; Plummer, E. W.

    2017-01-01

    An unusual Fe-H bonding rather than conventional OH bonding is identified at Fe3O4 (001) surface. This abnormal behavior is associated with the oxygen vacancies which exist on the surface region but also penetrate deep into the bulk Fe3O4. In contrast, OH bonding becomes preferential as generally expected on an ozone processed surface, which has appreciably less oxygen vacancies. Such bonding site selective behavior, depending on oxygen vacancy concentrations, is further confirmed with DFT calculations. The results demonstrate an opportunity for tuning the chemical properties of oxide surfaces or oxide clusters.

  4. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  5. Methodologies to analyze surface bonding properties using parametric and density functional methods

    Science.gov (United States)

    Ruette, Fernando; Sánchez, Morella; Castellano, Olga; Soscún, Humberto

    This work presents two general methodologies to calculate bond adsorption energy (BAE) between surface and adsorbate using parametric quantum (PQM) and density functional (DFM) methods. The first one corresponds to the bond partition energy technique that is directly applied to PQMs by using energy partition approach and considering diatomic and monoatomic energy changes. The second methodology to evaluate BAE, as well as for PQMs and DFMs, is by means of the following equation: {BAE} = E_{ads} - Delta E_{s} - Delta E_{a'} where Eads is the adsorption energy and ΔEs and ΔEa correspond to energy changes in the surface and substrate due to adsorption, respectively. Applications to radical adsorption: H°, CH2°, and CH3° is performed on a grafitic grain model, using a polyaromatic hydrocarbon (PAH), such as coronene. The methods employed are a PQM (CATIVIC program) and DFMs (GAUSSIAN and DMol software packages). Results show that Eads is completely different of BAE, because of distortion of surface and adsorbate. There is a strong destabilization in the region adjacent to the adsorption site and stabilization in the rest of the surface. Two terms for BAE are reported: one that corresponds to direct bonding interaction (BAEb) and other to long range ones, due to electrostatic interaction (BAEe). Owing to the important effects of bond strength adsorbate-surface interaction, results suggest that BAE is fundamental for understanding bond activation in adsorbate and surface, cooperative effects, diffusion, reaction, and desorption process. In general, similar results were found for both CATIVIC and DFMs, by using the second methodology.

  6. Effect of various surface treatments on the bond strength of porcelain repair.

    Science.gov (United States)

    Saraç, Duygu; Saraç, Yakup Sinasi; Külünk, Safak; Erkoçak, Ayca

    2013-01-01

    This study evaluated the effect of surface treatments on the repair strength of composite resin on a feldspathic ceramic. Ninety ceramic specimens were divided into six groups. In the experimental groups, 4% hydrofluoric acid etching, Er:YAG laser irradiation, CO2 laser irradiation, airborne-particle abrasion, and silica coating were used as surface treatments. After the application of a porcelain repair kit, composite resin was placed on the treated surfaces. After a shear bond strength test, data were statistically analyzed (α = .05). Surface treatments increased the repair bond strength values (P < .05). Airborne particle abrasion and silica coating were found to be the most effective. CO2 laser showed higher repair strength values than Er:YAG laser.

  7. Effect of surface conditioning methods on the bond strength of luting cement to ceramics

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Özcan, Mutlu; Vallittu, Pekka K.

    2003-01-01

    Objectives. This study evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to six commercial dental ceramics. Methods. Six disc shaped ceramic specimens (glass ceramics, glass infiltrated alumina, glass infiltrated zirconium diox

  8. Effect of surface treatment of titanium posts on the tensile bond strength

    NARCIS (Netherlands)

    Schmage, P; Sohn, J; Ozcan, M; Nergiz, [No Value

    2006-01-01

    Objectives. Retention of composite resins to metal can be improved when metal surfaces are conditioned. The purpose of this investigation was to investigate the effect of two conditioning treatments on the tensile bond strength of four resin-based luting cements and zinc phosphate cement to titanium

  9. Thiol-ene-epoxy thermoset for low-temperature bonding to biofunctionalized microarray surfaces.

    Science.gov (United States)

    Zhou, Xiamo C; Sjöberg, Ronald; Druet, Amaury; Schwenk, Jochen M; van der Wijngaart, Wouter; Haraldsson, Tommy; Carlborg, Carl Fredrik

    2017-10-04

    One way to improve the sensitivity and throughput of miniaturized biomolecular assays is to integrate microfluidics to enhance the transport efficiency of biomolecules to the reaction sites. Such microfluidic integration requires bonding of a prefabricated microfluidic gasket to an assay surface without destroying its biological activity. In this paper we address the largely unmet challenge to accomplish a proper seal between a microfluidic gasket and a protein surface, with maintained biological activity and without contaminating the surface or blocking the microfluidic channels. We introduce a novel dual cure polymer resin for the formation of microfluidic gaskets that can be room-temperature bonded to a range of substrates using only UVA light. This polymer is the first polymer that features over a month of shelf life between the structure formation and the bonding, moreover the fully cured polymer gaskets feature the following set of properties suitable for microfluidics: high stiffness, which prevents microfluidic channel collapse during handling; very limited absorption of biomolecules; and no significant leaching of uncured monomers. We describe the novel polymer resin and its characteristics, study through FT-IR, and demonstrate its use as microfluidic well-arrays bonded onto protein array slides at room temperature followed by multiplexed immunoassays. The results confirm maintained biological activity and show high repeatability between protein arrays. This new approach for integrating microfluidic gaskets to biofunctionalised surfaces has the potential to improve sample throughput and decrease manufacturing costs for miniaturized biomolecular systems.

  10. Adhesion of Two Bonding Systems to Air-Abraded or Bur-Abraded Human Enamel Surfaces

    OpenAIRE

    Sengun, Abdulkadir; Orucoglu, Hasan; Ipekdal, Ilknur; Ozer, Fusun

    2008-01-01

    Objectives The purpose of this in vitro study was to evaluate whether mechanical alteration of the enamel surfaces with air abrasion and bur abrasion techniques could enhance the bonding performance of a three step and a self etching adhesive resin systems to enamel. Methods 126 extracted lower human incisor teeth were used. The teeth were divided into three groups including 40 teeth each. First group; teeth were used as control and no preparation was made on enamel surfaces, 2nd group; outer...

  11. Bond strength to high-crystalline content zirconia after different surface treatments.

    Science.gov (United States)

    de Souza, Grace M Dias; Silva, Nelson R F A; Paulillo, Luis A M S; De Goes, Mario F; Rekow, E Dianne; Thompson, Van P

    2010-05-01

    The aim of this study was to evaluate the effect of primers, luting systems and aging on bond strength to zirconium oxide substrates. Eighteen zirconia discs (19.5 x 4 mm) were polished and treated (n = 3) either with a MDP primer (Md) or with a MDP and VBATDT primer (MV). In the control group (n = 3) no surface chemical treatment was performed. Zirconia specimens were cemented to prepolymerized composite discs utilizing resin cements - RelyX Unicem or Panavia 21 (RU and Pa, respectively). After 24 h, samples were sectioned for microtensile testing and returned to water at 37 degrees C for two different periods before being tested: 72 h or 60 days + thermocycling (5-55 degrees C/5000 cycles). Bond strength testing was performed at 1 mm/min. Values in MPa were analyzed through ANOVA and Tukey's Studentized Range (HSD) (p > 0.05). The application of MV primer resulted in the highest bond strength (22.77 MPa), statistically superior to Md primer (12.78 MPa), and control groups presented the lowest values (9.17 MPa). When luting systems were compared, RU promoted the highest bond strength (16.07 MPa) in comparison with Pa (13.75 MPa). The average bond strength decrease after aging (9.35 MPa) when compared with initial values (20.46 MPa). The results presented by this in vitro study suggest that a chemical surface treatment based on the MDP and VBATDT combination may improve bond strength between zirconia and luting system, without any previous mechanical treatment, depending on the luting system used. This chemical treatment may result in a reliable alternative to achieve adequate and durable bond strength.

  12. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework.

    Science.gov (United States)

    Komine, Futoshi; Fushiki, Ryosuke; Koizuka, Mai; Taguchi, Kohei; Kamio, Shingo; Matsumura, Hideo

    2012-03-01

    The present study evaluated the effect of various surface treatments for zirconia ceramics on shear bond strength between an indirect composite material and zirconia ceramics. In addition, we investigated the durability of shear bond strength by using artificial aging (20,000 thermocycles). A total of 176 Katana zirconia disks were randomly divided into eight groups according to surface treatment, as follows: group CON (as-milled); group GRD (wet-ground with 600-grit silicon carbide abrasive paper); groups 0.05, 0.1, 0.2, 0.4, and 0.6 MPa (airborne-particle abrasion at 0.05, 0.1, 0.2, 0.4, and 0.6 MPa, respectively); and group HF (9.5% hydrofluoric acid etching). Shear bond strength was measured at 0 thermocycles in half the specimens after 24-h immersion. The remaining specimens were subjected to 20,000 thermocycles before shear bond strength testing. Among the eight groups, the 0.1, 0.2, 0.4, and 0.6 MPa airborne-particle abraded groups had significantly higher bond strengths before and after thermocycling. The Mann-Whitney U-test revealed no significant difference in shear bond strength between 0 and 20,000 thermocycles, except in the 0.2 MPa group (P = 0.013). From the results of this study, use of airborne-particle abrasion at a pressure of 0.1 MPa or higher increases initial and durable bond strength between an indirect composite material and zirconia ceramics.

  13. The Effect of Nylon and Polyester Peel Ply Surface Preparation on the Bond Quality of Composite Laminates

    Science.gov (United States)

    Moench, Molly K.

    The preparation of the surfaces to be bonded is critical to the success of composite bonds. Peel ply surface preparation is attractive from a manufacturing and quality assurance standpoint, but is a well known example of the extremely system-specific nature of composite bonds. This study examined the role of the surface energy, morphology, and chemistry left by peel ply removal in resulting bond quality. It also evaluated the use of contact angle surface energy measurement techniques for predicting the resulting bond quality of a prepared surface. The surfaces created by preparing three aerospace fiber-reinforced composite prepregs were compared when prepared with a nylon vs a polyester peel ply. The prepared surfaces were characterized with contact angle measurements with multiple fluids, scanning electron microscopy (SEM), and x-ray electron spectroscopy. The laminates were bonded with aerospace grade film adhesives. Bond quality was assessed via double cantilever beam testing followed by optical and scanning electron microscopy of the fracture surfaces.The division was clear between strong bonds (GIC of 600- 1000J/m2 and failure in cohesion) and weak bonds (GIC of 80-400J/m2 and failure in adhesion). All prepared laminates showed the imprint of the peel ply texture and evidence of peel ply remnants after fabric removal, either through SEM or XPS. Within an adhesive system, large amounts of SEM-visible peel ply material transfer correlated with poor bond quality and cleaner surfaces with higher bond quality. The both sides of failed weak bonds showed evidence of peel ply remnants under XPS, showing that at least some failure is occurring through the remnants. The choice of adhesive was found to be significant. AF 555 adhesive was more tolerant of peel ply contamination than MB 1515-3. Although the bond quality results varied substantially between tested combinations, the total surface energies of all prepared surfaces were very similar. Single fluid contact angle

  14. Effect of various surface treatments of tooth – colored posts on bonding strength of resin cement

    Directory of Open Access Journals (Sweden)

    Mirzaei M.

    2008-11-01

    Full Text Available "nBackground and Aim: Various studies have shown that reliable bond at the root - post - core interfaces are critical for the clinical success of post - retained restorations. Severe stress concentration at post - cement interface increases post debonding from the root. To form a bonded unit that reduces the risk of fracture, it is important to optimize the adhesion. Therefore, some post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of tooth - colored posts on the bonding of resin cement. "nMaterials and Methods: In this interventional study, 144 tooth colored posts were used in 18 groups (8 samples in each group. The posts included quartz fiber (Matchpost, glass fiber (Glassix, and zirconia ceramic (Cosmopost and the resin cement was Panavia F 2.0. The posts received the following surface treatments: 1- No surface treatment (control group, 2- Etching with HF and silane, 3- Sandblasting with Cojet sand, 4- Sandblasting with Cojet sand and application of silane, 5- Sandblasting with alumina particles, 6- Sandblasting with alumina particles and application of silane. Then, posts were cemented into acrylic molds with Panavia F 2.0 resin cement. The specimens were placed in water for 2 days and debonded in pull - out test. Statistical analysis was performed using ANOVA followed by Tamhane and Tukey HSD. Failure modes were observed under a stereomicroscope (10 . P<0.05 was considered as the significant level. "nResults: Surface treatments (sandblasting with Cojet and alumina particles ,with or without silane resulted in improved bond strength of resin cement to glass fiber post (Glassix and zirconia ceramic (Cosmopost [p<0/05], but not to the quartz fiber post (Matchpost. In general, higher bond strengths resulted in a to higher percentage of cohesive failures within the cement. "nConclusion: Based on the results of this study, sandblasting with cojet and alumina

  15. Evaluation of shear bond strength of composite resin to nonprecious metal alloys with different surface treatments

    Directory of Open Access Journals (Sweden)

    Yassini E.

    2007-07-01

    Full Text Available Background and Aim: Replacing fractured ceramometal restorations may be the best treatment option, but it is costly. Many different bonding systems are currently available to repair the fractured ceramometal restorations. This study compared the shear bond strength of composite to a base metal alloy using 4 bonding systems.Materials and Methods: In this experimental in vitro study, fifty discs, casted in a Ni-Cr-Be base metal alloy (Silvercast, Fulldent,were ground with 120, 400 and 600 grit sandpaper and divided equally into 5 groups receiving 5 treatments for veneering. Conventional feldspathic porcelain (Ceramco2, Dentsply Ceramco was applied on control group (PFM or group1 and the remaining metal discs were air- abraded for 15 seconds with 50 mm aluminum oxide at 45 psi and washed for 5 seconds under tap water.Then the specimens were dried by compressed air and the  groups were treated with one of the bonding systems as follows: All-Bond 2 (AB, Ceramic Primer (CP, Metal Primer II (MP and Panavia F2 (PF. An opaque composite (Foundation opaque followed by a hybrid composite (Gradia Direct was placed on the treated metal surface and light cured separately. Specimens were stored in distilled water at 370C and thermocycled prior to shear strength testing. Fractured specimens were evaluated under a stereomicroscope. Statistical analysis was performed with one way ANOVA and Tukey HSD tests. P<0.05 was considered as the level of significance.Results: Mean shear bond strengths of the groups in MPa were as follows: PFM group 38.6±2, All-Bond 2 17.06±2.85, Ceramic Primer 14.72±1.2, Metal Primer II 19.04±2.2 and Panavia F2 21.37±2.1. PFM group exhibited the highest mean shear bond strength and Ceramic Primer showed the lowest. Tukey's HSD test revealed the mean bond strength of the PFM group to be significantly higher than the other groups (P<0.001. The data for the PF group was significantly higher than AB and CP groups (P<0.05 and the shear

  16. Bond of acrylic teeth to different denture base resins after various surface-conditioning methods.

    Science.gov (United States)

    Lang, Reinhold; Kolbeck, Carola; Bergmann, Rainer; Handel, Gerhard; Rosentritt, Martin

    2012-02-01

    The study examined the bond between different denture base resins and highly cross-linked acrylic denture teeth with different base surface-conditioning methods. One hundred fifty highly cross-linked resin denture teeth (SR-Antaris, No. 11, Ivoclar-Vivadent, FL) were divided into five groups with different surface-conditioning methods of the base surfaces of the teeth (C = control, no surface conditioning, MM = application of methyl methacrylate monomer, SB = sand blasting, SBB = sand blasting + bonding agent, TSS = tribochemical silica coating + silanization). Teeth were bonded to either a cold-cured denture base resin (ProBase Cold, Ivoclar-Vivadent, FL) or heat-cured denture base resins (SR Ivocap Plus, Ivoclar-Vivadent, FL and Lucitone 199, Dentsply, USA). After 24 h of storage in distilled water, compressive load was applied at 90° on the palatal surface of each tooth until fracture. Median failure load ranged between 103 and 257 N for Probase Cold groups, 91 to 261 N for Lucitone 199, and 149 to 320 N for SR Ivocap Plus. For Probase Cold, significant highest failure loads resulted when teeth were treated with SB, SBB, or TSS. For Lucitone 199, significant highest failure loads has been found with MM and TSS treatment. For SR Ivocap Plus, highest failure loads resulted using SBB and TSS. Conditioning of the base surfaces of the teeth prior to denture base processing is highly recommended. Tooth bond is significantly affected by the surface-conditioning method and applied denture base resin. Tribochemical silica coating + silanization method can be recommended for pre-treatment of teeth applying either heat-cured or cold-cured denture base resin.

  17. Surface migration of molecular adsorbates revisited: Morse-potential modeling based on bond-order conservation

    Science.gov (United States)

    Shustorovich, Evgeny

    1985-11-01

    Our bond-order-conservation model of surface migration of molecular AB adsorbates [J. Am. Chem. Soc. 106 (1984) 6479] has been generalized to provide for A-B bond-order changes under migration and to search for energy stationary points. The results are rigorous and well defined. The new conclusions corroborate most of the previous findings but also lead to important corrections (e.g., the mogration patterns of donor molecules) and new projections (e.g., monotonic destabilization of AB as its coordination increases without direct relevance to the heat of chemisorption and simple interrelations between molecular and atomic heats of chemisorption), in agreement with experiment.

  18. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    Science.gov (United States)

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.

  19. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  20. Effect of Four Methods of Surface Treatment on Shear Bond Strength of Orthodontic Brackets to Zirconium

    Directory of Open Access Journals (Sweden)

    Soghra Yassaei

    2015-10-01

    Full Text Available Objectives: Providing reliable attachment between bracket base and zirconia surface is a prerequisite for exertion of orthodontic force. The purpose of the present study was to eval- uate the effect of four zirconium surface treatment methods on shear bond strength (SBS of orthodontic brackets.Materials and Methods: One block of zirconium was trimmed into four zirconium sur- faces, which served as our four study groups and each had 18 metal brackets bonded to them. Once the glazed layer was removed, the first group was etched with 9.6% hydrofluoric acid (HF, and the other three groups were prepared by means of sandblasting and 1 W, and 2 W Er: YAG laser, respectively. After application of silane, central incisor brackets were bonded to the zirconium surfaces. The SBS values were measured by a Dartec testing ma- chine with a crosshead speed of 1 mm/min.Results: The highest SBS was achieved in the sandblasted group (7.81±1.02 MPa followed in a descending order by 2 W laser group (6.95±0.87 MPa, 1 W laser group (6.87±0.92MPa and HF acid etched group (5.84±0.78 MPa. The differences between the study groups, were statistically significant except between the laser groups (P < 0.05. Conclusion: In terms of higher bond strength and safety, sandblasting and Er: YAG laser irradiation with power output of 1 W and 2 W can be considered more appropriate alterna- tives to HF acid etching for zirconium surface treatment prior to bracket bonding.

  1. Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia

    OpenAIRE

    Kasraei, Shahin; Atefat, Mohammad; Beheshti, Maryam; Safavi, Nassimeh; Mojtahedi, Maryam; Rezaei-Soufi, Loghman

    2014-01-01

    Introduction: Since it is not possible to form an adequate micromechanical bond between resin cement and zirconia ceramics using common surface treatment techniques, laser pretreatment has been suggested for zirconia ceramic surfaces. The aim of this study was to evaluate the effect of Carbon Dioxide (CO2) Laser treatment on shear bond strength (SBS) of resin cement to zirconia ceramic.

  2. Shear Bond Strength of a Resin Cement to Different Alloys Subjected to Various Surface Treatments

    Directory of Open Access Journals (Sweden)

    Fariba Ezoji

    2016-08-01

    Full Text Available Objectives: Micromechanical retention of resin cements to alloys is an important factor affecting the longevity of metal base restorations. This study aimed to compare the bond strength and etching pattern of a newly introduced experimental etchant gel namely Nano Met Etch with those of conventional surface treatment techniques for nickel-chrome (Ni-Cr and high noble alloys. Materials and Methods: A total of 120 discs (8×10×15 mm were cast with Ni-Cr (n=20, high noble BegoStar (n=50 and gold coin alloys (n=50. Their Surfaces were ground with abrasive papers. Ni-Cr specimens received sandblasting and etching. High noble alloy specimens (begoStar and gold coin received sandblasting, sandblasting-alloy primer, etching, etch-alloy primer and alloy primer alone. Cylindrical specimens of Panavia were bonded to surfaces using Tygon tubes. Specimens were subjected to micro-shear bond strength testing after storing at 37°C for 24 hours.Results: In gold coin group, the highest bond strength was achieved after sandblasting (25.82±1.37MPa, P<0.001 and etching+alloy primer (26.60 ± 5.47 MPa, P<0.01. The lowest bond strength belonged to sandblasting+alloy primer (17.79±2.96MPa, P<0.01. In BegoStar group, the highest bond strength was obtained in the sandblasted group (38.40±3.29MPa, P<0.001 while the lowest bond strength was detected in the sandblast+ alloy primer group (15.38±2.92MPa, P<0.001. For the Ni-Cr alloy, bond strength in the etched group (20.79±2.01MPa was higher than that in the sandblasted group (18.25±1.82MPa (P<0.01.Conclusions: For the Ni-Cr alloy, etching was more efficient than sandblasting but for the high noble alloys, higher Au content increased the efficacy of etching.

  3. Activation of electroplated-Cu surface via plasma pretreatment for low temperature Cu-Sn bonding in 3D interconnection

    Science.gov (United States)

    Wang, Junqiang; Wang, Qian; Liu, Ziyu; Wu, Zijian; Cai, Jian; Wang, Dejun

    2016-10-01

    The pretreatment with Ar mixed 5% H2 plasma was applied to improve surface properties of electroplated Cu for low temperature Cu-Sn bonding in 3D interconnection. Measurement results revealed that the Ar(5% H2) plasma effectively increased the surface activity by reducing oxygen content of the Cu surface. Lower surface roughness obtained by optimizing the pretreatment condition could help to suppress oxygen adsorption. Relationships between surface energy and surface oxygen content, surface oxygen content and surface roughness were also established. Evaluation of low temperature (200 °C) Cu-Sn bonding with optimal plasma pretreatment exhibited a defect-free interface and high shear strength.

  4. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Science.gov (United States)

    Lupo, Fabio; Tudisco, Cristina; Bertani, Federico; Dalcanale, Enrico

    2014-01-01

    Summary Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100) and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process. PMID:25551050

  5. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  6. Effects of surface treatment on the microtensile bond strength of ceramic materials to dentin.

    Science.gov (United States)

    Vasconcellos, Walison A; Alvim, Hugo H; Saad, Jose R C; Susin, Alexandre H

    2007-01-01

    This study evaluated the effects of distinct surface treatments on the micro-tensile bonding strength (microTBS) of different ceramic materials. The occlusal surfaces of eighteen human maxillary molars were flattened perpendicularly to the long axis and divided in groups based on surface treatment (sandblasting: s; hydrofluoric acid: a; tribochemical silica coating: t): DP-s, DP-a, DP-t, IE-s, IE-a, IE-t, IC-s, IC-a, IC-t) and ceramic materials (Duceran Plus: DP, IPS Empress 2: IE, In-Ceram Alumina, IC). Panavia F luting resins were used according to the manufacturers' instructions to bond ceramic materials to the exposed dentin specimens under a load of 7.5 N. After 3-day storage, microTBS was tested at a cross-head speed of 1 mm/min. Data were analyzed with ANOVA and Tukey's test. ANOVA results showed that the microTBS of DP and IC were significantly different. The microTBS of DP-a was significantly higher than those of DP-s and DP-t. The microTBS of IC-t was significantly higher than those of IC-s and IC-a. Ceramic materials with different chemical formulations and applications yielded significantly different bond strengths to human dentin and must receive distinct surface treatments accordingly.

  7. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding.

    Science.gov (United States)

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-06-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch's t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality.

  8. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding

    Science.gov (United States)

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-01-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch’s t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality. PMID:26273561

  9. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  10. Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, K. S., E-mail: Kaur.Kamalpreet@elis.ugent.be; Missinne, J.; Van Steenberge, G. [Centre for Microsystems Technology, imec/Ghent University, Technologiepark 914A, B-9052 Gent (Belgium)

    2014-02-10

    This letter reports the use of the Laser-Induced Forward Transfer (LIFT) technique for the fabrication of indium micro-bumps for the flip-chip (FC) bonding of single vertical-cavity surface-emitting laser chips. The FC bonded chips were electrically and optically characterized, and the successful functioning of the devices post-bonding is demonstrated. The die shear and life-time tests carried out on the bonded chips confirmed the mechanical reliability of the LIFT-assisted FC bonded assemblies.

  11. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  12. Bond making and breaking on transition-metal surfaces: Theoretical projections based on bond-order conservation

    Science.gov (United States)

    Shustorovich, Evgeny

    1986-11-01

    Our analytic Morse-potential model of chemisorption based on bond-order conservation [Surface Sci. 150 (1985) L115; 163 (1985) L645, L730] has been used to calculate the heats of chemisorption of various diatomic AB and polyatomic AB x species (coordinated via A) and to estimate the activation barriers for their dissociation and transformations. Examples include adspecies such as CH x, NH x, OH x, and possible intermediates and elementary steps of reactions such as CO + O → CO 2, NO + N → N 2 + O, N 2 + H 2 → NH 3, H 2 + O 2 → H 2O, and CO + H 2 → CH 4. Both the qualitative projections and numerical estimates are in good agreement with experiment. In particular, it is shown that (1) the most reactive adspecies should be the most weakly bound, and (2) the recombination activation barrier should primarily depend on (and may even be close to) the heat of chemisorption of the weaker bound partner.

  13. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    2014-01-01

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  14. Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites

    Directory of Open Access Journals (Sweden)

    Negin Nassoohi

    2015-01-01

    Full Text Available Background: Repair bond strength of different composite resins has been assessed in few studies. In addition, reports on the efficacy of surface treatments are debated. Therefore, this in vitro study was conducted to evaluate the effect of three surface treatments on two nanocomposites versus a microhybrid composite. Materials and Methods: In this experimental study, 135 composite blocks (45 specimens per composite of microhybrid (Filtek Supreme Z250, 3M ESPE, USA, nanohybrid (Filtek Supreme XT, 3M ESPE, and nanofilled (Filtek Supreme Z350, 3M ESPE were thermocycled (5000 rounds and then surface roughened (except in a control group of 9 specimens of three composite types. Each composite type was divided into three subgroups of surface treatments: (1 Bur abrading and phosphoric acid (PA etching, (2 sandblasting and PA etching, and (3 hydrofluoric etching and silane application (n = 15 × 9, complying with ISO TR11405. Composite blocks were repaired with the same composite type but of a different color. Microtensile bond strength and modes of failure were analyzed statistically using two-way analyses of variance, Tukey and Chi-square tests (α = 0.05. Results: There were significant differences between three composite resins (P < 0.0001 and treatment techniques (P < 0.0001. Their interaction was nonsignificant (P = 0.228. The difference between nanofilled and nanohybrid was not significant. However, the microhybrid composite showed a significantly higher bond strength (Tukey P < 0.05. Sandblasting was significantly superior to the other two methods, which were not different from each other. Conclusion: Within the limitations of this in vitro study, it seems that microhybrid composite might have higher repair strengths than two evaluated nanocomposites. Among the assessed preparation techniques, sandblasting followed by PA etching might produce the highest bond strength.

  15. Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites

    Science.gov (United States)

    Nassoohi, Negin; Kazemi, Haleh; Sadaghiani, Morad; Mansouri, Mona; Rakhshan, Vahid

    2015-01-01

    Background: Repair bond strength of different composite resins has been assessed in few studies. In addition, reports on the efficacy of surface treatments are debated. Therefore, this in vitro study was conducted to evaluate the effect of three surface treatments on two nanocomposites versus a microhybrid composite. Materials and Methods: In this experimental study, 135 composite blocks (45 specimens per composite) of microhybrid (Filtek Supreme Z250, 3M ESPE, USA), nanohybrid (Filtek Supreme XT, 3M ESPE), and nanofilled (Filtek Supreme Z350, 3M ESPE) were thermocycled (5000 rounds) and then surface roughened (except in a control group of 9 specimens of three composite types). Each composite type was divided into three subgroups of surface treatments: (1) Bur abrading and phosphoric acid (PA) etching, (2) sandblasting and PA etching, and (3) hydrofluoric etching and silane application (n = 15 × 9, complying with ISO TR11405). Composite blocks were repaired with the same composite type but of a different color. Microtensile bond strength and modes of failure were analyzed statistically using two-way analyses of variance, Tukey and Chi-square tests (α = 0.05). Results: There were significant differences between three composite resins (P < 0.0001) and treatment techniques (P < 0.0001). Their interaction was nonsignificant (P = 0.228). The difference between nanofilled and nanohybrid was not significant. However, the microhybrid composite showed a significantly higher bond strength (Tukey P < 0.05). Sandblasting was significantly superior to the other two methods, which were not different from each other. Conclusion: Within the limitations of this in vitro study, it seems that microhybrid composite might have higher repair strengths than two evaluated nanocomposites. Among the assessed preparation techniques, sandblasting followed by PA etching might produce the highest bond strength. PMID:26759592

  16. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  17. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-06-01

    Full Text Available This study analyzed the shear bond strength (SBS of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group: no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05. Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01. In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05. Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05 and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

  18. The Characterization of Al Bond Pad Surface Treatment in Electroless Nickel Immersion Gold (ENIG Deposition

    Directory of Open Access Journals (Sweden)

    M. K. M. Arshad

    2007-01-01

    Full Text Available This study reports a number of experiments that were designed to characterize aluminum bond pad surfaces prior to electroless nickel immersion gold (ENIG. In the ENIG process, aluminum bond pads need special treatment to achieve successful nickel deposition and provide reliable interconnection of under bump metallurgy in advanced packaging. During this treatment process, the aluminum pad was cleaned, activated and then coated with a layer of zinc. Systematic study was carried out to determine the best parameters, through multiple and various exposure times of the zincation process and zincation solution concentration effect on the Ni/Au surface roughness and aluminum dissolution rate on the bond pad during multiple zincation process. The ball shear strength was evaluated between eutectic 37Pb/63Sn solder ball and under bump metallurgy (UBM interfaces across multiple zincation process. Scanning Electron Microscope (SEM, Energy Dispersive X-Ray (EDX, Atomic Force Microscopy (AFM, Focused Ion Beam (FIB and ball shear tester were used as analytical tools. The results suggest that the multiple zincation process consistently produces a smoother surface of ENIG UBM and consequently provides a better shear strength.

  19. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  20. CO2 laser conditioning of porcelain surfaces for bonding metal orthodontic brackets.

    Science.gov (United States)

    Ahrari, Farzaneh; Heravi, Farzin; Hosseini, Mohsen

    2013-07-01

    Bonding to porcelain remains to be a challenge in orthodontic treatments. The objective of this study was to evaluate the effect of CO2 laser conditioning of porcelain surfaces on shear bond strength (SBS) of orthodontic brackets. Eighty feldspathic porcelain specimens were divided into four groups of 20. In each group, half of the porcelain surfaces were deglazed, while the others remained glazed. The specimens in groups 1 to 3 were treated with a fractional CO2 laser for 10 s using 10 mJ of energy, frequency of 200 Hz and powers of 10 W (group 1), 15 W (group 2) and 20 W (group 3). In group 4, a 9.6 % hydrofluoric (HF) acid gel was used for 2 min. A silane coupling agent was applied before bracket bonding, and the SBS was measured with a universal testing machine after 24 h. Deglazing caused significant increase in SBS of laser treated porcelain surfaces (p porcelain.

  1. Shear bond strength of different surface treatments in bulk fill, microhybrid, and nanoparticle repair resins

    Directory of Open Access Journals (Sweden)

    de Jesus Tavarez RR

    2017-07-01

    Full Text Available Rudys Rodolfo de Jesus Tavarez,1 Lauber Jose dos Santos Almeida Júnior,2 Tayanne Christine Gomes Guará,1 Izabella Santos Ribeiro,1 Etevaldo Matos Maia Filho,1 Leily Macedo Firoozmand2 1Department of Restorative Dentistry, Ceuma University (CEUMA, 2Department of Dentistry I, University Federal of Maranhão (UFMA, São Luís, Maranhão, Brazil Objectives: The purpose of this study was to evaluate the influence of surface treatment and different types of composite resin on the microshear bond strength of repairs. Materials and methods: Seventy-two specimens (n=72 were prepared using a nanoparticle resin and stored in artificial saliva at 37 ± 1°C for 24 h. After this period, the specimens (n=24 were restored with microhybrid resin P60 (3M ESPE, nanoparticle resin Filtek Z350 (3M ESPE, and Bulk Fill Surefil SDR Flow (Dentsply composite resins. Previously, the surfaces of the samples were treated, forming the following subgroups (n=12: (A conditioned with 37% phosphoric acid for 30 s, and (B abrasioned with a diamond tip for 3 s and conditioned with 37% phosphoric acid. In all groups, before insertion of the composite resin, the adhesive system Adper Single Bond 2 was actively applied and photopolymerized for 20 s. Results: The microshear test was executed to assess bond strength. Kruskal–Wallis (p<0.05 and Mann–Whitney statistical tests showed significant statistical difference considering that the bulk-fill resin turned out to have a lower bond strength than the conventional nanoparticle and microhybrid composites. With regard to the technique, the roughening with diamond bur followed by the application of phosphoric acid exhibited values higher than the exclusive use of acid. Conclusion: The microshear bond strength of the composite resin repairs varies in accordance with the type of composite resin utilized, and roughening the surface increased the bond strength of these materials. Keywords: bulk-fill resins, composite resins, dental

  2. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Science.gov (United States)

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  3. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  4. Effect of surface treatments on shear bond strength of denture teeth to denture base resins

    Directory of Open Access Journals (Sweden)

    Farideh Bahrani

    2014-01-01

    Full Text Available Background: Debonding of denture teeth from denture bases is the most common failure in removable dentures. The purpose of this study was to evaluate the effect of surface treatments on shear bond strength of denture teeth to heat-polymerized and autopolymerized denture base resins. Materials and Methods: In this experimental in vitro study, 60 maxillary central incisor acrylic teeth were divided into two groups. Group M was polymerized with heat-polymerized acrylic resin (Meliodent by compression molding technique and group F was processed by autopolymerized acrylic resin (Futura Gen by injection molding technique. Within each group, specimens were divided into three subgroups according to the teeth surface treatments (n = 10: (1 ground surface as the control group (M 1 and F 1 , (2 ground surface combined with monomer application (M 2 and F 2 , and (3 airborne particle abrasion by 50 μm Al 2 O 3 (M 3 and F 3 . The shear bond strengths of the specimens were tested by universal testing machine with crosshead speed of 5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA and Tukey′s honestly significant difference (HSD tests (P < 0.05. Results: The mean shear bond strengths of the studied groups were 96.40 ± 14.01, 124.70 ± 15.64, and 118 ± 16.38 N for M 1 , M 2 , and M 3 and 87.90 ± 13.48, 117 ± 13.88, and 109.70 ± 13.78 N for F 1 , F 2 , and F 3 , respectively. The surface treatment of the denture teeth significantly affected their shear bond strengths to the both the denture base resins (P < 0.001. However, there were no significant differences between the groups treated by monomer or airborne particle abrasion (P = 0.29. The highest percentage of failure mode was mixed in Meliodent and adhesive in Futura Gen. Conclusion: Monomer application and airborne particle abrasion of the ridge lap area of the denture teeth improved their shear bond strengths to the denture base resins regardless of the type of polymerization.

  5. Isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels based on surface modification

    Institute of Scientific and Technical Information of China (English)

    Zhang Keke; Zhang Zhanling; Liu Shuai; Yue Yun; Ma Ning; Yang Yunlin

    2009-01-01

    Based on the feasibility of isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels, the surfaces of both steels to be bonded were ultra-fined through high frequency hardening, then the superplastic solid state bonding were conducted, the microstructure and fracture surface of bonded joint were observed and analysed, and bonding mechanisms was researched. The experimental results show that with the sample surfaces of 40Cr and Cr12MoV steels after the high frequency hardening, under the prepressing stress of 56.6 MPa, initial strain rate of 1.5×10~(-2) min~(-1) and at the bonding temperature of 800-820℃, the superplastic solid state bonding can be carried out in about 3.5min, and the joint strength is up to that of 40Cr steel base metal and the radial expansion ratio of the joint does not exceed 6%. The superplastic solid state bonding parameter of both steels is within the ranges of the isothermal compressive superplastic deformation of Cr12MoV steel, and the deformation in Cr12MoV steel side near the interfacial zone of joint presents the characteristic of superplasticity. In bonding process, the atoms in two sides of joint interface have diffused each other.

  6. Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces

    Science.gov (United States)

    Yuan, Hong; Li, Faping

    2010-05-01

    In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.

  7. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments.

    Science.gov (United States)

    Dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto; Faria-E-Silva, André Luis

    2014-02-01

    Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. COMPOSITE DISCS WERE SUBJECT TO ONE OF SIX DIFFERENT SURFACE PRETREATMENTS: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm(2) diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

  8. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface.

    Science.gov (United States)

    Martin, Holly J; Schulz, Kirk H; Bumgardner, Joel D; Walters, Keisha B

    2007-06-05

    Chitosan, a biopolymer found in the exoskeletons of shellfish, has been shown to be antibacterial, biodegradable, osteoconductive, and has the ability to promote organized bone formation. These properties make chitosan an ideal material for use as a bioactive coating on medical implant materials. In this study, coatings made from 86.4% de-acetylated chitosan were bound to implant-quality titanium. The chitosan films were bound through a three-step process that involved the deposition of 3-aminopropyltriethoxysilane (APTES) in toluene, followed by a reaction between the amine end of APTES with gluteraldehyde, and finally, a reaction between the aldehyde end of gluteraldehyde and chitosan. Two different metal treatments were examined to determine if major differences in the ability to bind chitosan could be seen. X-ray photoelectron spectroscopy (XPS) was used to examine the surface of the titanium metal and to study the individual reaction steps. The changes to the titanium surface were consistent with the anticipated reaction steps, with significant changes in the amounts of nitrogen, silicon, and titanium that were present. It was demonstrated that more APTES was bound to the piranha-treated titanium surface as compared to the passivated titanium surface, based on the amounts of titanium, carbon, nitrogen, and silicon that were present. The metal treatments did not affect the chemistry of the chitosan films. Using toluene to bond APTES on titanium surfaces, rather than aqueous solutions, prevented the formation of unwanted polysiloxanes and increased the amount of silane on the surface for forming bonds to the chitosan films. Qualitatively, the films were more strongly attached to the titanium surfaces after using toluene, which could withstand the ultrahigh vacuum environment of XPS, as compared to the aqueous solutions, which were removed from the titanium surface when exposed to the ultrahigh vacuum environment of XPS.

  9. Effect of surface treatment and aging on bond strength of composite resin onlays.

    Science.gov (United States)

    Cura, Maria; González-González, Inmaculada; Fuentes, Victoria; Ceballos, Laura

    2016-09-01

    Additional polymerization of indirect composite resins enhances their physical properties but lessens the potential for chemical bonding. The purpose of this in vitro study was to evaluate the influence of different surface treatments and 6-month water storage on the microtensile bond strength (μTBS) of composite resin onlays. Composite resin onlays (Filtek Z250) randomly received 6 different surface treatments: (1) airborne-particle abrasion with 27-μm alumina particles+Adper Scotchbond 1XT adhesive application, (2) airborne-particle abrasion with alumina particles+silane application (ESPE SIL)+Adper Scotchbond 1XT, (3) airborne-particle abrasion with alumina particles+Scotchbond Universal adhesive, (4) tribochemical silica coating with 30-μm particles (CoJet Sand)+Adper Scotchbond 1XT adhesive, (5) tribochemical silica coating+silane application+Adper Scotchbond 1XT, and (6) tribochemical silica coating+Scotchbond Universal adhesive. Onlays were luted to fresh composite resin specimens with RelyX Ultimate resin cement. Bonded assemblies were stored in water for 24 hours or 6 months at 37°C and subjected to the μTBS test. Additional surface-treated composite resin onlays were analyzed with a contact profilometer to determine average roughness, and micromorphologic changes were analyzed with scanning electron microscopy. Airborne-particle abrasion with alumina followed by Adper Scotchbond 1XT or Scotchbond Universal adhesive application provided the highest bond strength values at 24 hours. Lower values were obtained after tribochemical silica coating. After 6 months of artificial aging, airborne-particle abrasion with alumina or silica-coated alumina particles followed by Scotchbond Universal application yielded the greatest bond strength results. Airborne-particle abrasion with alumina produced the highest roughness values and a more irregular surface. Adhesive selection seems to be relevant to the μTBS of luted composite resin onlays after 6 months of

  10. Erosive cola-based drinks affect the bonding to enamel surface: an in vitro study

    Directory of Open Access Journals (Sweden)

    Leslie Caroll CASAS-APAYCO

    2014-10-01

    Full Text Available Objective: This study aimed to assess the impact of in vitro erosion provoked by different cola-based drinks (Coke types, associated or not with toothbrushing, to bonding to enamel. Material and methods: Forty-six bovine enamel specimens were prepared and randomly assigned into seven groups (N=8: C- Control (neither eroded nor abraded, ERO-RC: 3x/1-minute immersion in Regular Coke (RC, ERO-LC: 3x/1-minute immersion in Light Coke (LC, ERO-ZC: 3x/1-minute immersion in Zero Coke (ZC and three other eroded groups, subsequently abraded for 1-minute toothbrushing (EROAB-RC, EROAB-LC and EROAB-ZC, respectively. After challenges, they were stored overnight in artificial saliva for a total of 24 hours and restored with Adper Single Bond 2/Filtek Z350. Buildup coronal surfaces were cut in 1 mm2 -specimens and subjected to a microtensile test. Data were statistically analyzed by two-way ANOVA/Bonferroni tests (α=0.05. Failure modes were assessed by optical microscopy (X40. The Interface of the restorations were observed using Confocal Laser Scanning Microscopy (CLSM. Results: All tested cola-based drinks significantly reduced the bond strength, which was also observed in the analyses of interfaces. Toothbrushing did not have any impact on the bond strength. CLSM showed that except for Zero Coke, all eroded specimens resulted in irregular hybrid layer formation. Conclusions: All cola-based drinks reduced the bond strength. Different patterns of hybrid layers were obtained revealing their impact, except for ZC.

  11. Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl-Aryl Bond Formation.

    Science.gov (United States)

    Kocić, Nemanja; Liu, Xunshan; Chen, Songjie; Decurtins, Silvio; Krejčí, Ondřej; Jelínek, Pavel; Repp, Jascha; Liu, Shi-Xia

    2016-05-04

    Regioselectivity is of fundamental importance in chemical synthesis. Although many concepts for site-selective reactions are well established for solution chemistry, it is not a priori clear whether they can easily be transferred to reactions taking place on a metal surface. A metal will fix the chemical potential of the electrons and perturb the electronic states of the reactants because of hybridization. Additionally, techniques to characterize chemical reactions in solution are generally not applicable to on-surface reactions. Only recent developments in resolving chemical structures by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) paved the way for identifying individual reaction products on surfaces. Here we exploit a combined STM/AFM technique to demonstrate the on-surface formation of complex molecular architectures built up from a heteroaromatic precursor, the tetracyclic pyrazino[2,3-f][4,7]phenanthroline (pap) molecule. Selective intermolecular aryl-aryl coupling via dehydrogenative C-H activation occurs on Au(111) upon thermal annealing under ultrahigh vacuum (UHV) conditions. A full atomistic description of the different reaction products based on an unambiguous discrimination between pyrazine and pyridine moieties is presented. Our work not only elucidates that ortho-hydrogen atoms of the pyrazine rings are preferentially activated over their pyridine equivalents, but also sheds new light onto the participation of substrate atoms in metal-organic coordination bonding during covalent C-C bond formation.

  12. Electronic effects of surface oxygen on the bonding of NO to Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, M.E.; Koel, B.E. (Univ. of Colorado, Boulder (United States)); Carter, E.A. (Univ. of California, Los Angeles (United States))

    1989-01-01

    Changes in the bonding of NO on Pt(111) induced by the coadsorption of high coverages of oxygen atoms have been studied with temperature programmed desorption (TPD), vibrational spectroscopy using high resolution electron energy loss spectroscopy (HREELS), and ultraviolet photoelectron spectroscopy (UPS). Modification of the electronic structure of surface Pt atoms by the strongly electron-withdrawing adsorbed oxygen atoms alters the relative stabilities of NO adsorption sites and the nature of the Pt-NO bond. Coadsorption of 0.25 ML (monolayers) of O{sub (a)} destabilizes the two-fold bridge site for NO adsorption that is energetically preferred on clean Pt(111) and causes preferential NO adsorption in the atop site initially. For this oxygen coverage, some population of the bridge site occurs at the highest NO coverages, but occupation of this site can be eliminated completely by preadsorption of 0.75 ML of oxygen. This high coverage of coadsorbed oxygen now induces a further change in the nature of the NO chemisorption bond for NO adsorbed in atop sties, forming bent NO rather than the linear NO species formed on clean Pt(111). The saturation coverage of bent NO is 0.15 ML on this 0.75 ML oxygen-precovered surface and the heat of adsorption is only 1-2 kcal/mol less than linear NO adsorbed in atop sites on clean Pt(111). By using the HREELS and UPS data to identify these three chemically distinct forms of NO{sub (a)}, the authors are able rationalize their formation (and subsequent properties) in different electron environments by correlating bonding configurations with the charge-transfer capabilities of the Pt substrate. Finally, they note that despite the presence of large excesses of O{sub (a)}, NO is never oxidized to form NO{sub 2}.

  13. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

    Science.gov (United States)

    Güngör, Merve Bankoğlu; Bal, Bilge Turhan; Ünver, Senem; Doğan, Aylin

    2016-01-01

    PURPOSE The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS 120 specimens (10×10×2 mm) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with 125 µm grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin. PMID:27555894

  14. Bond making and breaking on transition-metal surfaces revisited; when the bond-order-conservation criteria may not be sufficient

    Science.gov (United States)

    Shustorovich, Evgeny

    1987-08-01

    Our bond-order-conservation (BOC) estimates for the activation barriers Δ E* for recombination of chemisorbed species [Surface Sci. 176 (1986) L863] have been compared with the enthalpy differences Δ H of the products and reactants for a variety of surface reactions. Typically, Δ Es*≥Δ H, which makes physical sense. In a few cases, however, we found Δ E*<Δ H, which makes the BOC criteria insufficient. These cases are discussed.

  15. The effect of surface roughness on repair bond strength of light-curing composite resin to polymer composite substrate.

    Science.gov (United States)

    Kallio, Timo T; Tezvergil-Mutluay, Arzu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    The purpose of this study was to analyze the shear bond strength of a new composite resin to polymer-based composite substrates using various surface roughnesses and two kinds of polymer matrices. Particulate filler composite resin with cross-linked polymer matrix and fiber-reinforced composite with semi-interpenetrating polymer matrix were used as bonding substrates after being ground to different roughnesses. Substrates were aged in water for one week before bonding to new resin composites. Twelve specimens in the substrate groups were ground with grinding papers of four grits; 320, 800, 1200 and 2400. Corresponding values of surface roughness (Ra) varied from 0.09 to 0.40 for the particulate filler composite resin and 0.07 to 0.96 for the fiber-reinforced composite resin. Characteristic shear bond strength between the new resin and particulate filler composite resin was highest (27.8 MPa) with the roughest surface (Weibull modulus: 2.085). Fiber-reinforced composite showed the highest bond strength (20.8 MPa) with the smoothest surface (Weibull modulus: 4.713). We concluded that surface roughness did not increase the bonding of new resin to the substrate of IPN based fiber-reinforced composite, whereas the roughness contributed to bonding the new resin to the particulate filler composite resin with a cross-linked polymer matrix.

  16. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  17. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain.

    Science.gov (United States)

    He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan

    2014-01-01

    This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (pzirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.

  18. Preparation of reaction-bonded porous silicon carbide with denser surface layer in one-pot process

    National Research Council Canada - National Science Library

    SHIMAMURA, Akihiro; FUKUSHIMA, Manabu; HOTTA, Mikinori; OHJI, Tatsuki; KONDO, Naoki

    2015-01-01

    Macro-porous silicon carbide with high porosity around 70 vol %, comprising micrometer-sized spherical porosities and a relatively denser surface layer, was fabricated by a direct blowing and reaction bonding method...

  19. Preparation of reaction-bonded porous silicon carbide with denser surface layer in one-pot process

    National Research Council Canada - National Science Library

    Akihiro SHIMAMURA; Manabu FUKUSHIMA; Mikinori HOTTA; Tatsuki OHJI; Naoki KONDO

    2015-01-01

      Macro-porous silicon carbide with high porosity around 70 vol %, comprising micrometer-sized spherical porosities and a relatively denser surface layer, was fabricated by a direct blowing and reaction bonding method...

  20. Transparent and electrically conductive GaSb/Si direct wafer bonding at low temperatures by argon-beam surface activation

    Science.gov (United States)

    Predan, F.; Reinwand, D.; Klinger, V.; Dimroth, F.

    2015-10-01

    Direct wafer bonds of the material system n-GaSb/n-Si have been achieved by means of a low-temperature direct wafer bonding process, enabling an optical transparency of the bonds along with a high electrical conductivity of the boundary layer. In the used technique, the surfaces are activated by sputter-etching with an argon fast-atom-beam (FAB) and bonded in ultra-high vacuum. The bonds were annealed at temperatures between 300 and 400 °C, followed by an optical, mechanical and electrical characterization of the interface. Additionally, the influence of the sputtering on the surface topography of the GaSb was explicitly investigated. Fully bonded wafer pairs with high bonding strengths were found, as no blade could be inserted into the bonds without destroying the samples. The interfacial resistivities of the bonded wafers were significantly reduced by optimizing the process parameters, by which Ohmic interfacial resistivities of less than 5 mΩ cm2 were reached reproducibly. These promising results make the monolithic integration of GaSb on Si attractive for various applications.

  1. Fabrication of a molecular-level multilayer film on organic polymer surfaces via chemical bonding assembly.

    Science.gov (United States)

    Zhao, Hongchi; Yang, Peng; Deng, Jianping; Liu, Lianying; Zhu, Jianwu; Sui, Yuan; Lu, Jiaoming; Yang, Wantai

    2007-02-13

    A fresh multilayer film was fabricated on a molecular level and successfully tethered to the surface of a hydroxylated organic substrate via chemical bonding assembly (CBA). Sulfate anion groups (SO4-) were preintroduced onto the surface of biaxially oriented polypropylene (BOPP) films via a reference method. Upon hydrolysis of the SO4- groups, hydroxyl groups (--OH) were formed that subsequently acted as initial reagents for a series of alternate reactions with terephthalyl chloride (TPC) and bisphenol A (BPA). A stable and well-defined multilayer film was thus fabricated via the CBA method. As a result of the nanoscale multilayer fresh film being abundant with reactive groups, it is believed that the film and its fabrication method should provide a fundamental platform for further surface functionalization and direct the design of advanced materials with desired properties.

  2. Influence of Electrolytical Oxidising of Silumine Surfaces on the Quality of Bonding with Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-09-01

    Full Text Available The article presents the preparation process of AC-AlSi12 aluminum alloy surface by application of anodic oxidation method. The method enables the formation of a porous oxide layer (Al2O3 which generates the substrate of durable adhesive bond with an epoxy resin. It also presents the influence of the form of silicon precipitates in the modified alloy upon anodizing process, uniform structure and thickness of the oxide layer as well as the topography of its surface which is expected to improve adhesion of the resin and silumin. The paper describes how the position of oxidized surface against the negative electrode influences the coating structure. The studied silumins are intended to form the material for casting of 3 dimensional objects whose parts will change the distribution of electric field strength that may cause non-uniform structure of the coating.

  3. Core-shell nanowire based electrical surface fastener used for room-temperature electronic packaging bonding

    Science.gov (United States)

    Wang, Peng; Ju, Yang; Hosoi, Atsushi

    2014-03-01

    With the ongoing miniaturization in electronic packaging, the traditional solders suffer from severe performance degradation. In addition, the high temperature required in the traditional solder reflow process may damage electronic elements. Therefore, there is an increasing urgent need for a new kind of nontoxic solder that can afford good mechanical stress and electrical contact at low temperature. This paper presents a method of fabricating nanowire surface fastener for the application of microelectronic packaging bonding at room temperature. This surface fastener consists of copper core and polystyrene shell nanowire arrays. It showed an adhesive strength of ˜24 N/cm2 and an electrical resistance of ˜0.41 × 10-2 Ω·cm2. This kind of nanowire surface fastener may enable the exploration of wide range applications, involving assembly of components in the electronic packaging.

  4. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Science.gov (United States)

    Cumerlato, Marina; de Lima, Eduardo Martinelli; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; de Menezes, Luciane Macedo; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.

  5. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites.

    Science.gov (United States)

    Ozcan, M; Alander, P; Vallittu, P K; Huysmans, M-C; Kalk, W

    2005-01-01

    The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 microm Al2O3), (3) Silica coating (30 microm SiOx, CoJet-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p < 0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa).

  6. A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation

    Science.gov (United States)

    Limozin, Laurent; Bongrand, Pierre; Robert, Philippe

    2016-01-01

    Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2kBT, in the range of previously proposed rough parts of landscapes models during dissociation. PMID:27731375

  7. Effect of surface treatment of prefabricated posts on bonding of resin cement

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeld, Anne; Asmussen, Erik;

    2004-01-01

    This in vitro study evaluated the effect of various surface treatments of prefabricated posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White) and zirconia (Cerapost) on the bonding of two resin cements: ParaPost Cement and Panavia F by a diametral tensile strength (DTS) test...... by the application of a primer or in the form of the Cojet system. After surface treatment, the post was embedded in a cylinder of resin cement (diameter = 4.0 mm, height = 4.0 mm). The surface-treated post was centered in the resin cement-filled mold with the aid of fixation apparatus. Fifteen minutes from...... the start of mixing the resin cement, the specimen was freed from the mold and stored in water at 37 degrees C for seven days. Following water storage, the specimen was wet-ground to a final length of approximately 3 mm. The DTS of specimens was determined in a Universal Testing Machine. The bonding...

  8. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; da Cunha, Leonardo Fernandes; Benetti, Ana Raquel;

    2007-01-01

    of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1) rinsing with water and drying; (G2) application of an adhesive system; (G3) rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4) rinsing and drying, etching, application...... of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin...

  9. Improvement in the Tensile Bond Strength between 3Y-TZP Ceramic and Enamel by Surface Treatments

    Directory of Open Access Journals (Sweden)

    Seon-Mi Byeon

    2016-08-01

    Full Text Available This study examined the effects of 3 mol % yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP ceramic surface treatments on the tensile bond strength and surface characteristics of enamel. To measure the tensile bond strength, the 3Y-TZP and tooth specimens were manufactured in a mini-dumbbell shape and divided into four groups based on the type of 3Y-TZP surface treatment: polishing (P, 110 µm alumina sandblasting (S, 110 µm alumina sandblasting combined with selective infiltration etching (SS, and 110 µm alumina sandblasting combined with MDP (10-methacryloyloxydecyl dihydrogen phosphate-containing silane primer (SP. After surface treatment, the surface roughness, wettability, and surface changes were examined, and the tensile bond strength was measured. The mean values (from lowest to highest for tensile bond strength (MPa were as follows: P, 8.94 ± 2.30; S, 21.33 ± 2.00; SS, 26.67 ± 4.76; and SP, 31.74 ± 2.66. Compared to the P group, the mean surface roughness was significantly increased, and the mean contact angle was significantly decreased, while wettability was increased in the other groups. Therefore, surface treatment with 110 µm alumina sandblasting and MDP-containing silane primer is suitable for clinical applications, as it considerably improves the bond strength between 3Y-TZP and enamel.

  10. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  11. Oxygen-assisted cleavage of OH, NH, and CH bonds on transition metal surfaces: bond-order-conservation-Morse-potential analysis

    Science.gov (United States)

    Shustorovich, Evgeny; Bell, Alexis T.

    The energetics of OH, NH, and CH bond cleavage on clean and (low-coverage) oxygen-preadsorbed metal surfaces has been analyzed using the BOCMP (bond-order-conservation-Morse-potential) method. The molecules in question included CH 3OH, HCOOH, and NH 3, adsorbed on Ag(111), Cu(111), Ni(111), W(110), and CH 4 adsorbed on Ni(111) and Ni(100). The reaction enthalphies, ΔH, and the activation energies, ΔE ∗, have been calculated for a variety of elementary steps corresponding to the direct and oxygen-assisted cleavage of XH bonds (X = O, N, C). For the OH and NH bonds, the presence of preadsorbed oxygen always decreases the values of ΔH and ΔE ∗ for Ag(111), but increases them for W(110). For Cu(111) and Ni(111), the changes in ΔH and ΔE ∗ are less uniform but, as a whole, Cu(111) resembles Ag(111), whereas Ni(111) is closer to W(110). In other words, the effect of preadsorbed oxygen at low coverages on the OH and NH bond cleavage is projected to be reversed along the series Ag, Cu, Ni, W, from facilitating XH bond cleavage on the least active metals such as Ag (or Au), to inhibiting this process on the most active metals, such as W (or Mo). The presence of preadsorbed oxygen on Ni(111) and Ni(100) is detrimental to the cleavage of CH bonds in CH 4. The BOCMP model projections are in broad agreement with experimental observation.

  12. Study on Bond Ability of Arc-Spraying Coatings with Different Surface Pretreatment on Cast-Iron

    Institute of Scientific and Technical Information of China (English)

    HAO Jian-jun; MA Yue-jin; SHEN Yu-zeng

    2004-01-01

    Arc spraying coatings are widely used in various applications, but uncommon in cast iron substrate. Different surface pretreatment technology is tested on substrates of gray cast iron. Surface roughness and residual stress were measured by TR200 and X-ray diffraction analyzer. Influence of different surface pretreatment methods ( dry blasting and fusebond) on roughness and residual stress was analyzed. The arc-sprayed coatings of wire 3Cr13 (φ2mm) on gray cast iron substrate is studied. The microstructure and interface of bonding layer were observed by SEM. The bond strength was taken by tensile test. Results show that bond strength with grit blasting is higher than fuse-bond; it is feasible to make wire 3Cr13 coating with arc spraying on cast iron substrate roughened by grit blasting.

  13. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Science.gov (United States)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  14. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing, E-mail: chunjing.li@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Bo; Liu, Shaojun [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  15. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, R.St.C.; Arora, P.S.; Steveson, M.; Kawashima, N.; Cavallaro, G.P.; Ming, H.; Skinner, W.M. [University of South Australia, Mawson Lakes, Adelaide, SA (Australia). Ian Wark Research Institute

    1999-12-01

    Full text: Low temperature plasma reactions, combined with sol-gel coatings, have been used to produce a variety of ceramic surface layers on metal substrates and interfacial layers between metals and oxides or other ceramics. These layers can be designed to be compositionally and functionally graded from the metal to bulk ceramic material, eg. silica, alumina, hydroxyapatite. The graded layers are generally <50nm thick, continuous, fully bonded to the substrate and deformable without disbonding. The objectives in design of these layers have been to produce: metal surfaces protected from oxidation, corrosion and acid attack; improved metal-ceramic bonding; and bioceramic titanium-based interfaces to bioactive hydroxyapatite for improved dental and medical implants. Modified Auger parameter studies for Si in XPS spectra show that the structure on the metal surfaces grades from amorphous, dehydroxylated silica on the outer surface through layer silicates, chain silicates, pyrosilicates to orthosilicates close to the metal interface. At the metal interface, detached grains of the metal are imaged with interpenetration of the oxide and silicate species linking the layer to the oxidised metal surface. The {approx}30nm layer has a substantially increased frictional load compared with the untreated oxidised metal, i.e. behaviour consistent with either stronger adhesion of the coating to the substrate or a harder surface. The composition, structure and thickness of these layers can be controlled by the duration of each plasma reaction and the choice of the final reagent. The mechanisms of reaction in each process step have been elucidated with a combination of XPS, TOF-SIMS, TEM, SEM and FTIR. Similar, graded titanium/oxide/silicate/silica ceramic surface layers have been shown to form using the low temperature plasma reactions on titanium alloys used in medical and dental implants. Thicker (i.e. {mu}m) overlayers of ceramic materials can be added to the graded surface

  16. Effect of femtosecond laser treatment on the shear bond strength of a metal bracket to prepared porcelain surface.

    Science.gov (United States)

    Akpinar, Yusuf Ziya; Irgin, Celal; Yavuz, Tevfik; Aslan, Muhammed Ali; Kilic, Hamdi Sukur; Usumez, Aslihan

    2015-04-01

    The aim of this study was to investigate the effects of femtosecond laser treatment (Group FS) on the shear bond strength (SBS) of a metal bracket to prepared porcelain surface, and to compare it with other surface treatment techniques [50 μm Al2O3 sandblasting (Group SB), 9.6% hydrofluoric acid gel (Group HF), and neodymium-doped yttrium aluminium garnet (Nd:YAG laser) (Group NY)]. Because of the increasing number of adult patients in current orthodontic practice, achieving sufficient bond strength of composite resin to porcelain restorations without bond failure during the treatment is a challenge for orthodontists. In total, 80 glazed feldspathic porcelain samples were prepared and randomly assigned to four groups of 20. Treated surfaces were treated with a silane agent. Brackets were bonded to porcelain samples. The specimens were stored in distilled water for 24 h and then thermocycled for 500 cycles between 5° and 55°C. The SBS of the brackets was tested with a universal testing machine at a crosshead speed of 1 mm/min, until bonding failure occurred. The data were analyzed statistically using analysis of variance (ANOVA) and Tamhane multiple comparisons tests. The results of ANOVA indicated that the SBS values varied according to the surface treatment method (ptreatment produced high SBS of the processes assessed; therefore, it appears to be an effective method for bonding orthodontic metal brackets to prepared porcelain surfaces.

  17. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    Science.gov (United States)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  18. The effect of various surface contaminants on the microleakage of two different generation bonding agents: A stereomicroscopic study

    Directory of Open Access Journals (Sweden)

    Pragya Kumar

    2012-01-01

    Full Text Available Aim: The aim of this in vitro study was to evaluate the microleakage of two different generation bonding agents in the presence of various surface contaminants. Materials and Methods: Class V cavities were prepared on 150 extracted human permanent molars. The samples were randomly divided into two main groups of 75 teeth each. Group I: Fifth generation bonding system (Single Bond, 3M. Group II: Seventh generation bonding system (iBond, Kulzer. Subgroups were formed according to exposure to different surface contaminants (saliva, blood, caries disclosing agent and haemostatic agent. Cavities were restored with hybrid composite (Z-100, 3M and evaluated for microleakage. The scores were subjected to ′t′ test and analysis of variance (ANOVA test. Results: Single Bond and iBond did not provide complete resistance to microleakage when there was no contamination. Microleakage was minimum in the no contamination subgroup and maximum with the haemostatic agent subgroup for both the groups. Conclusion: Single bond showed lesser micro leakage in contaminated conditions.

  19. Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface

    DEFF Research Database (Denmark)

    Hellström, Matti; Beinik, Igor; Broqvist, Peter;

    2016-01-01

    The role of hydrogen and other defects in the stabilization of polar oxide interfaces is a matter of significant fundamental and practical interest. Using experimental (scanning tunneling microscopy, x-ray photoelectron spectroscopy) and theoretical (density functional theory) surface science...... (hcp) and zinc-blende (fcc) lattice positions, giving a characteristic “striped” c(√12×√12)R30° surface morphology with three types of rows: wurtzite Zn, zinc-blende Zn, and Zn vacancies. Interstitial H plays a central role in such a reconstruction, as it helps to compensate the excessive Zn deficiency....... We propose a model in which hydrogen occupies positions in half of the vacancy rows to form hydroxide ions that can participate in hydrogen bonds in the O subsurface layer as a result of the mixed wurtzite/zinc-blende stacking....

  20. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kawai, Shigeki; Sadeghi, Ali; Okamoto, Toshihiro; Mitsui, Chikahiko; Pawlak, Rémy; Meier, Tobias; Takeya, Jun; Goedecker, Stefan; Meyer, Ernst

    2016-10-01

    The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established.

  1. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R. [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstrasse 49, 52062 Aachen (Germany)

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  2. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    2016-12-01

    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  3. Shear bond strength of a self-etched resin cement to an indirect composite: effect of different surface treatments.

    Science.gov (United States)

    Harorli, O T; Barutcugil, C; Kirmali, O; Kapdan, A

    2015-01-01

    The aim of this study was to compare the shear bond strength of resin cement (Rely X-U200) bonded to differently conditioned indirect composite samples. Sixty-six composite resin specimens (5 mm in diameter and 3 mm in thickness) were prepared with an indirect composite resin (Grandia) and randomly divided into six groups. Surfaces of the samples were treated with one of the following treatments; %37 phosphoric acid etching, sandblasting, 1,5 W, 2 W and 3 W erbium, chromium: Yttrium-scandium-gallium-garnet laser application. An untreated group was used as a control. In each group surface of the sample was analyzed with scanning electron microscopy. The remaining samples (n = 60) were built up with a self-adhesive resin cement (Rely X-U200) 3 mm in diameter and 2 mm height. After 24 h water storage at 37°C, the prepared specimens were submitted to shear bond strength test. One-way analysis of variance was used to analyze the bond strength values of different groups. Highest shear bond strength values were observed in sandblasting group however there were not statistical difference among the tested surface treatment methods. In Shear bond strength of resin, cement was independent of the surface conditioning methods applied on tested indirect resin composite.

  4. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic.

    Science.gov (United States)

    Guarda, G B; Correr, A B; Gonçalves, L S; Costa, A R; Borges, G A; Sinhoreti, M A C; Correr-Sobrinho, L

    2013-01-01

    SUMMARY Objectives : The aim of this present study was to investigate the effect of two surface treatments, fatigue and thermocycling, on the microtensile bond strength of a newly introduced lithium disilicate glass ceramic (IPS e.max Press, Ivoclar Vivadent) and a dual-cured resin cement. Methods : A total of 18 ceramic blocks (10 mm long × 7 mm wide × 3.0 mm thick) were fabricated and divided into six groups (n=3): groups 1, 2, and 3-air particle abraded for five seconds with 50-μm aluminum oxide particles; groups 4, 5, and 6-acid etched with 10% hydrofluoric acid for 20 seconds. A silane coupling agent was applied onto all specimens and allowed to dry for five seconds, and the ceramic blocks were bonded to a block of composite Tetric N-Ceram (Ivoclar Vivadent) with RelyX ARC (3M ESPE) resin cement and placed under a 500-g static load for two minutes. The cement excess was removed with a disposable microbrush, and four periods of light activation for 40 seconds each were performed at right angles using an LED curing unit (UltraLume LED 5, Ultradent) with a final 40 second light exposure from the top surface. All of the specimens were stored in distilled water at 37°C for 24 hours. Groups 2 and 5 were submitted to 3,000 thermal cycles between 5°C and 55°C, and groups 3 and 6 were submitted to a fatigue test of 100,000 cycles at 2 Hz. Specimens were sectioned perpendicular to the bonding area to obtain beams with a cross-sectional area of 1 mm(2) (30 beams per group) and submitted to a microtensile bond strength test in a testing machine (EZ Test) at a crosshead speed of 0.5 mm/min. Data were submitted to analysis of variance and Tukey post hoc test (p≤0.05). Results : The microtensile bond strength values (MPa) were 26.9 ± 6.9, 22.2 ± 7.8, and 21.2 ± 9.1 for groups 1-3 and 35.0 ± 9.6, 24.3 ± 8.9, and 23.9 ± 6.3 for groups 4-6. For the control group, fatigue testing and thermocycling produced a predominance of adhesive failures. Fatigue and

  5. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario

    Science.gov (United States)

    Iqubal, Md. Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-01-01

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe2O4), cobalt ferrite (CoFe2O4), copper ferrite (CuFe2O4), zinc ferrite (ZnFe2O4), and manganese ferrite (MnFe2O4) nanoparticles surfaces, in the temperature range from 50–120 °C for 1–35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe2O4 produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe2O4 was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C. PMID:28346388

  6. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    Science.gov (United States)

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P composite resin used.

  7. Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110 Surfaces

    Directory of Open Access Journals (Sweden)

    Lanxia Cheng

    2016-12-01

    Full Text Available Understanding the adsorption properties of DNA bases on metal surfaces is fundamental for the rational control of surface functionalization leading to the realisation of biocompatible devices for biosensing applications, such as monitoring of particular parameters within bio-organic environments and drug delivery. In this study, the effects of deposition rate and substrate temperature on the adsorption behavior of adenine on Cu(110 surfaces have been investigated using scanning tunneling microscopy (STM and density functional theory (DFT modeling, with a focus on the characterization of the morphology of the adsorbed layers. STM results revealed the formation of one-dimensional linear chains and ladder-like chains parallel to the [110] direction, when dosing at a low deposition rate at room temperature, followed by annealing to 490 K. Two mirror related, well-ordered chiral domains oriented at ±55° with respect to the [110] direction are formed upon deposition on a substrate kept at 490 K. The molecular structures observed via STM are rationalized and qualitatively described on the basis of the DFT modeling. The observation of a variety of ad-layer structures influenced by deposition rate and substrate temperature indicates that dynamic processes and hydrogen bonding play an important role in the self-assembly of adenine on the Cu(110 surface.

  8. Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface

    Science.gov (United States)

    Hellström, Matti; Beinik, Igor; Broqvist, Peter; Lauritsen, Jeppe V.; Hermansson, Kersti

    2016-12-01

    The role of hydrogen and other defects in the stabilization of polar oxide interfaces is a matter of significant fundamental and practical interest. Using experimental (scanning tunneling microscopy, x-ray photoelectron spectroscopy) and theoretical (density functional theory) surface science techniques, we find that the polar Zn-terminated ZnO(0001) surface becomes excessively Zn deficient during high-temperature annealing (780 K) in ultrahigh vacuum (UHV). The Zn vacancies align themselves into rows parallel to the [10 1 ¯0 ] direction, and the remaining surface Zn ions alternately occupy wurtzite (hcp) and zinc-blende (fcc) lattice positions, giving a characteristic "striped" c (√{12 }×√{12 })R 30 ° surface morphology with three types of rows: wurtzite Zn, zinc-blende Zn, and Zn vacancies. Interstitial H plays a central role in such a reconstruction, as it helps to compensate the excessive Zn deficiency. We propose a model in which hydrogen occupies positions in half of the vacancy rows to form hydroxide ions that can participate in hydrogen bonds in the O subsurface layer as a result of the mixed wurtzite/zinc-blende stacking.

  9. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling

    NARCIS (Netherlands)

    Saavedra, Guilherme; Valandro, Luz Felipe; Leite, Fabiola Pessoa; Amaral, Regina; Oezcan, Mutlu; Bottino, Marco A.; Kimpara, Estevao T.

    2007-01-01

    This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol)

  10. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik;

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surface...

  11. Effect of dangling bonds of ultra-thin silicon film surface on electronic states of internal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji, E-mail: ejkamiyama@aol.com [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Sueoka, Koji, E-mail: sueoka@c.oka-pu.ac.jp [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2012-04-15

    We investigate how dangling bonds at the surface of ultra-thin films affect electronic states inside the film by first principles calculation. In the calculation models, dangling bonds at the surface are directly treated, and the impact on the electronic states of the internal atoms was estimated. Models with a H-terminated surface at both sides have no state in the bandgap. Whereas, new states appear at around the midgap by removing terminated H at surfaces of one or both sides. These mid-gap states appear at all layers, the states of which decrease as the layer moves away from the surface with dangling bonds. The sum of local DOS corresponds to the number of dangling bonds of the model. If the activation rate is assumed as 2.0 Multiplication-Sign 10{sup -5}, which is an ordinary value of thermal oxide passivation on Si (1 0 0) surface, volume concentration and surface concentration at the 18th layer from the surface in a 36-layer model are estimated to be 1.2 Multiplication-Sign 10{sup 14} cm{sup -3} and 1.5 Multiplication-Sign 10{sup 9} cm{sup -2}, respectively. These numbers are comparable to the values, especially the dopant volume concentration of Si substrate used in current VLSI technology ({approx}10{sup 15} cm{sup -3}). Therefore, the midgap states inside ultra-thin films may degrade performance of the FinFETs.

  12. Effect of Different Surface Treatments on Microtensile Bond Strength of Composite Resin to Normal and Fluorotic Enamel after Microabrasion

    Directory of Open Access Journals (Sweden)

    Mahshid Mohammadi Basir

    2017-01-01

    Full Text Available Objectives: This study aimed to determine the effect of surface treatments such as tooth reduction and extending the etching time on microtensile bond strength (µTBS of composite resin to normal and fluorotic enamel after microabrasion. Materials and Methods: Fifty non-carious anterior teeth were classified into two groups of normal and fluorotic (n=25 using Thylstrup and Fejerskov index (TFI=4-6. Teeth in each group were treated with five modalities as follows and restored with OptiBond FL and Z350 composite resin: 1-Etching (30 seconds, bonding, filling (B; 2-Tooth reduction (0.3mm, etching, bonding, filling (R-B; 3-Microabrasion (120 seconds, etching, bonding, filling (M-B; 4- Microabrasion, tooth reduction, etching, bonding, filling (M-R-B; and 5- Microabrasion, etching (60 seconds, bonding, filling (M-2E-B. Ten experimental groups (n=5 were designed; 150 rectangular samples (10 in each group with a cross-sectional area of 1×1mm2 were prepared for µTBS test. Failure mode was determined under a stereomicroscope and one specimen was selected from each group for scanning electron microscopy (SEM analysis. Data were analyzed using two-way ANOVA and Tukey’s test.Results: The µTBS to normal enamel was higher than to fluorotic enamel in all groups except for group (R-B. The Maximum and minimum µTBS were noted in the group (normal, reduction, bonding and (fluorosed, microabrasion, bonding, respectively.  Tooth reduction increased µTBS more effectively than extended etching time after microabrasion. Conclusions: Fluorosis may reduce µTBS of composite resin to enamel. Microabrasion reduced the bond strength. Tooth reduction and extended etching time increased µTBS of composite resin to both normal and fluorotic enamel.Keywords: Fluorosis, Dental; Enamel Microabrasion; Dental Bonding; Composite Resins

  13. Effects of different surface treatments on the bond strength of glass fiber-reinforced composite root canal posts to composite core material

    Directory of Open Access Journals (Sweden)

    Murat Kurt

    2012-03-01

    Conclusion: Er:YAG laser treatments on the FRC post surface decreased the bond strength. Airborne-particle abrasion and HF acid etching are alternative methods for increasing bond strength of FRC posts to composite core material.

  14. Influence of light intensity on surface free energy and dentin bond strength of core build-up resins.

    Science.gov (United States)

    Shimizu, Y; Tsujimoto, A; Furuichi, T; Suzuki, T; Tsubota, K; Miyazaki, M; Platt, J A

    2015-01-01

    We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm(2) or less, significantly lower bond strengths were observed. CONClUSIONS: The

  15. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer

    Science.gov (United States)

    Koodaryan, Roodabeh

    2016-01-01

    PURPOSE Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). RESULTS The bond strength values of A and S were significantly higher than those of N (P<.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG (P<.001). CONCLUSION The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin. PMID:28018569

  16. Bond making and breaking on transition-metal surfaces revisited; when the bond-order-conversation criteria may not be sufficient

    Science.gov (United States)

    Shustorovich, Evgeny

    Our bond-order-conservation (BOC) estimates for the activation barriers ΔE ∗ for recombination of chemisorbed species [Surface Sci. 176 (1986) L863] have been compared with the enthalpy differences ΔH of the products and reactants for a variety of surface reactions. Typically, ΔE ∗ ⩾ ΔH , which makes physical sense. In a few cases, however, we found ΔE ∗ < ΔH , which makes the BOC criteria insufficient. These cases are discussed.

  17. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  18. Effect of Mechanical Surface Treatment on the Repair Bond Strength of the Silorane-based Composite Resin

    Directory of Open Access Journals (Sweden)

    Parnian Alizadeh Oskoee

    2014-06-01

    Full Text Available Background and aims. A proper bond must be created between the existing composite resin and the new one for successful repair. The aim of this study was to compare the effect of three mechanical surface treatments, using diamond bur, air abrasion, and Er,Cr:YSGG laser, on the repair bond strength of the silorane-based composite resin. Materials and methods. Sixty cylindrical composite resin specimens (Filtek Silorane were fabricated and randomly divided into four groups according to surface treatment: group 1 (control group without any mechanical surface treatment, groups 24 were treated with air abrasion, Er,Cr:YSGG laser, and diamond bur, respectively. In addition, a positive control group was assigned in order to measure the cohesive strength. Silorane bonding agent was used in groups 14 before adding the new composite resin. Then, the specimens were subjected to a shear bond strength test and data was analyzed using one-way ANOVA and post hoc Tukey tests at a significance level of P < 0.05. The topographical effects of surface treatments were characterized under a scanning electron microscope. Results. There were statistically significant differences in the repair bond strength values between groups 1 and 2 and groups 3 and 4 (P < 0.001. There were no significant differences between groups 1 and 2 (P = 0.98 and groups 3 and 4 (P = 0.97. Conclusion. Surface treatment using Er,Cr:YSGG laser and diamond bur were effective in silorane-based composite resin repair.

  19. Further Investigation Into the Use of Laser Surface Preparation of Ti-6Al-4V Alloy for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Crow, Allison; Zetterberg, Anna; Hopkins, John; Wohl, Christopher J.; Connell, John W.; Belcher, Tony; Blohowiak, Kay Y.

    2014-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires robust materials and processing methodologies before it can be incorporated in primary structures for aerospace applications. Surface preparation is widely recognized as one of the key steps to producing robust and predictable bonds. This report documents an ongoing investigation of a surface preparation technique based on Nd:YAG laser ablation as a replacement for the chemical etch and/or abrasive processes currently applied to Ti-6Al-4V alloys. Laser ablation imparts both topographical and chemical changes to a surface that can lead to increased bond durability. A laser based process provides an alternative to chemical-immersion, manual abrasion, and grit blast process steps which are expensive, hazardous, environmentally unfriendly, and less precise. In addition, laser ablation is amenable to process automation, which can improve reproducibility to meet quality standards for surface preparation. An update on work involving adhesive property testing, surface characterization, surface stability, and the effect of laser surface treatment on fatigue behavior is presented. Based on the tests conducted, laser surface treatment is a viable replacement for the immersion chemical surface treatment processes. Testing also showed that the fatigue behavior of the Ti-6Al-4V alloy is comparable for surfaces treated with either laser ablation or chemical surface treatment.

  20. Resin cement to indirect composite resin bonding: effect of various surface treatments.

    Science.gov (United States)

    Kirmali, Omer; Barutcugil, Cagatay; Harorli, Osman; Kapdan, Alper; Er, Kursat

    2015-01-01

    Debonding at the composite-adhesive interface is a major problem for indirect composite restorations. The aim of this study was to evaluate the bond strength (BS) of an indirect composite resin after various surface treatments (air-abrasion with Al2O3, phosphoric acid-etchig and different applications of NdYAG laser irradiations). Fifty composite disks were subjected to secondary curing to complete polymerization and randomly divided into five experimental groups (n = 10) including Group 1, untreated (control); Group 2, phosphoric acid-etched; Group 3, air-abrasion with Al2 O3 ; Group 4, Nd:YAG laser irradiated with non-contact and Group 5, Nd:YAG laser irradiated with contact. They were then bonded to resin cement and shear BS was determined in a universal testing device at a crosshead speed of 1 mm/min. One way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the BS values. The highest BS value was observed in Group 4 and followed by Group 3. Tukey test showed that there was no statistical difference between Group1, 2 and 5. Furthermore, differences in BSs between Group 4 and the other groups except Group 3 were significant (p composite and resin cement. © Wiley Periodicals, Inc.

  1. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent.

  2. Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement.

    Science.gov (United States)

    Soares, Carlos José; Giannini, Marcelo; Oliveira, Marcelo Tavares de; Paulillo, Luis Alexandre Maffei Sartini; Martins, Luis Roberto Marcondes

    2004-03-01

    The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.

  3. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer.

    Science.gov (United States)

    Koodaryan, Roodabeh; Hafezeqoran, Ali

    2016-12-01

    Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). The bond strength values of A and S were significantly higher than those of N (Pauto-polymerized reline resin.

  4. An investigation of interface transferring mechanism of surface-bonded fiber Bragg grating sensors

    Science.gov (United States)

    Wu, Rujun; Fu, Kunkun; Chen, Tian

    2017-08-01

    Surface-bonded fiber Bragg grating sensor has been widely used in measuring strain in materials. The existence of fiber Bragg grating sensor affects strain distribution of the host material, which may result in a decrease in strain measurement accuracy. To improve the measurement accuracy, a theoretical model of strain transfer from the host material to optical fiber was developed, incorporating the influence of the fiber Bragg grating sensor. Subsequently, theoretical predictions were validated by comparing with data from finite element analysis and the existing experiment [F. Ansari and Y. Libo, J. Eng. Mech. 124(4), 385-394 (1998)]. Finally, the effect of parameters of fiber Bragg grating sensors on the average strain transfer rate was discussed.

  5. Excellent bonding behaviour of novel surface-tailored fibre composite rods with cementitious matrix

    Indian Academy of Sciences (India)

    Fernando Cunha; Sohel Rana; Raul Fangueiro; Graça Vasconcelos

    2014-08-01

    Novel composite rods were produced by a special braiding technique that involves braiding of polyester yarns around a core of resin-impregnated carbon fibres and subsequent curing. The surface roughness of these braided rods was tailored by replacing one or two simple yarns in the outer-braided layer with braided yarns (produced from 8 simple yarns) and adjusting the take-up velocity. Pull-out tests were carried out to characterize the bond behaviour of these composite rods with cementitious matrix. It was observed that the rod produced with two braided yarns in the outer cover and highest take-up speed was ruptured completely before pull-out, leading to full utilization of its tensile strength, and exhibited 134% higher pull-out force as compared to the rods produced using only simple braiding yarns.

  6. Multiple bonding configurations for Te adsorbed on the Ge(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, P.F. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States)]|[Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Marasco, D.L.; Walko, D.A. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Bedzyk, M.J. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States)]|[Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    1999-09-01

    Using high-resolution x-ray standing waves and low-energy electron diffraction, the structure of Te adsorbed on Ge(001) was studied. A coverage-dependent structural rearrangement was observed between Te coverages of 1 and 0.5 monolayer (ML). At Te coverages near 1 ML, Te was found to adsorb in a bridge site, as expected. However, at Te coverages near 0.5 ML, a structure unanticipated for Group VI/Group IV adsorption was discovered. Te-Ge heterodimers were formed with an average valency of 5, allowing them to satisfy all surface dangling bonds. The results help explain the efficacy of Te as a surfactant in epitaxial growth of Ge/Si(001). {copyright} {ital 1999} {ital The American Physical Society}

  7. Multiple bonding configurations for Te absorbed on the Ge(001) surface.

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, P. F.; Marasco, D. L.; Walko, D. A.; Bedzyk, M. J.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee

    1999-09-15

    Using high-resolution x-ray standing waves and low-energy electron diffraction, the structure of Te adsorbed on Ge(001) was studied. A coverage-dependent structural rearrangement was observed between Te coverages of 1 and 0.5 monolayer (ML). At Te coverages near 1 ML, Te was found to adsorb in a bridge site, as expected. However, at Te coverages near 0.5 ML, a structure unanticipated for Group VI/Group IV adsorption was discovered. Te-Ge heterodimers were formed with an average valency of 5, allowing them to satisfy all surface dangling bonds. The results help explain the efficacy of Te as a surfactant in epitaxial growth of Ge/Si(001).

  8. Synthesis and decomposition of ammonia on transition metal surfaces: bond-order-conservation-Morse-potential analysis

    Science.gov (United States)

    Shustorovich, Evgeny; Bell, Alexis T.

    1991-12-01

    The mechanism of ammonia synthesis and decomposition on transition metal surfaces has been analyzed using the BOC-MP (bond-order-conservation-Morse-potential) method. The analysis is based on calculations of the heats of chemisorption, Q, for all adsorbed species and activation barriers, Δ E∗, for all elementary reactions believed to be involved in the reaction N 2 + H 2 NH 3 over Pt(111), Ru(001), Fe(110), Re(001). The relevant experimental values of Q and Δ E∗ agree well with the BOC-MP estimates. It is shown that along the periodic series Pt, Ru, Fe, Re, the dissociation activation barriers decrease but the recombination and desorption barriers increase. In particular, we find that on all the surfaces the largest activation barrier corresponds to the recombinative desorption 2N s → N 2. This step is projected to be the rate-determining process for ammonia decomposition, and Pt is projected to be the most efficient catalyst. For the dissociation N 2 → 2N s, we find that the activation barrier sharply increases in the order Re ⩽ Fe ≪ Pt, which makes Pt surfaces incapable of catalyzing ammonia synthesis. These and other BOC-MP projections are in agreement with the results of mechanistic studies on Pt(111), Ru(001) and Fe(110).

  9. Effects of different surface conditioning methods on the bond strength of composite resin to amalgam.

    Science.gov (United States)

    Ozcan, M; Koolman, C; Aladag, A; Dündar, M

    2011-01-01

    Repairing amalgam restorations with composite resins using surface conditioning methods is a conservative treatment approach. This study investigated the effects of different conditioning methods that could be used for repair of amalgam fractures. Amalgam (N=96) was condensed into cavities within autopolymerizing polymethylmethacrylate (PMMA), and the exposed surface of each specimen (diameter, 6 mm; thickness, 2 mm) was ground finished. The specimens were randomly divided into nine experimental groups (n=12 per group), depending on the conditioning method used. The control group had natural central incisors with amalgam (n=12). The combination of the following conditioning methods was tested: silicacoating (Sc), sandblasting (Sb), metal primers, coupling agents, fiber (Fb) application, and opaquers (O). Five types of silanes, metal primers, or adhesives (Visiobond [V], Porcelain Photobond [PP], Alloy Primer [AP], Unibond sealer [Us], ESPE-Sil [ES]), and four opaquers, namely, Clearfil St Opaquer (CstO), Sinfony (S), Miris (M), and an experimental Opaquer (EO-Cavex), were used. The groups were as follows: group 1, Sc+ES+S+V; group 2, Sc+ES+CstO+V; group 3, Sc+ES+M+V; group 4, Sc+ES+EO+V; group 5, Sb+AP+S; group 6, Sb+AP+PP+CstO; group 7, Sc+ES+S+Fb+V+Fb; group 8-control, SC+ES+V; and group 9, Etch+Sc+ES+S+Us. One repair composite was used for all groups (Clearfil Photo Bond Posterior, Kuraray, Tokyo, Japan). Shear bond strengths (SBSs) (MPa ± SD) were evaluated after 5 weeks of water storage (analysis of variance [ANOVA], Tukey honestly significant differences [HSD], α=0.05). Group 1 exhibited significantly higher values (35.5 ± 4.1) than were seen in group 4 (19.4 ± 8.9), group 6 (19.1 ± 7.8), and group 8 (20.1 ± 4.1) (pcomposite adhesion to amalgam. Experimental opaquer exhibited lower values. Leaving a small border of enamel around the restoration decreased the bond strength.

  10. Effect of Different Surface Treatments on Microtensile Bond Strength of Composite Resin to Normal and Fluorotic Enamel After Microabrasion

    Science.gov (United States)

    Bassir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Hosseini, Zahra Malek

    2016-01-01

    Objectives: This study aimed to determine the effect of surface treatments such as tooth reduction and extending the etching time on microtensile bond strength (μTBS) of composite resin to normal and fluorotic enamel after microabrasion. Materials and Methods: Fifty non-carious anterior teeth were classified into two groups of normal and fluorotic (n=25) using Thylstrup and Fejerskov index (TFI=4–6). Teeth in each group were treated with five modalities as follows and restored with OptiBond FL and Z350 composite resin: 1-Etching (30 seconds), bonding, filling (B); 2-Tooth reduction (0.3mm), etching, bonding, filling (R-B); 3-Microabrasion (120 seconds), etching, bonding, filling (MB); 4- Microabrasion, tooth reduction, etching, bonding, filling (M-R-B); and 5- Microabrasion, etching (60 seconds), bonding, filling (M-2E-B). Ten experimental groups (n=5) were designed; 150 rectangular samples (10 in each group) with a cross-sectional area of 1×1mm2 were prepared for μTBS test. Failure mode was determined under a stereomicroscope and one specimen was selected from each group for scanning electron microscopy (SEM) analysis. Data were analyzed using two-way ANOVA and Tukey’s test. Results: The μTBS to normal enamel was higher than to fluorotic enamel in all groups except for group (R-B). The Maximum and minimum μTBS were noted in the group (normal, reduction, bonding) and (fluorosed, microabrasion, bonding), respectively. Tooth reduction increased μTBS more effectively than extended etching time after microabrasion. Conclusions: Fluorosis may reduce μTBS of composite resin to enamel. Microabrasion reduced the bond strength. Tooth reduction and extended etching time increased μTBS of composite resin to both normal and fluorotic enamel. PMID:28243305

  11. Examination of bond strength and mechanical properties of Y-TZP zirconia ceramics with different surface modifications.

    Science.gov (United States)

    Yamaguchi, Hiroaki; Ino, Satoshi; Hamano, Naho; Okada, Shusaku; Teranaka, Toshio

    2012-01-01

    The purpose of our study was to evaluate the effects of surface modifications on the bond strength between veneering porcelains and Yttria-stabilized tetragonal zirconia (Y-TZP). In a bond strength tests, the effect of control, 70 µm alumina-sandblasting, 30 µm and 110 µm silica-coating of the Y-TZP surface on bonding were evaluated with veneering porcelains. In addition, the effect of surface modification on the flexural strength of Y-TZP was also evaluated. The data was analyzed using one-way ANOVA and Tukey test. All specimens showed bond strength values in excess of 25 MPa, the minimum allowed by ISO9693. In addition, significantly differences were found between the control and the 30 µm silica-coated. On the other hand the flexural strength of Y-TZP does not significantly difference for any surface modification. These results indicate that silica-coating may provide an effective pre-treatment for this enhancement of the bond strength while maintaining the strength of Y-TZP.

  12. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  13. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  14. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength.

  15. Microstructure and properties of hot roll bonding layer of dissimilar metals. 1. Effect of oxide layer on titanium surface on bonding strength of titanium clad steel by hot roll bonding; Ishu kinzoku no atsuen setsugo kaimen soshiki to shotokusei ni kansuru kenkyu. 1. Atsuen chitan clad ko no kaimen kyodo ni oyobosu chitan hyomen sankabutsuso no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Komizo, Y.; Yasuyama, M. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Ikezaki, H.; Murayama, J.

    1996-01-25

    The effect of surface oxide layer on the titanium before bonding on the bonding strength of titanium clad steel by hot roll bonding was investigated from a view point of microstructure of the bonding interface. The bonding test of iron and titanium by hot roll bonding at 850{degree}C was conducted under the various surface conditions of titanium plate such as as-relieved, oxidized or machined. The mechanical properties of clad steel was evaluated in terms of tensile test in the rectangular direction to the bonding interface and observation of micro structures of bonding layer. As results, the bonding strength deteriorated remarkably in the clad steel produced using the titanium having oxide layer on the surface comparing with that using the machined surface of titanium. In the clad steel produced using the titanium with surface oxide, uncontinuous intermetallic compound was observed at the interface of {beta}-Ti and Fe, while in the clad steel produced by the titanium without surface oxide, no remarkable intermetallic compound was observed. Oxide layer on the titanium surface promotes the formation of inter metallic compound of titanium and iron at the bonding interface and deterioration of bonding strength. Such oxide layer, however, was found to be not an obstacle to the accomplishment of metallurgical bonding. 6 refs., 13 figs.

  16. Decomposition and reduction of NO on transition metal surfaces: bond order conservation Morse potential analysis

    Science.gov (United States)

    Shustorovich, Evgeny; Bell, Alexis T.

    1993-05-01

    Periodic trends in the decomposition of NO and its reduction to N 2 and NH 3 by CO and H 2 on transition metal surfaces have been analyzed theoretically using the bond order conservation Morse potential (BOCMP) method. The analysis is based on calculations of the energetics, the reaction enthalpies ΔH and activation barriers ΔH ∗, of elementary steps thought to comprise the mechanisms of the NO transformations. As the periodic series, the close-packed surfaces Pt(111), Rh(111), Ru(001), and Re(001) were chosen. The calculated heats of chemisorption Q of NH 3, NH 2, NH, NO, H 2O and OH are in good agreement with experiment. The activation barriers for dissociation of NO from a chemisorbed state, ΔE NOs∗ were found to decrease in the order Pt > Rh > Ru > Re. For reasonable values of QN and QO, in the zero-coverage extreme these activation barriers were calculated to be much smaller than the relevant heats of chemisorption QNO, so that dissociation of No upon heating is projected for all the surfaces studied with the possible exception of Pt(111). The presence of adsorbed N S and O S atoms may dramatically increase the values of ΔE NOS∗, for example, from 7-9 to 24-27 kcal/mol for Rh(100) and Rh(100)c(2 × 2)O,N, respectively. This sensitiv the values of ΔE NOs∗ to NO S coverage may explain the diversity of experimental results obtained for different coverages (exposu and temperatures even for the same single crystal face. The anisotropy of the values of QX(X = NO, N, O) for different surfaces and possible reconstructions of these surfaces also contribute to the balance between dissociation and desorption of NO. Of the two channels for recombinative desorption of N 2, 2N S→ N 2,g and N S + NO S→ N 2,g + O S, the latter has the smaller activati barrier. Because the N 2 formation barriers rapidly increase in the order Pt ˜ Rh ≪ Ru ≪ Re, Rh or Rh-Pt surfaces are projected to be the most efficient catalysts for NO reduction by CO (to N 2 and CO 2

  17. Shearography for Non-destructive Inspection with applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    Science.gov (United States)

    Lysak, Daniel B.

    2003-01-01

    The applicability of shearography techniques for non-destructive evaluation in two unique application areas is examined. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the B.4T gamma ray mask for the NASA Swift program. Using a vibration excitation, the more poorly bonded tiles are readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach.

  18. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces.

    Science.gov (United States)

    Wong, Keith T; Lewis, Nathan S

    2014-10-21

    The chemical, electronic, and structural properties of surfaces are affected by the chemical termination of the surface. Two-step halogenation/alkylation of silicon provides a scalable, wet-chemical method for grafting molecules onto the silicon surface. Unlike other commonly studied wet-chemical methods of surface modification, such as self-assembly of monolayers on metals or hydrosilylation on silicon, the two-step method enables attachment of small alkyl chains, even methyl groups, to a silicon surface with high surface coverage and homogeneity. The methyl-terminated Si(111) surface, by comparison to hydrogen-terminated Si(111), offers a unique opportunity to study the effects of the first surface bond connecting the overlayer to the surface. This Account describes studies of methyl-terminated Si(111), which have shown that the H-Si(111) and CH3-Si(111) surfaces are structurally nearly identical, yet impart significantly different chemical and electronic properties to the resulting Si surface. The structure of methyl-terminated Si(111) formed by a two-step halogenation/methylation process has been studied by a variety of spectroscopic methods. A covalent Si-C bond is oriented normal to the surface, with the methyl group situated directly atop a surface Si atom. Multiple spectroscopic methods have shown that methyl groups achieve essentially complete coverage of the surface atoms while maintaining the atomically flat, terraced structure of the original H-Si(111) surface. Thus, the H-Si(111) and CH3-Si(111) surface share essentially identical structures aside from the replacement of a Si-H bond with a Si-C bond. Despite their structural similarity, hydrogen and methyl termination exhibit markedly different chemical passivation. Specifically, CH3-Si(111) exhibits significantly greater oxidation resistance than H-Si(111) in air and in aqueous electrolyte under photoanodic current flow. Both surfaces exhibit similar thermal stability in vacuum, and the Si-H and Si

  19. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.

    Science.gov (United States)

    Shiraga, K; Suzuki, T; Kondo, N; Ogawa, Y

    2014-12-21

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  20. Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins.

    Science.gov (United States)

    Rinastiti, Margareta; Özcan, Mutlu; Siswomihardjo, Widowati; Busscher, Henk J

    2011-10-01

    This study evaluates effects of aging on repair bond strengths of microhybrid, nanohybrid, and nanofilled composite resins and characterizes the interacting surfaces after aging. Disk-shaped composite specimens were assigned to one of three aging conditions: (1) thermocycling (5,000 ×, 5-55 °C), (2) storage in water at 37 °C for 6 months, or (3) immersion in citric acid at 37 °C, pH 3 for 1 week; a non-aged group acted as the control. Two surface conditionings were selected: intermediate adhesive resin application (IAR-application) and chairside silica coating followed by silanization and its specific IAR-application (SC-application). Composite resins, of the same kind as their substrate, were adhered onto the substrates, and repair shear bond strengths were determined, followed by failure type evaluation. Filler particle exposure was determined by X-ray photoelectron spectroscopy and surface roughness analyzed using scanning electron and atomic force microscopy. Surface roughness increased in all composite resins after aging, but filler particle exposure at the surface only increased after thermocycling and citric acid immersion. Composite resin type, surface conditioning, and aging method significantly influenced the repair bond strengths (p water storage. Repair bond strengths in aged composite resins after IAR-application were always lower in non-aged ones, while SC-application led to higher bond strengths than IAR-application after thermocycling and water storage. In addition, SC-application led to more cohesive failures than after IAR-application, regardless the aging method.

  1. Critical surface energy of composite cement containing MDP (10-methacryloyloxydecyl dihydrogen phosphate) and chemical bonding to hydroxyapatite.

    Science.gov (United States)

    Dabsie, Firas; Grégoire, Geneviève; Sharrock, Patrick

    2012-01-01

    Self-adhesive composite cements are increasingly used for cementing inlays/onlays, intraradicular posts, crowns and laminate veneers. Wider clinical acceptance is driven by simpler and faster handling procedures, much like observed for self-etching adhesives. 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) is a bi-functional monomer incorporated as the reactive ingredient in a contemporary self-adhesive cement. We have examined the surface free energy parameters of this cement and studied the mode of action of the cement on dentine substrate by contact angle measurements to determine the critical surface energy of the cement. Retention of the infrared absorption bands characteristic of the acrylate moieties on the surface of hydroxyapatite particles suggests that MDP contributes to the overall bonding to dentine by forming ionic chemical bonds with surface calcium ions in dentine crystalites.

  2. Search for a metallic dangling-bond wire on n-doped H-passivated semiconductor surfaces

    DEFF Research Database (Denmark)

    Engelund, Mads; Papior, Nick Rübner; Brandimarte, Pedro

    2016-01-01

    We have theoretically investigated the electronic properties of neutral and n-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibiting metallic conduction for use in on-surface cir...

  3. Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    2011-01-01

    This study evaluates effects of aging on repair bond strengths of microhybrid, nanohybrid, and nanofilled composite resins and characterizes the interacting surfaces after aging. Disk-shaped composite specimens were assigned to one of three aging conditions: (1) thermocycling (5,000x, 5-55 degrees

  4. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions

    NARCIS (Netherlands)

    Ozcan, Mutlu; Barbosa, Silvia Helena; Melo, Renata Marques; Galhano, Graziela Avila Prado; Bottino, Marco Antonio

    2007-01-01

    Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions. Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6

  5. A Study on Effect of Surface Treatments on the Shear Bond Strength between Composite Resin and Acrylic Resin Denture Teeth.

    Science.gov (United States)

    Chatterjee, Nirmalya; Gupta, Tapas K; Banerjee, Ardhendu

    2011-03-01

    Visible light-cured composite resins have become popular in prosthetic dentistry for the replacement of fractured/debonded denture teeth, making composite denture teeth on partial denture metal frameworks, esthetic modification of denture teeth to harmonize with the characteristics of adjacent natural teeth, remodelling of worn occlusal surfaces of posterior denture teeth etc. However, the researches published on the bond strength between VLC composite resins and acrylic resin denture teeth is very limited. The purpose of this study is to investigate the effect of five different methods of surface treatments on acrylic resin teeth on the shear bond strength between light activated composite resin and acrylic resin denture teeth. Ninety cylindrical sticks of acrylic resin with denture teeth mounted atop were prepared. Various treatments were done upon the acrylic resin teeth surfaces. The samples were divided into six groups, containing 15 samples each. Over all the treated and untreated surfaces of all groups, light-cured composite resin was applied. The shear strengths were measured in a Universal Testing Machine using a knife-edge shear test. Data were analyzed using one way analysis of variance (ANOVA) and mean values were compared by the F test. Application of bonding agent with prior treatment of methyl methacrylate on the acrylic resin denture teeth resulted in maximum bond strength with composite resin.

  6. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  7. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  8. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  9. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions

    NARCIS (Netherlands)

    Ozcan, Mutlu; Barbosa, Silvia Helena; Melo, Renata Marques; Galhano, Graziela Avila Prado; Bottino, Marco Antonio

    2007-01-01

    Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions. Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6

  10. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  11. Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    2011-01-01

    This study evaluates effects of aging on repair bond strengths of microhybrid, nanohybrid, and nanofilled composite resins and characterizes the interacting surfaces after aging. Disk-shaped composite specimens were assigned to one of three aging conditions: (1) thermocycling (5,000x, 5-55 degrees C

  12. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  13. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  14. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  15. Effect of adhesive resin cements and post surface silanization on the bond strengths of adhesively inserted fiber posts.

    Science.gov (United States)

    Wrbas, Karl-Thomas; Altenburger, Markus Jörg; Schirrmeister, Jörg Fabian; Bitter, Kerstin; Kielbassa, Andrej Michael

    2007-07-01

    This study evaluated the tensile bond strengths and the effect of silanization of fiber posts inserted with different adhesive systems. Sixty DT Light Posts (size 1) were used. Thirty posts were pretreated with silane. The posts were cemented into form-congruent artificial root canals (12 mm) of bovine dentine. Six groups were formed: G1, Prime&Bond NT/Calibra; G2, Monobond-S+Prime&Bond NT/Calibra; G3, ED Primer/Panavia 21ex; G4, Monobond-S+ED Primer/Panavia 21ex; G5, RelyX Unicem; and G6, Monobond-S+RelyX Unicem. The mean (standard deviation) tensile bond strengths (megapascals) were 7.69 (0.85) for G1, 7.15 (1.01) for G2, 6.73 (0.85) for G3, 6.78 (0.97) for G4, 4.79 (0.58) for G5, and 4.74 (0.88) for G6. G1 achieved significantly higher bond strengths than G3 and G5; G3 had significantly higher values than G5 (P Silanization had no significant effect (P > .05, one-way analysis of variance). Tensile bond strengths were significantly influenced by the type of resin cement. Silanization of fiber post surfaces seems to have no clinical relevance.

  16. Evaluation of shear bond strength of composite resin to nonprecious metal alloys with different surface treatments

    OpenAIRE

    Yassini E.; Almasi S

    2007-01-01

    Background and Aim: Replacing fractured ceramometal restorations may be the best treatment option, but it is costly. Many different bonding systems are currently available to repair the fractured ceramometal restorations. This study compared the shear bond strength of composite to a base metal alloy using 4 bonding systems.Materials and Methods: In this experimental in vitro study, fifty discs, casted in a Ni-Cr-Be base metal alloy (Silvercast, Fulldent),were ground with 120, 400 and 600 grit...

  17. Comparison of shear bond strength and surface structure between conventional acid etching and air-abrasion of human enamel.

    Science.gov (United States)

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-11-01

    Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that enamel surface preparation using air-abrasion results in a significant lower

  18. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  19. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  20. Comparison of bond strength and surface morphology of dental enamel for acid and Nd-YAG laser etching

    Science.gov (United States)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Ratna, P.; Koteeswaran, D.

    1999-05-01

    Recently, laser pretreatment of dental enamel has emerged as a new technique in the field of orthodontics. However, the changes in the morphology of the enamel surface is very much dependent on the wavelength of laser, emission mode of the laser, energy density, exposure time and the nature of the substance absorbing the energy. Based on these, we made a comparative in vitro study on laser etching with acid etching with reference to their bond strength. Studies were conducted on 90 freshly extracted, non carious, human maxillary or mandibular anteriors and premolars. Out of 90, 60 were randomly selected for laser irradiation. The other 30 were used for conventional acid pretreatment. The group of 60 were subjected to Nd-YAG laser exposure (1060 nm, 10 Hz) at differetn fluences. The remaining 30 were acid pretreated with 30% orthophosphoric acid. Suitable Begg's brackets were selected and bound to the pretreated surface and the bond strength were tested using Instron testing machine. The bond strength achieved through acid pretreatment is found to be appreciably greater than the laser pretreated tooth. Though the bond strength achieved through the acid pretreated tooth is found to be significantly greater than the laser pretreated specimens, the laser pretreatement is found to be successful enough to produce a clinically acceptable bond strength of > 0.60 Kb/mm. Examination of the laser pre-treated tooth under SEM showed globule formation which may produce the mechanical interface required for the retention of the resin material.

  1. Effect of different mechanical and chemical surface treatments on the repaired bond strength of an indirect composite resin.

    Science.gov (United States)

    Kimyai, Soodabeh; Oskoee, Siavash Savadi; Mohammadi, Narmin; Rikhtegaran, Sahand; Bahari, Mahmoud; Oskoee, Parnian Alizadeh; Vahedpour, Hafez

    2015-02-01

    This study compared the effects of two mechanical surface preparation techniques, air abrasion and Nd:YAG laser, with the use of two adhesive systems, self-etch and etch and rinse, on the repair bond strengths of an indirect composite resin. One hundred fifty cylindrical samples of an indirect composite resin were prepared and randomly divided into six groups (n = 25). In groups 1-3, the composite resin surfaces were respectively prepared as follows: no roughening, roughening by air abrasion, and roughening by Nd:YAG laser, followed by application of an etch-and-rinse adhesive. In groups 4-6, the preparation techniques were respectively the same as those in groups 1-3, followed by application of a self-etch adhesive. Subsequently, a direct composite resin was added and repair bond strengths were measured. Data were analyzed with two-way ANOVA and post hoc Tukey's test. Mean bond strength value was significant based on the preparation technique (P composite resin with air abrasion and Nd:YAG laser resulted in a significant increase in the repair bond strength, with air abrasion being more effective. There were no significant differences in bond strength between the two adhesives.

  2. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  3. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange.

  4. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2014-12-01

    To evaluate the effect of different surface treatments on the microtensile bond strength (μTBS) of novel CAD/CAM restorative materials to self-adhesive resin cement. Two types of CAD/CAM restorative materials (Vita Enamic [VE] and Lava Ultimate [LU]) were used. The specimens were divided into five groups in each test according to the surface treatment performed; Gr 1 (control; no treatment), Gr 2 (sandblasted [SB]), Gr 3 (SB+silane [S]), Gr 4 (hydrofluoric acid [HF]), and Gr 5 (HF+S). A dual-curing self-adhesive resin cement (Bifix SE [BF]) was applied to each group for testing the adhesion after 24 h of storage in distilled water or after 30 days using the μTBS test. Following fracture testing, specimens were examined with a stereomicroscope and SEM. Surface roughness and morphology of the CAD/CAM restorative materials were characterized after treatment. Data were analyzed using ANOVA and Tukey's test. The surface treatment, type of CAD/CAM restorative material, and water storage periods showed a significant effect on the μTBS (p0.05). On the other hand, for the VE/BF system, surface treatment with HF+S showed higher bond strength values compared with SB and HF surface treatments (pCAD/CAM restorative materials was modified after treatments. The effect of surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement is material dependent. The VE/BF CAD/CAM material provided higher bond strength values compared with the LU/BF CAD/CAM material.

  5. Microtensile Bond Strength of Composite Cement to Novel CAD/CAM Materials as a Function of Surface Treatment and Aging.

    Science.gov (United States)

    Lise, D P; Van Ende, A; De Munck, J; Vieira, Lcc; Baratieri, L N; Van Meerbeek, B

    To evaluate the effect of different surface treatments on the bond strength to a composite and a polymer-infiltrated ceramic CAD/CAM block after six-month artificial aging. Two types of CAD/CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were cut in slabs of 4-mm thickness, divided into six groups, and subjected to the following surface treatments: group 1: no treatment; group 2: sandblasting (SB); group 3: SB + silane (Si); group 4: SB + Si + flowable composite (see below); group 5: 5% hydrofluoric acid etching (HF) + Si; and group 6: 37% phosphoric acid etching (H3PO4) + Si. Sections of the same group were luted together (n=3: 3 sandwich specimens/group) using a dual-cure self-adhesive cement for all groups, except for the sections of group 4 that were luted using a light-curing flowable composite. After three weeks of storage in 0.5% chloramine at 37°C, the sandwich specimens were sectioned in rectangular microspecimens and trimmed at the interface to a dumbbell shape (1.1-mm diameter). One half of the specimens was subjected to a microtensile bond strength (μTBS) test, and the other half was tested after six months of water storage (aging). Data were statistically analyzed with a linear mixed-effects model for the factors surface treatment, material type, and aging, together with their first-degree interactions (α=0.05). The lowest bond strengths were obtained in the absence of any surface treatment (group 1), while the highest μTBSs were obtained when the surface was roughened by either SB or HF, this in combination with chemical adhesion through Si. Loss in bond strength was observed after six-month aging when either surface roughening or silanization, or both, were omitted. Both the composite and polymer-infiltrated ceramic CAD/CAM blocks appeared equally bonding-receptive regardless of the surface treatment used. Creating a microretentive surface by either SB or HF, followed by chemical adhesion using Si, is mandatory to maintain the bond strength

  6. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface.

    Science.gov (United States)

    Han, Zhen-lin; Han, Shuang-yan; Zheng, Sui-ping; Lin, Ying

    2009-11-01

    To increase the thermostability of Rhizomucor miehei lipase, the software Disulfide by Design was used to engineer a novel disulfide bond between residues 96 and 106, and the corresponding double cysteine mutants were constructed. The R. miehei lipase mutant could be expressed by Pichia pastoris in a free secreted form or could be displayed on the cell surface. The new disulfide bond spontaneously formed in the mutant R. miehei lipase. Thermostability was examined by measuring of hydrolysis activity using 4-nitrophenyl caprylate as a substrate. The engineered disulfide bond contributed to thermostability in the free form of the R. miehei lipase variant. The variant displayed on the yeast cell surface had significantly increased residual hydrolytic activity in aqueous solution after incubation at 60 degrees C for 5 h and increased synthetic activity in organic solvent at 60 degrees C. These results indicated that yeast surface display might improve the stability of R. miehei lipase, as well as amplifying the thermostability through the engineered disulfide bond.

  7. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  8. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material

    Directory of Open Access Journals (Sweden)

    Saadet Atsu

    2013-07-01

    Full Text Available OBJECTIVE: This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling. MATERIAL AND METHODS: Fifty rectangular heat-polymerized acrylic resin (QC-20 specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10 according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive (control; Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System; Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS and Fourier Transform Infrared spectrometer (FTIR analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces. RESULTS: The highest bond strength test value was observed for Group A (1.35±0.13; the lowest value was for Group S (0.28±0.07 and Group SCSIL (0.34±0.03. Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces. CONCLUSION: Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone

  9. Modeling and analysis of the electromechanical behavior of surface-bonded piezoelectric actuators using finite element method

    CERN Document Server

    Yu, Huangchao

    2016-01-01

    Piezoelectric actuators have been widely used to form a self-monitoring smart system to do Structural health monitoring (SHM). One of the most fundamental issues in using actuators is to determine the actuation effects being transferred from the actuators to the host structure. This report summaries the state of the art of modeling techniques for piezoelectric actuators and provides a numerical analysis of the static and dynamic electromechanical behavior of piezoelectric actuators surface-bonded to an elastic medium under in-plane mechanical and electric loads using finite element method. Also case study is conducted to study the effect of material properties, bonding layer and loading frequency using static and harmonic analysis of ANSYS. Finally, stresses and displacements are determined, and singularity behavior at the tips of the actuator is proved. The results indicate that material properties, bonding layers and frequency have a significant influence on the stresses transferred to the host structure.

  10. Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.

    OpenAIRE

    Xia, Z; Goldsmith, H L; van de Ven, T G

    1994-01-01

    Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%...

  11. Effect of different surface treatments on the composite-composite repair bond strength.

    Science.gov (United States)

    Rathke, Andreas; Tymina, Yana; Haller, Bernd

    2009-09-01

    The aim of this study was to investigate the effect of different mechanical and adhesive treatments on the bond strength between pre-existing composite and repair composite using two aging times of the composite to be repaired. Standardized cylinders were made of a microhybrid composite (Spectrum TPH) and stored in saline at 37 degrees C for 24 h (n = 140) or 6 months (n = 140). Three types of mechanical roughening were selected: diamond-coated bur followed by phosphoric acid etching, mini sandblaster with 50-microm aluminum oxide powder, and 30-microm silica-coated aluminum oxide powder (CoJet Sand), respectively. Adhesive treatment was performed with the components of a multi-step bonding system (OptiBond FL) or with a one-bottle primer-adhesive (Excite). In the CoJet Sand group, the effect of a silane coupling agent (Monobond-S) was also investigated. The repair composite (Spectrum TPH) was applied into a mould in three layers of 1 mm, each separately light-cured for 40 s. Repair tensile bond strengths were determined after 24-h storage. Mechanical and adhesive treatment had significant effects on repair bond strength (P OptiBond FL Adhesive), adhesive treatments significantly increased repair bond strengths to 6-month-old composite when compared to the controls without adhesive. Adhesive treatment of the mechanically roughened composite is essential for achieving acceptable repair bond strengths. The more complicated use of silica-coated particles for sandblasting followed by a silane coupling agent had no advantage over common bonding systems.

  12. Shear bond strength of self-adhering flowable composite on dentin surface as a result of scrubbing pressure and duration

    Directory of Open Access Journals (Sweden)

    Ferry Jaya

    2012-09-01

    Full Text Available Background: Self-adhering flowable composite is a combination of composite resin and adhesive material. Its application needs scrubbing process on the dentin surface, but sometimes it is difficult to determine the pressure and duration of scrubbing. Purpose: This study was aimed to analyze the effect of scrubbing pressure and duration on shear bond strength of self-adhering flowable composite to dentin surface Methods: Fifty four mandibulary third molar were cut to get the dentin surface and divided into nine groups (n = 6. Dentin surface was scrubbed with 1, 2, and 3 grams of scrubbing pressure, each for 15, 20, and 25 seconds respectively. surface was scrubbed with 1, 2, and 3 grams of scrubbing pressure, each for 15, 20, and 25 seconds respectively. Composite resin was applied incrementally and polymerized for 20 seconds. All specimens were immersed in saline solution at 37º C for 24 hours. Shear bond strength was tested for all specimens by using Universal Testing Machine (Shimadzu AG-5000E, Japan at a crosshead speed of 1 mm/minute and analyzed by ANOVA and Post Hoc Test Bonferonni. The interface between self-adhering flowable interface between self-adhering flowable composite and dentin was observed with a Scanning Electron Microscope (JEOL JSM 6510LA. Results: The highest shear bond strength was obtained by 3 grams scrubbing pressure for 25 seconds or equal to applying the brush applicator in 0º relative to dentin surface. Conclusion: Increasing the scrubbing pressure and duration will increase the shear bond strength of self adhering flowable composite resin to dentinal surface. The highest shear bond strength was obtained when the applicator in 0º relative to dentin surface. Latar belakang: Self-adhering flowable composite merupakan gabungan resin komposit dengan material adhesif yang dalam penggunaannya memerlukan teknik scrubbing pada permukaan dentin, namun sulit untuk menentukan besar tekanan yang tepat saat scrubbing. Tujuan

  13. Effect of four different surface treatments on shear bond strength of three porcelain repair systems: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ritesh Gourav

    2013-01-01

    Full Text Available Background: Ceramic fracture in metal ceramic restorations are serious and pose an aesthetic and functional dilemma both for the patients and the dentist. This has created a demand for the development of practical repair options which do not necessitate the removal and remake of entire restorations. Aim: To evaluate and compare the effect of four different surface treatments on shear bond strength of metal ceramic specimens with three commercially available porcelain repair systems. Materials and Methods: Specimens were fabricated with a base-metal ceramic alloy and divided into three groups, to evaluate three porcelain repair systems. Each group was divided into four subgroups based on surface treatment (A sandblasting, (B sandblasting followed by etching with 9% HF (Hydrofluoric acid on surrounding ceramic, (C Use of a diamond bur on exposed metal followed by etching with 37% H 3 PO 4 and (D Control groups (D 1 , D 2 , D 3 for three groups of porcelain repair system which was not subjected to further treatment after finishing with 240 grit silicon carbide paper grinding. Shear bond strength of each group of specimens based on surface treatment were evaluated with a universal testing machine after storing in distilled water for 7 days. One way ANOVA and Tukey-HSD procedure were used to compare the mean values between and among the groups. Results: The mean shear bond strength of group III (10.402 ± 1.055 were significantly higher than group I (8.647 ± 0.990 and group II (8.099 ± 0.600 for all surface treatments. However the mean values of shear bond strength of sub-group A were significantly higher than sub-group C and D but were not significantly higher than sub-group B. Conclusion: The results of this study suggest that in fractured metal ceramic restorations the exposed metal surface treated with sandblasting or sandblasting and etching the surrounding ceramic surface with HF can increase the shear bond strength of the repaired metal

  14. Small cluster models of the surface electronic structure and bonding properties of titanium carbide, vanadium carbide, and titanium nitride.

    Science.gov (United States)

    Didziulis, Stephen V; Butcher, Kristine D; Perry, Scott S

    2003-12-01

    Density functional theory (DFT) calculations on stoichiometric, high-symmetry clusters have been performed to model the (100) and (111) surface electronic structure and bonding properties of titanium carbide (TiC), vanadium carbide (VC), and titanium nitride (TiN). The interactions of ideal surface sites on these clusters with three adsorbates, carbon monoxide, ammonia, and the oxygen atom, have been pursued theoretically to compare with experimental studies. New experimental results using valence band photoemission of the interaction of O(2) with TiC and VC are presented, and comparisons to previously published experimental studies of CO and NH(3) chemistry are provided. In general, we find that the electronic structure of the bare clusters is entirely consistent with published valence band photoemission work and with straightforward molecular orbital theory. Specifically, V(9)C(9) and Ti(9)N(9) clusters used to model the nonpolar (100) surface possess nine electrons in virtually pure metal 3d orbitals, while Ti(9)C(9) has no occupation of similar orbitals. The covalent mixing of the valence bonding levels for both VC and TiC is very high, containing virtually 50% carbon and 50% metal character. As expected, the predicted mixing for the Ti(9)N(9) cluster is somewhat less. The Ti(8)C(8) and Ti(13)C(13) clusters used to model the TiC(111) surface accurately predict the presence of Ti 3d-based surface states in the region of the highest occupied levels. The bonding of the adsorbate species depends critically on the unique electronic structure features present in the three different materials. CO bonds more strongly with the V(9)C(9) and Ti(9)N(9) clusters than with Ti(9)C(9) as the added metal electron density enables an important pi-back-bonding interaction, as has been observed experimentally. NH(3) bonding with Ti(9)N(9) is predicted to be somewhat enhanced relative to VC and TiC due to greater Coulombic interactions on the nitride. Finally, the interaction with

  15. The effect of Bond number on pool boiling for mini-fin surfaces and different working fluids

    Science.gov (United States)

    Strąk, Ewelina; Pastuszko, Robert

    2016-03-01

    Experimental nucleate pool boiling data were collected for structures in the form of extended surfaces sintered with perforated foil. The article describes experimental investigations for two kinds of surfaces: smooth and mini-fins with sintered perforated foil (MFP). The MFP surfaces were manufactured out of perforated copper foil (pore diameters: 0.05 - 0.3 mm) sintered with the mini-fins, uniformly spaced on the base surface. The experiments were carried out at atmospheric pressure for four kinds of the fluids: water, ethanol, FC-72 and Novec 649. The results for these working fluids were compared in terms of the Bond number and other dimensionless parameters. For all working fluids, the heat transfer coefficients obtained for the MFP surfaces were from 2 to 5 times higher than those for the smooth surface. Using a regression analysis with reference to selected physical properties and several characteristic dimensions, it was possible to develop a correlation for the Nusselt number.

  16. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  17. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    Science.gov (United States)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  18. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.

    Science.gov (United States)

    El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie

    2017-03-09

    The purpose of this study is to determine the CO2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO2/HF/Si; group D, Li: HF/Si; group E, Zr: CO2/Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.

  19. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  20. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment

    Directory of Open Access Journals (Sweden)

    Harsimran Kaur

    2015-01-01

    Full Text Available Purpose: To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Materials and Methods: Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P and rest 80 to heat-cured resilient liner (Molloplast B. Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm in the space provided by a spacer of 3 mm, thermocycled (5-55°C for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. Results: One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student′s t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Conclusion: Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  1. Shearography for Non-Destructive Evaluation with Applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    Science.gov (United States)

    Lysak, Daniel B.

    2003-01-01

    In this report we examine the applicability of shearography techniques for nondestructive inspection and evaluation in two unique application areas. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the BAT gamma ray mask for the NASA Swift program. By exciting the mask with a vibration, the more poorly bonded tiles can be distinguished by their greater displacement response, which is readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. Generally speaking, the results show good agreement. Further investigation would be useful to optimize certain test parameters such as vibration frequency and amplitude. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach. For the particular panel examined here, some scaling issues should be examined further to resolve the measurement scale down to the very small size of the core cells. In addition, further development should be undertaken to determine the general applicability of the new approach and to establish a firm quantitative foundation.

  2. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  3. Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics, volume exclusion, and hydrogen bonding

    Science.gov (United States)

    Spruijt, Evan; Biesheuvel, P. M.; de Vos, Wiebe M.

    2015-01-01

    We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between polymer chains and ions directly into account. To implement those interactions, we use a modified hard-sphere equation of state, adapted for mixtures of connected beads. Our model is applicable to neutral, charged, and ionizable surfaces and polymer chains alike and accounts for polarizability effects of the adsorbed layer and chemical interactions between polymer chains and the surface. We compare our model predictions to data of a classical system for polymer adsorption: neutral poly(N -vinylpyrrolidone) (PVP) on silica surfaces. The model shows that PVP adsorption on silica is driven by surface hydrogen bonding with an effective maximum binding energy of about 1.3 kBT per PVP segment at low p H . As the p H increases, the Si-OH groups become increasingly dissociated, leading to a lower capacity for H bonding and simultaneous counterion accumulation and volume exclusion close to the surface. Together these effects result in a characteristic adsorption isotherm, with the adsorbed amount dropping sharply at a critical p H . Using this model for adsorption data on silica surfaces cleaned by either a piranha solution or an O2 plasma, we find that the former have a significantly higher density of silanol groups.

  4. Towards bond selective chemistry from first principles: methane on metal surfaces.

    Science.gov (United States)

    Shen, X J; Lozano, A; Dong, W; Busnengo, H F; Yan, X H

    2014-01-31

    Controlling bond-selective chemical reactivity is of great importance and has a broad range of applications. Here, we present a molecular dynamics study of bond selective reactivity of methane and its deuterated isotopologues (i.e., CH(4-x)D(x), x=0,1,2,3,4) on Ni(111) and Pt(111) from first principles calculations. Our simulations allow for reproducing the full C-H bond selectivity recently achieved experimentally via mode-specific vibrational excitation and explain its origin. Moreover, we also predict the hitherto unexplored influence of the molecular translational energy on such a selectivity as well as the conditions under which the full selectivity can be realized for the a priori less active C-D bond.

  5. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI; Yanrong

    2004-01-01

    Solid Films, 2000, 360: 107-117.[26]Gelatt, C. D., Williams, A. R., Moruzzi, V. L., Theory of bonding of transition metals to nontransition metals, Phys. Rev., 1983, B27: 2005-2013.[27]Beche, A. D., Edgecombe, K. E., A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys., 1990, 92: 5397-5403.[28]Tsirelson, V., Stash, A., Determination of the electron localization function from electron density, Chem. Phys. Lett., 2002, 351: 142-148.[29]Santis, D. L., Resta, R., Surface reconstructions and bonding via the electron localization function: the case of Si(001), Solid State Comm., 1999, 111: 583-588.[30]Santis, L. D., Resta, R., Electron localization at metal surfaces, Sur. Sci., 2000, 450: 126-132.[31]Jr. Hector, L. G., Opalka, S. M., Nitowski, G. A. Et al., Investigation of vinyl phosphonic acid/hydroxylated α-Al2O3(0001) reaction enthalpies, Surf. Sci., 2001, 494: 1-20.

  6. Oligomeric Amyloid-β Peptide on Sialylic Lewisx–Selectin Bonding at Cerebral Endothelial Surface

    Directory of Open Access Journals (Sweden)

    Sholpan Askarova

    2014-12-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a chronic neurodegenerative disorder, which affects approximately 10% of the population aged 65 and 40% of people over the age 80. Currently, AD is on the list of diseases with no effective treatment. Thus, the study of molecular and cellular mechanisms of AD progression is of high scientific and practical importance. In fact, dysfunction of the blood-brain barrier (BBB plays an important role in the onset and progression of the disease. Increased deposition of amyloid b peptide (Aβ in cerebral vasculature and enhanced transmigration of monocytes across the BBB are frequently observed in AD brains and are some of the pathological hallmarks of the diseases. Since the transmigration of monocytes across the BBB is both a mechanical and a biochemical process, the expression of adhesion molecules and mechanical properties of endothelial cells are the critical factors that require investigation.Methods: Because of recent advances in the biological applications of atomic force microscopy (AFM, we applied AFM with cantilever tips bio-functionalized by sLex in combination with the advanced immunofluorescent microscopy (QIM to study the direct effects of Aβ42 oligomers on the selectins expression, actin polymerization, and cellular mechanical and adhesion properties in cerebral endothelial cells (mouse bEnd3 line and primary human CECs and find a possible way to attenuate these effects. Results: QIM results showed that Aβ42 increased the expressions of P-selectin on the cell surface and enhanced actin polymerization. Consistent with our QIM results, AFM data showed that Aβ42 increased the probability of cell adhesion with sLex-coated cantilever and cell stiffness. These effects were counteracted by lovstatin, a cholesterol-lowering drug.  Surprisingly, the apparent rupture force of sLex-selectin bonding was significantly lower after treatment with Aβ42, as compared with the control (i.e. no treatment

  7. The effects of different surface treatments on the shear bond strength of composite resin to machined titanium

    Science.gov (United States)

    Aljadi, Mohammad

    Purpose: The purpose of this study was to evaluate the shear bond strength between machined titanium and composite resin using different surface treatments. Materials and Methods: Titanium (Ti-6Al-4V) specimens were ground with 600 grit SiC paper and randomly divided into 6 groups (n=20/group). Group #1 (Control): samples were sandblasted with 110 microm Al2 O3 for 10 sec. Group #2 (Rocatec): samples were treated with the Rocatec system following the manufacturer's directions but the silanization step was eliminated. Group #3 (Silano Pen): samples were treated with the Silano Pen system. Group #4 (H2SO4 etched): samples were sandblasted with 110 microm Al2O3 for 10 sec and etched with 48% H2SO4 for 60 minutes at 60 oC. Group#5 (acid etching + Rocatec): samples received both treatments as described in Groups 4 and 2, respectively. Group #6 (acid etching + Silano Pen): samples received both treatments as described in Groups 4 and 3, respectively. Composite was bonded to the treated titanium surface, half of the specimens from each group (n=10/group) were subjected to thermocycling, and the samples were tested for shear bond strength in a universal testing machine. Representative samples from each group were evaluated with SEM. Results: Two-way ANOVA revealed that there were significant differences (p silanization step in the Rocatec system is a critical step and eliminating it may dramatically alter its effectiveness. 3) Combining two surface treatments may not always result in an additive effect. 4) Thermocycling significantly decreased the bond strength regardless of the surface treatment used.

  8. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  9. A study on poly (N-vinyl-2-pyrrolidone covalently bonded NiTi surface for inhibiting protein adsorption

    Directory of Open Access Journals (Sweden)

    Hongyan Yu

    2016-12-01

    Full Text Available Near equiatomic NiTi alloys have been extensively applied as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. It has been demonstrated that surfaces capable of preventing plasma protein adsorption could reduce the reactivity of biomaterials with human blood. This motivated a lot of researches on the surface modification of NiTi alloy. In the present work, following heat and alkaline treatment and silanization by trichlorovinylsilane (TCVS, coating of poly (N-vinyl-2-pyrrolidone (PVP was produced on the NiTi alloy by gamma ray induced chemical bonding. The structures and properties of modified NiTi were characterized and in vitro biocompatibility of plasma protein adsorption was investigated. The results indicated that heat treatment at 823 K for 1 h could result in the formation of a protective TiO2 layer with “Ni-free” zone on NiTi surface. It was found that PVP was covalently bonded on NiTi surface to create a hydrophilic layer for inhibiting protein adsorption on the surface. The present work offers a green approach to introduce a bioorganic surface on metal and other polymeric or inorganic substrates by gamma irradiation.

  10. Effect of different surface treatments on microtensile bond strength of two resin cements to aged simulated composite core materials.

    Science.gov (United States)

    Esmaeili, Behnaz; Alaghehmand, Homayoon; Shakerian, Mohadese

    2015-01-01

    Roughening of the aged composite resin core (CRC) surface seems essential for durable adhesion. The aim of this study was to investigate the influence of various surface treatments and different resin cements on microtensile bond strength (µ TBS) between two aged core build-up composites (CBCs) and feldspathic ceramic. A total of 16 composite blocks made of two CBCs, Core.it and Build-it were randomly assigned to four surface treatment groups after water storage and thermocycling (2 weeks and 500 cycles). Experimental groups included surface roughening with air abrasion (AA), hydrofluoric acid, pumice, and laser and then were bonded to computer-aided design/computer-aided manufacturing feldspathic ceramic blocks using two resin cements, Panavia F2 (PF), and Duo-link (DL). The µ TBS was tested, and the fracture mode was assessed. The data were analyzed with multiple analysis of variance to estimate the contribution of different surface treatments, resin cements, and two aged CRCs on µ TBS. Statistical significance level was set at α strength (P strength was in AA group cemented with PF (31.83 MPa). The most common failure mode was cohesive fracture in the cement. Different surface treatments had different effects on µ TBS of aged CRCs to feldspathic ceramics. PF was significantly better than DL.

  11. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  12. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.

    Science.gov (United States)

    Kim, Byeong-Su; Park, Sang Wook; Hammond, Paula T

    2008-02-01

    We present the integration of amphiphilic block copolymer micelles as nanometer-sized vehicles for hydrophobic drugs within layer-by-layer (LbL) films using alternating hydrogen bond interactions as the driving force for assembly for the first time, thus enabling the incorporation of drugs and pH-sensitive release. The film was constructed based on the hydrogen bonding between poly(acrylic acid) (PAA) as an H-bond donor and biodegradable poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as the H-bond acceptor when assembled under acidic conditions. By taking advantage of the weak interactions of the hydrogen-bonded film on hydrophobic surfaces, it is possible to generate flexible free-standing films of these materials. A free-standing micelle LbL film of (PEO-b-PCL/PAA)60 with a thickness of 3.1 microm was isolated, allowing further characterization of the bulk film properties, including morphology and phase transitions, using transmission electron microscopy and differential scanning calorimetry. Because of the sensitive nature of the hydrogen bonding employed to build the multilayers, the film can be rapidly deconstructed to release micelles upon exposure to physiological conditions. However, we could also successfully control the rate of film deconstruction by cross-linking carboxylic acid groups in PAA through thermally induced anhydride linkages, which retard the drug release to the surrounding medium to enable sustained release over multiple days. To demonstrate efficacy in delivering active therapeutics, in vitro Kirby-Bauer assays against Staphylococcus aureus were used to illustrate that the drug-loaded micelle LbL film can release significant amounts of an active antibacterial drug, triclosan, to inhibit the growth of bacteria. Because the micellar encapsulation of hydrophobic therapeutics does not require specific chemical interactions, we believe this noncovalent approach provides a new route to integrating active small

  13. Evolution of silica coating layer on titanium surface and the effect on the bond strength between titanium and porcelain

    Science.gov (United States)

    Wang, Aili; Ge, Chaoqun; Yin, Hengbo; Gao, Yu; Jiang, Tao; Xia, Chunlin; Wu, Gang; Wu, Zhanao

    2013-07-01

    SiO2 coating layers were uniformly anchored at the surfaces of sandblasted/pre-oxidized commercially pure titanium (CP-Ti) substrates by the chemical deposition method using Na2SiO3 as the SiO2 precursor at the pH values of 8-10 with the Na2SiO3 concentrations of 0.05-0.5 mol/L. The SiO2 coating layers were composed of small-sized SiO2 nanoparticles with the average particle sizes ranging from 18.0 to 20.5 nm. After firing porcelain (Ti-22) on SiO2-coated sandblasted/pre-oxidized CP-Ti substrates, the bond strengths of CP-Ti and porcelain ranged from 33.56 to 40.43 MPa, which were detected by the three-point flexure bend test method. In the absence of SiO2 interlayer, the bond strength of sandblasted/pre-oxidized CP-Ti and porcelain was 25.6 MPa. The bond strengths in the presence of SiO2 interlayer were higher than that in the absence of SiO2 interlayer. On the other hand, when the CP-Ti substrates were only treated by hydrochloric acid pickling, the bond strengths of SiO2-coated acid-pickled CP-Ti and porcelain ranged from 12.99 to 16.59 MPa. The chemical interaction between the SiO2 interlayers and the oxidized CP-Ti surfaces probably played an important role in increasing the bond strength of CP-Ti and porcelain.

  14. Polysiloxane layers created by sol-gel and photochemistry: ideal surfaces for rapid, low-cost and high-strength bonding of epoxy components to polydimethylsiloxane.

    Science.gov (United States)

    Wilhelm, Elisabeth; Deshpande, Kaustubh; Kotz, Frederik; Schild, Dieter; Keller, Nico; Heissler, Stefan; Sachsenheimer, Kai; Länge, Kerstin; Neumann, Christiane; Rapp, Bastian E

    2015-04-07

    In this article we introduce and compare three techniques for low-cost and rapid bonding of stereolithographically structured epoxy components to polydimethylsiloxane (PDMS). In short, we first create a polysiloxane layer on the epoxy surface via silane surface coupling and polymerization. Afterwards, the modified epoxy surface can be bonded to a PDMS component at room temperature using a handheld corona discharger, which is a commonly used low-cost technique for bonding two PDMS components. Using these methods bonds of desirable strength can be generated within half an hour. Depending on the epoxy resin, we found it necessary to modify the silanization procedure. Therefore, we provide a total of three different silanization techniques that allow bonding of a wide variety of stereolithographically structurable epoxy resins. The first technique is a UV-light induced silanization process which couples a silane that contains an epoxy-ring ((3-glycidoxypropyl)trimethoxysilane (GPTMS)). For surfaces that cannot be modified with this silane we use dimethoxydimethylsilane (DMDMS). This silane can either be coupled to the surface by a sol-gel process or UV-light induced polymerisation. The sol-gel process which is a heat induced surface modification technique results in high bond strengths. Because of the heat which triggers the sol-gel process, this technique is limited to epoxy polymers with high glass transition temperatures. For the majority of stereolithographically structured epoxy resins which typically have glass transition temperatures of around 60 °C the light-induced bonding technique is preferable. For all three techniques we performed DIN EN-conform tensile testing demonstrating maximum bond strengths of up to 350 kPa which is comparable with bond strengths reported for PDMS-to-PDMS bonds. For all bond methods, long-term stability as well as hydrolytic stability was assessed.

  15. Enhanced bonding property of cold-sprayed Zn-Al coating on interstitial-free steel substrate with a nanostructured surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.L. [University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Advanced Technology Division, Research Institute, Baoshan Iron & Steel Co., Ltd., 655 Fujin Road, Shanghai 201900 (China); Wang, Z.B., E-mail: zbwang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J.B. [Advanced Technology Division, Research Institute, Baoshan Iron & Steel Co., Ltd., 655 Fujin Road, Shanghai 201900 (China); Lu, K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-11-01

    Highlights: • A nanostructured surface layer was produced on hot-rolled interstitial-free steel. • Zn-Al coating was cold-sprayed on the steel plate with nanostructured surface layer. • Bonding strength of the coating on the nanostructured surface increases ∼30%. • Improved bonding property was due to promoted diffusion and hardness in surface layer. • No further increase in bonding property was achieved after annealing at 400 °C. - Abstract: By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.

  16. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Hong Liu; Yue-Tong Qian; Song Zhu; Su-Qian Zhao

    2014-01-01

    In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested:(i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts:DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (a50.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts.

  17. Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Mu, Rentao; Dahal, Arjun; Lyubinetsky, Igor; Dohnálek, Zdenek; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-07-20

    The coordination of H2 to a metal center via polarization of its bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru4+ sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a ‘banana-bond.’ We show that the Ru-H2 banana-bond can be destabilized, and split, using visible light. Photodesorption of H2 (or D2) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H2 banana-bond involves an interband transition in RuO2 which effectively diminishes its Lewis acidity, and thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO2 given its metallic properties. Therefore, this common thermal co-catalyst employed in promoting water splitting is, itself, photo-active in the visible.

  18. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon.

    Science.gov (United States)

    Buriak, Jillian M; Sikder, Md Delwar H

    2015-08-05

    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  19. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  20. Effect of ultrashort pulsed laser on bond strength of Y-TZP zirconia ceramic to tooth surfaces.

    Science.gov (United States)

    Unal, Server Mutluay; Nigiz, Remzi; Polat, Zelal Seyfioglu; Usumez, Aslıhan

    2015-01-01

    There is limited knowledge about the effects of ultrashort pulsed laser on zirconia ceramic surfaces. The aim of this study was to evaluate the effects of ytterbium (Yb)-doped fiber laser and other surface treatment methods -namely, sandblasting with 110 µm aluminum oxide or 30 µm silica-coated alumina on shear bond strength (SBS) of zirconia to tooth surface. A total of 128 zirconium oxide disks were made by using CAD-CAM technology. Disk surfaces were sandblasted with Al2O3 particles or silica-coated alumina or irradiated with Yb-doped fiber based nanosecond pulsed laser at 85W output power at 25 kHz. Disks were luted to dentin using two different resin cement. SBS of each specimen was measured. Results were statistically analyzed using two-way analysis of variance (ANOVA) and Bonferroni and Dunnett tests (p<0.005). Highest bond strength was obtained when zirconia surface was pretreated with Yb-doped fiber-based nanosecond pulsed laser regardless of the resin cement used.

  1. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

    Science.gov (United States)

    Eraslan, Oguz

    2016-01-01

    PURPOSE To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (Pacid etching. The surface topography of ceramics was affected by surface treatments. PMID:27141250

  2. π-Hydrogen Bonding of Aromatics on the Surface of Aerosols: Insights from Ab Initio and Molecular Dynamics Simulation.

    Science.gov (United States)

    Feng, Ya-Juan; Huang, Teng; Wang, Chao; Liu, Yi-Rong; Jiang, Shuai; Miao, Shou-Kui; Chen, Jiao; Huang, Wei

    2016-07-14

    Molecular level insight into the interaction between volatile organic compounds (VOCs) and aerosols is crucial for improvement of atmospheric chemistry models. In this paper, the interaction between adsorbed toluene, one of the most significant VOCs in the urban atmosphere, and the aqueous surface of aerosols was studied by means of combined molecular dynamics simulations and ab initio quantum chemistry calculations. It is revealed that toluene can be stably adsorbed on the surface of aqueous droplets via hydroxyl-π hydrogen bonding between the H atoms of the water molecules and the C atoms in the aromatic ring. Further, significant modifications on the electrostatic potential map and frontier molecular orbital are induced by the solvation effect of surface water molecules, which would affect the reactivity and pathway of the atmospheric photooxidation of toluene. This study demonstrates that the surface interactions should be taken into consideration in the atmospheric chemical models on oxidation of aromatics.

  3. Structure determination of the Si(001)-(2 x 1)-H reconstruction by surface X-ray diffraction: Weakening of the dimer bond by the addition of hydrogen

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Baker, J.; Nielsen, M.;

    2000-01-01

    The atomic structure of the monohydride Si(001)-(2 x 1)-H reconstruction has been investigated by surface X-ray diffraction. Atomic relaxations down to the eighth layer have been determined. The bond length of the hydrogenated silicon dimers was found to be 2.47 +/- 0.02 Angstrom. which is longer...... than the dimer bond of the clean (2 x 1)-reconstructed Si(001) surface and also 5% longer than the bulk bond length of 2.35 Angstrom. The differences to the (2 x 1) structure of the clean surface are discussed in terms of the elimination of the weak pi-bond character of the dimer bond by the addition...

  4. The effect of working pressure on the chemical bond structure and hydrophobic properties of PET surface treated by N ion beams bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Ding Wanyu, E-mail: dwysd_2000@163.com [Engineering Research Center of Optoelectronic Materials and Devices Education Department of Liaoning Province, Dalian, 116028 (China) and School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028 (China) and Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian, 116024 (China); Ju Dongying, E-mail: dyju@sit.ac.jp [Department of Material Science and Engineering, Saitama Institute of Technology Fukaya, 369-0293 (Japan); Chai Weiping, E-mail: wpchai@djtu.edu.cn [Engineering Research Center of Optoelectronic Materials and Devices Education Department of Liaoning Province, Dalian, 116028 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028 (China)

    2010-09-01

    Polyethylene terephthalate (PET) surface was bombarded by N ion beams at room temperature. Varying the working pressure of the ion beams, PET surfaces with different composition and properties were obtained. Characterization by X-ray photoelectron spectrometry showed that only on film surface, ester bonds, especially C-O bonds, were broken and N element chemical bonded with C. The influence depth was less than 5 nm because of the lower ion energy (about 10{sup 3} eV). Contact angle results revealed that with increasing the working pressure of ion beams, the contact angle of PET surface to pure water increased from 51 deg. to 130 deg.. With these results, one conclusion could be deduced that the hydrophilic and hydrophobic properties of PET surface could be influenced by N atom chemical bond with C, which in turn is controlled by the working pressure of N ion beams.

  5. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.

    2012-07-19

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  6. Selective immobilization of nanoparticles on surfaces by molecular recognition using simple multiple H-bonding functionalities

    NARCIS (Netherlands)

    Brom, Coenraad R. van den; Arfaoui, Imad; Cren, Tristan; Hessen, Bart; Palstra, Thomas T.M.; Hosson, Jeff T.M. De; Rudolf, Petra

    2007-01-01

    Using a complementary pair of simple alkylthiolates with hydrogen-bonding moieties, functionalized Au-55 clusters could be selectively deposited onto self-assembled monolayers on gold that carry the opposite functionality. The deposition can be readily controlled by the medium in which the clusters

  7. Physico-Chemical Factors Affecting Hydrothermal Resistance and Bonding of Polymeric Composites to Steel Surfaces

    Science.gov (United States)

    1985-11-01

    7 , I 71iil 7 7 771111011111111111171111 Type A consists of a strong ionic interaction associated with charge transfer bonding mechanisms which...the ionic interaction regions and the density of entangleicnt macromol- ecules at interfaces are not evident from the limited data. Nevertheless

  8. Effect of Porcelain Surface Pretreatments on Composite Resin-Porcelain Shear Bond Strength

    Science.gov (United States)

    1991-05-01

    Release lAW 190-1 Distributed Unlimited ERNEST A. HAYGOOD, ist Lt, USAF Executive Officer 13. ABSTRACT (Maximum 200 words ) 14. SUBJECT TERMS 15. NUMBER OF...Bonding Orthodontic Attachments to Porcelain Teeth Using a Silane Coupling Agent, Am J Orthod 77: 233. Jones, D. W. (1985): Low Fusing Porcelains. In

  9. Chemial Bond and Stability of Adsorption of[Au(AsS3)]2- on the Surface of Kaolinite

    Institute of Scientific and Technical Information of China (English)

    MIN Xin-min; CHEN Yun; HONG Han-lie

    2004-01-01

    Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS3 ) ]2- on the surface of kaolinite. The correlation among structure, chemical bond and stability was discussed. Several models were selected with [ Au( AsS3 ) ]2- in different directions and sites. The resultsshow that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and severaloxygen atoms and form strong Au - O covalent bond, so these models are more stable than those with gold aboveor under the layer. The models with gold near to [ AlO2(OH)4 ] octahedra are more stable than those with goldnear to the vacancy without aluminium. These two stable tendencies in kaolinite- [ Au( AsS3 ) ]2- are stronger thanthat in kaolinite-Au systems. The interaction between [ Au( AsS3 ) ]2- and kaolinite is stronger than that betweengold and kaolinite, and this interaction is strong enough to form the surface complexes.

  10. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding

    Science.gov (United States)

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G.

    2017-02-01

    In this manuscript we extend Wertheim’s two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  11. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    Science.gov (United States)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  12. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  13. Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core.

    Science.gov (United States)

    Mosharraf, Ramin; Baghaei Yazdi, Najmeh

    2012-05-01

    Debonding of a composite resin core of the fiber post often occurs at the interface between these two materials. The aim of this study was to evaluate the effects of different surface treatment methods on bond strength between fiber posts and composite core. Sixty-four fiber posts were picked in two groups (Hetco and Exacto). Each group was further divided into four subgroups using different surface treatments: 1) silanization; 2) sandblasting; 3) Treatment with 24% H(2)O(2), and 4) no treatment (control group). A cylindrical plexiglass matrix was placed around the post and filled with the core resin composite. Specimens were stored in 5000 thermal cycles between 5℃ and 55℃. Tensile bond strength (TBS) test and evaluation using stereomicroscope were performed on the specimen and the data were analyzed using two-way ANOVA, Post Hoc Scheffe tests and Fisher's Exact Test (α=.05). There was a significant difference between the effect of different surface treatments on TBS (Pstrength of fiber posts to composite resin core, but there were not any significant differences between these groups and control group. There was not any significant difference between two brands of fiber posts that had been used in this study. Although silanization and sandblasting can improve the TBS, there was not any significant differences between surface treatments used.

  14. Influence of the Oxygen-inhibited Layer on Bonding Performance of Dental Adhesive Systems: Surface Free Energy Perspectives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    To examine the influence of the oxygen inhibited layer (OIL) on shear bond strength (SBS) to dentin and surface free energy (SFE) characteristics of different adhesive systems. Three adhesive systems were used: Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to dentin surfaces to determine SBS with and without OIL of adhesives. The SFE, dispersion force (γSd), polarity force (γSp), and hydrogen bonding force (γSh) of cured adhesives with and without an OIL were measured. Two-way ANOVA and Tukey's honestly significant difference (HSD) test were used for analysis of SBS data, and one-way ANOVA and Tukey's HSD test were used for the SFE and contact angle data. The SBS of SM and CS showed no significant differences between specimens with and without the OIL. However, the SBS of SU with the OIL was significantly higher than without the OIL. The SFE, γSp, and γSh of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The SFE, γSp, and γSh of SM and CS with an OIL were significantly higher than those of SU with an OIL. The results of this study indicate that the presence of an OIL with a single-step self-etching adhesive promotes higher SBS to dentin, unlike in the other types of adhesive systems. The SFE characteristics of the OIL of dental adhesives differed depending on the type of adhesive system.

  15. A Mechanistic study of Plasma Treatment Effects on Demineralized Dentin Surfaces for Improved Adhesive/Dentin Interface Bonding

    Science.gov (United States)

    Dong, Xiaoqing; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-01-01

    Our previous work has shown that non-thermal plasma treatment of demineralized dentin significantly (p<0.05) improved adhesive/dentin bonding strength for dental composite restoration as compared with the untreated controls. This study is to achieve mechanistic understanding of the plasma treatment effects on dentin surface through investigating the plasma treated dentin surfaces and their interaction with adhesive monomer, 2-Hydroxyethyl methacrylate (HEMA). The plasma treated dentin surfaces from human third molars were evaluated by water contact angle measurements and scanning electron microscopy (SEM). It was found that plasma-treated dentin surface with subsequent HEMA immersion (Plasma/HEMA Treated) had much lower water contact angle compared with only plasma-treated (Plasma Treated) or only HEMA immersed (HEMA Treated) dentin surfaces. With prolong water droplet deposition time, water droplets spread out completely on the Plasma/HEMA Treated dentin surfaces. SEM images of Plasma/HEMA Treated dentin surfaces verified that dentin tubules were opened-up and filled with HEMA monomers. Extracted type I collagen fibrils, which was used as simulation of the exposed dentinal collagen fibrils after acid etching step, were plasma treated and analyzed with Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) spectra. FT-IR spectra of the Plasma/HEMA Treated collage fibrils showed broadened amide I peak at 1660 cm−1 and amide II at 1550 cm−1, which indicate secondary structure changes of the collagen fibrils. CD spectra indicated that 67.4% collagen helix structures were denatured after plasma treatment. These experimental results demonstrate that non-thermal argon plasma treatment was very effective in loosing collagen structure and enhancing adhesive monomer penetration, which are beneficial to thicker hybrid layer and longer resin tag formation, and consequently enhance adhesive/dentin interface bonding. PMID:25267936

  16. Prebond Inspection Techniques to Improve the Quality of Adhesive Bonding Surface Treatments

    Science.gov (United States)

    2006-09-01

    when the measurement height was greater than 0.3 mm. Measurements of the surface cleanliness of the aluminium surface after abrasion, grit- blasting...Measurements to assess the homogeneity of the surface cleanliness were performed with a specially designed X-Y scanning unit and associated control...tape removed + + A. B. C. D. Grit-blasted plate DSTO-TR-1919 6 2.2 Surface Quality Measurements The surface cleanliness of the

  17. Effect of surface conditioning modalities on the repair bond strength of resin composite to the zirconia core / veneering ceramic complex.

    Science.gov (United States)

    Ozcan, Mutlu; Valandro, Luiz Felipe; Pereira, Sarina Maciel; Amaral, Regina; Bottino, Marco Antonio; Pekkan, Gurel

    2013-06-01

    This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon. Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-µm Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 µm) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 µm aluminum trioxide particles coated with silica (30 µm SiO2) + core + veneer: silane; group 4: core: 30 µm SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5°C-55°C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (α = 0.05). Group 3 demonstrated significantly higher values (MPa) (8.6 ± 2.7) than those of the other groups (3.2 ± 3.1, 3.2 ± 3, and 3.1 ± 3.5 for groups 1, 2, and 4

  18. The thermochemistry of C 2 hydrocarbons on transition metal surfaces: The bond-order-conservation approach

    Science.gov (United States)

    Shustorovich, Evgeny; Bell, Alexis T.

    1988-11-01

    The bond-order-conservation morse-potential (BOC-MP) approach has been used to calculate the total energy of C 2H x species in the adsorbed state, the relative stability of C 2H x adsorption in a dieoordinated versus a monocoordinated configuration, and the effects of metal composition and the structure of C 2H x species on the activation energy for OH and CC bond cleavage. The influence of metal composition on the thermal decomposition of C 2H 4 and C 2H 2, the hydrogenation of C 2H 4 and C 2H 2, and the hydrogenolysis of C 2H 6 are discussed in the light of these calculations. We find that most of the BOC-MP projections are in good agreement with experiment; however, some inconsistencies are noted and these are discussed.

  19. Initial Screening of Environmentally Sustainable Surface Pretreatments for Adhesive Bonding Applications

    Science.gov (United States)

    2017-05-17

    grit-blasted samples are consistent with observations for methacrylate adhesive usage for dental applications, both with and without added silane...strengthening properties in a dental adhesive . Acta Biomaterialia. 2016;(35): 138–152. 18. Mather B, Viswanathan K, Miller K, Long T. Michael addition reactions... Adhesive Bonding Applications by Miriam S Silton, David P Flanagan, Daniel C DeSchepper, and Robert E Jensen Approved for public

  20. First-Principles Analysis on π-bonded Chain Structure on Several Polytypes of SiC Surfaces: Importance of Stacking Sequence on Energetics and Electronic Structures

    Science.gov (United States)

    Kaneko, Tomoaki; Tajima, Nobuo; Yamasaki, Takahiro; Ohno, Takahisa

    2017-09-01

    Using first principles calculations based on a density functional theory, the energetics and electronic properties of a (2 × 1) π-bonded chain structure in several polytypes of SiC surfaces are discussed with special attention to the stacking sequence of SiC bilayers. We found that the stacking sequence of the topmost two SiC bilayers plays a decisive role for the stability and electronic structures of the π-bonded chain structure. We showed that the homo-elemental bonds in π-bonded chain structures cause alterations in the electronic structures of both the Si- and C-faces. The energetics of π-bonded chain structures on other group IV and IV-IV compound semiconductors were also investigated. We also showed that the buckling structure in the monolayer honeycomb lattice reflects the buckling of the topmost two atoms in the π-bonded chain structure observed in Si(111) and Ge(111).

  1. METHODS FOR STRENGTHENING OF ADHESION BONDS BETWEEN SURFACE OF USED MOLDING SAND AND ORGANIC BINDER WHILE OBTAINING ACTIVATED MINERAL POWDERS

    Directory of Open Access Journals (Sweden)

    Ya. N. Kovalev

    2016-01-01

    Full Text Available Value of adhesion bond between mineral surface of acid quartz materials and organic binder (bitumen has a great significance while forming structure of asphalt concrete strengthening. It has been established theoretically and experimentally that that the bond is insignificant and it causes premature destruction of structure for asphalt-binding substance and finally asphalt concrete. In this connection the relevant objective of the paper is a search for efficient methods for strengthening of adhesion bonds between the indicated structural components. A development for obtaining mineral powders from used molding sand activated by various hydrofobisation methods plays rather important role in that matter. The development of several methods for obtainment of activated mineral powders from used molding sand and also know-how pertaining to behavior of asphalt concrete formed on their basis have made it possible to create rational technologies which are applicable under operational conditions of the specified asphalt concrete plants in any region. The executed investigations on hydrofobisation of particles surface for the used molding sand with the help of sodium alkyl siliconates have established the basis for development of new efficient method for obtaining activated mineral powders from the used molding sand. The method presupposes treatment of the used molding sand in the process of mill flow in a ball drum while using sodium ethyl siliconate (0.3–0.7 % as compared with the mass of mineral raw material. Juvenile particle surface of fresh milled powder from the used molding sand has a maximum activity among the known filling compounds in relation to althin and this phenomenon can be explained by additional structure-forming impact of chemically active organic foundry binding agents which are contained in the used molding sand. That particular property allows to use widely powder from the used molding sand which contains uncured althin as a

  2. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Veiga de Melo

    2011-12-01

    Full Text Available The purpose of the present study was to assess the bond strength of composite resin repairs subjected to different surface treatments and accelerated artificial aging. 192 cylindrical samples (CSs were prepared and divided into 24 groups (n = 8. Half of the CSs were stored in water for 24 h, and the other half were subjected to C-UV accelerated aging for non-metallic specimens. The treatments were phosphoric acid + silane + adhesive (PSA; phosphoric acid + adhesive (PA; diamond bur + phosphoric acid + silane + adhesive (DPSA; diamond bur + phosphoric acid + adhesive (DPA; air abrasion + phosphoric acid + silane + adhesive (APSA; and air abrasion + phosphoric acid + adhesive (APA. The repair was performed and the specimens were again aged as described above. A control group (n = 8 was established and did not receive any type of aging or surface treatment. The specimens were loaded to failure in shear mode with a crosshead speed of 0.5 mm/min until fracture. Data were analyzed by one-way ANOVA/Tukey's test (p < 0.05. No statistically significant differences were found among DPSA, DPA, APSA, APA, and the control group. The aged PSA and PA achieved low bonding values and were statistically different from the control group, whereas the non-aged PSA and PA presented no statistically significant difference from the control group. Repairs with the proposed surface treatments were viable on both recent and aged restorations; however, phosphoric acid + adhesive alone were effective only on recent restorations.

  3. Differences in tensile adhesion strength between HEMA and nonHEMA-based dentin bonding applied on superficial and deep dentin surfaces

    Directory of Open Access Journals (Sweden)

    Eresha Melati Kusuma Wurdani

    2017-03-01

    Full Text Available Background: Improvement in dentistry shows some progresses, due to patients awareness on the importance of dental care. Cervical lesion is the most common phenomenon which oftenly found 46.36% in man and 38.13% in woman. Cervical lesions need composite restoration for treatment to stop the process of tissue damage. The process of adhesion of composite restoration material to the structure of the tooth is not easily separated and it needs optimal function in the oral cavity. Application of dentin bonding agents to attach the composite is needed. Selection of HEMA-based bonding material and Hema free-based bonding material which have a different solvent in their composition, as applied to the dentin superficial and deep dentin, affect the results of debonding test. Debonding test is done to measure the adhesion strength of a bonding material. Purpose: The purpose of this study was to analyze differences in tensile bond strength of dentine bonding HEMA-based and HEMA-free based after application in superficial and deep dentine surfaces. Method: The tooth of the bovine was as samples. A superficial dentine sample was taken from 0.5-1 mm of dentino enamel junction and a deep dentine sample was taken from 0.5 mm culmination of pulp horn. Dentine surface area was equal to p x r2 = (3.14 x 22 = 12.56 mm2. Six samples of HEMA-based bonding was applied to the dentine superficial. Six samples of HEMAfree based bonding was applied to the superficial dentine. Six samples of HEMA-based bonding was applied to the deep dentine. Six samples of HEMA-free based bonding was applied to the deep dentine. Tensile strength was measured using an Autograph AG-10TE. Result: There were differences tensile bond strength of dentine bonding HEMA-based and HEMA-free based after the application on superficial (p=0.000 and deep dentine surfaces (p=0.000. Conclusion: There were differences tensile bond strength of dentine bonding HEMA-based and HEMA-free based after the

  4. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    NARCIS (Netherlands)

    Feng, Huanhuan; Zheng, Tingting; Wang, Huiliang

    2016-01-01

    Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three st

  5. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Boks, N.P.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2008-01-01

    Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface

  6. Biomimetic superhydrophobic polyolefin surfaces fabricated with a facile scraping, bonding and peeling method

    NARCIS (Netherlands)

    Feng, Huanhuan; Zheng, Tingting; Wang, Huiliang

    2016-01-01

    Inspired by the superhydrophobicity of juicy peach surface, on which microscale hairs are standing vertically to the surface plane, an extremely simple, inexpensive physical method is developed for fabrication of superhydrophobic polyolefin surfaces over large areas. This method includes three st

  7. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Boks, Niels P.; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2008-01-01

    Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface hydrophobi

  8. Push-out bond strength between composite core buildup and fiber-reinforced posts after different surface treatments.

    Science.gov (United States)

    Arslan, Hakan; Barutcigil, Cagatay; Yılmaz, Cenk Burak; Ceyhanlı, Kadir Tolga; Topcuoglu, Hüseyin Sinan

    2013-07-01

    The aim of this study was to evaluate the effects of different surface treatments on the pushout bond strength of fiber-reinforced posts to composite resin cores. Twenty-five translucent glass fiber posts were divided into five groups according to surface treatment methods as follows: an untreated control group, a group coated with silicated alumina particles (Co-Jet system, 3M ESPE, St. Paul, MN), and three groups undergoing surface preparation with erbium:yttrium-aluminum-garnet (Er:YAG) laser under three different power settings (150, 300, and 450 mJ at 10 Hz for 60 sec at 100 μs duration). After surface treatment, fiber posts were built up to a dual cure composite resin core. All of the specimens were set and sectioned perpendicularly along the long axis of the post using a saw. Two discs (thickness of 2 mm) were obtained from each post-core sample; finally, each group consisted of 10 samples. For artificial aging, the specimens were stored in water (37°C) for 24 h and subjected to thermal cycling (5000 cycles, 5-55°C, and 30 sec dwell time). Pushout tests were performed using a universal testing machine at a crosshead speed of 0.5 mm/min. The pushout pressure values were measured in MPa and analyzed using one way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) post-hoc test (pstrength values ranged between 14,949 and 23,879 MPa. The lowest values were observed in the groups treated with the Er:YAG laser at 150 mJ. Irradiation by the Er:YAG laser at 450 mJ affected the bond strength significantly (pstrength increased relatively (19,184 MPa). Er:YAG laser irradiation enhanced the bond strength of fiber-reinforced posts to composite resin cores depending upon the power applied; Co-Jet sandblasting also increased the bond strength.

  9. Evaluation and comparison of the effect of different surface preparations on bond strength of glass ionomer cement with nickel-chrome metal-ceramic alloy: a laboratory study.

    Science.gov (United States)

    Hasti, Kalpana; Jagadeesh, H G; Patil, Narendra P

    2011-03-01

    Retention of fixed partial dentures is mostly dependent upon the bond between metal and cement as well as cement and tooth structure. However, most of the time clinical failure of bond has been observed at metal and cement interface. The treatment of metal surface, prior to luting, plays a crucial role in bonding cement with the metal. This study is conducted to evaluate and compare the effect of different surface preparations on the bond strength of resin-modified glass ionomer cement with nickel-chromium metal ceramic alloy. Fifty caries-free extracted molar teeth were made flat until the dentin of the occlusal surface was exposed. After fabrication of the wax patterns and subsequent castings, the castings were subjected to porcelain firing cycles. The nickel-chromium metal ceramic alloy discs were also divided into five groups and subjected to various surface treatments: (1) Unsandblasted (U), (2) sandblasted (S), (3) sandblasted and treated with 10% aqueous solution of KMnO4 (SK), (4) unsandblasted and roughened with diamond abrasive points (UD) and (5) unsandblasted and roughened with diamond abrasive points and treated with 10% aqueous solution of KMnO(4) (UDK). After surface treatments, the castings were cemented using Fuji PLUS encapsulated resin-modified glass ionomer cement. The obtained values of all the groups were subjected to statistical analysis for Tensile and Shear bond strength. Different surface treatments of the metal affects the bond strength values of resin-modified glass ionomer cement when used as luting agent.

  10. Effects of surface treatments and storage times on the tensile bond strength of adhesive cements to noble and base metal alloys.

    Science.gov (United States)

    Burmann, Paulo Afonso; Santos, Jose Fortunato Ferreira; May, Liliana Gressler; Pereira, Joao Eduardo da Silva; Cardoso, Paulo Eduardo Capel

    2008-01-01

    This work evaluated two resin cements and a glass-ionomer cement and their bond strength to gold-palladium (Au-Pd), silver-palladium (Ag-Pd), and nickel-chromium-beryllium (Ni-Cr-Be) alloys, utilizing three surface treatments over a period of six months. Eight hundred ten pieces were cast (in a button shape flat surfaces) in one of three alloys. Each alloy group was assigned to three other groups, based on the surface treatment utilized. Specimens were fabricated by bonding similar buttons in using one of three adhesive cements. The 405 pairs were thermocycled and stored in saline solution (0.9% NaCl) at 37 degrees C. The tensile bond strengths were measured in a universal testing machine after storage times of 2, 90, or 180 days. The highest mean bond strength value was obtained with the base metal alloy (10.9 +/- 8.6 MPa). In terms of surface treatment, oxidation resulted in the highest mean bond strength (13.7 +/- 7.3 MPa), followed by sandblasting (10.3 +/- 5.5 MPa) and polishing (3.0 +/- 6.4 MPa). Panavia Ex (13.2 +/- 9.3 MPa) showed significantly higher bond strengths than the other two cements, although the storage time reduced all bond strengths significantly.

  11. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Science.gov (United States)

    SILVA, Emilia Adriane; TRINDADE, Flávia Zardo; RESKALLA, Hélcio Nagib José Feres; de QUEIROZ, José Renato Cavalcanti

    2013-01-01

    Objective This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. Material and Methods Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20): Gc, no treatment (control); Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s). Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC) (TC). The specimens were submitted to the shear bond strength (SBS) test using a universal testing machine (1 mm/min). Failure mode was assessed using optical and scanning electron microscopy (SEM), together with the surface roughness (Ra) of the resin cement in the bracket using interference microscopy (IM). 2-way ANOVA and the Tukey test were used to compare the data (p>0.05). Results The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0), but thermocycling did not (p=0.6974). Considering the SBS results (MPa), Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9) and Gt-TC showed the lowest (8.45±6.7). For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157) but the surface treatments did not (p=0.458). For the thermocycled and non-thermocycled groups, Ra (µm) was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. Conclusion Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy. PMID:24037072

  12. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Directory of Open Access Journals (Sweden)

    Emilia Adriane Silva

    2013-07-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20: Gc, no treatment (control; Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s. Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC (TC. The specimens were submitted to the shear bond strength (SBS test using a universal testing machine (1 mm/min. Failure mode was assessed using optical and scanning electron microscopy (SEM, together with the surface roughness (Ra of the resin cement in the bracket using interference microscopy (IM. 2-way ANOVA and the Tukey test were used to compare the data (p>0.05. RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0, but thermocycling did not (p=0.6974. Considering the SBS results (MPa, Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9 and Gt-TC showed the lowest (8.45±6.7. For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157 but the surface treatments did not (p=0.458. For the thermocycled and non-thermocycled groups, Ra (µm was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.

  13. Effect of Different Surface Treatments on the Bond Strength of Lithium Disilicate Ceramic to the Zirconia Core.

    Science.gov (United States)

    Yilmaz-Savas, Tuba; Demir, Necla; Ozturk, A Nilgun; Kilic, Hamdi Sukur

    2016-06-01

    The aim of this study was to evaluate the effect of different surface treatments [sandblasting, Erbium:Yttrium-Aluminium-Garnet (Er:YAG), and femtosecond lasers] on the shear bond strength (SBS) of the CAD-on technique. Although demand for all-ceramic restorations has increased, chipping remains one of the major problems for zirconia-based restorations. Forty yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) zirconia plates (IPS e.max ZirCAD, Ivoclar Vivadent) were cut, sintered (12.4 × 11.4 × 3 mm) and divided into four groups according to the surface treatments (n = 10): a control group with no surface treatment (Group C), sandblasting with 50 μm Al2O3 (Group S), Er:YAG laser irradiation (Group E), and femtosecond laser irradiation (Group F). Also, 40 cylindrical (5 mm diameter, 2 mm height) lithium disilicate (IPS e.max CAD) veneer ceramics were cut and fused to all zirconia cores by a glass-fusion ceramic and crystallized according to the CAD-on technique. Specimens were subjected to shear force using a universal testing machine. The load was applied at a crosshead speed of 0.5 mm/min until failure. Mean SBS (MPa) were analyzed with one way ANOVA (p strength between zirconia-veneer specimens. However, the novel CAD-on technique with no surface treatment also showed high bonding strength. Thus, this technique could prevent ceramic chipping without additional surface treatments.

  14. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  15. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic

    OpenAIRE

    Baratto,Samantha Schaffer Pugsley; Spina,Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha,Leonardo Fernandes da; Furuse, Adilson Yoshio; Flares BARATTO FILHO; Correr, Gisele Maria

    2015-01-01

    Abstract: The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the...

  16. On-Surface Synthesis of Two-Dimensional Covalent Organic Structures versus Halogen-Bonded Self-Assembly: Competing Formation of Organic Nanoarchitectures.

    Science.gov (United States)

    Peyrot, David; Silly, Fabien

    2016-05-24

    The competition between the on-surface synthesis of covalent nanoarchitectures and the self-assembly of star-shaped 1,3,5-Tris(4-iodophenyl)benzene molecules on Au(111) in vacuum is investigated using scanning tunneling microscopy above room temperature. The molecules form covalent polygonal nanoachitectures at the gold surface step edges and at the elbows of the gold reconstruction at low coverage. With coverage increasing two-dimensional halogen-bonded structures appear and grow on the surface terraces. Two different halogen-bonded nanoarchitectures are coexisting on the surface and hybrid covalent-halogen bonded structures are locally observed. At high coverage covalent nanoarchitectures are squeezed at the domain boundary of the halogen-bonded structures. The competitive growth between the covalent and halogen-bonded nanoarchitectures leads to formation of a two-layer film above one monolayer deposition. For this coverage, the covalent nanoarchitectures are propelled on top of the halogen-bonded first layer. These observations open up new opportunities for decoupling covalent nanoarchitectures from catalytically active and metal surfaces in vacuum.

  17. An analysis of formic acid decomposition on metal surfaces by the bond-order-conservation-Morse-potential approach

    Science.gov (United States)

    Shustorovich, Evgeny; Bell, Alexis T.

    1989-11-01

    The bond-order-conservation-Morse-potential method, extended to treat the heat of chemisorption of bidentate species and of molecular radicals, has been used to analyze the energetics of formic acid decomposition at low coverages on Ag(111), Ni(111), and Fe/W(110) surfaces. These calculations project that on all three surfaces formate species are produced, with a parallel formation of formyl plus hydroxyl species on Ni and Fe/W. Bidentate coordination of formate species is preferred over monodentate coordination, the energy difference increasing in the order Ag < Ni < Fe/W. The decomposition of formate species leads to atomic hydrogen and CO 2 on Ag, whereas on Ni and especially on Fe/W formate decomposition leads mainly to atomic oxygen and formyl species, the latter of which decomposes practically without activation to CO and atomic hydrogen. The findings of this study are in general agreement with experimental observation.

  18. Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin-based composite restoration.

    Science.gov (United States)

    Oberholzer, Theunis G; Du Preez, Ignatius C; Kidd, M

    2005-06-01

    To determine the effect of Light emitting diode (LED) curing on dental resins, microleakage, shear bond strength and surface hardness of a dental composite cured with different LEDs were determined and compared with conventional halogen curing. For microleakage, Class V cavities were restored with Esthet-X, divided into groups, and exposed to one of the curing protocols (Elipar Freelight in soft start and standard modes; Ultra-Lume 2; Spectrum 800). Standard dye penetration tests were performed and the data summarised in a 2-way contingency table of observed frequencies. The Chi-square test was used (psurface hardness, samples of Esthet-X were exposed to the light-curing units (LCUs). Vickers hardness was determined on the upper and the bottom surfaces. Data was subjected to statistical analysis using ANOVA (phardness score for the halogen light was significantly lower than for the LED lights (p<0.01). The Spectrum 800 and the Elipar Freelight (soft start) have significantly higher shear bond strengths than the others (p<0.01). It was concluded that the LED source is more efficient for a comparable overall power output.

  19. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  20. Real-Time Observation of Surface Bond Breaking with an X-ray Laser

    DEFF Research Database (Denmark)

    Dell'Angela, M.; Anniyev, T.; Beye, M.

    2013-01-01

    Surface Molecules Not Quite Desorbing The dynamics of molecules desorbing from or adsorbing on surfaces requires that molecules rapidly gain or lose a large amount or translational and rotational energy to enter or leave the gas phase. An intermediate precursor state has long been invoked in whic...

  1. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Directory of Open Access Journals (Sweden)

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  2. Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hauquier, Fanny [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette (France); Alamarguy, David, E-mail: david.alamarguy@supelec.fr [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); Viel, Pascal [CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette (France); Noeel, Sophie [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); Filoramo, Arianna [CEA, IRAMIS, LLB, Laboratory for Molecular Electronics, F-91191 Gif-sur-Yvette (France); Huc, Vincent [Univ Paris-Sud, ICMMO, UMR CNRS 8182, 15 rue Georges Clemenceau, F-91440 Orsay (France); Houze, Frederic [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot Curie, F-91192, Gif-sur-Yvette (France); Palacin, Serge [CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces Group, F-91191 Gif-sur-Yvette (France)

    2012-01-15

    Conducting probe atomic force microscopy (CP-AFM) has been used to perform mechanical and electrical experiments on graphene layers bonded to polyaminophenylene (PAP) films grafted on gold substrates. This technique is a new approach for the characterization of graphene sheets and represents a complementary tool to Raman spectroscopy. The combination of friction and electrical imaging reveals that different stacked graphene sheets have been successfully distinguished from each other and from the underlying PAP films. Lateral force microscopy has shown that the friction is greatly reduced on graphene sheets in comparison with the organic coating. The electrical resistance images show very different local conduction properties which can be linked to the number of underlying graphene sheets. The resistance decreases very slowly when the normal load increases. Current-voltage curves display characteristics of metal-molecule-metal junctions.

  3. AGD Surface Modification on Nanofibers to Improve Dispersion and Interfacial Bonding

    Science.gov (United States)

    2007-05-26

    1091. [9] V. Bruse, M. Heintze, W. Brandl, G. Marginean, H. Bubert, “ Surface modification of carbon nanofibers in low temperature plasmas”, Science direct , Diamond and related materials, (2004), p. 1177 – 1181.

  4. Development of ELID mirror surface grinding by cast iron bond grinding wheel. Ohkochi memorial technology prize; Chutetsu bond toishi ni yoru denkai inpurosesu doresshingu (ELID) kyomen kensakuho no kaihatsu. Okochi kinen gijutsusho jusho ni yosete

    Energy Technology Data Exchange (ETDEWEB)

    Omori, H.; Takahashi, I. [Institute of Physical and Chemical Research, Tokyo (Japan); Nakagawa, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Hagiuda, Y.; Karikome, K. [Tokyo Metropolitan College of Aeronautical Engineering, Tokyo (Japan)

    1997-08-01

    Development was accomplished on the electrolytic in-process dressing (ELID) mirror surface grinding process using a cast iron bonded grinding wheel. This paper describes the history of the development, which may be summarized as follows: a study was begun on powder forging of cutting chips in 1970; a research was started on powder forging of decarburized cast iron powder; developments were made on powder metallurgy of cast irons and cast iron bonded lapping tools in 1980, and cast iron bonded diamond grinding wheels were put on the market; a high-efficiency grinding process using MC and cast iron fiber-bonded grinding wheels were developed in 1985 and the grinding wheels made therefrom were put on the market; and a study was begun on the ELID grinding in 1987, and marketing was started on power supply, grinding liquid and tools for the ELID grinding process in 1990. Discussions on converting raw materials for the powder forging into cutting chips have triggered developing the cast iron bonded grinding wheel. The cast iron bonded diamond grinding wheel improves dressability and sharpness of conventional grinding wheels. The grinding wheel is fabricated by mixing carbonyl iron powder, diamond grinding grains and cast iron powder, pressing the mixture in a die, sintering it at 1140 degC, and assembling and dressing the sinter. The grinding stone can grind high-tech materials. 4 figs.

  5. Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning.

    Science.gov (United States)

    Gomes, Ana Luísa; Ramos, João Carlos; Santos-del Riego, Sérgio; Montero, Javier; Albaladejo, Alberto

    2015-02-01

    The purpose of this study is to evaluate the thermocycling effect on the microshear bond strength (μSBS) of different self-adhesive resin cements to zirconia using tribochemical silica coating Rocatec™ (ROC) and Er:YAG as surface conditioners. Two hundred forty square-like zirconia samples were polished and randomly assigned in four groups according surface treatment applied as follows: (1) no treatment (NT), (2) silica coating with ROC, 3) Er:YAG laser irradiation (LAS: 2.940 nm, 200 mJ; 10 Hz), and (4) laser followed by Rocatec™ (LAROC). Each group was divided into two subgroups according the resin tested as follows: (A) BiFix SE (BIF) and (B) Clearfil SA (CLE). After 24 h, half of the specimens from each subgroup were tested. The other half was stored and thermocycled (5-55 °C/5,000 cycles). A μSBS test was performed using a universal testing machine (cross head speed = 0.5 mm/min). Failure modes were recorded and observed by scanning electronic microscopy. Data was analyzed with ANOVA, Student's t test, and chi-square tests, and linear regression was performed (p 10-MDP when used on zirconia surface coated with silica, independently of previous Er:YAG surface treatment.

  6. Enhanced surface modification engineering (H, F, Cl, Br, and NO{sub 2}) of CdS nanowires with and without surface dangling bonds

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang; Wang, Chunrui; Xu, Xiaofeng [Department of Applied Physics and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Ren Min Road 2999, Songjiang District, Shanghai 201620 (China); Huang, Yan; Chen, Xiaoshuang, E-mail: jqwang@ee.ecnu.edu.cn, E-mail: xschen@mail.sitp.ac.cn [National Lab. of Infrared Physics, Shanghai Institute for Technical Physics, Chinese Academy of Science, 500 Yu Tian Road, Shanghai 200083 (China); Wang, Jiqing, E-mail: jqwang@ee.ecnu.edu.cn, E-mail: xschen@mail.sitp.ac.cn [Key Laboratory of Polarized Materials and Devices, East China Normal University, Shanghai 200062 (China)

    2015-08-07

    Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWs is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.

  7. Effects of different surface-treatment methods on the bond strengths of resin cements to full-ceramic systems

    Directory of Open Access Journals (Sweden)

    Gülay Kansu

    2011-09-01

    Conclusions: The in vitro findings from this study indicate that surface-treatment procedures applied to the IPS Empress and the IPS Empress 2 full-ceramic systems are important when cement types are considered. In contrast, cement types and surface-treatment methods had no effect on changing the bond strength of the In-Ceram ceramic system.

  8. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.

  9. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser; Resistencia de uniao ao cisalhamento de dois sistemas adesivos em superficies dentinarias preparadas com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Magro, Eduardo

    2001-07-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94{mu}m) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin

  10. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    Science.gov (United States)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin; Kelly, Simon J.; Smith, Sean C.; Sumpter, Bobby G.; Yoon, Mina; Maksymovych, Petro

    2014-09-01

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. Our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100) and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. We anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the

  11. Interface chemistry and molecular bonding of functional ethoxysilane-based self-assembled monolayers on magnesium surfaces.

    Science.gov (United States)

    Killian, Manuela S; Seiler, Steffen; Wagener, Victoria; Hahn, Robert; Ebensperger, Christina; Meyer, Bernd; Schmuki, Patrik

    2015-05-06

    The modification of magnesium implants with functional organic molecules is important for increasing the biological acceptance and for reducing the corrosion rate of the implant. In this work, we evaluated by a combined experimental and theoretical approach the adsorption strength and geometry of a functional self-assembled monolayer (SAM) of hydrolyzed (3-aminopropyl)triethoxysilane (APTES) molecules on a model magnesium implant surface. In time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS), only a minor amount of reverse attachment was observed. Substrate-O-Si signals could be detected, as well as other characteristic APTES fragments. The stability of the SAM upon heating in UHV was investigated additionally. Density-functional theory (DFT) calculations were used to explore the preferred binding mode and the most favorable binding configuration of the hydrolyzed APTES molecules on the hydroxylated magnesium substrate. Attachment of the molecules via hydrogen bonding or covalent bond formation via single or multiple condensation reactions were considered. The impact of the experimental conditions and the water concentration in the solvent on the thermodynamic stability of possible APTES binding modes is analyzed as a function of the water chemical potential of the environment. Finally, the influence of van der Waals contributions to the adsorption energy will be discussed.

  12. Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and OH groups.

    Science.gov (United States)

    Tomishige, Keiichi; Nakagawa, Yoshinao; Tamura, Masazumi

    2014-01-01

    Hydrogenolysis of C-O bonds is becoming more and more important for the production of biomass-derived chemicals. Since substrates originated from biomass usually have high oxygen content and various kinds of C-O bonds, selective hydrogenolysis is required. Rhenium or molybdenum oxide modified rhodium and iridium metal catalysts (Rh-ReO(x), Rh-MoO(x), and Ir-ReO(x)) have been reported to be effective for selective hydrogenolysis. This review introduces the catalytic performance and reaction kinetics of Rh-ReO(x), Rh-MoO(x), and Ir-ReO(x) in the hydrogenolysis of various substrates, where selectivity is especially characteristic. Based the model structure of the catalysts and the reaction mechanism, the role of the oxide components is to make the interaction between the OH groups in the substrates and the catalyst surface, and the role of metal components is to dissociate hydrogen molecule heterolytically to give hydride and proton.

  13. Effects of different surface treatments on bond strength of an indirect composite to bovine dentin

    Directory of Open Access Journals (Sweden)

    Laiza Tatiana Poskus

    2015-01-01

    Conclusions: Sandblasting was a safe surface treatment for the indirect composite, increasing the BS values. Hydrofluoric acid applied after sandblasting damaged the BS values and should not be recommended while ethanol and H2O2, when applied after sandblasting, were effective in increasing BS values.

  14. Effect of adhesive resin type for bonding to zirconia using two surface pretreatments

    NARCIS (Netherlands)

    Samimi, P.; Hasankhani, A.; Matinlinna, J.P.; Mirmohammadi, H.

    2015-01-01

    Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments. Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided int

  15. Chemical Warfare Agent Surface Adsorption: Hydrogen Bonding of Sarin and Soman to Amorphous Silica

    Science.gov (United States)

    2014-03-17

    small transfer chamber located within the confines of a CWA-certified surety fume hood . Within the main chamber, the sample was mounted on a molybdenum...Particulate silica surface samples were prepared by dispersing silica (200 m2/g, Aerosil fumed silica with a 12 nm average particle diameter) from a

  16. Effect of adhesive resin type for bonding to zirconia using two surface pretreatments

    NARCIS (Netherlands)

    Samimi, P.; Hasankhani, A.; Matinlinna, J.P.; Mirmohammadi, H.

    2015-01-01

    Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments. Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided

  17. Coordination modes and bonding of sulfur oxides on transition metal surfaces: combined ab initio and BOC-MP results

    Science.gov (United States)

    Seller, Harrell; Shustorovich, Evgeny

    1996-02-01

    Binding energies for sulfur oxides, SO x, x = 1-3, have been determined for several coordination modes on silver, gold and palladium surfaces employing ab initio quantum chemical methods and the bond order conservation Morse potential (BOC-MP) method. SO 2 coordination was studied in the most detail. In general the agreement between the BOC-MP and ab initio binding energies is good for the (111) surfaces of silver and palladium with both methods predicting that, in the zero coverage limit, di-coordination via S,O and O,O will be more favorable energetically than mono-coordination via S. In the case of chemisorption on the Pd (110) surface the two methods agree well for the cases in which there are formulas for the BOC-MP binding energies. In going from the (111) surfaces to the (110) surfaces of silver and palladium the ab initio calculations predict that the preferred chemisorption site shifts from the bridge site to the hollow site. On the silver surfaces the net charge transferred to the adsorbate as judged from the Mulliken populations correlates roughly with the binding energy. No significant charge transfer was found on the palladium surfaces. Our SO 2 chemisorption calculations indicate that the work functions of the metal surfaces examined should increase upon mono-S adsorption, increase to a lesser extent upon di S,O adsorption and may even decrease upon di O,O adsorption. Ab initio calculations provide evidence of the existence of SO 2 surface dimers. The binding energy predicted by the BOC-MP model for SO 3 in the bridging site agrees well with the ab initio result for SO 3 di-coordinated in the long bridge of the Ag(110) surface. The methods yield similar predictions for the case of SO on silver. Our modeling provides a coherent picture consistent with many aspects of the experimental literature. We present some model predictions, particularly the di O,O coordination mode for SO 2, that require verification experimentally.

  18. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined....... The coating density, viscosity, moisture content and wet and dry weight of the coating were evaluated on cores that had been coated at three different dip-coating times. The coating coverage, surface appearance and depth of penetration into the cores were examined with a Stereomicroscope. Gray iron castings...... were produced with sol-gel coated and uncoated cores and the results were related to the coating properties. The casting results were also compared with castings made with cores coated with commercial alcohol-based and water-based foundry coatings. The analyses show that castings produced with sol...

  19. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Universidad Tecnológica Nacional (UTN), Bahía Blanca (Argentina); Compañy, A. Díaz [Comisión de Investigaciones Científicas (CIC), Buenos Aires (Argentina); Pronsato, E.; Juan, A.; Brizuela, G. [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Lam, A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba)

    2015-12-30

    Graphical abstract: - Highlights: • Favorable energies results in optimum four adsorption geometries. • Silanols are partially weakening and establish H-bonds with polar groups of 5-FU drug. • Dispersion forces approach the 5-FU molecule toward the surface. • Electron exchange is presented after adsorption. • H-bonds stabilize the molecule playing significant role in the adsorption mechanism. - Abstract: Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's—D2 correction were performed to elucidate the drug–silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO{sub 2} (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  20. On the formation and bonding of a surface carbonate on Ni(100)

    Science.gov (United States)

    Behm, R. J.; Brundle, C. R.

    1991-09-01

    The formation, stability, adsorption geometry and electronic structure of a surface carbonate on Ni(100) have been investigated by photoemission (XPS, UPS) and temperature-programmed reaction (TPR). The core level binding energies of 531.2 eV for 0(1s) and 289.0 eV for C(1s) are comparable to those of bulk carbonates. The He(II) spectrum of the carbonate valence levels is not well defined because of the coexisting adsorbed and oxidic oxygen. The angular dependence of the carbonate core level intensities is characteristic of the carbonate being present as an overlayer species rather than a thicker surface phase. The XPS data and isotope labelled TPR experiments indicate the oxygen atoms of the carbonate to be electronically and chemically equivalent, and on this basis we favor a structure in which the carbonate is attached to the metal via all three oxygen atoms. This is supported by comparision with the core level binding energies of HCOO ab and chemisorbed CO 2,ad, which are similarly attached to the surface. From the core level angular behavior, the close similarity of core level binding energies and available vibrational spectroscopic data, a (nearly) planar geometry of the CO 3,ad on Ni(100) is concluded, which is comparable to the planar bulk carbonate anion and the planar carbonate species on Ag(110). The activation barrier for decomposition is estimated from the observed maximum in TPR at 420 K to be 25 ± 2 kcal/mol. CO 2 does not accumulate on the clean or O ad-precovered Ni(100) surface at 130 K. The stabilized, chemisorbed CO 2,ad species often observed on other metal surfaces therefore does not play a critical role for carbonate formation on Ni(100). Also a mechanism involving the disproportionation of a CO 2… CO 2,ad- dimer anion can be ruled out from TPR data. The evidence of the experiments discussed in this paper suggests that the carbonate is predominantly formed by reaction of CO 2,ad with a less stable, defect (disordered) O ad species rather

  1. Immediate dentin sealing of onlay preparations: thickness of pre-cured Dentin Bonding Agent and effect of surface cleaning.

    Science.gov (United States)

    Stavridakis, Minos M; Krejci, Ivo; Magne, Pascal

    2005-01-01

    This study evaluated the thickness of Dentin Bonding Agent (DBA) used for "immediate dentin sealing" of onlay preparations prior to final impression making for indirect restorations. In addition, the amount of DBA that is removed when the adhesive surface is cleaned with polishing or air abrasion prior to final cementation was evaluated. For this purpose, a standardized onlay preparation was prepared in 12 extracted molars, and either OptiBond FL (Kerr) or Syntac Classic (Vivadent) was applied to half of the teeth and cured in the absence of oxygen (air blocking). Each tooth was bisected in a bucco-lingual direction into two sections, and the thickness of the DBA was measured under SEM on gold sputtered epoxy resin replicas at 11 positions. The DBA layer of each half tooth was treated with either air abrasion or polishing. The thickness of the DBAs was then re-measured on the replicas at the same positions. The results were statistically analyzed with non-parametric statistics (Mann-Whitney U test and Kruskal-Wallis test) at a confidence level of 95% (p=0.05). The film thickness of the DBA was not uniform across the adhesive interface (121.13 +/- 107.64 microm), and a great range of values was recorded (0 to 500 microm). Statistically significant differences (pOptiBond FL or Syntac Classic) and position (1 to 11) dependent. Syntac Classic presented a higher thickness of DBA (142.34 +/- 125.10 microm) than OptiBond FL (87.99 +/- 73.76 microm). The higher film thickness of both DBAs was at the deepest part of the isthmus (the most concave part of the preparation), while the lowest was at the line angles of the dentinal crest (the most convex part of the preparation). OptiBond FL presented a more uniform thickness around the dentinal crest of preparation; Syntac Classic pooled at the lower parts of the preparation. The amount of DBA that was removed with air abrasion or polishing was not uniform (11.94 +/- 16.46 microm), and a great range of values was recorded (0 to

  2. Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C-C bond nearest the silicon surface.

    Science.gov (United States)

    Puniredd, Sreenivasa Reddy; Assad, Ossama; Haick, Hossam

    2008-10-15

    Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using various organic molecules having similar backbones but differing in their C-C bond closest to the silicon surface (i.e., C-C vs C=C vs C[triple bond]C bonds). X-ray photoelectron spectroscopic (XPS) data show that functionalization of silicon surfaces with propenyl magnesium bromide (CH3-CH=CH-MgBr) organic molecules gives nearly full coverage of the silicon atop sites, as on methyl- and propynyl-terminated silicon surfaces. Propenyl-terminated silicon surface shows less surface oxidation and is more robust against solvent attacks when compared to methyl- and propynyl-terminated silicon surfaces. We also show a secondary functionalization process of propenyl-terminated silicon surface with 4'-[3-Trifluoromethyl-3H-diazirin-3-yl]-benzoic acid N-hydroxysuccinimide ester [TDBA-OSu] cross-linker. The Si-CH=CH-CH3 surfaces thus offer a means of attaching a variety of chemical moieties to a silicon surface through a short linking group, enabling applications in molecular electronics, energy conversion, catalysis, and sensing.

  3. Effect of Surface Treatment by Cathode Spot of Low Pressure Arc on Bonding Strength of Spraying Film by APPS

    Science.gov (United States)

    Hara, Masayuki; Ogura, Hirosi; Maezono, Satoru; Kubo, Yuya; Iwao, Toru; Tobe, Shogo; Inaba, Tsuginori

    Cathode spots of a low pressure arc can remove the oxide layer and evaporate impurities on the metal surface. The removal of the oxide layer by using the cathode spots in the low pressure is expected to solve the serious problems of the chemical and mechanical cleaning methods. The phenomena of the cathode spots in the low pressure for pre-treatment of Atmospheric Pressure Plasma Spray (APPS) have been investigated. In this paper, the surface shape of oxide work pieces was treated by using the cathode spots in the low pressure arc then compared with the grit-blasted surface. As a result, it is possible to improve the bonding strength of the spray deposit by making arithmetical mean height Ra large and average length of outline curve element Rsm small. Cathode spots of a low-pressure arc can be used for pre-treatment of APPS as the alternative technology of the blast. it is possible to obtain Ra larger an Rsm smaller than the blast only by cathode spots after the blast. But the treatment must be restricted not to destroy projection ones which were formed with melting.

  4. Surface chemical-bonds analysis of silicon particles from diamond-wire cutting of crystalline silicon

    Science.gov (United States)

    Benayad, Anass; Hajjaji, Hamza; Coustier, Fabrice; Benmansour, Malek; Chabli, Amal

    2016-12-01

    The recycling of the Si powder resulting from the kerf loss during silicon ingot cutting into wafers for photovoltaic application shows both significant and achievable economic and environmental benefits. A combined x-ray photoelectron spectroscopy (XPS), attenuated total reflection (ATR)-Fourier transform infrared (FTIR) and micro-Raman spectral analyses were applied to kerf-loss Si powders reclaimed from the diamond wire cutting using different cutting fluids. These spectroscopies performed in suitable configurations for the analysis of particles, yield detailed insights on the surface chemical properties of the powders demonstrating the key role of the cutting fluid nature. A combined XPS core peak, plasmon loss, and valence band study allow assessing a qualitative and quantitative chemical, structural change of the kerf-loss Si powders. The relative contribution of the LO and TO stretching modes to the Si-O-Si absorption band in the ATR-FTIR spectra provide a consistent estimation of the effective oxidation level of the Si powders. The change in the cutting media from deionized water to city water, induces a different silicon oxide layer thickness at the surface of the final kerf-loss Si, depending on the powder reactivity to the media. The surfactant addition induces an enhanced carbon contamination in the form of grafted carbonated species on the surface of the particles. The thickness of the modified surface, depending on the cutting media, was estimated based on a simple model derived from the combined XPS core level and plasmon peak intensities. The effective nature of these carbonated species, sensitive to the water quality, was evidenced based on coupled XPS core peak and valence band study. The present work paves the way to a controlled process to reclaim the kerf-loss Si powder without heavy chemical etching steps.

  5. Hydrogen-bonded LbL Shells for Living Cell Surface Engineering

    Science.gov (United States)

    2011-03-21

    phospholipids into the lipid bilayer membrane, and cell decoration with/inclusion into biodegradable gel microparti- cles.7–11 However, for these strategies...polymer membrane. The poly(allylamine hydrochloride)/poly(styrene sulfonate) ( PAH /PSS) coating is the mostly explored poly- electrolyte pair used to...this approach for cell surface engineering.42,43 As suggested, overall toxicity of the PAH /PSS LbL shells originates from the positive charge of

  6. Chemical bonding of water to metal surfaces studied with core-level spectroscopies

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; Pettersson, L.G.M.;

    2010-01-01

    and the interaction between the water monolayer and the surface. By combining synchrotron radiation-based X-ray photoelectron spectroscopy (XPS). X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) techniques with density functional theory (DFT) computational methods we obtain element......-specific information on the partial local density of states, local atomic structure, geometrical parameters and molecular orientation, allowing general principles for water-metal interaction to be derived....

  7. Mass Transport in Surface Diffusion of van der Waals Bonded Systems: Boosted by Rotations?

    Science.gov (United States)

    Hedgeland, Holly; Sacchi, Marco; Singh, Pratap; McIntosh, Andrew J; Jardine, Andrew P; Alexandrowicz, Gil; Ward, David J; Jenkins, Stephen J; Allison, William; Ellis, John

    2016-12-01

    Mass transport at a surface is a key factor in heterogeneous catalysis. The rate is determined by excitation across a translational barrier and depends on the energy landscape and the coupling to the thermal bath of the surface. Here we use helium spin-echo spectroscopy to track the microscopic motion of benzene adsorbed on Cu(001) at low coverage (θ ∼ 0.07 ML). Specifically, our combined experimental and computational data determine both the absolute rate and mechanism of the molecular motion. The observed rate is significantly higher by a factor of 3.0 ± 0.1 than is possible in a conventional, point-particle model and can be understood only by including additional molecular (rotational) coordinates. We argue that the effect can be described as an entropic contribution that enhances the population of molecules in the transition state. The process is generally relevant to molecular systems and illustrates the importance of the pre-exponential factor alongside the activation barrier in studies of surface kinetics.

  8. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin.

    Science.gov (United States)

    Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan

    2013-01-01

    Background: Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfacial strength between fiber post and composite, as core build-up material after different surface treatments of fiber posts. Materials & Methods:Twenty fiber posts were split into four groups off five each according to different surface treatments viz. Group I-(Negative Control), Group II-Silanization (Positive control), Group III-(37% Phosphoric Acid & Silanization) ,Group IV- (10% Hydrogen Peroxide and Silanization). With the preformed plastic mould, a core of dual cure composite resin around the fiber post having the uniform thickness was created. Tensile bond strength of each specimen was measured under Universal Testing Machine (UTM) at the cross head speed of 3mm/min. Results: The results achieved with 10% Hydrogen peroxide had a marked effect on micro tensile bond strength values between the tested materials. Conclusion: Immense enhancement in the silanization efficiency of quartz fiber phase was observed with different surface chemical treatment of the resin phase of fiber posts with the marked increase in the micro-tensile bond strength between fiber post and composite core. How to cite this article: Shori D, Pandey S, Kubde R, Rathod Y, Atara R, Rathi S. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin. J Int Oral Health 2013; 5(5):27-32. PMID:24324301

  9. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    Science.gov (United States)

    Simonetti, S.; Compañy, A. Díaz; Pronsato, E.; Juan, A.; Brizuela, G.; Lam, A.

    2015-12-01

    Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's-D2 correction were performed to elucidate the drug-silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO2 (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  10. Time Domain Simulations of Chemical Bonding Effects in Surface-Enhanced Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bylaska, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hess, Wayne P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-04

    We employ the atom-centered density-matrix propagation method to illustrate how time-dependent structural and conformational changes affect the electronic structure and derived spectroscopic properties of a prototypical finite metal cluster-bound π-conjugated organic, namely the Ag7-benzenethiol complex. We find that the calculated spectroscopic properties are dictated by large amplitude motion which controls the coupling between the aromatic ring of the molecule and the metal cluster. The simulated vibrational spectra of Ag7-benzenethiol are in accord with previous experiments which probe Raman scattering from benzenethiol adsorbed on silver surfaces.

  11. Innovative Approaches To Improving The Bond Between Concrete and Steel Surfaces

    Science.gov (United States)

    2006-11-01

    silicates developed in Portland cement (di- and tri-calcium silicates, calcium aluminates ) and firing the mixture onto the surface of the...developed for undercoating over mild steel. Critical components, especially cobalt and nickel, in the frit assure that the iron oxide on the...0.07 nil Manganese dioxide MnO2 1.39 1 - 2 Ni oxide NiO 1.04 1 - 2 Cobalt Oxide Co3O4 0.93 .5 – 1.5 Phosphorus

  12. Bond percolation in films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  13. The evaluation of surface and adhesive bonding properties for cold rolled steel sheet for automotive treated by Ar/O{sub 2} atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Joo; Lee, Sang Kon; Kim Byung Min [Pusan National University, Busan (Korea, Republic of); Park, Keun Whan [Sungwoo Hitech Technical Institute, Busan (Korea, Republic of)

    2008-04-15

    Cold rolled steel sheet for automotive was treated by Ar/O{sub 2} atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of O{sub 2} gas. Results shows that the bonding strength of steel sheet treated in Ar/O{sub 2} atmospheric pressure plasma was improved about 20% compared with untreated sheet.

  14. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid. Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  15. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Formation and reaction of allylic species on silver surfaces: bond-order conservation Morse-potential analysis

    Science.gov (United States)

    Shustorovich, Evgeny

    1992-12-01

    The reaction energetics, particularly the intrinsic activation barriers for possible reactions involving allylic species C 3H 5X, X = H, OH, O, Cl on clean and oxygen-preadsorbed Ag surfaces, have been calculated by using the bond-order conservation Morse-potential (BOC-MP) method. The calculations were made for low coverages of C 3H 5X with qualitative corrections for higher coverages. On clean Ag surfaces, propylene C 3H 6 and allyl alcohol C 3H 5OH are projected to desorb without dissociation, in contrast to allyl chloride C 3H 5C1, which is projected to desorb only at high coverages but to dissociate at low coverages forming a stable π-allyl (and atomic chlorine). It is found that the intrinsic activation barrier for dimerization of π-allyl into 1,5-hexadiene is very small and the apparent barrier should be mainly of diffusional character. In the presence of preadsorbed hydroxyl OH s, π-allyl is projected to undergo various transformations producing allyl alcohol, allyl alkoxide, acrolein, and propylene, when most recombination and disproportionation reactions have low intrinsic activation barriers. The BOC-MP model projections are in good agreement with experiment, particularly with the recent HREEL and TPD studies of C 3H 5C1.

  17. Ultra-stable Molecule-Surface Architectures at Metal Oxides: Structure, Bonding, and Electron-transfer Processes

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Robert John

    2013-12-07

    Research funded by this project focused on the development of improved strategies for functionalization of metal oxides to enhance charge-transfer processes relevant to solar energy conversion. Initial studies included Fe2O3, WO3, TiO2, SnO2, and ZnO as model oxide systems; these systems were chosen due to differences in metal oxidation state and chemical bonding types in these oxides. Later studies focused largely on SnO2 and ZnO, as these materials show particularly promising surface chemistry, have high electron mobility, and can be readily grown in both spherical nanoparticles and as elongated nanorods. New molecules were synthesized that allowed the direct chemical assembly of novel nanoparticle ?dyadic? structures in which two different oxide materials are chemically joined, leading to an interface that enhances the separation of of charge upon illumination. We demonstrated that such junctions enhance photocatalytic efficiency using model organic compounds. A separate effort focused on novel approaches to linking dye molecules to SnO2 and ZnO as a way to enhance solar conversion efficiency. A novel type of surface binding through

  18. Evaluation of plasma treatment effects on improving adhesive/dentin bonding by using the same tooth controls and varying cross-sectional surface areas

    Science.gov (United States)

    Dong, Xiaoqing; Ritts, Andy Charles; Staller, Corey; Yu, Qingsong; Chen, Meng; Wang, Yong

    2013-01-01

    The objective of this study is to evaluate and verify the effectiveness of plasma treatment for improving adhesive/dentin interfacial bonding by performing micro-tensile bond strength (μTBS) test using the same-tooth controls and varying cross-sectional surface areas. Extracted unerupted human third molars were used by removing the crowns to expose the dentin surface. For each dentin surface, one half of it was treated with a non-thermal argon plasma brush, while another half was shielded with glass slide and used as untreated control. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were then applied as directed. The teeth thus prepared were further cut into micro-bar specimens with cross-sectional size of 1×1 mm2, 1×2 mm2 and 1×3 mm2 for μTBS test. The test results showed that plasma treated specimens gave substantially stronger adhesive/dentin bonding than their corresponding same tooth controls. As compared with their untreated controls, plasma treatment gave statistically significant higher bonding strength for specimens having cross-sectional area of 1×1 mm2 and 1×2 mm2, with mean increases of 30.8% and 45.1%, respectively. Interface examination using optical and electron microscopy verified that plasma treatment improved the quality of the adhesive/dentin interface by reducing defects/voids and increasing the resin tag length in dentin tubules. PMID:23841788

  19. Development of new bond release criteria for surface coal mines in the eastern and interior coal provinces of the United States. Open file report (final) 18 jul 77-18 jul 78

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, W.M.; Fritz, E.L.; Schad, J.A.; Nagle, W.F.

    1978-09-18

    This study involved a review of bonding and bond release practices in the States of the eastern and midwestern coal provinces. Data was collected from regulatory authorities and site visits to document the bonding and release procedures in the States related to achieving successful reclamation. The regulations related to PL95-87 were reviewed. The analysis included suggested modified or new bond release criteria based on a review of applicable bond release inspection techniques, a conceptual graduated bonding system, and incentive procedures for reclamation of surface mine sites to alternative or higher land uses.

  20. The influence of surface roughness on the bond strength of composite to dental hard tissues after Er:YAG laser irradiation

    Science.gov (United States)

    Gardner, Andrew K.; Staninec, Michal; Fried, Daniel

    2005-03-01

    The uniformity of laser treated hard tissue surfaces depends on the laser beam quality and the degree of spatial overlap between adjacent laser pulses. Since the surface roughness or surface topography is expected to influence adhesion, our aim in this study was to assess the influence of the surface topography on the adhesion of composite to both enamel and dentin treated at the optimal conditions for the efficient ablation of those tissues with the Er:YAG laser. Human dentin and bovine enamel samples were uniformly irradiated by an Er:YAG laser operating with a pulse duration of 20-30-μs. The laser pulses were 300-μm in diameter with the laser operating in a single TEM00 transverse mode, and the distance between laser spots was varied from 50-200-μm. A motion control system and a pressurized spray system incorporating a microprocessor controlled pulsed nozzle for water delivery, were used to ensure uniform treatment of the entire surface. Shear bond testing was used to evaluate the adhesive strength in order to assess the suitability of laser treated surfaces for bonding. The effect of the degree of overlap of adjacent laser pulses on the surface roughness and the shear bond strength of composite to enamel and dentin is reported.

  1. A chromatographic estimate of the degree of surface heterogeneity of reversed-phase liquid chromatography packing materials II-Endcapped monomeric C18-bonded stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2006-01-01

    In a previous report, the heterogeneity of a non-endcapped C{sub 30}-bonded stationary phase was investigated, based on the results of the measurements of the adsorption isotherms of two neutral compounds (phenol and caffeine) and two ionizable compounds (sodium naphthalene sulfonate and propranololium chloride) by frontal analysis (FA). The same method is applied here for the characterization of the surface heterogeneity of two new brands of endcapped C{sub 18}-bonded stationary phases (Gemini and Sunfire). The adsorption isotherms of the same four chemicals were measured by FA and the results confirmed by the independent calculation of the adsorption energy distribution (AED), using the expectation-maximization (EM) method. The effect of the length of the bonded alkyl chain was investigated. Shorter alkyl-bonded-chains (C{sub 18} versus C{sub 30}) and the end-capping of the silica surface contribute to decrease the surface heterogeneity under the same experimental conditions (30% methanol, 25 mM NaCl). The AEDs of phenol and caffeine are bimodal with the C{sub 18}-bonded columns while they are trimodal and quadrimodal, respectively, with a non-endcapped C{sub 30}-bonded column. The 'supersites' (adsorption energy >20 kJ/mol) found on the C{sub 30}-Prontosil column and attributed to a cation exchange mechanism completely disappear on the C{sub 18}-Gemini and C{sub 18}-Sunfire, probably because the end-capping of the silica surface eliminates most if not all the ionic interactions.

  2. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments.

    Science.gov (United States)

    Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker

    2013-01-01

    This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups.

  3. Dependence of scale thickness on the breaking behavior of the initial oxide on plasma spray bond coat surface during vacuum pre-treatment

    Science.gov (United States)

    Zhang, Bang-Yan; Meng, Guo-Hui; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-03-01

    The thermally grown oxide (TGO) on the thermal spray bond coat surface was one of the most important factors which would influence the lifetime of thermal barrier coatings (TBCs). Pre-diffusion treatment (high temperature vacuum treatment) plays an important role in the growth of the TGO. Results show that the initial thin oxide scale, formed during deposition process, on the as-sprayed bond coating surface has broken and shrunk to discontinuous oxide particles through the elements diffusion during the pre-diffusion. Two kinds of bond coats with different initial oxide scale thicknesses were subjected to the same pre-diffusion. The two pre-diffused bond coats show different results of the average distance between the individual oxide particles. In this study, a three dimensional model with thermal grooving theory was developed to explore the essential condition for the scale breaking and explain the differences of these results. This research can provide reference for the preparation optimization and pre-treatment optimization of bond coat towards high performance TBCs.

  4. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    Science.gov (United States)

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  5. Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite.

    Science.gov (United States)

    Fawzy, Amr S; El-Askary, Farid S; Amer, Mohamed A

    2008-12-01

    The purpose of this study was to characterize changes in surface topography associated with different surface treatments and their effect on tensile bond strength (TBS) of repaired water-aged anterior restorative micro-fine hybrid resin composite. The TBS of repaired resin-based composite slabs either non-treated or exposed to different mechanical and/or chemical surface treatment procedures were measured. The cohesive tensile strength of non-repaired intact slabs was used as a control group. The topographical effects of acid etching, grinding, and grinding followed by acid etching were characterized by AFM and SEM. All repaired groups showed significantly lower TBS than the control group. The TBS of repaired groups was ranged from 15% to 59% of the cohesive tensile strength of the control group (18.8+/-4.5MPa). The surface roughness of the non-treated aged specimens was significantly higher than other treated specimens. Specimens treated by acid etching showed significant increase in surface area compared to the non-treated and treated specimens. Aging process resulted in the formation of degradable surface layer which adversely affects the repair bond strength. The use of silane primer prior to the application of the adhesive after mechanical grinding, with or without the use of 37% phosphoric acid etching; improves the repair bond strength.

  6. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples.

  7. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis

    Science.gov (United States)

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-01

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ -function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  8. Constructing safe and durable antibacterial textile surfaces using a robust graft-to strategy via covalent bond formation

    Science.gov (United States)

    He, Liang; Li, Sha; Chung, Cordelia T. W.; Gao, Chang; Xin, John H.

    2016-11-01

    Recently zwitterionic materials have been widely applied in the biomedical and bioengineering fields due to their excellent biocompatibility. Inspired by these, this study presents a graft-to strategy via covalent bond formation to fabricate safe and durable antibacterial textile surfaces. A novel zwitterionic sulfobetaine containing triazine reactive group was specifically designed and synthesized. MTT assay showed that it had no obvious cytotoxicity to human skin HaCaT cells as verified by ca. 89.9% relative viability at a rather high concentration of 0.8 mg·mL‑1. In the evaluation for its skin sensitization, the maximum score for symptoms of erythema and edema in all tests were 0 in all observation periods. The sulfobetaine had a hydrophilic nature and the hydrophilicity of the textiles was enhanced by 43.9% when it was covalently grafted onto the textiles. Moreover, the textiles grafted with the reactive sulfobetaine exhibited durable antibacterial activities, which was verified by the fact that they showed antibacterial rates of 97.4% against gram-positive S. aureus and 93.2% against gram-negative E. coli even after they were laundered for 30 times. Therefore, the titled zwitterionic sulfobetaine is safe to human for healthcare and wound dressing and shows a promising prospect on antibacterial textile application.

  9. Effect of composite surface treatment and aging on the bond strength between a core build-up composite and a luting agent.

    Science.gov (United States)

    Cotes, Caroline; Cardoso, Mayra; Melo, Renata Marques de; Valandro, Luiz Felipe; Bottino, Marco Antonio

    2015-01-01

    The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Eighty blocks (8×8×4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5°C and 55°C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mm Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (µTBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5°C and 55°C, with a dwell time of 30 s in each bath) and µTBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (α=0.05). The µTBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.

  10. Chemistry of sulfur oxides on transition metal surfaces: a bond order conservation-Morse potential modeling perspective

    Science.gov (United States)

    Sellers, Harrell; Shustorovich, Evgeny

    1996-06-01

    We have employed the bond order conservation-Morse potential (BOC-MP) method to analyze the chemistry of sulfur oxides on the copper and nickel group metals. Specifically, we have calculated the reaction energetics (heats of adsorption, reaction enthalpies and intrinsic activation barriers) of the decomposition and oxidation of sulfur dioxide at low coverages on fcc (111) surfaces of Cu, Ag, Au, Ni, Pd and Pt. The accuracy of the BOC-MP heats of adsorption has been corroborated by high quality ab initio calculations of the heats of SO2 adsorption on Ag and Pd surfaces. We have addressed the following issues: (1) the dissociation of SO2; (2) the stability of adsorbed SO and its likelihood of being a product of SO2 decomposition; (3) the oxidation of SO2; and, (4) the nature of adsorbed SO3 and SO4. The major model projections (obtained for low coverages and without considering diffusional effects) are: (1) the dissociation of SO2→SO + O is unfavorable on all the metals considered, but, the dissociation of SO2→S + O + O, showing distinct periodic trends, is feasible on Cu and particularly on Ni; in the presence of carbon monoxide the dissociation, SO2 + CO→S + O + CO2, may occur on all the metals examined; (2) on the Pt, Pd, Ni and Cu surfaces, SO is unstable; (3) the oxidation of SO2 to SO3 may be achieved with O, O2, H2O2 and NO as oxygen sources on Ag, Au, Pd and Pt surfaces. Although adsorbed SO3 may be readily obtained, it may be impossible to desorb SO3 intact at low coverages because SO3 will decompose to SO2 + O before desorption. (4) The most stable oxygen sulfur specie that withstands elevated temperatures should be dianion sulfate. The relevant experimental data have been discussed. Most of the model projections are in agreement with experiment, but, some suggest reconsideration of the reported experimental data or represent predictions to be verified.

  11. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.

    Science.gov (United States)

    Hibbitts, David; Iglesia, Enrique

    2015-05-19

    Dissociation of the strong bonds in O2, NO, CO, and N2 often involves large activation barriers on low-index planes of metal particles used as catalysts. These kinetic hurdles reflect the noble nature of some metals (O2 activation on Au), the high coverages of co-reactants (O2 activation during CO oxidation on Pt), or the strength of the chemical bonds (NO on Pt, CO and N2 on Ru). High barriers for direct dissociations from density functional theory (DFT) have led to a consensus that "defects", consisting of low-coordination exposed atoms, are required to cleave such bonds, as calculated by theory and experiments for model surfaces at low coverages. Such sites, however, bind intermediates strongly, rendering them unreactive at the high coverages prevalent during catalysis. Such site requirements are also at odds with turnover rates that often depend weakly on cluster size or are actually higher on larger clusters, even though defects, such as corners and edges, are most abundant on small clusters. This Account illustrates how these apparent inconsistencies are resolved through activations of strong bonds assisted by co-adsorbates on crowded low-index surfaces. Catalytic oxidations occur on Au clusters at low temperatures in spite of large activation barriers for O2 dissociation on Au(111) surfaces, leading to proposals that O2 activation requires low-coordination Au atoms or Au-support interfaces. When H2O is present, however, O2 dissociation proceeds with low barriers on Au(111) because chemisorbed peroxides (*OOH* and *HOOH*) form and weaken O-O bonds before cleavage, thus allowing activation on low-index planes. DFT-derived O2 dissociation barriers are much lower on bare Pt surfaces, but such surfaces are nearly saturated with CO* during CO oxidation. A dearth of vacant sites causes O2* to react with CO* to form *OOCO* intermediates that undergo O-O cleavage. NO-H2 reactions occur on Pt clusters saturated with NO* and H*; direct NO* dissociation requires vacant

  12. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s.

  13. Surface modification with alumina blasting and H2SO4-HCl etching for bonding two resin-composite veneers to titanium.

    Science.gov (United States)

    Taira, Yohsuke; Egoshi, Takafumi; Kamada, Kohji; Sawase, Takashi

    2014-02-01

    The purpose of this study was to investigate the effect of an experimental surface treatment with alumina blasting and acid etching on the bond strengths between each of two resin composites and commercially pure titanium. The titanium surface was blasted with alumina and then etched with 45wt% H2SO4 and 15wt% HCl (H2SO4-HCl). A light- and heat-curing resin composite (Estenia) and a light-curing resin composite (Ceramage) were used with adjunctive metal primers. Veneered specimens were subjected to thermal cycling between 4 and 60°C for 50,000 cycles, and the shear bond strengths were determined. The highest bond strengths were obtained for Blasting/H2SO4-HCl/Estenia (30.2 ± 4.5 MPa) and Blasting/Etching/Ceramage (26.0 ± 4.5 MPa), the values of which were not statistically different, followed by Blasting/No etching/Estenia (20.4 ± 2.4 MPa) and Blasting/No etching/Ceramage (0.8 ± 0.3 MPa). Scanning electron microscopy observations revealed that alumina blasting and H2SO4-HCl etching creates a number of micro- and nanoscale cavities on the titanium surface, which contribute to adhesive bonding.

  14. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    Directory of Open Access Journals (Sweden)

    Henrique Caballero STEINHAUSER

    2014-04-01

    Full Text Available Objective: The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods: Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8: C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results: One-way ANOVA test showed no significant difference between treatments (p=0.3197 and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions: Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed.

  15. Comparison of shear bond strength of resin-modified glass ionomer to conditioned and unconditioned mineral trioxide aggregate surface: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shikha Gulati

    2014-01-01

    Full Text Available Introduction: The aim of this study was to compare the shear bond strength of resin modified glass ionomer cement to conditioned and unconditioned mineral trioxide aggregate surface. Materials and Method: White Mineral Trioxide Aggregate (WMTA and Resin Modified Glass Ionomer Cement (RMGIC were used for the study. 60 WMTA specimens were prepared and stored in an incubator at 37° C and 100% humidity for 72 hrs. The specimens were then divided into two groups- half of the specimens were conditioned and remaining half were left unconditioned, subsequent to which RMGIC was placed over MTA. The specimens were then stored in an incubator for 24 hrs at 37° C and 100% humidity. The shear bond strength value of RMGIC to conditioned and unconditioned WMTA was measured and compared using unpaired ′t  ′ test. Results: The mean shear bond strength of value of RMGIC to conditioned and unconditioned WMTA was 6.59 MPa and 7.587 MPa respectively. Statistical analysis using unpaired t-test revealed that the difference between values of two groups was not statistically significant (P > 0.05. Conclusions: During clinical procedures like pulp capping and furcal repair, if RMGIC is placed as a base over MTA, then conditioning should be done to increase the bond strength between RMGIC and dentin and any inadvertent contact of conditioner with MTA will not significantly affect the shear bond strength value of RMGIC to MTA.

  16. Effect of dental surface treatment with Nd:YAG and Er:YAG lasers on bond strength of resin composite to recently bleached enamel.

    Science.gov (United States)

    Rocha Gomes Torres, Carlos; Caneppele, Taciana Marco Ferraz; Del Moral de Lazari, Regina; Ribeiro, Carolina Ferraz; Borges, Alessandra Buhler

    2012-07-01

    The aim of this work is to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached enamel. In this study, 120 bovine incisors were distributed into two groups: group C: without bleaching treatment; group B: bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: subgroup N: without laser treatment; subgroup Nd: irradiation with Nd:YAG laser; subgroup Er: irradiation with Er:YAG laser. The adhesive system (Adper Single Bond 2) was then applied and composite buildups were constructed with Filtek Supreme composite. The teeth were sectioned to obtain enamel-resin sticks (1 × 1 mm) and submitted to microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. The bond strength values in the bleached control group (5.57 MPa) presented a significant difference in comparison to the group bleached and irradiated with Er:YAG laser (13.18 MPa) or Nd:YAG (25.67 MPa). The non-bleached control group presented mean values of 30.92 MPa, with statistical difference of all the others groups. The use of Nd:YAG and Er:YAG lasers on bleached specimens was able to improve the bond strengths of them.

  17. Study on adhesively-bonded surface of tapered double cantilever specimen made of aluminum foam affected with shear force

    Institute of Scientific and Technical Information of China (English)

    孙洪鹏; CHO Jae-ung

    2015-01-01

    Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials. It presents a number of advantages, such as low density, incombustibility, non-rigidity, excellent energy absorptivity, sound absorptivity and low heat conductivity. The aluminum foam with an air cell structure was placed under the TDCB Mode II tensile load by using Landmark equipment manufactured by MTS to examine the shear failure behavior. The angle of the tapered adhesively-bonded surfaces of specimens was designated as a variable, and three models were developed with the inclined angles differing from one another at 6°, 8° and 10°. The specimens with the inclined angles of 6°, 8° and 10° have the maximum reaction forces of 168 N, 194 N when the forced displacements are 6, 5 and 4.2 mm respectively. There are three specimens with the inclined angles of 10°, 8° and 6° in the order of maximum reaction force. As the analysis result, the maximum equivalent stresses of 0.813 MPa and 0.895 MPa happened when the forced displacements of 6 mm and 5 mm proceeded at the models of 6° and 8°, respectively. A simulation was carried out on the basis of finite element method and the experimental design. The results of the experiment and the simulation analysis are shown not different from each other significantly. Thus, only a simulation could be confirmed to be performed in substitution of an experiment, which is costly and time-consuming in order to determine the shearing properties of materials made of aluminum foam with artificial data.

  18. Effects of post surface treatments including Er:YAG laser with different parameters on the pull-out bond strength of the fiber posts.

    Science.gov (United States)

    Arslan, Hakan; Kurklu, Duygu; Ayrancı, Leyla Benan; Barutcigil, Cagatay; Yılmaz, Cenk Burak; Karatas, Ertugrul; Topçuoğlu, Hüseyin Sinan

    2014-09-01

    This study aims to evaluate the effects of Er:YAG laser irradiation under different power settings on the pull-out bond strengths of fiber-reinforced composite posts. The crowns of single-rooted 60 teeth were removed by separation and the root canals were cleaned and shaped. Root canals were filled and post spaces were prepared. Sixty fiber posts were divided into five groups according to surface treatment methods as follows: an untreated control group, a sandblasting-coated group, and three groups undergoing surface preparation with Er:YAG laser under three different power settings (150, 300, and 450 mJ at 10 Hz for 60 s at 100-μs pulse duration). After root canal procedures, fiber posts were cemented to the root canal. After all of the specimens were set, pull-out tests were performed using a universal testing machine at a crosshead speed of 2 mm/min. The data were analyzed using one-way ANOVA and Tukey post-hoc test (p surface treatment. Surface treatment applied by 4.5-W Er:YAG laser increased the pull-out bond strength compared to the control group (p laser irradiation increased the pull-out bond strength of fiber posts to resin cement.

  19. Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments.

    Science.gov (United States)

    Henriques, B; Faria, S; Soares, D; Silva, F S

    2013-01-01

    The purpose of this study was to evaluate the effect of hot pressing on the shear bond strength of a CoCrMoSi alloy to a low-fusing feldspathic porcelain, for two types of surface treatments: polished and grit-blasted. Moreover, the shear strength of hot pressed porcelain was also compared with that of conventional vacuum sintered porcelain. Bond strength of metal-porcelain composites were assessed by the means of a shear test performed in a universal test machine until fracture. Fracture surfaces and interfaces were investigated by optical microscope, stereomicroscope and SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results and the t-test was used to compare the porcelain shear strength (pporcelain. This study revealed that metal-ceramic bond strength is maximized for hot pressed porcelain onto rough metal substrates, with lower variability in results. Hot pressing technique was also shown to enhance the cohesion of porcelain.

  20. Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh

    2015-09-01

    Full Text Available Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters, such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentio-dynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors (mechtrode rotational speed, substrate traverse speed, axial load on mechtrode and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters.

  1. INVESTIGATION OF BONDING IN OXIDE-FIBER (WHISKER) REINFORCED METALS.

    Science.gov (United States)

    CERAMIC FIBERS , BONDING), (*COMPOSITE MATERIALS, BONDING), (*BONDING, CERAMIC FIBERS ), ALUMINUM COMPOUNDS, OXIDES, ZIRCONIUM, NICKEL, TITANIUM, CHROMIUM, SINGLE CRYSTALS, VACUUM, SHEAR STRESSES, SURFACE PROPERTIES, ADDITIVES.

  2. Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface

    OpenAIRE

    Zhang, Jizhe; AIREY, Gordon D; Grenfell, James; Apeagyei, Alex K.

    2017-01-01

    The moisture-induced deterioration of asphalt mixture is because of the loss of adhesion at the aggregate–bitumen interface and/or the loss of cohesion within the bitumen film. An experimental study was undertaken in this paper to characterise the effects of moisture on the direct tensile strength of aggregate–bitumen bonds. The aim of this paper was to evaluate the moisture sensitivity of aggregate–bitumen bonds in several different aspects, which included moisture absorption, tensile streng...

  3. Periodic regularities in bonding, coordination modes and reactivity of sulfur oxides on transition metal surfaces: Combined BOC-MP and ab initio results

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, E. [Blue Planet Technologies Co., New York, NY (United States); Sellers, H. [South Dakota State Univ., Brookings, SD (United States)

    1995-12-01

    A combination of theoretical methods (BOC-MP and high quality ab initio calculations) has been employed to understand the nature of bonding, coordination modes and reactivity of sulfur oxides on metal fcc (111), (100), (110) surfaces along the periodic series Cu, Pt, Pd and Ni. The emphasis was on the molecular chemisorption of SO{sub 2} and its dissociative pathways: S + 20 <--- SO + O <--- SO{sub 2} --- > SO{sub 3} --- > SO{sub 4}. M

  4. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf (UC)

    2012-09-05

    Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.

  5. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin.

    Science.gov (United States)

    Su, Naichuan; Yue, Li; Liao, Yunmao; Liu, Wenjia; Zhang, Hai; Li, Xin; Wang, Hang; Shen, Jiefei

    2015-06-01

    To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and 110 µm. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (α=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from 50 µm to 110 µm. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of 110 µm is recommended for dental applications to improve the bonding between zirconia core and ICR.

  6. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

    Science.gov (United States)

    Su, Naichuan; Yue, Li; Liao, Yunmao; Liu, Wenjia; Zhang, Hai; Li, Xin

    2015-01-01

    PURPOSE To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and 110 µm. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (α=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from 50 µm to 110 µm. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of 110 µm is recommended for dental applications to improve the bonding between zirconia core and ICR. PMID:26140173

  7. Micromorphology and bond strength evaluation of adhesive interface of a self-adhering flowable composite resin-dentin: Effect of surface treatment.

    Science.gov (United States)

    Shafiei, Fereshteh; Saadat, Maryam

    2016-05-01

    This study evaluated the effect of dentin surface treatment on the micromorphology and shear bond strength (SBS) of a self-adhering flowable composite, Vertis Flow (VF). Flat dentin surfaces obtained from sixty extracted human molars were divided into six groups (n = 10) according to the following surface treatments: (G1) control, no treatment; (G2) self-etching adhesive, Optibond All-in-One; (G3) phosphoric acid etching for 15 s; (G4) polyacrylic acid for 10 s; (G5) EDTA for 60 s; and G6) sodium hypochlorite (NaOCl) for 15 s. After restoration using VF, SBS was measured in MPa. Data were analyzed using one-way ANOVA and Tamhane test (α = 0.05). Six additional specimens were prepared for scanning electron microscopy analysis. SBS was significantly affected by surface treatment (P < 0.001). SBS of six groups from the highest to the lowest were as follows: (G3) 13.5(A); (G5) 8.98(AB); (G2) 8.85(AB); (G4) 8.21(AB); (G1) 7.53(BC); and (G6) 4.49(C) (groups with the same superscript letter were statistically similar). Morphological analysis revealed numerous long resin tags at the adhesive interface for acid-etched group, with a few short resin tags for the control group and small gap formation for NaOCl-treated group. In conclusion, dentin surface treatments tested differently affected bonding performance of VF; only acid-etching effectively improved this.

  8. Influence of Nd:YAG or Er:YAG laser surface treatment on microtensile bond strength of indirect resin composites to resin cement. Lasers surface treatment of indirect resin composites.

    Science.gov (United States)

    Caneppele, T M F; de Souza, A C Oliveira; Batista, G R; Borges, A B; Torres, C R G

    2012-09-01

    This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

  9. Fabrication of Si/SiO2/GaN structure by surface-activated bonding for monolithic integration of optoelectronic devices

    Science.gov (United States)

    Tsuchiyama, Kazuaki; Yamane, Keisuke; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2016-05-01

    A Si/SiO2/GaN-light-emitting-diode (LED) wafer is proposed as a new structure for the monolithic integration of both Si circuits and GaN-based optical devices. Surface-activated bonding was performed to transfer a Si layer from a silicon-on-insulator substrate to a SiO2/GaN-LED substrate. Transmission electron microscopy observation revealed that a defect-free Si layer was formed on the SiO2/GaN-LED substrate without interfacial voids. The crystalline quality of the Si layer, which is characterized by an X-ray rocking curve, was markedly improved by flattening the SiO2/GaN-LED substrate before bonding. Finally, a micro-LED array was successfully fabricated on the Si/SiO2/GaN-LED wafer without the delamination of the Si layer.

  10. Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces

    Science.gov (United States)

    Hibbitts, David; Neurock, Matthew

    2016-08-01

    Electronegative coadsorbates such as atomic oxygen (O*) and hydroxide (OH*) can act as Brønsted bases when bound to Group 11 as well as particular Group 8-10 metal surfaces and aid in the activation of X-H bonds. First-principle density functional theory calculations were carried out to systematically explore the reactivity of the C-H bonds of methane and surface methyl intermediates as well as the O-H bond of methanol directly and with the assistance of coadsorbed O* and OH* intermediates over Group 11 (Cu, Ag, and Au) and Group 8-10 transition metal (Ru, Rh, Pd, Os, Ir, and Pt) surfaces. C-H as well as O-H bond activation over the metal proceeds via a classic oxidative addition type mechanism involving the insertion of the metal center into the C-H or O-H bond. O* and OH* assist C-H and O-H activation over particular Group 11 and Group 8-10 metal surfaces via a σ-bond metathesis type mechanism involving the oxidative addition of the C-H or O-H bond to the metal along with a reductive deprotonation of the acidic C-H and O-H bond over the M-O* or M-OH* site pair. The O*- and OH*-assisted C-H activation paths are energetically preferred over the direct metal catalyzed C-H scission for all Group 11 metals (Cu, Ag, and Au) with barriers that are 0.4-1.5 eV lower than those for the unassisted routes. The barriers for O*- and OH*-assisted C-H activation of CH4 on the Group 8-10 transition metals, however, are higher than those over the bare transition metal surfaces by as much as 1.4 eV. The C-H activation of adsorbed methyl species show very similar trends to those for CH4 despite the differences in structure between the weakly bound methane and the covalently adsorbed methyl intermediates. The activation of the O-H bond of methanol is significantly promoted by O* as well as OH* intermediates over both the Group 11 metals (Cu, Ag, and Au) as well as on all Group 8-10 metals studied (Ru, Rh, Pd, Os, Ir, and Pt). The O*- and OH*-assisted CH3O-H barriers are 0.6 to 2

  11. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    Science.gov (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  12. Block-Localized Density Functional Theory (BLDFT), Diabatic Coupling, and Their Use in Valence Bond Theory for Representing Reactive Potential Energy Surfaces.

    Science.gov (United States)

    Cembran, Alessandro; Song, Lingchun; Mo, Yirong; Gao, Jiali

    2009-10-13

    A multistate density functional theory in the framework of the valence bond model is described. The method is based on a block-localized density functional theory (BLDFT) for the construction of valence-bond-like diabatic electronic states and is suitable for the study of electron transfer reactions and for the representation of reactive potential energy surfaces. The method is equivalent to a valence bond theory with the treatment of the localized configurations by using density functional theory (VBDFT). In VBDFT, the electron densities and energies of the valence bond states are determined by BLDFT. A functional estimate of the off-diagonal matrix elements of the VB Hamiltonian is proposed, making use of the overlap integral between Kohn-Sham determinants and the exchange-correlation functional for the ground state substituted with the transition (exchange) density. In addition, we describe an approximate approach, in which the off-diagonal matrix element is computed by wave function theory using block-localized Kohn-Sham orbitals. The key feature is that the electron density of the adiabatic ground state is not directly computed nor used to obtain the ground-state energy; the energy is determined by diagonalization of the multistate valence bond Hamiltonian. This represents a departure from the standard single-determinant Kohn-Sham density functional theory. The multistate VBDFT method is illustrated by the bond dissociation of H2+ and a set of three nucleophilic substitution reactions in the DBH24 database. In the dissociation of H2+, the VBDFT method yields the correct asymptotic behavior as the two protons stretch to infinity, whereas approximate functionals fail badly. For the S(N)2 nucleophilic substitution reactions, the hybrid functional B3LYP severely underestimates the barrier heights, while the approximate two-state VBDFT method overcomes the self-interaction error, and overestimates the barrier heights. Inclusion of the ionic state in a three

  13. [Effect of surface pretreatment with chemical etchants on bond strength between a silicone-based resilient liner and denture base resin].

    Science.gov (United States)

    Zhang, Ying; Zhang, Huai-qin; Ma, Jun-chi; Jin, Si-yuan

    2011-12-01

    To evaluate the effect of denture base resin surface pretreatment with chemical etchants on microleakage and bond strength between silicone-based resilient liner and denture base resin. The initial bending strength of denture base resin after surface pretreatment was also examined. Thirty-six polymethyl methacrylate (PMMA) denture base resin blocks (30 mm × 30 mm × 2 mm) were prepared and divided into three groups: group acetone, group methyl methy acrylate (MMA) and group control. Subsequently, a 2 mm silicone-based resilient liner was applied between every two blocks. After 5000 cycles in the thermal cycler (5 and 55°C), they were immersed in the (131) I solution for 24 hours and γ-ray counts were measured. Another 36 PMMA resin blocks (30 mm × 10 mm × 7.5 mm) were prepared. The blocks were divided into three groups and treated as mentioned above. A 3 mm silicone-based resilient liner was applied between every two blocks. After 5000 thermal cycles, tensile bond strength of the sample was measured in a universal testing machine. Another 18 PMMA resin blocks (65 mm × 10 mm × 3.3 mm) were prepared. They were divided into 3 groups and treated in the same way. After an adhesive was applied, the bending strength was measured with three-piont bending test. Two experimental groups showed lower microleakage (520.0 ± 562.2 and 493.5 ± 447.9) and higher tensile bond strength [(1.5 ± 0.4) and (1.4 ± 0.5) MPa] than the group control [microleakage: (1369.5 ± 590.2); tensile bond strength: (0.9 ± 0.2) MPa, P 0.05). There was no statistically significant difference in bending strength among the three groups (P > 0.05). Treating the denture base resin surface with acetone and MMA decreased the microleakage, increased the tensile bond strength between the two materials and did not make the initial bending strength of denture base resin decline.

  14. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography Caracterização de cerâmicas e adesão à resina: II- relação entre tratamento de superfície, resistência adesiva, tenacidade de fratura da interface e fractografia

    OpenAIRE

    2005-01-01

    The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters ...

  15. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  16. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  17. Effects of two erbium-doped yttrium aluminum garnet lasers and conventional treatments as composite surface abrasives on the shear bond strength of metal brackets bonded to composite resins

    Science.gov (United States)

    Sobouti, Farhad; Dadgar, Sepideh; Sanikhaatam, Zahra; Nateghian, Nazanin; Saravi, Mahdi Gholamrezaei

    2016-01-01

    Background: Bonding brackets to dental surfaces restored with composites are increasing. No studies to date have assessed the efficacy of laser irradiation in roughening of composite and the resulted shear bond strength (SBS) of the bonded bracket. We assessed, for the 1st time, the efficacy of two laser beams compared with conventional methods. Materials and Methods: Sixty-five discs of light-cured composite resin were stored in deionized distilled water for 7 days. They were divided into five groups of 12 plus a group of five for scanning electron microscopy (SEM): Bur-abrasion followed by phosphoric acid etching (bur-PA), hydrofluoric acid conditioning (HF), sandblasting, 3 W and 2 W erbium-doped yttrium aluminum garnet laser irradiation for 12 s. After bracket bonding, specimens were water-stored (24 h) and thermocycled (500 cycles), respectively. SBS was tested at 0.5 mm/min crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magnification. SEM was carried out as well. Data were analyzed using analysis of variance (ANOVA), Kruskal–Wallis, Tukey, Dunn, one-sample t-test/Wilcoxon tests, and Weibull analysis (α =0.05). Results: The SBS values (megapascal) were bur-PA (11.07 ± 1.95), HF (19.70 ± 1.91), sandblasting (7.75 ± 1.10), laser 2 W (15.38 ± 1.38), and laser 3 W (20.74 ± 1.73) (compared to SBS = 6, all P = 0.000). These differed significantly (ANOVA P = 0.000) except HF versus 3 W laser (Tukey P > 0.05). ARI scores differed significantly (Kruskal–Wallis P = 0.000), with sandblasting and 2 W lasers having scores inclined to the higher end (safest debonding). Weibull analysis implied successful clinical outcome for all groups, except for sandblasting with borderline results. Conclusion: Considering its high efficacy and the lack of adverse effects bound with other methods, the 3 W laser irradiation is recommended for clinical usage. PMID:26998473

  18. The Effect of Hydrofluoric Acid Concentration on the Bond Strength and Morphology of the Surface and Interface of Glass Ceramics to a Resin Cement.

    Science.gov (United States)

    Sundfeld Neto, D; Naves, L Z; Costa, A R; Correr, A B; Consani, S; Borges, G A; Correr-Sobrinho, L

    2015-01-01

    The purpose of this study was to evaluate the influence of various concentrations of hydrofluoric acid (HF) on the surface/interface morphology and μ-shear bond strength (μSBS) between IPS Empress Esthetic (EST) (Ivoclar Vivadent) and IPS e.max Press (EMX) (Ivoclar Vivadent) ceramics and resin cement. Ceramic blocks were divided into 12 groups for each kind of ceramic. Six different HF concentrations were evaluated: 1%, 2.5%, 5%, 7.5%, 10%, and 15%. All groups were silanated after etching, and half of the specimens within each group received a thin layer of unfilled resin (UR). Three resin cement cylinders were prepared on each ceramic block for μSBS testing. The specimens were stored in distilled water at 37°C for 24 hours. The μSBS test was carried out in a universal testing machine at a crosshead speed of 0.5 mm/min until fracture. The data were submitted to three-way analysis of variance and multiple comparisons were performed using the Tukey post hoc test (p0.05). When evaluating UR, μSBS mean was significantly higher and better infiltration was observed on the etched surfaces. No statistical difference was found between the ceramics. The HF concentration and UR influenced the bond strength and surface/interface morphology.

  19. Non-monotonic, distance-dependent relaxation of water in reverse micelles: propagation of surface induced frustration along hydrogen bond networks.

    Science.gov (United States)

    Biswas, Rajib; Chakraborti, Tamaghna; Bagchi, Biman; Ayappa, K G

    2012-07-07

    Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed "spins on a ring" (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The "spins on a ring" model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface.

  20. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    Science.gov (United States)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  1. Probing Heterogeneity and Bonding at Silica Surfaces through Single-Molecule Investigation of Base-Mediated Linkage Failure.

    Science.gov (United States)

    Lupo, Katherine M; Hinton, Daniel A; Ng, James D; Padilla, Nicolas A; Goldsmith, Randall H

    2016-09-13

    The nature of silica surfaces is relevant to many chemical systems, including heterogeneous catalysis and chromatographies utilizing functionalized-silica stationary phases. Surface linkages must be robust to achieve wide and reliable applicability. However, silyl ether-silica support linkages are known to be susceptible to detachment when exposed to basic conditions. We use single-molecule spectroscopy to examine the rate of surface linkage failure upon exposure to base at a variety of deposition conditions. Kinetic analysis elucidates the role of thermal annealing and addition of blocking layers in increasing stability. Critically, it was found that successful surface modification strategies alter the rate at which base molecules approach the silica surface as opposed to reducing surface linkage reactivity. Our results also demonstrate that the innate structural diversity of the silica surface is likely the cause of observed heterogeneity in surface-linkage disruption kinetics.

  2. Layer by layer H-bonded assembly of P4VP with various hydroxylated PPFS: impact of the donor strength on growth mechanism and surface features.

    Science.gov (United States)

    Chen, Jing; Duchet, Jannick; Portinha, Daniel; Charlot, Aurélia

    2014-09-01

    Hydrogen bond mediated films made by step by step deposition of poly(4-vinylpyridine) (P4VP) and hydroxylated poly(2,3,4,5,6-pentafluorostyrene) (PPFS) copolymers prepared by thiol para-fluoro coupling, bearing either one (PPFSME) or two (PPFSMPD) hydrogenated hydroxyl groups or a (poly)fluorinated hydroxyl (PPFSOH), respectively, were successfully constructed. The influence of the structural parameters, such as the hydroxyl environment (which dictates the H-bond strength) was in-depth investigated in terms of their impact on (i) growth mechanism, (ii) internal organization, and (iii) surface features. The use of the weaker H-bond donor partner (PPFSME) leads to low quality films composed of irregularly distributed aggregates. While [PPFSMPD/P4VP] multilayer films are comparatively thick and composed of stratified layers with smooth topology, the use of PPFSOH with P4VP yields thin films made of mixed and interpenetrated polymer layers. Playing on the interaction strength appears as a powerful tool to elaborate tailored multilayer films with molecularly tunable properties.

  3. The effects of surface polarity and dangling bonds on the electronic properties of MoS2 on SiO2

    Science.gov (United States)

    Sung, Ha-Jun; Choe, Duk-Hyun; Chang, Kee Joo

    2015-03-01

    MoS2 has recently attracted much attention due to its intriguing physical phenomena and possible applications for the next generation electronic devices. In pristine monolayer MoS2, strong spin-orbit coupling and inversion symmetry breaking allow for an effective coupling between the spin and valley degrees of freedom, inducing valley polarization at the K valleys. However, the spin-valley coupling disappears in bilayer MoS2 because the inversion symmetry is restored. In this work, we investigate the effects of surface polarity and dangling bonds on the electronic properties of MoS2 on α-quartz SiO2 through first-principles calculations. In monolayer MoS2, a transition can take place from the direct-gap to indirect-gap semiconductor in the presence of O dangling bonds. In bilayer MoS2, O dangling bonds induce dipole fields across the interface and thus break the inversion symmetry, resulting in the valley polarization, similar to that of pristine monolayer MoS2. Based on the results, we discuss the origin of the valley polarization observed in MoS2 deposited on SiO2 This work was supported by National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and by Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  4. The Influence of Abutment Surface Treatment and the Type of Luting Cement on Shear Bond Strength between Titanium/Cement/Zirconia

    Directory of Open Access Journals (Sweden)

    Beata Śmielak

    2015-01-01

    Full Text Available Objectives. The objectives of this study were to evaluate the shear bond strength of zirconia cylinders on a modified titanium surface using different luting cement types. Material and Methods. Eighty titanium disks were divided into two groups (n=40, which were treated with either grinding or a combination of sandblasting and grinding. Then, each group was subdivided into 4 groups (n=10 and the disks were bonded to disks of sintered zirconia using one of four cement types (permanent: composite cement; temporary: polycarboxylate cement, zinc-oxide-eugenol cement, and resin cement. Shear bond strength (SBS was measured in a universal testing machine. Fracture pattern and site characteristic were recorded. A fractographic analysis was performed with SEM. The chemical analysis of the composition of the fractures was performed using energy-dispersive X-ray spectroscopy (EDS. The results of the experiment were analyzed with two-way analysis of variance and Tukey post hoc test. Results. The highest mean values of SBS were achieved when grinding was combined with sandblasting and when composite cement was used (18.18 MPa. In the temporary cement group, the highest mean values of SBS were for polycarboxylate cement after grinding (3.57 MPa. Conclusion. The choice of cement has a crucial influence on the titanium-cement-zirconia interface quality.

  5. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  6. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  7. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO{sub 2} on AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Hong, E-mail: ewanghong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore and CINTRA CNRS/NTU/Thales, UMI 3288, 50 Nanyang Drive, Singapore 637553 (Singapore); Ng, Serene Lay Geok; Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), 5 Engineering Drive 1, Singapore 117608 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2015-09-15

    Atomic layer deposition (ALD) of ZrO{sub 2} on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO{sub 2} and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications.

  8. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  9. The structure, energetics, and nature of the chemical bonding of phenylthiol adsorbed on the Au(111) surface: implications for density-functional calculations of molecular-electronic conduction.

    Science.gov (United States)

    Bilić, Ante; Reimers, Jeffrey R; Hush, Noel S

    2005-03-01

    The adsorption of phenylthiol on the Au(111) surface is modeled using Perdew and Wang density-functional calculations. Both direct molecular physisorption and dissociative chemisorption via S-H bond cleavage are considered as well as dimerization to form disulfides. For the major observed product, the chemisorbed thiol, an extensive potential-energy surface is produced as a function of both the azimuthal orientation of the adsorbate and the linear translation of the adsorbate through the key fcc, hcp, bridge, and top binding sites. Key structures are characterized, the lowest-energy one being a broad minimum of tilted orientation ranging from the bridge structure halfway towards the fcc one. The vertically oriented threefold binding sites, often assumed to dominate molecular electronics measurements, are identified as transition states at low coverage but become favored in dense monolayers. A similar surface is also produced for chemisorption of phenylthiol on Ag(111); this displays significant qualitative differences, consistent with the qualitatively different observed structures for thiol chemisorption on Ag and Au. Full contours of the minimum potential energy as a function of sulfur translation over the crystal face are described, from which the barrier to diffusion is deduced to be 5.8 kcal mol(-1), indicating that the potential-energy surface has low corrugation. The calculated bond lengths, adsorbate charge and spin density, and the density of electronic states all indicate that, at all sulfur locations, the adsorbate can be regarded as a thiyl species that forms a net single covalent bond to the surface of strength 31 kcal mol(-1). No detectable thiolate character is predicted, however, contrary to experimental results for alkyl thiols that indicate up to 20%-30% thiolate involvement. This effect is attributed to the asymptotic-potential error of all modern density functionals that becomes manifest through a 3-4 eV error in the lineup of the adsorbate and

  10. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Science.gov (United States)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  11. Structures and bonding on a colloidal silver surface of the various length carboxyl terminal fragments of bombesin.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro; Proniewicz, Leonard M

    2008-10-07

    Raman (RS) and surface-enhanced Raman scattering spectra (SERS) were measured for various length carboxyl terminal fragments (X-14 of amino acid sequence) of bombesin ( BN): BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 in silver colloidal solutions. Density functional theory (DFT) calculations of Raman wavenumbers and intensities with extended basis sets (B3LYP/6-31++G**) were performed with the aim of providing the definitive band allocations to the normal coordinates. The proposed band assignment is consistent with the assignment for similar compounds reported in the literature. The nonadsorbed and adsorbed molecular structures were deducted by detailed spectral analysis of the RS and SERS spectra, respectively. This analysis also allowed us to propose the particular surface geometry and orientation of these peptides on silver surface, and their specific interaction with the surface. For example, a SERS spectrum of BN8-14 indicates that the interaction of a thioether atom and Trp8 with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide. One of the most prominent and common features in all of the fragments' SERS spectra is a approximately 692 cm (-1) band due to nu(C-S) accompanied by two or three bands of different C-S conformers for all, except BN8-14, which suggests that all of the above-mentioned compounds adsorb on the silver surface through the thioether atom and that the attachment of Trp8 produces limitation in a number of possible C-S conformers adopted on this surface. Our results also show clearly that His12 and CO do not interact with the colloid surface, which supports our earlier results.

  12. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  13. Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates.

    Science.gov (United States)

    Lin, Yi-Shiue; Lin, Jain-Shiun; Liao, Yung-Hsuan; Yang, Che-Ming; Kuo, Che-Wei; Lin, Hong-Ping; Fan, Liang-Jen; Yang, Yaw-Wen; Lin, Jong-Liang

    2010-06-01

    The chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH(2)COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH(2)COO, CH(3)COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH(2)COOH on Cu(100) at temperatures higher than 230 K are established to be ICH(2)COOH --> CH(2)COO + H + I, CH(2)COO + H --> CH(3)COO, and CH(3)COO --> CCOH. Theoretical calculations suggest that the surface CH(2)COO has the skeletal plane, with delocalized pi electrons, approximately parallel to the surface. The calculated Mulliken charges agree with the detected binding energies for the two carbon atoms in CH(2)COO on Cu(100). The CCOH derived from CH(3)COO decomposition has a CC stretching frequency at 2025 cm(-1), reflecting its triple-bond character which is consistent with the calculated CCOH structure on Cu(100). Theoretically, CCOH at the bridge and hollow sites has a similar stability and is adsorbed with the molecular axis approximately perpendicular to the surface. The TPR/D study has shown the evolution of the products of H(2), CH(4), H(2)O, CO, CO(2), CH(2)CO, and CH(3)COOH from CH(3)COO decomposition between 500 and 600 K and the formation of H(2) and CO from CCOH between 600 and 700 K. However, at a coverage near one monolayer, the major species formed at 230 and 320 K are proposed to be ICH(2)COO and CH(3)COO. CH(3)COO becomes the only species present on the surface at 400 K. That is, there are two reaction pathways of ICH(2)COOH --> ICH(2)COO + H and ICH(2)COO + H --> CH(3)COO + I (possibly via CH(2)COO), which are different from those

  14. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. III. Oxidative degradation and stabilization of grafted layer

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, S.; Yamamoto, F.

    1978-09-01

    Vapor-phase mutual grafting of methyl acrylate (MA) onto polyethylene (PE) and subsequent saponification treatment produce a surface graft having a high adhesive bondability, which results from the presence of a hydrolized homopolymer layer (consisting of only monomer componenet) on an inner graft copolymer layer consisting of both PE and monomer components. The oxidative deterioration and the stabilization of the grated surface layer have been investigated to clarify the long-term stability of the adhesive bondability. The bondability rapidly disappears with accelerated weatherly followed by acetone extraction treatment, whereas it is kept unchanged during thermal-oxidative aging at 100/sup 0/C. Microscopic and attenuated total resonance (ATR) infrared spectroscopic observations of the degreaded surfaces show that the bondability loss is due to degradiative removal of the surface homopolymer layer. The addition of combinations of conventional antioxidants and ultraviolet absorbers stabilizes the grafted surface layer against thermal-oxidative and photo-oxidative degradation and thus extends the bondability rentention time. The stabilization is more effective in the grafts of carbon black-containing PE, where carbon black is present in the inner-graft copolymer layer.

  15. Effect of an Indirect Composite Resin Surface Treatment with Two Types of Lasers: Nd: YAG, Er:YAG and Acid Etching on the Microshear Bond Strength of a Resin Cement

    OpenAIRE

    2014-01-01

    Introduction: In order to increase the bonding strength of the composite resin cements to the indirect composites, experiments such as the creation of surface roughness with sandblasting, acid-etching, silane application, laser, etc. have been carried out. However, there is no consensus about the results. Therefore, the purpose of this study was to investigate the effect of Er: YAG and Nd: YAG lasers and acid etching on microshear bond strength of an indirect composite resin. Methods: Aft...

  16. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2015-01-01

    Full Text Available Objective. To evaluate the microshear bond strength (μSBS of self-adhesive resin (SA cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n=16: (1 negative control (NC without treatment; (2 Single Bond Universal (SBU; (3 RelyX Ceramic Primer as positive control (PC. RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM. Results. Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40, followed by SBU (27.33 MPa ± 2.81 and NC (20.18 MPa ± 2.01 (P0.05. PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. Conclusion. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling.

  17. Comparative evaluation of microshear bond strength of the caries-affected dentinal surface treated with conventional method and chemomechanical method (papain).

    Science.gov (United States)

    Chittem, Jyothi; Sajjan, Girija S; Varma, Kanumuri Madhu

    2015-01-01

    There is a growing interest in chemomechanical excavation (papain) in permanent molar teeth. There are several studies dealing with primary molar teeth. The aim of this study was to evaluate the influence of conventional method and Carie-care (chemomechanical method) on the microshear bond strength (μSBS) and the type of failure of an adhesive system to caries-affected dentin of permanent molar teeth. Twenty permanent molar teeth with carious lesions extending into the dentin were selected. Through the center of the carious lesion, teeth were sectioned mesiodistally and divided into two groups based on the method of caries excavation (conventional and chemomechanical method). The time required for the completion of excavation procedure was noted. Samples were again divided into two subgroups in each according to the method of restoration (Ketac N100 and Filtek Z350 composite). The bonded interface was subjected to μSBS testing in a universal testing machine. Fractured surfaces were examined under a stereomicroscope, and representative specimens were examined under scanning electron microscope for the type of failure. It was achieved with unpaired t-test and Kruskal-Wallis H-test at 5% level of significance. The μSBS values of Carie-care groups were similar to that of the conventional method. The μSBSs of resin composite were significantly (P chemomechanical agent can be used safely as a method for caries removal when employing conventional adhesive systems.

  18. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment

    Science.gov (United States)

    Lee, Yoon; Kim, Jae-Hoon; Woo, Jung-Soo; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n = 16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM). Results. Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P 0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. Conclusion. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling. PMID:26557660

  19. Comparative evaluation of tensile bond strength of a polyvinyl acetate-based resilient liner following various denture base surface pre-treatment methods and immersion in artificial salivary medium: An in vitro study

    Directory of Open Access Journals (Sweden)

    Jacob M Philip

    2012-01-01

    Full Text Available Background and Aim: This study was formulated to evaluate and estimate the influence of various denture base resin surface pre-treatments (chemical and mechanical and combinations upon tensile bond strength between a poly vinyl acetate-based denture liner and a denture base resin. Materials and Methods: A universal testing machine was used for determining the bond strength of the liner to surface pre-treated acrylic resin blocks. The data was analyzed by one-way analysis of variance and the t-test (α =.05. Results: This study infers that denture base surface pre-treatment can improve the adhesive tensile bond strength between the liner and denture base specimens. The results of this study infer that chemical, mechanical, and mechano-chemical pre-treatments will have different effects on the bond strength of the acrylic soft resilient liner to the denture base. Conclusion: Among the various methods of pre-treatment of denture base resins, it was inferred that the mechano-chemical pre-treatment method with air-borne particle abrasion followed by monomer application exhibited superior bond strength than other methods with the resilient liner. Hence, this method could be effectively used to improve bond strength between liner and denture base and thus could minimize delamination of liner from the denture base during function.

  20. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  1. Cobalt(II phthalocyanine bonded to 3-n-propylimidazole immobilized on silica gel surface: preparation and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Fujiwara Sergio T.

    1999-01-01

    Full Text Available Co-Phthalocyanine complex was immobilized on 3-n-propylimidazole groups grafted on a porous SiO2 surface (specific surface area S BET = 500 m² g-1 and efficiently electrocatalyzed the oxalic acid oxidation on a carbon paste electrode surface made of this material. Intermolecular interactions of the complex species which can normally interfere in the redox process practically are not observed in the present case because of a low average surface density, delta = 4.7 x 10-13 mol cm-2 (delta = Nf/S BET, where Nf is the amount of adsorbed Co-phtalocyanine per gram of modified silica gel of the complex species material prepared. The linear response of the electrode to oxalic acid concentration, between 6.5 x 10-4 and 3.2 x 10-3 mol L-1, associated with its high chemical stability makes the covalently immobilized Co-phtalocyanine complex material very attractive in preparing a new class of chemical sensors.

  2. Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of alpha-Fe2O3

    OpenAIRE

    Wasserman, E.; Rustad, J. R.; Felmy, A. R.; HAY, B.P.; Halley, J. W.

    1997-01-01

    We present a clear and rigorous derivation of the Ewald-like method for calculation of the electrostatic energy of the systems infinitely periodic in two-dimensions and of finite size in the third dimension (slabs) which is significantly faster than existing methods. Molecular dynamics simulations using the transferable/polarizable model by Rustad et al. were applied to study the surface relaxation of the nonhydroxylated, hydroxylated, and solvated surfaces of alpha-Fe2O3 (hematite). We find ...

  3. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex

    Science.gov (United States)

    Téllez S., Claudio A.; Costa, Anilton C.; Mondragón, M. A.; Ferreira, Glaucio B.; Versiane, O.; Rangel, J. L.; Lima, G. Müller; Martin, A. A.

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands.

  4. SOD1 mutations targeting surface hydrogen bonds promote amyotrophic lateral sclerosis without reducing apo-state stability.

    Science.gov (United States)

    Byström, Roberth; Andersen, Peter M; Gröbner, Gerhard; Oliveberg, Mikael

    2010-06-18

    In good accord with the protein aggregation hypothesis for neurodegenerative diseases, ALS-associated SOD1 mutations are found to reduce structural stability or net repulsive charge. Moreover there are weak indications that the ALS disease progression rate is correlated with the degree of mutational impact on the apoSOD1 structure. A bottleneck for obtaining more conclusive information about these structure-disease relationships, however, is the large intrinsic variability in patient survival times and insufficient disease statistics for the majority of ALS-provoking mutations. As an alternative test of the structure-disease relationship we focus here on the SOD1 mutations that appear to be outliers in the data set. The results identify several ALS-provoking mutations whose only effect on apoSOD1 is the elimination or introduction of a single charge, i.e. D76V/Y, D101N, and N139D/K. The thermodynamic stability and folding behavior of these mutants are indistinguishable from the wild-type control. Moreover, D101N is an outlier in the plot of stability loss versus patient survival time by having rapid disease progression. Common to the identified mutations is that they truncate conserved salt-links and/or H-bond networks in the functional loops IV or VII. The results show that the local impact of ALS-associated mutations on the SOD1 molecule can sometimes overrun their global effects on apo-state stability and net repulsive charge, and point at the analysis of property outliers as an efficient strategy for mapping out new ALS-provoking features.

  5. Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and Mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2].

    Science.gov (United States)

    Téllez Soto, C A; Costa, A C; Ramos, J M; Vieira, L S; Rost, N C V; Versiane, O; Rangel, J L; Mondragón, M A; Raniero, L; Martin, A A

    2013-12-01

    Surface-enhanced Raman scattering (SERS) was used to study the interactions of the normal modes of the diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2] on nano-structured mixture silver-gold surfaces and on silver surfaces. The electronic spectrum of this complex was measured and the charge transfer bands were assigned through the TD-PBE1PBE procedure. Natural bond orbital (NBO) were also carried out to study the Cu(II) hybridation leading to the square planar geometry of the framework of the [Cu(DDTC)2] complex, and to study which are the donor NBO and the acceptor NBO in meaningful charge transfer through the Second Order Perturbation Theory Analysis of the Fox Matrix in NBO basis. To see the electronic dispersion, the Mulliken electronic charges (MAC) were calculated for each normal mode and correlated with the SERS effect. Full assignment of the SERS spectra was also supported by carefully analysis of the distorted geometries generated by the normal modes.

  6. Low-Bond Axisymmetric Drop Shape Analysis for Surface Tension and Contact Angle Measurements of Sessile Drops

    OpenAIRE

    Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D; T. Blu; Unser, M

    2010-01-01

    A new method based on the Young-Laplace equation for measuring contact angles and surface tensions is presented. In this approach, a first-order perturbation technique helps to analytically solve the Young-Laplace equation according to photographic images of axisymmetric sessile drops. When appropriate, the calculated drop contour is extended by mirror symmetry so that reflection of the drop into substrate allows the detection of position of the contact points. To keep a wide range of applica...

  7. Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of α-Fe 2O 3

    Science.gov (United States)

    Wasserman, E.; Rustad, J. R.; Felmy, A. R.; Hay, B. P.; Halley, J. W.

    1997-08-01

    We present a clear and rigorous derivation of the Ewald-like method for calculation of the electrostatic energy of the systems infinitely periodic in two dimensions and of finite size in the third dimension (slabs). We have generalized this method originally developed by Rhee et al. (Phys. Rev. B 40 (1989) 36) to account for charge-dipole and dipole-dipole interactions and therefore made it suitable for treatment of polarizable systems. This method has the advantage over exact methods of being significantly faster and therefore appropriate for large-scale molecular dynamics simulations. However, it involves a Taylor expansion which has to be demonstrated to be of sufficient order. The method was extensively benchmarked against the exact methods by Leckner and Parry. We found it necessary to increase the order of the multipole expansion from 4 (as in the original work by Rhee et al.) to 6. In this case the method is adequate for aspect ratios (thickness/shortest side length of the unit cell) ≤ 0.5. Molecular dynamics simulations using the transferable/polarizable model by Rustad et al. were applied to study the surface relaxation of the nonhydroxylated, hydroxylated and solvated surfaces of α-Fe 2O 3 (hematite). We find that our nonhydroxylated structures and energies are in good agreement with previous LDA calculations on α-alumina by Manassidis et al. (Surf. Sci. 285 (1993) L517). Using the results of molecular dynamics simulations of solvated interfaces, we define end-member hydroxylated-hydrated states for the surfaces which are used in energy minimization calculations. We find that hydration has a small effect on the surface structure, but that hydroxylation has a significant effect. Our calculations, both for gas-phase and solution-phase adsorption, predict a greater amount of hydroxylation for the α-Fe 2O 3 (012) surface than for the (001) surface. Our simulations also indicate the presence of four-fold coordinated iron ions on the (001) surface.

  8. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2013-11-27

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  9. TEM observation of the Al and Cu interfaces bonded at room temperature by means of the surface activation mehtod. Hyomen kasseikaho ni yoru Al oyobi Cu joon setsugo kaimen no TEM kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suga, T.; Miyazawa, K.; Takagi, H. (The Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering The Univ. of Tokyo, Tokyo (Japan))

    1990-06-20

    Al and Cu were bonded to various ceramics and Si by a surface activation method with irradiation of an Ar fast atom beam before bonding at room temperature, and their interfaces were observed by a TEM (transmission electron microscopy). Al was bonded successfully to various oxides and nitrides with bond strengths of 50-100MPa in the vacuum range of 9 {times} 10 {sup {minus} 5}- 2 {times} 10 {sup {minus} 6} Pa, while no macroscopic bonding could be obtained between Cu and ceramics. Amorphous intermediate layers of 10-20nm in thickness were observed in the Al-Al and Al-Si interfaces by the TEM which were possibly formed with the reaction between some residual gases and Al surfaces by irradiation of an Ar fast atom beam. On the other hand, since no intermediate layers but interfacial dislocations were observed in the Cu-Cu interfaces, it was supposed that the direct bonding between Cu lattices was formed. 20 refs., 11 figs., 2 tabs.

  10. Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system

    Science.gov (United States)

    Prasad, Mandava; Mohamed, Shamil; Nayak, Krishna; Shetty, Sharath Kumar; Talapaneni, Ashok Kumar

    2014-01-01

    Background: The success of bonding brackets to enamel with resin bonding systems is negatively affected by contamination with oral fluids such as blood and saliva. The new self-etch primer systems combine conditioning and priming agents into a single application, making the procedure more cost effective. Objective: The purpose of the study was to investigate the effect of moisture, saliva and blood contamination on shear bond strength of orthodontic brackets bonded with conventional bonding system and self-etch bonding system. Materials and Methods: Each system was examined under four enamel surface conditions (dry, water, saliva, and blood), and 80 human teeth were divided into two groups with four subgroups each of 10 according to enamel surface condition. Group 1 used conventional bonding system and Group 2 used self-etched bonding system. Subgroups 1a and 2a under dry enamel surface conditions; Subgroups 1b and 2b under moist enamel surface condition; Subgroups 3a and 3b under saliva enamel surface condition and Subgroup 4a and 4b under blood enamel surface condition. Brackets were bonded, and all the samples were then submitted to a shear bond test with a universal testing machine with a cross head speed of 1mm/sec. Results: The results showed that the contamination reduced the shear bond strength of all groups. In self-etch bonding system water and saliva had significantly higher bond strength when compared to other groups. Conclusion: It was concluded that the blood contamination showed lowest bond strength from both bonding systems. Self-etch bonding system resulted in higher bond strength than conventional bonding system under all conditions except the dry enamel surface. PMID:24678210

  11. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...

  12. Hydrogen Implantation in Silicates: The role of solar wind in OH bond formation on the lunar surface

    Science.gov (United States)

    Schaible, Micah J; Baragiola, Raul

    2014-06-01

    Airless bodies in space such as the Moon, asteroids and interplanetary dust particles are subject to bombardment from energetic electrons and ions, ultraviolet photons, micrometeorites and cosmic rays. These bombarding particles modify optical, chemical and physical characteristics of the ices and minerals that make up these bodies in a process known as space weathering. In particular, solar wind protons implanted in silicate materials can participate in hydroxylation reactions with the oxygen to form OH. This mechanism has been suggested to explain a reported 3-14% absorption signal identified as OH on the surface of lunar soil grains and present in decreasing magnitude from polar to equatorial latitudes. With the goal of determining a precise OH formation rate due to H+ implantation in silicates, a series of experiments were carried out on terrestrial minerals as analogs to lunar and interstellar material.Experiments were carried out under UHV pressures (OH in thermally grown silicon oxide and San Carlos olivine, before and after irradiated with 1 - 5 keV H+ ions. The increase in Si-OH content due to irradiation was determined by subtracting the unirradiated spectra from the irradiated spectra. The implanted protons induced OH stretch absorptions in the mid-infrared peaked at 3673 cm-1 for SiO2 and 3570 cm-1 for olivine. The initial yield (OH formed per incident ion) was ~90% and the OH absorption band was found to saturate at implantation fluences of ~2x1017 H/cm2. Irradiation also modified the Si-O stretch band at ~1090 cm-1 (9.2 μm) causing an exponential decrease in the peak height with increasing fluence and the appearance of a silanol structure peaking at ~1030 cm-1. These measurements allow constraints to be placed on stellar wind contribution to observational and theoretical models of water on the lunar surface and on interstellar dust grains.

  13. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  14. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  15. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)2

    Science.gov (United States)

    Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.

  16. Surface chemistry of boron-doped SiO{sub 2} CVD: Enhanced uptake of tetraethyl orthosilicate by hydroxyl groups bonded to boron

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, M.E.; Moffat, H.K.

    1993-12-31

    Insight into how dopants can enhance deposition rates has been obtained by comparing reactivities of tetraethyl orthosilicate (TEOS, Si(OCH{sub 2}CH{sub 3}){sub 4}) with silanol and boranol groups on SiO{sub 2}. This comparison is relevant for boron-doped SiO{sub 2} film growth from TEOS and trimethyl borate (TMB, B(OCH{sub 3}){sub 3}) sources since boranols and silanols are expected to be present on surface during the (CVD). A silica substrate having coadsorbed deuterated silanols (SIOD) and boranols (BOD) was reacted with TEOS in a cold-wall reactor in the mTorr pressure regime at 1000K. Reactions were followed with Fourier transform infrared spectroscopy. Use of deuterated hydroxyls allowed consumption of hydroxyls by TEOS chemisorption to be distinguished from concurrent formation of SIOH and BOH that results from TEOS decomposition. It was found that TEOS reacts with BOD at twice the rate observed for SIOD demonstrating that hydroxyl groups bonded to boron increase the rate of TEOS chemisorption. Surface ethoxy groups produced by chemisorption of TEOS decompose at a slower rate in the presence of TMB decomposition products. Possible dependencies on reactor geometries and other deposition conditions may determine which of these two competing effects will control deposition rates. This may explain (in part) why the rate enhancement effect is not always observed in boron-doped SiO{sub 2} CVD processes.

  17. Avaliação da resistência ao cisalhamento de dois compósitos colados em superfície condicionada com primer autocondicionante Evaluation of the shear bond strength of two composites bonded to conditioned surface with self-etching primer

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2011-04-01

    Full Text Available OBJETIVO: o objetivo desse estudo foi avaliar a resistência ao cisalhamento e o índice de remanescente de adesivo (IRA dos compósitos Eagle Bond e Orthobond em superfície de esmalte condicionada com Transbond Plus Self-Etching Primer. MÉTODOS: foram utilizados 75 incisivos inferiores permanentes bovinos divididos em cinco grupos (n=15. Nos grupos 1, 2 e 4, as colagens foram realizadas com Transbond XT, Orthobond e Eagle Bond, respectivamente, seguindo as recomendações dos fabricantes. Nos grupos 3 e 4, antes da colagem com o Orthobond e o Eagle Bond, respectivamente, a superfície dentária foi condicionada com o ácido-primer Transbond Plus Self-Etching Primer. Após a colagem, realizou-se o ensaio de cisalhamento de toda amostra à velocidade de 0,5mm/min em máquina Instron de ensaios mecânicos. RESULTADOS:os resultados (em MPa mostraram não haver diferenças estatisticamente significativas entre os grupos 1, 2, 3 e 5 (p>0,05. Entretanto, esses grupos foram estatisticamente superiores ao grupo 4 (pOBJECTIVE: The aim of this study was to evaluate the shear bond strength and the Adhesive Remnant Index (ARI between the composites Eagle Bond and Orthobond bonded to an enamel surface conditioned with Transbond Plus Self-Etching Primer. METHODS: Seventy-five bovine permanent mandibular incisors, divided into five groups (n=15 were used. In Groups 1, 2 and 4, the bonds were performed with Transbond XT, Orthobond and Eagle Bond respectively, in accordance with the manufacturers' recommendations. In Groups 3 and 4, before bonding with Orthobond and Eagle Bond, respectively, the tooth surface was conditioned with the acid primer Transbond Plus Self-Etching Primer. After bonding the shear test was performed for all samples at a speed of 0.5 mm per minute in an Instron mechanical test machine. RESULTS: The results (MPa showed that there were no statistically significant differences among Groups 1, 2, 3 and 5 (p>0.05. However, these groups were

  18. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds.

    Science.gov (United States)

    Paula, Amauri J; Stéfani, Diego; Souza Filho, Antonio G; Kim, Yoong Ahm; Endo, Morinobu; Alves, Oswaldo L

    2011-03-07

    The deposition of mesoporous silica (SiO(2)) on carbon nanotubes (CNTs) has opened up a wide range of assembling possibilities by exploiting the sidewall of CNTs and organosilane chemistry. The resulting systems may be suitable for applications in catalysis, energy conversion, environmental chemistry, and nanomedicine. However, to promote the condensation of silicon monomers on the nanotube without producing segregated particles, (OR)(4-x)SiO(x)(x-) units must undergo nucleophilic substitution by groups localized on the CNT sidewall during the transesterification reaction. In order to achieve this preferential attachment, we have deposited silica on oxidized carbon nanotubes (single-walled and multiwalled) in a sol-gel process that also involved the use of a soft template (cetyltrimethylammonium bromide, CTAB). In contrast to the simple approach normally used to describe the attachment of inorganic compounds on CNTs, SiO(2) nucleation on the tube is a result of nucleophilic attack mainly by hydroxyl radicals, localized in a very complex surface chemical environment, where various oxygenated groups are covalently bonded to the sidewall and carboxylated carbonaceous fragments (CCFs) are adsorbed on the tubes. Si-O-C covalent bond formation in the SiO(2)-CNT hybrids was observed even after removal of the CCFs with sodium hydroxide. By adding CTAB, and increasing the temperature, time, and initial amount of the catalyst (NH(4)OH) in the synthesis, the SiO(2) coating morphology could be changed from one of nanoparticles to mesoporous shells. Concomitantly, pore ordering was achieved by increasing the amount of CTAB. Furthermore, preferential attachment on the sidewall results mostly in CNTs with uncapped ends, having sites (carboxylic acids) that can be used for further localized reactions.

  19. Self-assembly of amino acids on noble metal surfaces: universality of the amino acid bonding scheme

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Joachim; Auwaerter, Willi; Marschall, Matthias; Barth, Johannes V. [Physik Department, TU Muenchen (Germany); Schiffrin, Agustin [Physik Department, TU Muenchen (Germany); Chemistry Department, University of British Columbia, Vancouver (Canada); Pennec, Yan; Weber-Bargioni, Alexander [Chemistry Department, University of British Columbia, Vancouver (Canada); Cvetko, Dean; Cossaro, Albano; Morgante, Alberto [INFM/TASC, Trieste (Italy)

    2009-07-01

    We investigated the molecular self-assemblies of L-methionine on Cu(111) and L-tyrosine on Ag(111) by means of STM, HAS, XPS and NEXAFS in UHV. The self-assembly of L-methionine on Cu(111) is strongly influenced by the substrate reactivity and reveals a temperature dependent structural transformation involving a chiral orientational switch and the emergence of an ordered 1D high temperature phase. XPS data show that this transformation is triggered by a thermally activated deprotonation of the NH{sub 3}{sup +} group. The ordered phase shows noncovalent molecular dimerization and alignment into chains which are commensurate with the underlying substrate. L-tyrosine on Ag(111) self-assembles into linear nanoribbons primarily following the substrate crystalline symmetry. A zwitterionic noncovalent molecular dimerization is observed, and NEXAFS data provide evidence of a non-flat adsorption of the phenol ring. This dimerization scheme is reminiscent of methionine on Cu(111) and Ag(111), and supports a universal self-assembling trend for amino acids on close-packed noble metal surfaces.

  20. Combined analysis of chemical bonding in a Cu(II) dimer using QTAIM, Voronoi tessellation and Hirshfeld surface approaches.

    Science.gov (United States)

    Vologzhanina, Anna V; Kats, Svitlana V; Penkova, Larisa V; Pavlenko, Vadim A; Efimov, Nikolay N; Minin, Vadim V; Eremenko, Igor L

    2015-10-01

    Interaction of 1-(1H-pyrazol-5-yl)ethanone oxime (H2PzOx) with copper(II) chloride in the presence of pyridine afforded a binuclear discrete [Cu2(HPzOx)2Cl2py2] complex, which was characterized by Fourier transform-IR and electron paramagnetic resonance (EPR) spectra, magnetochemistry and high-resolution X-ray diffraction experiments. Multipole refinement of X-ray diffraction data and density-functional theory (DFT) calculations of an isolated molecule allowed charge and spin distributions to be obtained for this compound. Magnetochemistry data, EPR spectra and DFT calculations of an isolated molecule show antiferromagnetic coupling between copper(II) ions. The spin distribution suggests an exchange pathway via the bridging pyrazole ring in the equatorial plane of the CuN4Cl coordination polyhedron, thus providing support for the classical superexchange mechanism; the calculated value of the magnetic coupling constant -2J is equal to 220 cm(-1), which compares well with the experimental value of 203 ± 2 cm(-1). Chemical connectivity was derived by Bader's 'quantum theory of atoms in molecules' and compared with Voronoi tessellation and Hirshfeld surface representations of crystal space. All methodologies gave a similar qualitative and semi-quantitative description of intra- and intermolecular connectivity.

  1. Thermal Bond System.

    Science.gov (United States)

    1995-10-31

    a twill weave, a crowfoot weave, a satin weave (FIG. 2), and a leno weave. Descriptions of the various weave types can be found in " Composite ...together to define a fabric mesh having first and second opposing woven surfaces. An adhesive bond that is flowable prior to drying is used to wet and

  2. Method for fusion bonding thermoplastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Benatar, A.; Gutowski, T.G.

    1986-10-01

    Bonding of thermoplastic composites is a critical step in the manufacture of aerospace structures. The objective of this project is to investigate different methods for fusion bonding thermoplastic composites quickly, with a good bond strength, and without warping and deconsolidation. This is best accomplished by heating and melting the thermoplastic on the bond surface only, and then pressing the parts together for a fusion bond. For this purpose, a variety of surface heating techniques were examined for bonding of PEEK and J Polymer composites. These included: resistance heating, infrared heating, induction heating, dielectric/microwave heating, and ultrasonic welding. 20 references, 10 figures, 1 table.

  3. The Effects of Er:YAG, Nd:YAG, and Ho:YAG Laser Surface Treatments to Acrylic Resin Denture Bases on the Tensile Bond Strength of Silicone-Based Resilient Liners.

    Science.gov (United States)

    Gorler, Oguzhan; Dogan, Derya Ozdemir; Ulgey, Melih; Goze, Aysegul; Hubbezoğlu, Ihsan; Zan, Recai; Ozdemir, Ali Kemal

    2015-08-01

    The present study was to assess the effect of surface treatments of Er:YAG, Nd:YAG, and Ho:YAG lasers on the tensile bond strength of a silicone-based resilient liner to an acrylic denture in an in vitro setting. Experimental dumbbell-shaped specimens (75 mm) were produced by combining two acrylate pieces fabricated from heat-polymerized acrylic resin (36 mm) with 3 mm of Molloplast(®)-B filling between them. The specimens (n=200) were randomly divided in half for thermocycling, and each 100 specimen set was randomized into five groups (n=20) with different surface treatments: control (no surface treatment), sandblasting, Er:YAG laser, Nd:YAG laser, and Ho:YAG laser. A tensile bond strength test was performed. The effect of the laser surface treatments was examined with scanning electron microscopy. Only the Er:YAG laser increased the tensile bond strength compared with the other treatments. The other laser groups showed lower bond strengths. The Ho:YAG laser resulted in considerably reduced tensile bond strength. The scanning electron microscopy images showed that applying laser surface treatments modified the surface of the denture base resin. There was not an overall improvement with the use of the studied laser modalities in the adhesion quality of resilient denture liner to acrylic resin, although Er:YAG laser showed a potential to improve their adhesion. These laser modalities need to be subjected to further studies to determine optimal setup for use in prosthodontics.

  4. The origin of unequal bond lengths in the $\\mathrm{\\tilde{C}}$ $^1$B$_2$ state of SO$_2$: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    CERN Document Server

    Park, G Barratt; Field, Robert W

    2016-01-01

    The $\\mathrm{\\tilde{C}}$ $^1$B$_2$ state of SO$_2$ has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the $\

  5. Influence of Surface Bond on Electronic Structure of Si (111) Quantum Surface%表面键合对硅(111)量子面电子结构的影响

    Institute of Scientific and Technical Information of China (English)

    尹君; 黄伟其; 黄忠梅; 苗信建; 刘仁举; 周年杰

    2014-01-01

    将纳米硅薄膜看成理想的一维限制的量子面结构,通过第一性原理计算研究了不同厚度的硅(111)量子面的能带结构及态密度。随着量子面厚度的变化,在 Si-H 键钝化较好的量子面结构上,其带隙宽度变化主要遵循量子限制效应规律。当在表面掺杂时,模拟计算表面含 Si-N 键的硅(111)量子面的结果表明:在一定厚度范围内,带隙宽度主要由量子限制效应决定;超过这个厚度,带隙宽度同时受量子限制效应和表面键合结构的影响。保持量子面厚度不变,表面掺杂浓度越大则带隙变窄效应越明显。同样,模拟计算含 Si-Yb 键的硅(111)量子面的结果也有同样的效应。几乎所有的模拟计算结果都显示:量子面的能带结构均呈现出准直接带隙特征。%We regard the nanocrystalline silicon films as an ideal one-dimensional quantum limiting surface structure, and study the band structure and density of states of the different thickness silicon (111) quantum surface by the first-principles calculation. As the change of the thickness of the quantum surface well passivated by Si-H bond, the band gap mainly follow the quantum confine-ment effect. When the silicon (111) quantum surface contains Si-N bond, the simulated results show that the band gap is mainly determined by the quantum confinement effect in a certain range of thickness, but beyond the thickness, the band gap is determined by both the quantum confinement effect and bond structure. While maintaining a constant thickness, the greater doping concentration of the quantum surface, the more obvious the band gap narrowing effect. Similarly, the simulated result of silicon (111) quantum surface which contain Si-Yb has the same effect. It is worth noting that almost all of the simulated results show that the band structures of the quantum surface show quasi-direct band gap characteristics.

  6. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    Science.gov (United