WorldWideScience

Sample records for surface renewal model

  1. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  2. APPLICATION OF A SURFACE-RENEWAL MODEL TO PERMEATE-FLUX DATA FOR CONSTANTPRESSURE CROSS-FLOW MICROFILTRATION WITH DEAN VORTICES

    Directory of Open Access Journals (Sweden)

    G. Idan

    2015-06-01

    Full Text Available AbstractThe introduction of flow instabilities into a microfiltration process can dramatically change several elements such as the surface-renewal rate, permeate flux, specific cake resistance, and cake buildup on the membrane in a positive way. A recently developed surface-renewal model for constant-pressure, cross-flow microfiltration (Hasan et al., 2013 is applied to the permeate-flux data reported by Mallubhotla and Belfort (1997, one set of which included flow instabilities (Dean vortices while the other set did not. The surface-renewal model has two forms - the complete model and an approximate model. For the complete model, the introduction of vortices leads to a 53% increase in the surface-renewal rate, which increases the limiting (i.e., steady-state permeate flux by 30%, decreases the specific cake resistance by 14.5% and decreases the limiting cake mass by 15.5% compared to operation without vortices. For the approximate model, a 50% increase in the value of surface renewal rate is shown due to vortices, which increases the limiting permeate flux by 30%, decreases the specific cake resistance by 10.5% and decreases the limiting cake mass by 13.7%. The cake-filtration version of the critical-flux model of microfiltration (Field et al., 1995 is also compared against the experimental permeate-flux data of Mallubhotla and Belfort (1997. Although this model can represent the data, the quality of its fit is inferior compared to that of the surface-renewal model.

  3. Surface renewal as a significant mechanism for dust emission

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-12-01

    Full Text Available Wind tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analyzed in detail. It is found that flow conditions, surface particle motions (saltation and creep, soil dust content and ground obstacles all strongly affect dust emission, causing its rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 min of our wind tunnel runs. While aerodynamic entrainment is suppressed by dust supply limits, surface renewal through the motion of surface particles appears to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.

  4. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  5. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  6. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  7. Surface Renewal Application for Estimating Evapotranspiration: A Review

    Directory of Open Access Journals (Sweden)

    Yongguang Hu

    2018-01-01

    Full Text Available The estimation of evapotranspiration (ET is essential for meteorological modeling of surface exchange processes, as well as for the agricultural practice of irrigation management. Hitherto, a number of methods for estimation of ET at different temporal scales and climatic conditions are constantly under investigation and improvement. One of these methods is surface renewal (SR. Therefore, the premise of this review is to present recent developments and applications of SR for ET measurements. The SR method is based on estimating the turbulent exchange of sensible heat flux between plant canopy and atmosphere caused by the instantaneous replacement of air parcels in contact with the surface. Additional measurements of net radiation and soil heat flux facilitate extracting ET using the shortened energy balance equation. The challenge, however, is the calibration of SR results against direct sensible heat flux measurements. For the classical SR method, only air temperature measured at high frequency is required. In addition, a new model suggests that the SR method could be exempted from calibration by measuring additional micrometeorological variables. However, further improvement of the SR method is required to provide improved results in the future.

  8. INFLUENCE OF RESIDENCE-TIME DISTRIBUTION ON A SURFACE-RENEWAL MODEL OF CONSTANT-PRESSURE CROSS-FLOW MICROFILTRATION

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2015-03-01

    Full Text Available Abstract This work examines the influence of the residence-time distribution (RTD of surface elements on a model of cross-flow microfiltration that has been proposed recently (Hasan et al., 2013. Along with the RTD from the previous work (Case 1, two other RTD functions (Cases 2 and 3 are used to develop theoretical expressions for the permeate-flux decline and cake buildup in the filter as a function of process time. The three different RTDs correspond to three different startup conditions of the filtration process. The analytical expressions for the permeate flux, each of which contains three basic parameters (membrane resistance, specific cake resistance and rate of surface renewal, are fitted to experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units. All three expressions for the permeate flux fit the experimental data fairly well with average root-mean-square errors of 4.6% for Cases 1 and 2, and 4.2% for Case 3, respectively, which points towards the constructive nature of the model - a common feature of theoretical models used in science and engineering.

  9. Modeling renewable energy company risk

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2012-01-01

    The renewable energy sector is one of the fastest growing components of the energy industry and along with this increased demand for renewable energy there has been an increase in investing and financing activities. The tradeoff between risk and return in the renewable energy sector is, however, precarious. Renewable energy companies are often among the riskiest types of companies to invest in and for this reason it is necessary to have a good understanding of the risk factors. This paper uses a variable beta model to investigate the determinants of renewable energy company risk. The empirical results show that company sales growth has a negative impact on company risk while oil price increases have a positive impact on company risk. When oil price returns are positive and moderate, increases in sales growth can offset the impact of oil price returns and this leads to lower systematic risk.

  10. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    The Renewable Energy and Efficiency Modeling and Analysis Partnership (REMAP) sponsors ongoing workshops to discuss individual 'renewable' technologies, energy/economic modeling, and - to some extent - policy issues related to renewable energy. Since 2002, the group has organized seven workshops, each focusing on a different renewable technology (geothermal, solar, wind, etc.). These workshops originated and continue to be run under an informal partnership of the Environmental Protection Agency (EPA), the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE), the National Renewable Energy Laboratory (NREL), and the American Council on Renewable Energy (ACORE). EPA originally funded the activities, but support is now shared between EPA and EERE. REMAP has a wide range of participating analysts and models/modelers that come from government, the private sector, and academia. Modelers include staff from the Energy Information Administration (EIA), the American Council for an Energy-Efficient Economy (ACEEE), NREL, EPA, Resources for the Future (RFF), Argonne National Laboratory (ANL), Northeast States for Coordinated Air Use Management (NESCAUM), Regional Economic Models Inc. (REMI), ICF International, OnLocation Inc., and Boston University. The working group has more than 40 members, which also includes representatives from DOE, Lawrence Berkeley National Laboratory (LBNL), Union of Concerned Scientists (UCS), Massachusetts Renewable Energy Trust, Federal Energy Regulatory Commission (FERC), and ACORE. This report summarizes the activities and findings of the REMAP activity that started in late 2006 with a kickoff meeting, and concluded in mid-2008 with presentations of final results. As the project evolved, the group compared results across models and across technologies rather than just examining a specific technology or activity. The overall goal was to better understand how and why different energy models give similar

  11. Modelling renewable energy economy in Ghana with autometrics

    International Nuclear Information System (INIS)

    Ackah, Ishmael; Asomani, Mcomari

    2015-01-01

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana's energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestricted model through Autometrics is used to estimate the determinants of renewable energy demand in Ghana. The results indicate that both economic factors and non-economic affect the demand for renewable energy. In addition, the underlying energy demand trend exhibits energy using behaviour. The study recommends that economic factors such as consumer subsidies should be considered when promoting renewable energy demand.

  12. Modelling renewable energy economy in Ghana with autometrics

    Energy Technology Data Exchange (ETDEWEB)

    Ackah, Ishmael; Asomani, Mcomari [Africa Centre for Energy Policy, Accra (Ghana); Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana)

    2015-04-15

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana's energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestricted model through Autometrics is used to estimate the determinants of renewable energy demand in Ghana. The results indicate that both economic factors and non-economic affect the demand for renewable energy. In addition, the underlying energy demand trend exhibits energy using behaviour. The study recommends that economic factors such as consumer subsidies should be considered when promoting renewable energy demand.

  13. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  14. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  15. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  16. GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Korkali, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-30

    The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.

  17. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    Science.gov (United States)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  18. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal.

    Science.gov (United States)

    Macgregor, Melanie; Williams, Rachel; Downes, Joni; Bachhuka, Akash; Vasilev, Krasimir

    2017-09-14

    The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.

  19. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Science.gov (United States)

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Business models for model businesses: Lessons from renewable energy entrepreneurs in developing countries

    International Nuclear Information System (INIS)

    Gabriel, Cle-Anne; Kirkwood, Jodyanne

    2016-01-01

    Against the background of mounting research suggesting entrepreneurship as a means of increasing the uptake of renewable energy technologies (RETs) in developing countries, this paper presents the findings of an exploratory investigation into the business models used by renewable energy entrepreneurs in such countries. Forty-three entrepreneurs were interviewed in 28 developing countries and secondary information about country and regional conditions was analysed. We chose the Business Model Canvas as an analytical tool and the findings shed new light on established renewable energy business types. Three different types of businesses were identified – Consultants, Distributors, and Integrators; yet, there is also some overlap between these types. These business types appeared to parallel the life cycle progression of the business, but this requires further research. A key component of the study was to assess whether the types of businesses were related to country-level conditions to assess the impact of regional differences. These comparisons revealed consistencies between country-level characteristics and the entrepreneurs’ choice of business model. Conclusions suggest that different regions may support certain business models more than others due to differing levels of government interest in renewables, governance and policy support and the relative ease of doing business. - Highlights: •Business model canvas used to analyse renewable energy entrepreneurs’ businesses. •Consultants, distributors and integrators are the main business models used. •Business model characteristics are related to country and regional conditions. •Entrepreneurs in least favourable policy environments likely to be Consultants. •Energy entrepreneurship policy should focus on promoting specific business models.

  1. Model documentation renewable fuels module of the National Energy Modeling System

    Science.gov (United States)

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogs and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost, and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  2. Model documentation renewable fuels module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  3. Computational efficiency for the surface renewal method

    Science.gov (United States)

    Kelley, Jason; Higgins, Chad

    2018-04-01

    Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

  4. PECULIARITIES OF THE RENEWABLE ENERGY BUSINESS MODELS

    Directory of Open Access Journals (Sweden)

    BĂLOI Ionut-Cosmin

    2014-07-01

    Full Text Available By exploring the competitiveness of industries and companies, we could identify the factors whose importance is likely to generate competitive advantage. An inventory of content elements of the business model summarizes the clearest opportunities and prospects. The objectives developed throughout the paper want to identify the pillars of a renewable business model and to describe the strategic dimensions of their capitalisation in regional and national energy entrepreneurship. The trend of increasing the renewable energy business volume is driven by the entrepreneurs and company’s availability to try new markets, with many unpredictable implications and the willingness of these players or their creditors to spend their savings, in various forms, for the concerned projects. There is no alternative to intensive investment strategies, given that the small projects are not able to create high value and competitiveness for interested entrepreneurs. For this reason, the international practice shows that the business models in energy production are supported by partnerships and networks of entrepreneurs who are involved in the development of large projects. The most important feature of renewable business initiatives is on attracting the latest clean emerging technologies, and obviously the investors who can assume the risk of such great projects. The benefits of a well developed business model recommend a prudent approach in the launching in the investment strategies, because the competitive contexts hide always some dissatisfaction of the partners that endanger the business concept’s success. The small firms can develop a profitable business model by exploring the opportunity of the alliances, namely the particular joint ventures (association between Romanian and foreign firms. The advantages of joint venture's partners are considerable; they include access to expertise, resources and other assets that the partners could not achieve on their own

  5. Determining of the Optimal Device Lifetime using Mathematical Renewal Models

    Directory of Open Access Journals (Sweden)

    Knežo Dušan

    2016-05-01

    Full Text Available Paper deals with the operations and equipment of the machine in the process of organizing production. During operation machines require maintenance and repairs, while in case of failure or machine wears it is necessary to replace them with new ones. For the process of replacement of old machines with new ones the term renewal is used. Qualitative aspects of the renewal process observe renewal theory, which is mainly based on the theory of probability and mathematical statistics. Devices lifetimes are closely related to the renewal of the devices. Presented article is focused on mathematical deduction of mathematical renewal models and determining optimal lifetime of the devices from the aspect of expenditures on renewal process.

  6. Research on the decomposition model for China’s National Renewable Energy total target

    International Nuclear Information System (INIS)

    Liu, Zhen; Shi, Yuren; Yan, Jianming; Ou, Xunmin; Lieu, Jenny

    2012-01-01

    It is crucial that China’s renewable energy national target in 2020 is effectively decomposed into respective period targets at the provincial level. In order to resolve problems arising from combining the national and local renewable energy development plan, a total target and period target decomposition model of renewable energy is proposed which considers the resource distribution and energy consumption of different provinces as well as the development characteristics of various renewable energy industries. In the model, the total proposed target is comprised of three shares: basic share, fixed share and floating share target. The target distributed for each province is then determined by the preference relation. That is, when total renewable energy target is distributed, the central government is more concerned about resources potential or energy consumption. Additionally, the growth models for various renewable energy industries are presented, and the period targets of renewable energy in various provinces are proposed in line with regional economic development targets. In order to verify whether the energy target can be achieved, only wind power, solar power, and hydropower are considered in this study. To convenient to assess the performance of local government, the two year period is chosen as an evaluation cycle in the paper. The renewable energy targets per two-year period for each province are calculated based on the overall national renewable energy target, energy requirements and resources distribution. Setting provincial period targets will help policy makers to better implement and supervise the overall renewable energy plan. - Highlights: It is very importance that the national target of renewable energy in 2020 can be effectively decomposed into the stages target of various province. In order to resolve the relation the plan between the national and local renewable energy development planning, a total target and phase target decomposition model

  7. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2013-07-01

    Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

  8. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Blanford, Geoffrey [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Young, David [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Marcy, Cara [U.S. Energy Information Administration, Washington, DC (United States); Namovicz, Chris [U.S. Energy Information Administration, Washington, DC (United States); Edelman, Risa [US Environmental Protection Agency (EPA), Washington, DC (United States); Meroney, Bill [US Environmental Protection Agency (EPA), Washington, DC (United States); Sims, Ryan [US Environmental Protection Agency (EPA), Washington, DC (United States); Stenhouse, Jeb [US Environmental Protection Agency (EPA), Washington, DC (United States); Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States)

    2017-11-01

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treating VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.

  9. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    Science.gov (United States)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  10. Advanced mechanisms for the promotion of renewable energy-Models for the future evolution of the German Renewable Energy Act

    International Nuclear Information System (INIS)

    Langniss, Ole; Diekmann, Jochen; Lehr, Ulrike

    2009-01-01

    The German Renewable Energy Act (EEG) has been very successful in promoting the deployment of renewable electricity technologies in Germany. The increasing share of EEG power in the generation portfolio, increasing amounts of fluctuating power generation, and the growing European integration of power markets governed by competition calls for a re-design of the EEG. In particular, a more efficient system integration and commercial integration of the EEG power is needed to, e.g. better matching feed-in to demand and avoiding stress on electricity grids. This article describes three different options to improve the EEG by providing appropriate incentives and more flexibility to the promotion mechanism and the quantitative compensation scheme without jeopardising the fast deployment of renewable energy technologies. In the 'Retailer Model', it becomes the responsibility of the end-use retailers to adapt the EEG power to the actual demand of their respective customers. The 'Market Mediator Model' establishes an independent market mediator responsible to market the renewable electricity. This model is the primary choice when new market entrants are regarded as crucial for the better integration of renewable energy and enhanced competition. The 'Optional Bonus Model' relies more on functioning markets since power plant operators can alternatively choose to market the generated electricity themselves with a premium on top of the market price instead of a fixed price

  11. Energy models for commercial energy prediction and substitution of renewable energy sources

    International Nuclear Information System (INIS)

    Iniyan, S.; Suganthi, L.; Samuel, Anand A.

    2006-01-01

    In this paper, three models have been projected namely Modified Econometric Mathematical (MEM) model, Mathematical Programming Energy-Economy-Environment (MPEEE) model, and Optimal Renewable Energy Mathematical (OREM) model. The actual demand for coal, oil and electricity is predicted using the MEM model based on economic, technological and environmental factors. The results were used in the MPEEE model, which determines the optimum allocation of commercial energy sources based on environmental limitations. The gap between the actual energy demand from the MEM model and optimal energy use from the MPEEE model, has to be met by the renewable energy sources. The study develops an OREM model that would facilitate effective utilization of renewable energy sources in India, based on cost, efficiency, social acceptance, reliability, potential and demand. The economic variations in solar energy systems and inclusion of environmental constraint are also analyzed with OREM model. The OREM model will help policy makers in the formulation and implementation of strategies concerning renewable energy sources in India for the next two decades

  12. Renewable energy burden sharing. REBUS. Manual for the REBUS model

    International Nuclear Information System (INIS)

    Voogt, M.H.

    2001-03-01

    The REBUS model quantifies the effects of implementing renewable electricity targets, and the impact of introducing burden sharing systems within the EU, such as a Tradable Green Certificate (TGC) system. Results are obtained for a range of so-called burden sharing options that reflect differences in economic, social and geographical possibilities to increase the share of renewables in individual geographical regions. The REBUS model furthermore analyses the impact of other supporting mechanisms for renewable electricity on the effects of a burden sharing mechanism. With this, the REBUS model is a framework that can be used for quantifying the most equitable distribution of costs (burden sharing) and compare consequences of different equity criteria. Therewith it aims to support key policy makers, industrial stakeholders and consumers in making decisions on the possibilities to achieve their joint RES-E targets

  13. Stein's neuronal model with pooled renewal input

    Czech Academy of Sciences Publication Activity Database

    Rajdl, K.; Lánský, Petr

    2015-01-01

    Roč. 109, č. 3 (2015), s. 389-399 ISSN 0340-1200 Institutional support: RVO:67985823 Keywords : Stein’s model * Poisson process * pooled renewal processes * first-passage time Subject RIV: BA - General Mathematics Impact factor: 1.611, year: 2015

  14. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    Science.gov (United States)

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-12-12

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.

  15. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  16. Renewable energy rebound effect?: Estimating the impact of state renewable energy financial incentives on residential electricity consumption

    Science.gov (United States)

    Stephenson, Beth A.

    Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.

  17. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  18. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  19. Model documentation Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  20. Microgrid planning based on fuzzy interval prediction models of renewable resources

    NARCIS (Netherlands)

    Morales, R.; Sáez, D.; Marín, L.G.; Nunez Vicencio, Alfredo; Cordon, O.

    2016-01-01

    Microgrids are sustainable solutions for electrification of rural zones that can make use of their local renewable resources. In this paper, we propose a new method for microgrid planning which includes the effect of the uncertainties of the renewable resources explicitly. Fuzzy interval models are

  1. PECULIARITIES OF THE RENEWABLE ENERGY BUSINESS MODELS

    OpenAIRE

    BĂLOI Ionut-Cosmin

    2014-01-01

    By exploring the competitiveness of industries and companies, we could identify the factors whose importance is likely to generate competitive advantage. An inventory of content elements of the business model summarizes the clearest opportunities and prospects. The objectives developed throughout the paper want to identify the pillars of a renewable business model and to describe the strategic dimensions of their capitalisation in regional and national energy entrepreneurship. The trend of in...

  2. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    Science.gov (United States)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  3. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    Science.gov (United States)

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  4. Analysis of the EU renewable energy directive by a techno-economic optimisation model

    International Nuclear Information System (INIS)

    Lind, Arne; Rosenberg, Eva; Seljom, Pernille; Espegren, Kari; Fidje, Audun; Lindberg, Karen

    2013-01-01

    The EU renewable energy (RES) directive sets a target of increasing the share of renewable energy used in the EU to 20% by 2020. The Norwegian goal for the share of renewable energy in 2020 is 67.5%, an increase from 60.1% in 2005. The Norwegian power production is almost solely based on renewable resources and the possibility to change from fossil power plants to renewable power production is almost non-existing. Therefore other measures have to be taken to fulfil the RES directive. Possible ways for Norway to reach its target for 2020 are analysed with a technology-rich, bottom-up energy system model (TIMES-Norway). This new model is developed with a high time resolution among others to be able to analyse intermittent power production. Model results indicate that the RES target can be achieved with a diversity of options including investments in hydropower, wind power, high-voltage power lines for export, various heat pump technologies, energy efficiency measures and increased use of biodiesel in the transportation sector. Hence, it is optimal to invest in a portfolio of technology choices in order to satisfy the RES directive, and not one single technology in one energy sector. - Highlights: • A new technology-rich, bottom-up energy system model is developed for Norway. • Possible ways for Norway to reach its renewable energy target for 2020 is analysed. • Results show that the renewable target can be achieved with a diversity of options. • The green certificate market contributes to increased investments in wind power

  5. Going beyond best technology and lowest price: on renewable energy investors’ preference for service-driven business models

    International Nuclear Information System (INIS)

    Loock, Moritz

    2012-01-01

    Renewable energy is becoming increasingly important for economies in many countries. But still in an emerging industry, renewable energy requires supportive energy policy helping firms to develop and protect competitive advantages in global competition. As a guideline for designing such policy, we consult well-informed stakeholders within the renewable energy industry: investors. Their preferences serve as explorative indicator for assessing which business models might succeed in competition. To contribute to only limited research on renewable energy investors’ preferences, we ask, which business models investment managers for renewable energy prefer to invest in. We report from an explorative study of 380 choices of renewable energy investment managers. Based on the stated preferences, we modelled three generic business models to calculate the share of investors’ preferences. We find exiting evidence: a “customer intimacy” business model that proposes best services is much more preferred by investors than business models that propose lowest price or best technology. Policy-makers can use those insights for designing policy that supports service-driven business models for renewable energy with a scope on customer needs rather than technology or price. Additionally, we state important implications for renewable energy entrepreneurs, managers and research.

  6. Renewable energy systems the choice and modeling of 100% renewable solutions

    CERN Document Server

    Lund, Henrik

    2009-01-01

    How can society quickly convert to renewable energy? Can worldwide energy needs ever be met through 100% renewable sources? The answers to these questions rest largely on the perception of choice in the energy arena. It is of pivotal importance that engineers, researchers and policymakers understand what choices are available, and reasonable, when considering the design and deployment of new energy systems. The mission of this new book, written by one of the world's foremost experts in renewable power, is to arm these professionals with the tools and methodologies necessary to make smart choic

  7. Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, Clayton [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.

  8. Modeling Renewable Penertration Using a Network Economic Model

    Science.gov (United States)

    Lamont, A.

    2001-03-01

    This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.

  9. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  10. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  11. Renewal processes

    CERN Document Server

    Mitov, Kosto V

    2014-01-01

    This monograph serves as an introductory text to classical renewal theory and some of its applications for graduate students and researchers in mathematics and probability theory. Renewal processes play an important part in modeling many phenomena in insurance, finance, queuing systems, inventory control and other areas. In this book, an overview of univariate renewal theory is given and renewal processes in the non-lattice and lattice case are discussed. A pre-requisite is a basic knowledge of probability theory.

  12. Modelling of Diesel Generator Sets That Assist Off-Grid Renewable Energy Micro-grids

    Directory of Open Access Journals (Sweden)

    Johanna Salazar

    2015-08-01

    Full Text Available This paper focuses on modelling diesel generators for off-grid installations based on renewable energies. Variations in Environmental Variables (for example, Solar Radiation and Wind Speed make necessary to include these auxiliary systems in off-grid renewable energy installations, in order to ensure minimal services when the produced renewable energy is not sufficient to fulfill the demand. This paper concentrates on modelling the dynamical behaviour of the diesel generator, in order to use the models and simulations for developing and testing advanced controllers for the overall off-grid system. The Diesel generator is assumed to consist of a diesel motor connected to a synchronous generator through an electromagnetic clutch, with a flywheel to damp variations. Each of the components is modelled using physical models, with the corresponding control systems also modelled: these control systems include the speed and the voltage regulation (in cascade regulation.

  13. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  14. Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis

    International Nuclear Information System (INIS)

    Menegaki, Angeliki N.

    2011-01-01

    This is an empirical study on the causal relationship between economic growth and renewable energy for 27 European countries in a multivariate panel framework over the period 1997-2007 using a random effect model and including final energy consumption, greenhouse gas emissions and employment as additional independent variables in the model. Empirical results do not confirm causality between renewable energy consumption and GDP, although panel causality tests unfold short-run relationships between renewable energy and greenhouse gas emissions and employment. The estimated cointegration factor refrains from unity, indicating only a weak, if any, relationship between economic growth and renewable energy consumption in Europe, suggesting evidence of the neutrality hypothesis, which can partly be explained by the uneven and insufficient exploitation of renewable energy sources across Europe.

  15. Effect of wind energy system performance on optimal renewable energy model - an analysis

    International Nuclear Information System (INIS)

    Iniyan, S.; Jagadeesan, T.R.

    1998-01-01

    The Optimal Renewable Energy Model (OREM) has been developed to determine the optimum level of renewable energy sources utilisation in India for the year 2020-21. The model aims at minimising cost/efficiency ratio and determines the optimum allocation of different renewable energy sources for various end-uses. The extent of social acceptance level, potential limit, demand and reliability will decide the renewable energy distribution pattern and are hence used as constraints in the model. In this paper, the performance and reliability of wind energy system and its effects on OREM model has been analysed. The demonstration windfarm (4 MW) which is situated in Muppandal, a village in the southern part of India, has been selected for the study. The windfarm has 20 wind turbine machines of 200 KW capacity . The average technical availability, real availability and capacity factor have been analysed from 1991 to 1995 and they are found to be 94.1%, 76.4% and 25.5% respectively. The reliability factor of wind energy systems is found to be 0.5 at 10,000 hours. The OREM model is analysed considering the above said factors for wind energy system, solar energy system and biomass energy systems. The model selects wind energy for pumping end-use to an extent of 0.3153 x10 15 KJ. (Author)

  16. A Kolmogorov-Brutsaert Structure Function Model for Evaporation from a Rough Surface into a Turbulent Atmosphere

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-04-01

    In his 1881 acceptance letter of the Rumford Medal, Gibbs declared that "One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity". Guided by this quotation, the subject of evaporation into the atmosphere from rough surfaces by turbulence offered in a 1965 study by Brutsaert is re-examined. Brutsaert proposed a model that predicted mean evaporation rate E from rough surfaces to scale with the 3/4 power-law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. This result was supported by a large corpus of experiments and spawned a number of studies on inter-facial transfer of scalars, evaporation from porous media at single and multiple pore scales, bulk evaporation from bare soil surfaces, as well as isotopic fractionation in hydrological applications. It also correctly foreshadowed the much discussed 1/4 'universal' scaling of liquid transfer coefficients of sparingly soluble gases in air-sea exchange studies. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The anzats explored here is that E ˜√Dm-u∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous-cutoff thereby by-passing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E may be more general than its original derivation assumed. Extensions to canopy surfaces as well as other scalars with different molecular Schmidt numbers are also featured.

  17. Model for optimum design of standalone hybrid renewable energy ...

    African Journals Online (AJOL)

    An optimization model for the design of a hybrid renewable energy microgrid ... and increasing the rated power of the wind energy conversion system (WECS) or solar ... a 70% reduction in gas emissions and an 80% reduction in energy costs.

  18. Supporting Renewable energies in Europe - The German Model

    International Nuclear Information System (INIS)

    Kreuzer, Karin

    2013-01-01

    This document presents some key information and figures about Germany's energy transition (Energiewende), the leading up to the Renewable energy Sources Act (EEG) and its amendments, the Current EEG Act: push to direct marketing and the market premium model, and the future challenges and the planned EEG reform in 2014

  19. Modelling Renewable Energy Economy in Ghana with Autometrics

    OpenAIRE

    Ackah, Ishmael; Asomani, Mcomari

    2015-01-01

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana’s energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestri...

  20. Hybrid Hydro Renewable Energy Storage Model

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.

  1. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  2. Mathematical modelling of electricity market with renewable energy sources

    International Nuclear Information System (INIS)

    Marchenko, O.V.

    2007-01-01

    The paper addresses the electricity market with conventional energy sources on fossil fuel and non-conventional renewable energy sources (RESs) with stochastic operating conditions. A mathematical model of long-run (accounting for development of generation capacities) equilibrium in the market is constructed. The problem of determining optimal parameters providing the maximum social criterion of efficiency is also formulated. The calculations performed have shown that the adequate choice of price cap, environmental tax, subsidies to RESs and consumption tax make it possible to take into account external effects (environmental damage) and to create incentives for investors to construct conventional and renewable energy sources in an optimal (from the society view point) mix. (author)

  3. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    J.C. Brezet

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  4. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    Science.gov (United States)

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  5. Water renewal in Montevideo's bay: a two compartments model for tritium kinetics

    International Nuclear Information System (INIS)

    Suarez-Antola, Roberto

    2013-01-01

    During field work about dynamics and renewal of water in Montevideo's Bay, 100 Ci of tritiated water were evenly distributed in the north-east region of the bay, by a continuous injection of a solution, during 5 hours, from a 200 litres tank, using a peristaltic pump. The whole bay was divided in 20 concentration cells, taking into account available bathymetric charts and corrections from field data obtained in situ. Tritium concentrations (activities per unit volume) and other relevant parameters (temperature, electrical conductivity, etc.) were measured in vertical profiles during three weeks, in the mid-point of each cell, first twice a day and the on a daily basis. Remnant total tritium activity was estimated from cells volumes and midpoint cells activity concentrations. Consistency checks were done. A one compartment model was used to estimate a global renewal time of circa 29 hours. However, the details of the measured tritium kinetics, a careful consideration of bathymetric data, water movements in a tidal environment (measured with drogues, fluorescent tracers and current meters), as well as the results of computer fluid dynamics modelling (in depth averaged) suggests that the bay can be meaningfully divided in two main compartments: a North-East and a South-West compartment. The purpose of this paper is threefold: (1) to describe the construction of a two compartments model for water renewal in Montevideo's Bay, (2) to apply experimental data of tritium kinetics to estimate the parameters of the model, and (3) to discuss the validity of the model and its practical applicability. The meaning of the renewal time of each compartment and its relation with the measured tritium kinetics in each cell is discussed. The perturbations in water circulation and renewal produced by civil works already done or the perturbations that could be expected due to civil works to be done, in relation with Montevideo's harbour, is discussed. The tracer model, jointly with other

  6. Renewable Resources, Capital Accumulation, and Economic Growth

    OpenAIRE

    Wei-Bin Zhang

    2011-01-01

    This paper proposes a dynamic economic model with physical capital and renewable resources. Different from most of the neoclassical growth models with renewable resources which are based on microeconomic foundation and neglect physical capital accumulation, this study proposes a growth model with dynamics of renewable resources and physical capital accumulation. The model is a synthesis of the neoclassical growth theory and the traditional dynamic models of renewable resources with an alterna...

  7. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mai, Trieu T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst., Palo Alto, CA (United States); Blanford, Geoffrey [Electric Power Research Inst., Palo Alto, CA (United States); Young, David [Electric Power Research Inst., Palo Alto, CA (United States); Marcy, Cara [Energy Information Administration, Washington, DC (United States); Namovicz, Chris [Energy Information Administration, Washington, DC (United States); Edelman, Risa [Environmental Protection Agency, Washington, DC (United States); Meroney, Bill [Environmental Protection Agency; Sims, Ryan [Environmental Protection Agency; Stenhouse, Jeb [Environmental Protection Agency; Donohoo-Vallett, Paul [U.S. Department of Energy

    2017-11-03

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision makers. With the recent surge in variable renewable energy (VRE) generators - primarily wind and solar photovoltaics - the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. To assess current best practices, share methods and data, and identify future research needs for VRE representation in capacity expansion models, four capacity expansion modeling teams from the Electric Power Research Institute, the U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory conducted two workshops of VRE modeling for national-scale capacity expansion models. The workshops covered a wide range of VRE topics, including transmission and VRE resource data, VRE capacity value, dispatch and operational modeling, distributed generation, and temporal and spatial resolution. The objectives of the workshops were both to better understand these topics and to improve the representation of VRE across the suite of models. Given these goals, each team incorporated model updates and performed additional analyses between the first and second workshops. This report summarizes the analyses and model 'experiments' that were conducted as part of these workshops as well as the various methods for treating VRE among the four modeling teams. The report also reviews the findings and learnings from the two workshops. We emphasize the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making.

  8. Model documentation, Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook 1998 (AEO98) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. For AEO98, the RFM was modified in three principal ways, introducing capital cost elasticities of supply for new renewable energy technologies, modifying biomass supply curves, and revising assumptions for use of landfill gas from municipal solid waste (MSW). In addition, the RFM was modified in general to accommodate projections beyond 2015 through 2020. Two supply elasticities were introduced, the first reflecting short-term (annual) cost increases from manufacturing, siting, and installation bottlenecks incurred under conditions of rapid growth, and the second reflecting longer term natural resource, transmission and distribution upgrade, and market limitations increasing costs as more and more of the overall resource is used. Biomass supply curves were also modified, basing forest products supplies on production rather than on inventory, and expanding energy crop estimates to include states west of the Mississippi River using information developed by the Oak Ridge National Laboratory. Finally, for MSW, several assumptions for the use of landfill gas were revised and extended.

  9. Marketing of renewable energies. Foundations, business models, case studies

    International Nuclear Information System (INIS)

    Herbes, Carsten; Friege, Christian

    2015-01-01

    How to market green electricity or biomethane? What is the right price for renewable energy and how do you design the optimal use of social media? What impact have the EEG or electromobility to the Green Power Marketing? Does direct marketing works or is online marketing the guarantee of success? Answers to these and many other basic questions provides the band with contributions from leading scientists and renowned practitioners. For the first time they describe in a structured form the basics of marketing of renewable energies, provide an introduction to the legal and market-based features and present new business models. The book is based on the latest research results, treats all questions of marketing issues important for practitioners, provides case studies and specific recommendations. [de

  10. A theoretical study of rotatable renewable energy system for stratospheric airship

    International Nuclear Information System (INIS)

    Lv, Mingyun; Li, Jun; Zhu, Weiyu; Du, Huafei; Meng, Junhui; Sun, Kangwen

    2017-01-01

    Highlights: • A new rotatable renewable energy system is designed for stratospheric airship. • A theoretical model of optimal rotation angle and required area are studied. • The effects of latitude and date on output energy per day are investigated. • The advantages of the rotatable renewable energy system are studied. - Abstract: Renewable energy system is very critical for solving the energy problem of a long endurance stratospheric airship. Output performance of the traditional solar array fixed on the upper surface of the airship remains to be improved to reduce the area and weight of renewable energy system. Inspired by the solar tracking system and kirigami, a rotatable renewable energy system (mainly including solar array) is designed to improve the current status of the energy system. The advantages of the rotatable solar array are studied using a MATLAB computer program based on the theoretical model established in this paper. The improvements in output energy and required area of the solar array were compared between the traditional airship and improved one. Studies had shown that the rotatable renewable energy system made the total weight of energy system decreased by 1000 kg when the maximum design speed of the airship was greater than 22 m/s. The results demonstrate that the rotatable renewable energy system for the airship can be a good way to improve the output performance of solar array, and the conceptual design and theoretical model suggest a pathway towards solving the energy problem of a stratospheric airship.

  11. New renewables - a business challenge

    International Nuclear Information System (INIS)

    Jochum, G.

    2004-01-01

    This article takes a look at the increased use of renewable forms of energy and, in particular, the so-called 'new renewables' that are the subject of discussion in Europe and Switzerland. The wide divergence between the political and economical viewpoints concerning renewables is examined and the question is posed on how political desires and economical sense can be brought closer together. Questions concerning the public acceptance of various forms of energy are looked at and the expectations placed on renewable forms of energy are commented on. Criteria for models of promotion are listed including CO 2 emissions, technology and cost efficiency, marketing aspects and flexibility. Also, aspects concerning plausibility, fairness and responsibility are looked at. A model named 'Swiss Renewables Model' is proposed and its efficiency, functionality and financing are discussed

  12. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  13. Renewable energy systems a smart energy systems approach to the choice and modeling of 100% renewable solutions

    CERN Document Server

    Lund, Henrik

    2014-01-01

    In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology and offering a freely available accompanying software tool, EnergyPLAN, which automates and simplifies the calculations supporting such a detailed comparative analysis. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at ...

  14. A global renewable energy system: A modelling exercise in ETSAP/TIAM

    DEFF Research Database (Denmark)

    Føyn, Tullik Helene Ystanes; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2011-01-01

    This paper aims to test the ETSAP2-TIAM global energy system model and to try out how far it can go towards a global 100% renewable energy system with the existing model database. This will show where limits in global resources are met and where limits in the data fed to the model until now are met...

  15. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  16. Building Energy Modeling and Control Methods for Optimization and Renewables Integration

    Science.gov (United States)

    Burger, Eric M.

    This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled

  17. State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes

    International Nuclear Information System (INIS)

    Levin, Todd; Thomas, Valerie M.; Lee, Audrey J.

    2011-01-01

    We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2-2.2 cents/kWh and from dedicated biomass facilities for 3.0-5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity. - Research Highlights: →We examine state-scale impacts of a renewable electricity standard and a carbon tax. →Georgia has low electricity prices and bioenergy is the main renewable option. →A carbon tax of $50/tCO 2 does not significantly increase renewable generation. →Renewable electricity credits divert renewable investment to other states. →Keeping renewable electricity generation in-state increases electricity costs by 1%.

  18. Model documentation renewable fuels module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

  19. Model documentation renewable fuels module of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA's ongoing mission to provide analytical and forecasting information systems

  20. Modeling of an autonomous microgrid for renewable energy sources integration

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Guerrero, Josep M.

    2009-01-01

    The frequency stability analysis in an autonomous microgrid (MG) with renewable energy sources (RES) is a continuously studied issue. This paper presents an original method for modeling an autonomous MG with a battery energy storage system (BESS) and a wind power plant (WPP), with the purpose...

  1. Renewable Resources, Capital Accumulation, and Economic Growth

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2011-01-01

    Full Text Available This paper proposes a dynamic economic model with physical capital and renewable resources. Different from most of the neoclassical growth models with renewable resources which are based on microeconomic foundation and neglect physical capital accumulation, this study proposes a growth model with dynamics of renewable resources and physical capital accumulation. The model is a synthesis of the neoclassical growth theory and the traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence among physical accumulation, resource change, and division of labor under perfect competition. Because of its refined economic structure, our study enables some interactions among economic variables which are not found in the existing literature on economic growth with renewable resources. We simulate the model to demonstrate the existence of equilibrium points and motion of the dynamic system. Our comparative dynamic analysis shows, for instance, that a rise in the propensity to consume the renewable resource increases the interest rate and reduces the national and production sector’s capital stocks, wage rate and level of the consumption good. Moreover, it initially reduces and then increases the capital stocks of the resource sector and the consumption and price of the renewable resource. The stock of the renewable resource is initially increased and then reduced. Finally, labor is redistributed from the production to the resource sector.

  2. Modeling and simulation of CO methanation process for renewable electricity storage

    International Nuclear Information System (INIS)

    Er-rbib, Hanaâ; Bouallou, Chakib

    2014-01-01

    In this paper, a new approach of converting renewable electricity into methane via syngas (a mixture of CO and H 2 ) and CO methanation is presented. Surplus of electricity is used to electrolyze H 2 O and CO 2 to H 2 and CO by using a SOEC (Solid Oxide Electrolysis Cell). Syngas produced is then converted into methane. When high consumption peaks appear, methane is used to produce electricity. The main conversion step in this process is CO methanation. A modeling of catalytic fixed bed methanation reactor and a design of methanation unit composed of multistage adiabatic reactors are carried out using Aspen plus™ software. The model was validated by comparing the simulated results of gas composition (CH 4 , CO, CO 2 and H 2 ) with industrial data. In addition, the effects of recycle ratio on adiabatic reactor stages, outlet temperature, and H 2 and CO conversions are carefully investigated. It is found that for storing 10 MW of renewable electricity, methanation unit is composed of three adiabatic reactors with recycle loop and intermediate cooling at 553 K and 1.5 MPa. The methanation unit generates 3778.6 kg/h of steam at 523.2 K and 1 MPa (13.67 MW). - Highlights: • A catalytic fixed bed reactor of CO methanation was modeled. • The maximum relative error of the methanation reactor model is 12%. • For 10 MW storage of renewable electricity, three adiabatic reactors are required. • The recycle ratio affects the reactor outlet temperature and CO conversion

  3. Renewables in the grid. Modeling the German power market of the year 2030

    International Nuclear Information System (INIS)

    Boldt, Jenny; Hankel, Lisa; Laurisch, Lilian Charlotte; Lutterbeck, Felix; Oei, Pao-Yu; Sander, Aram; Schroeder, Andreas; Schweter, Helena; Sommer, Philipp; Sulerz, Jasmin

    2012-01-01

    Renewable energy in Germany is on the rise. Recent changes in legislature, following the nuclear disaster in Fukushima, have accelerated the shift towards a renewable and sustainable energy supply. Offshore wind from the North and Baltic Sea is expected to reach nearly 30 GW by 2030, while the adequacy of the electricity grid to withstand this impact is already threatened today. Since the bulk of renewable energy comes from the North and East of Germany, while demand is far greater in the South and West, transmission infrastructure is poised to become the bottleneck of the German power market transformation. This study investigates where congestion is likely to occur along the grid, and proposes different approaches to meeting the requirements of an increasing share of renewable energy generation. A considerable amount of data for the year 2030, including, but not limited to, conventional generation, renewable generation, transmission and demand serves as the input for the welfare-maximizing DC load flow model. It consists of 40 nodes (18 within Germany, as well as 22 European countries, each modeled by a single node), 232 AC lines and 35 DC lines. The model is solved with the General Algebraic Modeling System (GAMS) for four representative weeks in 2030, one for each season of the year. We investigate three different scenarios: the Reference Scenario, the Strategic South Scenario and the Direct Current (DC) Highway Scenario. - The Reference Scenario is based on the assumption that 63 percent of renewable energy power will be generated in Northern and Eastern Germany by 2030, while 62 percent of load will be located in Southern and Western Germany. This situation requires a substantial expansion of transmission infrastructure from north to south. - In the Strategic South Scenario, we explore the possibility of strategically placing renewable and conventional generation capacities to Southern and Western regions in order to make major transmission upgrades redundant

  4. Renewables in the grid. Modeling the German power market of the year 2030

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Jenny; Hankel, Lisa; Laurisch, Lilian Charlotte; Lutterbeck, Felix; Oei, Pao-Yu; Sander, Aram; Schroeder, Andreas; Schweter, Helena; Sommer, Philipp; Sulerz, Jasmin

    2012-02-15

    Renewable energy in Germany is on the rise. Recent changes in legislature, following the nuclear disaster in Fukushima, have accelerated the shift towards a renewable and sustainable energy supply. Offshore wind from the North and Baltic Sea is expected to reach nearly 30 GW by 2030, while the adequacy of the electricity grid to withstand this impact is already threatened today. Since the bulk of renewable energy comes from the North and East of Germany, while demand is far greater in the South and West, transmission infrastructure is poised to become the bottleneck of the German power market transformation. This study investigates where congestion is likely to occur along the grid, and proposes different approaches to meeting the requirements of an increasing share of renewable energy generation. A considerable amount of data for the year 2030, including, but not limited to, conventional generation, renewable generation, transmission and demand serves as the input for the welfare-maximizing DC load flow model. It consists of 40 nodes (18 within Germany, as well as 22 European countries, each modeled by a single node), 232 AC lines and 35 DC lines. The model is solved with the General Algebraic Modeling System (GAMS) for four representative weeks in 2030, one for each season of the year. We investigate three different scenarios: the Reference Scenario, the Strategic South Scenario and the Direct Current (DC) Highway Scenario. - The Reference Scenario is based on the assumption that 63 percent of renewable energy power will be generated in Northern and Eastern Germany by 2030, while 62 percent of load will be located in Southern and Western Germany. This situation requires a substantial expansion of transmission infrastructure from north to south. - In the Strategic South Scenario, we explore the possibility of strategically placing renewable and conventional generation capacities to Southern and Western regions in order to make major transmission upgrades redundant

  5. Numerical modeling of the effects of a free surface on the operating characteristics of Marine Hydrokinetic Turbines

    Science.gov (United States)

    Adamski, Samantha; Aliseda, Alberto

    2012-11-01

    Marine Hydrokinetic (MHK) turbines are a growing area of research in the renewable energy field because tidal currents are a highly predictable clean energy source. The presence of a free surface may influence the flow around the turbine and in the wake, critically affecting turbine performance and environmental effects through modification of wake physical variables. The characteristic Froude number that control these processes is still a matter of controversy, with the channel depth and turbine's depth, blade tip depth and diameter as potential candidates for a length scale used in literature. We use the Volume of Fluid model to track the free surface dynamics in a RANS simulation with a BEMT model of the turbine to understand the physics of the wake-free surface interactions. Pressure and flow rate boundary conditions for channel's inlet, outlet and air side have been tested in an effort to determine the optimum set of simulation conditions for MHK turbines in rivers or estuaries. Stability and accuracy in terms of power extraction and kinetic and potential energy budgets are considered. The goal of this research is to determine, quantitatively in non dimensional parameter space, the limit between negligible and significant free surface effects on MHK turbine analysis. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  6. US Renewable Futures in the GCAM

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  7. Assessment of renewable energy potential. Calculation model “AREP-LP”

    International Nuclear Information System (INIS)

    Penchev, Alexander

    2011-01-01

    Introduction Bulgaria is a country rich in renewable energy sources. There are all types of RES including: solar, geothermal, biomass, wind energy and hydropower. Per capita it ranks among the top in Europe. Bulgaria's target for 2020 is 16% of final consumption of electricity should be from renewable energy. To achieve this goal, the first and most important task is assessing the potential of renewable energy and its geographical distribution. Creating a database of renewable energy is essential for implementation of investment projects in this area. Key words: Renewable Energy (RES), Renewable Technologies (RET), Theoretical Potential, Technical Potential, Municipalities, Regions, Energy Planning(EP), Emission Reduction (EmR), Market Assessment (MA), Data base(DB)

  8. Business models for renewable energy in the built environment. Updated version

    Energy Technology Data Exchange (ETDEWEB)

    Wuertenberger, L.; Menkveld, M.; Vethman, P.; Van Tilburg, X. [ECN Policy Studies, Amsterdam (Netherlands); Bleyl, J.W. [Energetic Solutions, Graz (Austria)

    2012-04-15

    The project RE-BIZZ aims to provide insight to policy makers and market actors in the way new and innovative business models (and/or policy measures) can stimulate the deployment of renewable energy technologies (RET) and energy efficiency (EE) measures in the built environment. The project is initiated and funded by the IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD). It analysed ten business models in three categories (amongst others different types of Energy Service Companies (ESCOs), Developing properties certified with a 'green' building label, Building owners profiting from rent increases after EE measures, Property Assessed Clean Energy (PACE) financing, On-bill financing, and Leasing of RET equipment) including their organisational and financial structure, the existing market and policy context, and an analysis of Strengths, Weaknesses, Opportunities and Threats (SWOT). The study concludes with recommendations for policy makers and other market actors.

  9. Business models for renewable energy in the built environment (RE-BIZZ)

    Energy Technology Data Exchange (ETDEWEB)

    Wuertenberger, L.; Menkveld, M.; Vethman, P.; Van Tilburg, X. [ECN Policy Studies, Amsterdam (Netherlands); Bleyl, J.W. [Energetic Solutions, Graz (Austria)

    2011-11-15

    The project RE-BIZZ aims to provide insight to policy makers and market actors in the way new and innovative business models (and/or policy measures) can stimulate the deployment of renewable energy technologies (RET) and energy efficiency (EE) measures in the built environment. The project is initiated and funded by the IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD). It analysed ten business models in three categories (amongst others different types of Energy Service Companies (ESCOs), Developing properties certified with a 'green' building label, Building owners profiting from rent increases after EE measures, Property Assessed Clean Energy (PACE) financing, On-bill financing, and Leasing of RET equipment) including their organisational and financial structure, the existing market and policy context, and an analysis of Strengths, Weaknesses, Opportunities and Threats (SWOT). The study concludes with recommendations for policy makers and other market actors.

  10. Optimization modeling of U.S. renewable electricity deployment using local input variables

    Science.gov (United States)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  11. A multiple perspective modeling and simulation approach for renewable energy policy evaluation

    Science.gov (United States)

    Alyamani, Talal M.

    Environmental issues and reliance on fossil fuel sources, including coal, oil, and natural gas, are the two most common energy issues that are currently faced by the United States (U.S.). Incorporation of renewable energy sources, a non-economical option in electricity generation compared to conventional sources that burn fossil fuels, single handedly promises a viable solution for both of these issues. Several energy policies have concordantly been suggested to reduce the financial burden of adopting renewable energy technologies and make such technologies competitive with conventional sources throughout the U.S. This study presents a modeling and analysis approach for comprehensive evaluation of renewable energy policies with respect to their benefits to various related stakeholders--customers, utilities, governmental and environmental agencies--where the debilitating impacts, advantages, and disadvantages of such policies can be assessed and quantified at the state level. In this work, a novel simulation framework is presented to help policymakers promptly assess and evaluate policies from different perspectives of its stakeholders. The proposed framework is composed of four modules: 1) a database that collates the economic, operational, and environmental data; 2) elucidation of policy, which devises the policy for the simulation model; 3) a preliminary analysis, which makes predictions for consumption, supply, and prices; and 4) a simulation model. After the validity of the proposed framework is demonstrated, a series of planned Florida and Texas renewable energy policies are implemented into the presented framework as case studies. Two solar and one energy efficiency programs are selected as part of the Florida case study. A utility rebate and federal tax credit programs are selected as part of the Texas case study. The results obtained from the simulation and conclusions drawn on the assessment of current energy policies are presented with respect to the

  12. On the renewal risk model under a threshold strategy

    Science.gov (United States)

    Dong, Yinghui; Wang, Guojing; Yuen, Kam C.

    2009-08-01

    In this paper, we consider the renewal risk process under a threshold dividend payment strategy. For this model, the expected discounted dividend payments and the Gerber-Shiu expected discounted penalty function are investigated. Integral equations, integro-differential equations and some closed form expressions for them are derived. When the claims are exponentially distributed, it is verified that the expected penalty of the deficit at ruin is proportional to the ruin probability.

  13. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Rickerson, Wilson H. [Meister Consultants Group, Inc., Boston, MA (United States)

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  14. Values of Land and Renewable Resources in a Three-Sector Economic Growth Model

    Directory of Open Access Journals (Sweden)

    Zhang Wei-Bin

    2015-04-01

    Full Text Available This paper studies dynamic interdependence of capital, land and resource values in a three sector growth model with endogenous wealth and renewable resources. The model is based on the neoclassical growth theory, Ricardian theory and growth theory with renewable resources. The household’s decision is modeled with an alternative approach proposed by Zhang two decades ago. The economic system consists of the households, industrial, agricultural, and resource sectors. The model describes a dynamic interdependence between wealth accumulation, resource change, and division of labor under perfect competition. We simulate the model to demonstrate the existence of a unique stable equilibrium point and plot the motion of the dynamic system. The study conducts comparative dynamic analysis with regard to changes in the propensity to consume resources, the propensity to consume housing, the propensity to consume agricultural goods, the propensity to consume industrial goods, the propensity to save, the population, and the output elasticity of capital of the resource sector.

  15. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Pinson, Pierre

    2017-01-01

    , we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven...... to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecastingof renewable power generation....

  16. Developing the use of renewable heat

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2013-01-01

    The author reports a study in which he shows that the heat production by means of renewable energies is an efficient method to reach the objective of 23 per cent of renewable energies in the French final energy consumption. He browses the different techniques of renewable heat production (solar heat, wood-fuel, surface geothermal) and indicates the associated potential resources. He proposes a cost analysis which compares the use of gas and electricity with three techniques of production of renewable heat: solar heat to produce hot water, biomass combustion (more particularly wood), solar heat extracted with fuel cells. He also assesses tariffs and CO 2 emissions. Then, he elaborates a strategy to phase out fossil energies: a modification of the RT 2012 thermal regulation, to give up the purchase obligation for electricity produced by wind and photovoltaic energy, to extend the CSPE calculation basis, to put oil-fuel and gas boilers out of the market, to support the development of renewable heat production, to improve the competitiveness of the different techniques of renewable heat production. He finally gives a brief overview of industrial perspectives created by such a development of renewable heat

  17. Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation

  18. Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources

    International Nuclear Information System (INIS)

    Silva, Susana; Soares, Isabel; Afonso, Oscar

    2013-01-01

    We build a general equilibrium model with renewable (non-polluting) and non-renewable (polluting) resources to analyze the interaction and compatibility between economic growth and a cleaner environment. The study is in two phases: (i) resource extraction/production costs are constant; (ii) resource producers invest in knowledge to reduce extraction/production costs, endogenizing technical change. With constant costs, there is a permanent trade-off between economic growth and a cleaner environment. With endogenous technical change, it is possible to harmonize more output and less emissions by replacing non-renewable resources for renewable ones. We also conduct a sensitivity analysis to explore three specific policy actions. With constant costs, the best policy action is the imposition of a higher renewable resources standard, while with endogenous technical change, under certain conditions, all policy interventions may benefit both the economy and the environment. - Highlights: ► Our general equilibrium model includes renewable and non-renewable resources. ► Under constant resource production costs emissions grow at the same rate as output. ► Resource producers can invest in knowledge to reduce production costs. ► Under decreasing costs, lower emissions are compatible with stable output growth. ► Empirical results differ under constant costs and under endogenous technical change

  19. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  20. The economic impact of renewable energy

    International Nuclear Information System (INIS)

    1998-02-01

    This report summarises the findings of a project investigating the economic impact of renewable energy. The background to the study is traced, and potential sources of public finance for renewable projects, sensitivity analysis of the employment estimates , estimates of demand met by renewable energy technologies, the expenditures involved in investment in renewable energy; and sectoral linkages are examined. Wealth creation through investment in renewable energy, and the economic and employment impacts are explored. Plant retirement and replacement analysis, and input-output models are considered in appendices

  1. The economic impact of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report summarises the findings of a project investigating the economic impact of renewable energy. The background to the study is traced, and potential sources of public finance for renewable projects, sensitivity analysis of the employment estimates , estimates of demand met by renewable energy technologies, the expenditures involved in investment in renewable energy; and sectoral linkages are examined. Wealth creation through investment in renewable energy, and the economic and employment impacts are explored. Plant retirement and replacement analysis, and input-output models are considered in appendices.

  2. Integrating Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, Antonio J.; Madsen, Henrik

    in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced...... such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract...

  3. Cancer Modeling: From Optimal Cell Renewal to Immunotherapy

    Science.gov (United States)

    Alvarado Alvarado, Cesar Leonardo

    Cancer is a disease caused by mutations in normal cells. According to the National Cancer Institute, in 2016, an estimated 1.6 million people were diagnosed and approximately 0.5 million people died from the disease in the United States. There are many factors that shape cancer at the cellular and organismal level, including genetic, immunological, and environmental components. In this thesis, we show how mathematical modeling can be used to provide insight into some of the key mechanisms underlying cancer dynamics. First, we use mathematical modeling to investigate optimal homeostatic cell renewal in tissues such as the small intestine with an emphasis on division patterns and tissue architecture. We find that the division patterns that delay the accumulation of mutations are strictly associated with the population sizes of the tissue. In particular, patterns with long chains of differentiation delay the time to observe a second-hit mutant, which is important given that for many cancers two mutations are enough to initiate a tumor. We also investigated homeostatic cell renewal under a selective pressure and find that hierarchically organized tissues act as suppressors of selection; we find that an architecture with a small number of stem cells and larger pools of transit amplifying cells and mature differentiated cells, together with long chains of differentiation, form a robust evolutionary strategy to delay the time to observe a second-hit mutant when mutations acquire a fitness advantage or disadvantage. We also formulate a model of the immune response to cancer in the presence of costimulatory and inhibitory signals. We demonstrate that the coordination of such signals is crucial to initiate an effective immune response, and while immunotherapy has become a promising cancer treatment over the past decade, these results offer some explanations for why it can fail.

  4. RESRO: A spatio-temporal model to optimise regional energy systems emphasising renewable energies

    Directory of Open Access Journals (Sweden)

    Gadocha S.

    2012-10-01

    Full Text Available RESRO (Reference Energy System Regional Optimization optimises the simultaneous fulfilment of the heat and power demand in regional energy systems. It is a mixed-integer program realised in the modelling language GAMS. The model handles information on geographically disaggregated data describing heat demand and renewable energy potentials (e.g. biomass, solar energy, ambient heat. Power demand is handled spatially aggregated in an hourly time resolution within 8 type days. The major idea is to use a high-spatial, low-temporal heat resolution and a low-spatial, hightemporal power resolution with both demand levels linked with each other. Due to high transport losses the possibilities for heat transport over long distances are unsatisfying. Thus, the spatial, raster-based approach is used to identify and utilise renewable energy resources for heat generation close to the customers as well as to optimize district heating grids and related energy flows fed by heating plants or combined heat and power (CHP plants fuelled by renewables. By combining the heat and electricity sector within the model, it is possible to evaluate relationships between these energy fields such as the use of CHP or heat pump technologies and also to examine relationships between technologies such as solar thermal and photovoltaic facilities, which are in competition for available, suitable roof or ground areas.

  5. Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration

    International Nuclear Information System (INIS)

    Blasques, L.C.M.; Pinho, J.T.

    2012-01-01

    This paper proposes a demand-side management model integrated to a metering system for hybrid renewable energy systems in micro-grid configuration. The proposal is based on the management problems verified in most of this kind of renewable hybrid systems installed in Brazil. The main idea is the implementation of a pre-paid metering system with some control functions that directly act on the consumer demand, restricting the consumption proportionally to the monthly availability of renewable energy. The result is a better distribution of the electricity consumption by month and by consumer, preventing that only one user, with larger purchasing power, consumes all the renewable energy available at some time period. The proportionality between the consumption and the renewable energy's availability has the objective to prevent a lack of energy stored and a high use of the diesel generator-set on months of low renewable potential. This paper also aims to contribute to the Brazilian regulation of renewable energy systems supplying micro-grids. - Highlights: ► Review of the Brazilian electricity regulation for small-scale isolated systems. ► Renewable systems are the most feasible option in several isolated communities. ► One proposal is to guarantee government subsidies for renewable energy systems. ► Smart electronic meters to create electricity restrictions for the consumers.

  6. Dynamic modeling of hybrid renewable energy systems for off-grid applications

    Science.gov (United States)

    Hasemeyer, Mark David

    The volatile prices of fossil fuels and their contribution to global warming have caused many people to turn to renewable energy systems. Many developing communities are forced to use these systems as they are too far from electrical distribution. As a result, numerous software models have been developed to simulate hybrid renewable energy systems. However almost, if not all, implementations are static in design. A static design limits the ability of the model to account for changes over time. Dynamic modeling can be used to fill the gaps where other modeling techniques fall short. This modeling practice allows the user to account for the effects of technological and economic factors over time. These factors can include changes in energy demand, energy production, and income level. Dynamic modeling can be particularly useful for developing communities who are off-grid and developing at rapid rates. In this study, a dynamic model was used to evaluate a real world system. A non-governmental organization interested in improving their current infrastructure was selected. Five different scenarios were analyzed and compared in order to discover which factors the model is most sensitive to. In four of the scenarios, a new energy system was purchased in order to account for the opening of a restaurant that would be used as a source of local income generation. These scenarios were then compared to a base case in which a new system was not purchased, and the restaurant was not opened. Finally, the results were used to determine which variables had the greatest impact on the various outputs of the simulation.

  7. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing

    Science.gov (United States)

    He, An; Liu, Wenwen; Xue, Wei; Yang, Huan; Cao, Yu

    2018-03-01

    Recently, metallic superhydrophobic surfaces with ultrahigh adhesion have got plentiful attention on account of their significance in scientific researches and industrial applications like droplet transport, drug delivery and novel microfluidic devices. However, the long lead time and transience hindered its in-depth development and industrial application. In this work, nanosecond laser ablation was carried out to construct grid of micro-grooves on copper surface, whereafter, by applying fast ethanol assisted low-temperature annealing, we obtained surface with superhydrophobicity and ultrahigh adhesion within hours. And the ultrahigh adhesion force was found tunable by varying the groove spacing. Using ultrasonic cleaning as the simulation of natural wear and tear in service, the renewability of superhydrophobicity was also investigated, and the result shows that the contact angle can rehabilitate promptly by the processing of ethanol assisted low-temperature annealing, which gives a promising fast and cheap circuitous strategy to realize the long wish durable metallic superhydrophobic surfaces in practical applications.

  8. Probabilistic life-cycle cost analysis for renewable and non-renewable power plants

    International Nuclear Information System (INIS)

    Cartelle Barros, Juan José; Lara Coira, Manuel; Cruz López, María Pilar de la; Caño Gochi, Alfredo del

    2016-01-01

    Two probabilistic models are presented to assess the costs of power plants. One of them uses requirement trees, value functions and the analytic hierarchy process. It is also based on Monte Carlo simulation. The second one is a mathematical model for calculating the levelised cost of electricity (LCOE) based on discounted cash flow techniques, and combined with Monte Carlo simulation. The results obtained with both models are compared and discussed. On the one hand, the LCOE model provides the most reliable results. These results reinforce the idea that conventional or coal, lignite, oil, natural gas and nuclear power plants are still the most competitive options, with the LCOE falling in a range of around 25 to 200 €/MWh and mean values approaching 70 €/MWh. Generally, renewable power plants obtained the worst results, with a LCOE varying from around 30 to more than 450 €/MWh. Nevertheless, this study demonstrates that renewable alternatives can compete with their conventional counterparts under certain conditions. - Highlights: • Two probabilistic models are presented to assess the costs of power plants. • Conventional power plants are still the most competitive options. • Renewable energies can compete with their conventional counterparts under certain conditions. • The model aids the decision making process in the energy policy field.

  9. Modeling and sizing a Storage System coupled with intermittent renewable power generation

    International Nuclear Information System (INIS)

    Bridier, Laurent

    2016-01-01

    This thesis aims at presenting an optimal management and sizing of an Energy Storage System (ESS) paired up with Intermittent Renewable Energy Sources (IReN). Firstly, we developed a technical-economic model of the system which is associated with three typical scenarios of utility grid power supply: hourly smoothing based on a one-day-ahead forecast (S1), guaranteed power supply (S2) and combined scenarios (S3). This model takes the form of a large-scale non-linear optimization program. Secondly, four heuristic strategies are assessed and lead to an optimized management of the power output with storage according to the reliability, productivity, efficiency and profitability criteria. This ESS optimized management is called 'Adaptive Storage Operation' (ASO). When compared to a mixed integer linear program (MILP), this optimized operation that is practicable under operational conditions gives rapidly near-optimal results. Finally, we use the ASO in ESS optimal sizing for each renewable energy: wind, wave and solar (PV). We determine the minimal sizing that complies with each scenario, by inferring the failure rate, the viable feed-in tariff of the energy, and the corresponding compliant, lost or missing energies. We also perform sensitivity analysis which highlights the importance of the ESS efficiency and of the forecasting accuracy and the strong influence of the hybridization of renewables on ESS technical-economic sizing. (author) [fr

  10. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  11. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  12. A real options evaluation model for the diffusion prospects of new renewable power generation technologies

    International Nuclear Information System (INIS)

    Kumbaroglu, Guerkan; Madlener, Reinhard; Demirel, Mustafa

    2008-01-01

    This study presents a policy planning model that integrates learning curve information on renewable power generation technologies into a dynamic programming formulation featuring real options analysis. The model recursively evaluates a set of investment alternatives on a year-by-year basis, thereby taking into account that the flexibility to delay an irreversible investment expenditure can profoundly affect the diffusion prospects of renewable power generation technologies. Price uncertainty is introduced through stochastic processes for the average wholesale price of electricity and for input fuel prices. Demand for electricity is assumed to be increasingly price-sensitive, as the electricity market deregulation proceeds, reflecting new options of consumers to react to electricity price changes (such as time-of-use pricing, unbundled electricity services, and choice of supplier). The empirical analysis is based on data for the Turkish electricity supply industry. Apart from general implications for policy-making, it provides some interesting insights about the impact of uncertainty and technical change on the diffusion of various emerging renewable energy technologies

  13. Stackelberg Game for Product Renewal in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2013-01-01

    Full Text Available The paper studied the process of product renewal in a supply chain, which is composed of one manufacturer and one retailer. There are original product and renewal product in the supply chain. A market share shift model for renewal product was firstly built on a increment function and a shift function. Based on the model, the decision-making plane consisting of two variables was divided into four areas. Since the process of product renewal was divided into two stages, Stackelberg-Nash game model and Stackelberg-merger game model could be built to describe this process. The optimal solutions of product pricing strategy of two games were obtained. The relationships between renewal rate, cost, pricing strategy, and profits were got by numerical simulation. Some insights were obtained from this paper. Higher renewal rate will make participants’ profits and total profit increase at the same margin cost. What is more important, the way of the optimal decision making of the SC was that RP comes onto the market with a great price differential between OP and RP.

  14. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  15. Model, Characterization, and Analysis of Steady-State Security Region in AC/DC Power System with a Large Amount of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    2017-08-01

    Full Text Available A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.

  16. Use of Danish Heat Atlas and energy system models for exploring renewable energy scenarios

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2013-01-01

    networks in relation with significant heat saving measures that are capital intensive infrastructure investments require highly detailed decision - support tools. The Heat Atlas for Denmark provides a highly detailed database and includes heat demand and possible heat savings for about 2.5 million...... buildings with associated costs included. Energy systems modelling tools that incorporate economic, environmental, energy and engineering analysis of future energy systems are considered crucial for quantitative assessment of transitional scenarios towards future milestones, such as (i) EU 2020 goals...... of reducing greenhouse gas emissions, increasing share of renewable energy and improving energy efficiency and (ii) Denmark’s 2050 goals of covering entire energy supply by renewable energy. Optimization and simulation energy system models are currently used in Denmark. The present paper tends to provide...

  17. On the dynamics of non-renewable resources. A mathematical model

    International Nuclear Information System (INIS)

    Alliney, S.; Alvoni, E.

    2001-01-01

    A mathematical model is presented for the consumption dynamics of non-renewable resources; the underlying assumption is that the most relevant factor is given by the evolution of technology. Then, the consumption as a function of time is governed by a non-linear differential equation,whose parameters can be estimated using the historical record. Some meaningful cases are worked out in detail, namely the coal consumption in UK and the world oil consumption [it

  18. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth.

    Science.gov (United States)

    Yan, Huaming; Konstorum, Anna; Lowengrub, John S

    2018-05-01

    We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies.

  19. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis

    International Nuclear Information System (INIS)

    Shafiei, Sahar; Salim, Ruhul A.

    2014-01-01

    This paper attempts to explore the determinants of CO 2 emissions using the STIRPAT model and data from 1980 to 2011 for OECD countries. The empirical results show that non-renewable energy consumption increases CO 2 emissions, whereas renewable energy consumption decreases CO 2 emissions. Further, the results support the existence of an environmental Kuznets curve between urbanisation and CO 2 emissions, implying that at higher levels of urbanisation, the environmental impact decreases. Therefore, the overall evidence suggests that policy makers should focus on urban planning as well as clean energy development to make substantial contributions to both reducing non-renewable energy use and mitigating climate change. - Highlights: • Examine the relationship between disaggregated energy consumption and CO 2 emission. • The STIRPAT econometric model is used for empirical analysis. • Investigate the popular environmental Kuznets curve (EKC) hypothesis between urbanisation and CO 2 emissions. • Non-renewable energy consumption increases CO 2 emissions whereas renewable energy consumption decreases CO 2 emissions. • There is evidence of the existence of an environmental Kuznets curve between urbanisation and CO 2 emissions

  20. US Renewable Futures in the GCAM

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mizrahi, A. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Karas, J. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nathan, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-10-01

    This report examines renewable energy deployment in the United States using a version of the Global Change Assessment Model (GCAM) with a detailed representation of renewables; the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sector detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long distance transmission.

  1. Spatial demographic models to inform conservation planning of golden eagles in renewable energy landscapes

    Science.gov (United States)

    Wiens, J. David; Schumaker, Nathan H.; Inman, Richard D.; Esque, Todd C.; Longshore, Kathleen M.; Nussear, Kenneth E

    2017-01-01

    Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land use and anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, U.S.A. We developed a spatially explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire prey resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative effects. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative effects of proposed management options to Golden Eagles and their habitats.

  2. Continuously renewed wall for a thermonuclear reactor

    International Nuclear Information System (INIS)

    Livshits, A.I.; Pustovojt, YU.M.; Samartsev, A.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    The possibility of creating a continuously renewed first wall of a thermonuclear reactor is experimentally investigated. The following variants of the wall are considered: the wall is double, its part turned to plasma is made of comparatively thin material. The external part separated from it by a small gap appears to be protected from interaction with plasma and performs structural functions. The gap contains the mixture of light helium and hydrogen and carbon-containing gas. The light gas transfers heat from internal part of the wall to the external part. Carbon-containing gas provides continuous renewal of carbon coating of the operating surface. The experiment is performed with palladium membrane 20 μm thick. Carbon is introduced into the membrane by benzol pyrolysis on one of the surfaces at the membrane temperature of 900 K. Carbon removal from the operating side of the wall due to its spraying by fast particles is modelled by chemical itching with oxygen given to the operating membrane wall. Observation of the carbon release on the operating surface is performed mass-spectrometrically according to the observation over O 2 transformation into CO and CO 2 . It is shown that in cases of benzol pressure of 5x10 -7 torr, carbon current on the opposite surface is not less than 3x10 12 atoms/sm 2 s and corresponds to the expected wall spraying rate in CF thermonuclear reactors. It is also shown that under definite conditions the formation and maintaining of a through protective carbon coating in the form of a monolayer or volumetric phase is possible

  3. Models for the promotion of renewable energy sources. A legal comparing investigation of models for the promotion of renewable enegy sources by the example of Poland and Germany; Modelle zur Foerderung erneuerbarer Energietraeger. Eine rechtsvergleichende Untersuchung von Modellen zur Foerderung erneuerbarer Energietraeger am Beispiel Polens und Deutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Michalowska, Dorota

    2008-04-08

    Energy sources such as coal, natural gas, petroleum, and nuclear fission have long been established on the marketplace and considered competitive. However, a comprehensive restructuring of energy generation is necessary, as conventional energy generation pollutes the environment. Therefore environmentally friendly energy sources, such as solar, wind or water power need to be promoted. However, regenerative energy sources are still not capable of competing with conventional energy. Marketability of renewable energy sources can only be achieved through government-sponsored promotion and regulation. Such measures include fixed price and fixed quantity models with green certificates. The support schemes for renewable energy sources are characterized by their wide-ranging adaptability. The various elements of a scheme must be adapted to a given country's set goals and specific circumstances. There is no universally applicable model. Based on given goals and opportunities, every domestic legislator faces the challenge of choosing the best scheme or developing a mixed model that combines various elements. The aim of this study is to provide a legal analysis of regulations concerning the support schemes for renewable energy sources within the framework of EU and international law. Furthermore, the study aimed at comparing support schemes implemented in Poland and Germany. In the EU, the electricity directive from 1996 and 2003, the directive on the promotion of electricity from renewable energy sources from 2003 and 2008, non-binding documents, such as the ''green and white book'', as well as the ''ALTENER'' program, successfully contributed to establishing the topic of renewable energies. Regarding international law, it is primarily the Kyoto protocol that has to be mentioned as a basis for the promotion of renewable energy sources. Poland introduced a fixed quantity model with green certificates. Separated reimbursements for

  4. Electricity Capacity Expansion Modeling, Analysis, and Visualization. A Summary of High-Renewable Modeling Experience for China

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate (NDRC ERI 2015). Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further accelerating such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.

  5. Electricity Capacity Expansion Modeling, Analysis, and Visualization: A Summary of High-Renewable Modeling Experiences (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This is the Chinese translation of NREL/TP-6A20-64831. Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate. Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further accelerating such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.

  6. Renewables in the Midwest

    International Nuclear Information System (INIS)

    Wager, J.S.

    1994-01-01

    Over the past three years, the Union of Concerned Scientists (UCS) has evaluated the potential for using renewable energy for electricity in the Midwest, and has been carrying out a multifaceted effort to expand the use of renewables in the region. The UCS study presents a strategy for developing renewable-electric technologies and resources in 12 midwestern states. UCS analysts used a geographic information system (GIS) to create data-bases of renewable resources, land uses, vegetation cover, terrain elevation and locations of utility transmission lines, and to analyze and present information on a .6 mi x .6 mi (1 km x 1 km) grid scale. In addition, UCS developed a model to calculate the net employment impact of renewable versus conventional electricity technologies on a state-by-state basis. In evaluating the costs and benefits of renewable energy sources, UCS analysts explored a cost assessment that accounted for the impact of pollution from fossil fuels on energy resource cost. Researchers also considered the risks associated with fuel-price volatility, environmental regulation, construction lead times and other uncertainties. Finally, UCS researchers suggested steps to remove the institutional, regulatory and legislative barriers that inhibit renewable energy development, and proposed policies to expand the use of the region's renewable resources. The UCS analysis showed that wind is currently the least expensive renewable resource. UCS also found numerous opportunities to expand biomass-electric generation in the near term, such as converting small coal-fired power plants to wood fuel, making greater use of logging residues and co-firing a small percentage of biomass with fossil fuel at large power plants

  7. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  8. Subsidies for renewable energy?

    International Nuclear Information System (INIS)

    Skytte, K.; Grenaa Jensen, S.; Morthorst, P.E.; Olsen, O.J.

    2004-01-01

    Ambitious Danish and European energy and environment objectives make a point of using renewable energy sources in the electricity supply. Denmark has been leading country in successful development and commercialization of wind turbines and is as yet one of the leading manufacturers of the world. Danish governments have successfully invested a lot in this development. Other countries have spent more money without achieving a similar success. The questions are why things have gone so well in Denmark and if the Danish success can be repeated for other renewable energy technologies. The starting point of this book is that a political decision on subsidizing the developmental process of a specific technology not in itself guarantees that the technology will turn out reliable and efficient enough to compete successfully in a liberalized electricity market. An understanding of this development is necessary in order to affect a technological development. This book goes through the development of different renewable energy technologies and two theories used for discussing the technological development: experience curves and innovation theory. Based on the discussions and a description of causal relations, an analytical model for different phases of renewable energy technologies' developmental progress and technological life cycle is made. The model is used for evaluating the subsidies for chosen renewable technologies in Denmark. With wind energy as example an analysis of what went well or badly, what might be done and which actions might be efficient is made. (BA)

  9. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    OpenAIRE

    Srinivasan, Ravi; Campbell, Daniel; Wang, Wei

    2015-01-01

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. Such progressive disinvestment in the non-renewable resources that may be substituted with renewable resources is referred to as “Renewable Substitutability” and if implemented, this process will lead to a paradigm sh...

  10. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    Science.gov (United States)

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  11. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  12. Scheduling Model for Renewable Energy Sources Integration in an Insular Power System

    Directory of Open Access Journals (Sweden)

    Gerardo J. Osório

    2018-01-01

    Full Text Available Insular power systems represent an asset and an excellent starting point for the development and analysis of innovative tools and technologies. The integration of renewable energy resources that has taken place in several islands in the south of Europe, particularly in Portugal, has brought more uncertainty to production management. In this work, an innovative scheduling model is proposed, which considers the integration of wind and solar resources in an insular power system in Portugal, with a strong conventional generation basis. This study aims to show the benefits of increasing the integration of renewable energy resources in this insular power system, and the objectives are related to minimizing the time for which conventional generation is in operation, maximizing profits, reducing production costs, and consequently, reducing greenhouse gas emissions.

  13. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  14. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    International Nuclear Information System (INIS)

    Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A.

    2009-01-01

    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle

  15. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2009-01-15

    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle. (author)

  16. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  17. Accounting for unobserved management in renewable energy and growth

    International Nuclear Information System (INIS)

    Menegaki, Angeliki N.

    2013-01-01

    The paper employs a management random parameters frontier stochastic frontier and a simple frontier stochastic model to benchmark European countries according to their management efficiency in growth and renewable energy development. The results come from an empirical application of a panel with 31 European countries over a 14 year old period using a translog type stochastic frontier production function. In particular the paper focuses on results from a management random coefficients model and compares results with the conventional stochastic frontier model with inputs such as renewable energy, fossil fuel energy, employment and capital. The results suggest that the interaction of renewable energy with management affects growth in Europe and that the technical efficiency estimated by the management model is by 6.05% higher than the one produced by the simple stochastic frontier model. - Highlights: • Application of management random coefficients frontier model in growth-renewable energy nexus. • Comparison with the simple frontier efficiency model. • Technical efficiency is higher by 6.05% in the management model

  18. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Directory of Open Access Journals (Sweden)

    Ravi S. Srinivasan

    2015-05-01

    Full Text Available In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. Such progressive disinvestment in the non-renewable resources that may be substituted with renewable resources is referred to as “Renewable Substitutability” and if implemented, this process will lead to a paradigm shift in the way building materials are manufactured. This paper discusses the development of a Renewable Substitutability Index (RSI that is designed to maximize the use of renewable resources in a building and quantifies the substitution process using solar emergy (i.e., the solar equivalent joules required for any item. The RSI of a building or a building component, i.e., floor or wall systems, etc., is the ratio of the renewable resources used during construction, including replacement and maintenance, to the building’s maximum renewable emergy potential. RSI values range between 0 and 1.0. A higher RSI achieves a low-energy building strategy promoting a higher order of sustainability by optimizing the use of renewables over a building’s lifetime from formation-extraction-manufacturing to maintenance, operation, demolition, and recycle.

  19. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  20. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues

    Directory of Open Access Journals (Sweden)

    Bernd Resch

    2014-05-01

    Full Text Available In the face of the broad political call for an “energy turnaround”, we are currently witnessing three essential trends with regard to energy infrastructure planning, energy generation and storage: from planned production towards fluctuating production on the basis of renewable energy sources, from centralized generation towards decentralized generation and from expensive energy carriers towards cost-free energy carriers. These changes necessitate considerable modifications of the energy infrastructure. Even though most of these modifications are inherently motivated by geospatial questions and challenges, the integration of energy system models and Geographic Information Systems (GIS is still in its infancy. This paper analyzes the shortcomings of previous approaches in using GIS in renewable energy-related projects, extracts distinct challenges from these previous efforts and, finally, defines a set of core future research avenues for GIS-based energy infrastructure planning with a focus on the use of renewable energy. These future research avenues comprise the availability base data and their “geospatial awareness”, the development of a generic and unified data model, the usage of volunteered geographic information (VGI and crowdsourced data in analysis processes, the integration of 3D building models and 3D data analysis, the incorporation of network topologies into GIS, the harmonization of the heterogeneous views on aggregation issues in the fields of energy and GIS, fine-grained energy demand estimation from freely-available data sources, decentralized storage facility planning, the investigation of GIS-based public participation mechanisms, the transition from purely structural to operational planning, data privacy aspects and, finally, the development of a new dynamic power market design.

  1. Impacts of subsidized renewable electricity generation on spot market prices in Germany: evidence from a Garch model with panel data

    International Nuclear Information System (INIS)

    Pham, Thao; Lemoine, Killian

    2015-01-01

    Electricity generated by renewable energy sources creates a downward pressure on wholesale prices through - the so-called 'merit order effect'. This effect tends to lower average power prices and average market revenue that renewables producers should have received, making integration costs of renewables very high at large penetration rate. It is therefore crucial to determine the amplitude of this merit order effect particularly in the context of increasing burden of renewable support policies borne by final consumers. Using hourly data for the period 2009-2012 in German electricity wholesale market for GARCH model under panel data framework, we find that wind and solar power generation injected into German electricity network during this period induces a decrease of electricity spot prices and a slight increase of their volatility. The model-based results suggest that the merit-order effect created by renewable production ranges from 3.86 to 8.34 euro/MWh which implies to the annual volume of consumers' surplus from 1.89 to 3.92 billion euros. However this surplus has not been re-distributed equally among different types of electricity consumers. (authors)

  2. An optimal renewable energy mix for Indonesia

    Science.gov (United States)

    Leduc, Sylvain; Patrizio, Piera; Yowargana, Ping; Kraxner, Florian

    2016-04-01

    Indonesia has experienced a constant increase of the use of petroleum and coal in the power sector, while the share of renewable sources has remained stable at 6% of the total energy production during the last decade. As its domestic energy demand undeniably continues to grow, Indonesia is committed to increase the production of renewable energy. Mainly to decrease its dependency on fossil fuel-based resources, and to decrease the anthropogenic emissions, the government of Indonesia has established a 23 percent target for renewable energy by 2025, along with a 100 percent electrification target by 2020 (the current rate is 80.4 percent). In that respect, Indonesia has abundant resources to meet these targets, but there is - inter alia - a lack of proper integrated planning, regulatory support, investment, distribution in remote areas of the Archipelago, and missing data to back the planning. To support the government of Indonesia in its sustainable energy system planning, a geographic explicit energy modeling approach is applied. This approach is based on the energy systems optimization model BeWhere, which identifies the optimal location of energy conversion sites based on the minimization of the costs of the supply chain. The model will incorporate the existing fossil fuel-based infrastructures, and evaluate the optimal costs, potentials and locations for the development of renewable energy technologies (i.e., wind, solar, hydro, biomass and geothermal based technologies), as well as the development of biomass co-firing in existing coal plants. With the help of the model, an optimally adapted renewable energy mix - vis-à-vis the competing fossil fuel based resources and applicable policies in order to promote the development of those renewable energy technologies - will be identified. The development of the optimal renewable energy technologies is carried out with special focus on nature protection and cultural heritage areas, where feedstock (e.g., biomass

  3. Ruin probability of the renewal model with risky investment and large claims

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ruin probability of the renewal risk model with investment strategy for a capital market index is investigated in this paper.For claim sizes with common distribution of extended regular variation,we study the asymptotic behaviour of the ruin probability.As a corollary,we establish a simple asymptotic formula for the ruin probability for the case of Pareto-like claims.

  4. Regensim – Matlab toolbox for renewable energy sources modelling and simulation

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2011-12-01

    Full Text Available This paper deals with the implementation and development of a Matlab Simulink library named RegenSim designed for modeling, simulations and analysis of real hybrid solarwind-hydro systems connected to local grids. Blocks like wind generators, hydro generators, solar photovoltaic modules and accumulators are implemented. The main objective is the study of the hybrid power system behavior, which allows employing renewable and variable in time energy sources while providing a continuous supply.

  5. FACTORS AFFECTING TEACHING THE CONCEPT of RENEWABLE ENERGY in TECHNOLOGY ASSISTED ENVIRONMENTS AND DESIGNING PROCESSES in THE DISTANCE EDUCATION MODEL

    Directory of Open Access Journals (Sweden)

    A. Seda YUCEL

    2007-01-01

    Full Text Available The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out what to take into account in creating renewable energy awareness. In this study, certain factors thought to affect the development of renewable energy awareness were investigated. The awareness was created through a technology-assisted renewable energy module and assessed using a renewable energy assessment tool. The effects of the students’ self-directed learning readiness with Guglielmino (1977, inner-individual orientation, and anxiety orientation on the awareness were examined. These three factors were found to have significant effects on renewable energy, which was developed through technology utilization. In addition, based on the finding that delivering the subject of renewable energy in technology assisted environments is more effective, the criteria that should be taken into consideration in transforming this subject into a design model that is more suitable for distance education were identified.

  6. The costs of electricity systems with a high share of fluctutating renewables. A stochastic investment and dispatch optimization model for Europe

    International Nuclear Information System (INIS)

    Nagl, Stephan; Fuersch, Michaela; Lindenberger, Dietmar

    2012-01-01

    Renewable energies are meant to produce a large share of the future electricity demand. However, the availability of wind and solar power depends on local weather conditions and therefore weather characteristics must be considered when optimizing the future electricity mix. In this article we analyze the impact of the stochastic availability of wind and solar energy on the cost-minimal power plant mix and the related total system costs. To determine optimal conventional, renewable and storage capacities for different shares of renewables, we apply a stochastic investment and dispatch optimization model to the European electricity market. The model considers stochastic feed-in structures and full load hours of wind and solar technologies and different correlations between regions and technologies. Key findings include the overestimation of fluctuating renewables and underestimation of total system costs compared to deterministic investment and dispatch models. Furthermore, solar technologies are - relative to wind turbines - underestimated when neglecting negative correlations between wind speeds and solar radiation.

  7. Renewable Energy Innovations in Europe: A Dynamic Panel Data Approach

    OpenAIRE

    Nadia Ayari; Szabolcs Blazsek; Pedro Mendi

    2009-01-01

    Abstract We investigate the determinants of renewable energy R&D intensity and the impact of renewable energy innovations on firm performance, using several dynamic panel data models. We estimate these models using a large data set of European firms from 19 different countries, with some patenting activity in areas related with renewable energies during the 1987-2007 period. Our results confirm our priors on the determinants of the rapid development of renewable energy R&D intensit...

  8. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  9. Renewable energy: An efficient mechanism to improve GDP

    International Nuclear Information System (INIS)

    Chien Taichen; Hu Jinli

    2008-01-01

    This article analyzes the effects of renewable energy on GDP for 116 economies in 2003 through Structural Equation Modeling (SEM) approach. In order to decipher the mechanism of how the use of renewables improves macroeconomic efficiency, we decompose GDP by the 'expenditure approach'. Although previous theory predicts positive effects of renewables on capital formation and trade balance, the SEM results show that renewables have a significant positive influence on capital formation only. The result that renewables do not have a significant impact on trade balance implies that renewables do not have an import substitution effect. Thus, we confirm the positive relationship between renewable energy and GDP through the path of increasing capital formation, but not for the path of increasing trade balance

  10. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  11. Renewable energy policy evaluation using real option model. The case of Taiwan

    International Nuclear Information System (INIS)

    Lee, Shun-Chung; Shih, Li-Hsing

    2010-01-01

    This study presents a policy benefit evaluation model that integrates cost efficiency curve information on renewable power generation technologies into real options analysis (ROA) methods. The proposed model evaluates quantitatively the policy value provided by developing renewable energy (RE) in the face of uncertain fossil fuel prices and RE policy-related factors. The economic intuition underlying the policy-making process is elucidated, while empirical analysis illustrates the option value embedded in the current development policy in Taiwan for wind power. In addition to revealing the benefits that RE development provides when considering real options, analytical results indicate that ROA is a highly effective means of quantifying how policy planning uncertainty including managerial flexibility influences RE development. In addition to assessing the policy value of current RE development policy, this study also compares policy values in terms of internalized external costs and varying feed-in tariff (FIT). Simulation results demonstrate that the RE development policy with internalized CO 2 emission costs is appropriate policy planning from sustainability point of view. Furthermore, relationship between varying FIT and policy values can be shown quantitatively and appropriate FIT level could be determined accordingly. (author)

  12. Modeling sustainability in renewable energy supply chain systems

    Science.gov (United States)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  13. Growth with Endogenous Capital, Knowledge, and Renewable Resources

    OpenAIRE

    Wei-Bin Zhang

    2017-01-01

    This paper proposes a dynamic economic model with endogenous technological change, physical capital and renewable resources. The model is a synthesis of the neoclassical growth theory, Arrow’s learning by doing, and some traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence between technological change, physical accumulation, resource change, and division of labor under perfect competition. Because o...

  14. Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City

    Directory of Open Access Journals (Sweden)

    Chong Peng

    2015-03-01

    Full Text Available Modeling thermal comfort provides quantitative evidence and parameters for effective and efficient urban planning, design, and building construction particularly in a dense and narrow inner city, which has become one of many concerns for sustainable urban development. This paper aims to develop geometric and mathematical models of wind and thermal comfort and use them to examine the impacts of six small-scale renewal strategies on the wind and thermal environment at pedestrian level in Dazhimen neighborhood, Wuhan, which is a typical case study of urban renewal project in a mega-city. The key parameters such as the solar radiation, natural convection, relative humidity, ambient crosswind have been incorporated into the mathematical models by using user-defined-function (UDF method. Detailed temperature and velocity distributions under different strategies have been compared for the optimization of local renewal strategies. It is concluded that five rules generated from the simulation results can provide guidance for building demolition and reconstruction in a neighborhood and there is no need of large-scale demolition. Particularly, combining the local demolition and city virescence can both improve the air ventilation and decrease the temperature level in the study area.

  15. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Science.gov (United States)

    In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. ...

  16. A hybrid model for the optimum integration of renewable technologies in power generation systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis

    2011-01-01

    The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010-2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3-0.5 Euro c/kWh (in real prices), depending on the RES-E penetration level. - Research Highlights: →Development of a hybrid optimization model for the integration of renewable technologies in power generation systems. →Estimation of the optimum feed-in-tariffs to be offered to future renewable systems. →Determination of the overall cost increase in the electricity sector for the promotion of renewable technologies. →Analyses taking into account fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc.

  17. Optimal interconnection and renewable targets for north-west Europe

    International Nuclear Information System (INIS)

    Lynch, Muireann Á.; Tol, Richard S.J.; O'Malley, Mark J.

    2012-01-01

    We present a mixed-integer, linear programming model for determining optimal interconnection for a given level of renewable generation using a cost minimisation approach. Optimal interconnection and capacity investment decisions are determined under various targets for renewable penetration. The model is applied to a test system for eight regions in Northern Europe. It is found that considerations on the supply side dominate demand side considerations when determining optimal interconnection investment: interconnection is found to decrease generation capacity investment and total costs only when there is a target for renewable generation. Higher wind integration costs see a concentration of wind in high-wind regions with interconnection to other regions. - Highlights: ► We use mixed-integer linear programming to determine optimal interconnection locations for given renewable targets. ► The model is applied to a test system for eight regions in Northern Europe. ► Interconnection reduces costs only when there is a renewable target. ► Wind integration costs affect the interconnection portfolio.

  18. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2010-12-01

    Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching

  19. An approach to modeling and optimization of integrated renewable energy system (ires)

    Science.gov (United States)

    Maheshwari, Zeel

    The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living

  20. Social franchising for community owned renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, K. [Community Renewable Energy, Newcastle upon Tyne (United Kingdom)

    2008-07-01

    In some European Union (EU) States community owned renewable projects have made a major contribution to the development of renewables as a whole, and this project wishes to build on their success. Other states have yet to establish relatively significant community renewable sectors. Community Renewable Energy (CoRE) has developed a new social enterprise franchise model to accelerate the take-up of renewable energy technologies across the EU. The model focuses on the three difficulties faced by communities wishing to develop renewable energy in a globalized and deregulated energy market. CoRE provides support in the forms of time, money and expertise, as a central function, to a federated or cooperative membership. In return CoRE takes a share of profits from each community project that it works with to cover its running costs, work with more communities and develop financial mechanisms to fund futher projects. The plan is to set up CoRE Europe to enable communities to become part of a decentralized energy network and share resources and knowledge. It will add to community sustainability and resilience, develop and support a range of other community benefits, for example: job creation, tackling fuel poverty and empowering communities in meeting the climate change challenge.

  1. Evaluating options for balancing the water–electricity nexus in California: Part 2—Greenhouse gas and renewable energy utilization impacts

    Energy Technology Data Exchange (ETDEWEB)

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott, E-mail: gss@uci.edu

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. - Highlights: • Part I presents a spatially and temporally resolved model of California’s surface reservoirs. • Part II presents GHG emissions and grid renewable penetration for water availability options. • In particular, the energy signature of water supply infrastructure is delineated. • Different pathways for securing California’s water supply are developed quantitatively. • Under baseline conditions, portfolios capable of securing surface reservoir levels emerge. • Under climate change conditions, the

  2. Evaluating options for balancing the water–electricity nexus in California: Part 2—Greenhouse gas and renewable energy utilization impacts

    International Nuclear Information System (INIS)

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-01-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. - Highlights: • Part I presents a spatially and temporally resolved model of California’s surface reservoirs. • Part II presents GHG emissions and grid renewable penetration for water availability options. • In particular, the energy signature of water supply infrastructure is delineated. • Different pathways for securing California’s water supply are developed quantitatively. • Under baseline conditions, portfolios capable of securing surface reservoir levels emerge. • Under climate change conditions, the

  3. Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration

    Directory of Open Access Journals (Sweden)

    Marc Deissenroth

    2017-01-01

    Full Text Available The ongoing deployment of renewable energy sources (RES calls for an enhanced integration of RES into energy markets, accompanied by a new set of regulations. In Germany, for instance, the feed-in tariff legislation for renewables has been successively replaced by first optional and then obligatory marketing of RES on competitive wholesale markets. This paper introduces an agent-based model that allows studying the impact of changing energy policy instruments on the economic performance of RES operators and marketers. The model structure, its components, and linkages are presented in detail; an additional case study demonstrates the capability of our sociotechnical model. We find that changes in the political framework cannot be mapped directly to RES operators as behaviour of intermediary market actors has to be considered as well. Characteristics and strategies of intermediaries are thus an important factor for successful RES marketing and further deployment. It is shown that the model is able to assess the emergence and stability of market niches.

  4. Agent-based model of intermittent renewables : Simulating emerging changes in energy markets in transition

    NARCIS (Netherlands)

    Chappin, E.J.L.; Viebahn, P.; Richstein, J.C.; Lechtenböhmer, S.; Nebel, A.

    2012-01-01

    The energy transition is taking shape in the German and, to a lesser extent also its neighbouring electricity markets. We have proposed adaptations to an existing model to represent the increasing shares of intermittent renewables, that may alter the structure of the market and the viability of

  5. Renewable energy policy and landscape management in Andalusia, Spain: The facts

    International Nuclear Information System (INIS)

    Prados, Maria-Jose

    2010-01-01

    Renewable energy has developed spectacularly in Spain since the European Union started a process of energy policy reform. A review of Spanish State legislation on renewable energies confirms that the success in installing renewable energy is attributable to public aid. Andalusia is one of the autonomous communities, which has simultaneously developed the legal framework and very successfully implemented the introduction of renewable power. When implementing the central government's policy, the Andalusian regional government prioritised increases in both surface cover by wind and solar plants (thermal and photovoltaic energy) and in the number of companies involved. However, this development of renewable energies took place without any proper integration into regional spatial and landscape planning. This paper explores renewable power implementation in Andalusia through regulatory measures put in place over the last decade to develop renewable energy systems and the way they can be managed alongside planning issues. The location of large-scale renewable plants has had consequences for territory in the socio-political context of renewable energy promotion. The main findings focus on renewable energy plant sprawl throughout rural areas in Andalusia with no clear effect on landscape management and no firm backing from the local population.

  6. Optimal stochastic management of renewable MG (micro-grids) considering electro-thermal model of PV (photovoltaic)

    International Nuclear Information System (INIS)

    Najibi, Fatemeh; Niknam, Taher; Kavousi-Fard, Abdollah

    2016-01-01

    This paper aims to report the results of the research conducted to one thermal and electrical model for photovoltaic. Moreover, one probabilistic framework is introduced for considering all uncertainties in the optimal energy management of Micro-Grid problem. It should be noted that one typical Micro-Grid is being studied as a case, including different renewable energy sources, such as Photovoltaic, Micro Turbine, Wind Turbine, and one battery as a storage device for storing energy. The uncertainties of market price variation, photovoltaic and wind turbine output power change and load demand error are covered by the suggested probabilistic framework. The Micro-Grid problem is of nonlinear nature because of the stochastic behavior of the renewable energy sources such as Photovoltaic and Wind Turbine units, and hence there is need for a powerful tool to solve the problem. Therefore, in addition to the simulated thermal model and suggested probabilistic framework, a new algorithm is also introduced. The Backtracking Search Optimization Algorithm is described as a useful method to optimize the MG (micro-grids) problem. This algorithm has the benefit of escaping from the local optima while converging fast, too. The proposed algorithm is also tested on the typical Micro-Grid. - Highlights: • Proposing an electro-thermal model for PV. • Proposing a new stochastic formulation for optimal operation of renewable MGs. • Introduction of a new optimization method based on BSO to explore the problem search space.

  7. Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2011-01-01

    The system-level consideration of inter- mittent renewable energy sources and small-scale en- ergy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Non-controllability and energy-constraints are still considered contingent cases...... in market-based operation. The design of operation strategies for up to 100 % renewable energy systems requires an explicit consideration of non-dispatchable generation and stor- age capacities, as well as the evaluation of operational performance in terms of energy eciency, reliability, environmental...... impact and cost. By abstracting from technology-dependent and physical unit properties, the modeling framework presented and extended in this pa- per allows the modeling of a technologically diverse unit portfolio with a unied approach, whilst establishing the feasibility of energy-storage consideration...

  8. The renewable alternative

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses renewable energy sources as an alternative to a fossil fuel based economy. The topics discussed in the chapter include the historic aspects and current status of use of renewable energy, status of the renewable energy industry, market barriers to renewable energy, research and development and commercialization of renewable energy, the environmental and social costs associated with renewable energy, valuing future costs and benefits of energy use, and the potential market of renewable energy

  9. Alternative models for portfolio diversification and renewables development

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.; Corbett, L.; Pape, A.; Kelly, B.

    1998-04-01

    The question of how to promote renewable energy and demand-side management during the transition to a competitive market was the topic discussed at this session. Gregory Morris, Principal of Future Resource Associates Inc, and Director of the Green Power Institute of Berkeley, California traced the first three years of restructuring experiences in his state. He warned renewable energy suppliers that there is always a slip between polls indicating consumer willingness to pay a premium for green power and actual sales. Nevertheless, deregulation will open the doors for green power producers to market their wares, regardless of the status of other renewable energy programs. Lois Corbett, Executive Director of the Toronto Atmospheric Fund (TAF), described that organization`s efforts over the years to promote a transition to safe, reliable energy supplies. A 20 per cent reduction in CO{sub 2} emission by 2005 was proposed as far back as TAF`s first conference in 1988. Despite dire predictions that even a much more modest goal of CO{sub 2} reduction would cause irreparable harm to the economy, in May 1997, Toronto edged out all of the world`s cities with total CO{sub 2} reductions just a few tonnes higher than Berlin, the previous leader. TAF is now concentrating its efforts on a $4-to-10-million green fleets partnership to try and solve the problem of emissions in the transportation sector, and a $3 million co-op housing revolving fund, to provide loans to retrofit units in need of upgrading. Andrew Pape, a consultant with Compass Resource Management of Vancouver described his analysis of mechanisms that would support renewable energy, emissions reductions and sustainability within the retail electricity market in British Columbia and Alberta.

  10. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies

    International Nuclear Information System (INIS)

    Zhang, Sufang; Andrews-Speed, Philip; Zhao, Xiaoli; He, Yongxiu

    2013-01-01

    This paper analyzes China's policy approach to renewable energies and assesses how effectively China has met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. First we briefly discuss the interactions between these two policies. Then we outline China's key renewable energy and renewable industrial policies and find that China's government has well recognized the need for this policy interaction. After that, we study the achievements and problems in China's wind and solar PV sector during 2005–2012 and argue that China's policy approach to renewable energies has placed priority first on developing a renewable energy manufacturing industry and only second on renewable energy itself, and it has not effectively met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. Lastly, we make an in-depth analysis of the three ideas underlying this policy approach, that is, the green development idea, the low-carbon leadership idea and indigenous innovation idea. We conclude that Chinas' policy approach to renewable energies needs to enhance the interactions between renewable energy policy and renewable energy industrial policy. The paper contributes to a deeper understanding of China's policy strategy toward renewable energies. -- Highlights: •Interactions between renewable energy policy and renewable energy industrial policy are discussed. •China's key renewable energy and renewable energy industrial policies are outlined. •Two empirical cases illustrate China's policy approach to renewable energies. •We argue that China needs to enhance the interactions between the two policies. •Three ideas underlie China's policy approach to renewable energies

  11. RENEWAL PROCESS IN QUEUING PROBLEM AND REPLACEMENT OF MACHINE

    OpenAIRE

    Hala Abbas Laz*, Mohamed Gomma Elnour

    2016-01-01

    The paper is studying the renewal process. There are many fields in which it’s used for example: the renewable energy (solar energy, wind energy), maintenance and replacement decision models, queuing system and other field in electronics. In this study our objective is to find the probability density function related to a renewal at a given time. Also to drive the renewal equation, how to find the current lifetime and residual life time. We obtain that as expected value of a renewal process w...

  12. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation

    Directory of Open Access Journals (Sweden)

    Pavan Rajanahalli

    2015-01-01

    Full Text Available Silver nanoparticles (AgNPs are gaining rapid popularity in many commonly used medical and commercial products for their unique anti-bacterial properties. The molecular mechanisms of effects of AgNPs on stem cell self-renewal and proliferation have not yet been well understood. The aim of the work is to use mouse embryonic stem cells (mESCs as a cellular model to evaluate the toxicity of AgNPs. mESC is a very special cell type which has self-renewal and differentiation properties. The objective of this project is to determine the effects of AgNPs with different surface chemical compositions on the self-renewal and cell cycle of mESCs. Two different surface chemical compositions of AgNPs, polysaccharide-coated and hydrocarbon-coated, were used to test their toxic effects on self-renewal and proliferation of mESCs. The results indicated that both polysaccharide-coated and hydrocarbon-coated AgNPs changed the cell morphology of mESCs. Cell cycle analysis indicated that AgNPs induced mESCs cell cycle arrest at G1 and S phases through inhibition of the hyperphosphorylation of Retinoblastoma (Rb protein. Furthermore, AgNPs exposure reduced Oct4A isoform expression which is responsible for the pluripotency of mESCs, and induced the expression of several isoforms OCT4B-265, OCT4B-190, OCT4B-164 which were suggested involved in stem cell stresses responses. In addition, the evidence of reactive oxygen species (ROS production with two different surface chemical compositions of AgNPs supported our hypothesis that the toxic effect AgNPs exposure is due to overproduction of ROS which altered the gene expression and protein modifications. Polysaccharide coating reduced ROS production, and thus reduced the AgNPs toxicity.

  13. Renewable energy consumption and income in emerging economies

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2009-01-01

    Increased economic growth and demand for energy in emerging economies is creating an opportunity for these countries to increase their usage of renewable energy. This paper presents and estimates two empirical models of renewable energy consumption and income for a panel of emerging economies. Panel cointegration estimates show that increases in real per capita income have a positive and statistically significant impact on per capita renewable energy consumption. In the long term, a 1% increase in real income per capita increases the consumption of renewable energy per capita in emerging economies by approximately 3.5%. Long-term renewable energy per capita consumption price elasticity estimates are approximately equal to -0.70.

  14. Performance comparison of renewable incentive schemes using optimal control

    International Nuclear Information System (INIS)

    Oak, Neeraj; Lawson, Daniel; Champneys, Alan

    2014-01-01

    Many governments worldwide have instituted incentive schemes for renewable electricity producers in order to meet carbon emissions targets. These schemes aim to boost investment and hence growth in renewable energy industries. This paper examines four such schemes: premium feed-in tariffs, fixed feed-in tariffs, feed-in tariffs with contract for difference and the renewable obligations scheme. A generalised mathematical model of industry growth is presented and fitted with data from the UK onshore wind industry. The model responds to subsidy from each of the four incentive schemes. A utility or ‘fitness’ function that maximises installed capacity at some fixed time in the future while minimising total cost of subsidy is postulated. Using this function, the optimal strategy for provision and timing of subsidy for each scheme is calculated. Finally, a comparison of the performance of each scheme, given that they use their optimal control strategy, is presented. This model indicates that the premium feed-in tariff and renewable obligation scheme produce the joint best results. - Highlights: • Stochastic differential equation model of renewable energy industry growth and prices, using UK onshore wind data 1992–2010. • Cost of production reduces as cumulative installed capacity of wind energy increases, consistent with the theory of learning. • Studies the effect of subsidy using feed-in tariff schemes, and the ‘renewable obligations’ scheme. • We determine the optimal timing and quantity of subsidy required to maximise industry growth and minimise costs. • The premium feed-in tariff scheme and the renewable obligations scheme produce the best results under optimal control

  15. The surface renewal method for better spatial resolution of evapotranspiration measurements

    Science.gov (United States)

    Suvocarev, K.; Fischer, M.; Massey, J. H.; Reba, M. L.; Runkle, B.

    2017-12-01

    Evaluating feasible irrigation strategies when water is scarce requires measurements or estimations of evapotranspiration (ET). Direct observations of ET from agricultural fields are preferred, and micrometeorological methods such as eddy covariance (EC) provide a high quality, continuous time series of ET. However, when replicates of the measurements are needed to compare irrigation strategies, the cost of such experiments is often prohibitive and limits experimental scope. An alternative micrometeorological approach to ET, the surface renewal (SR) method, may be reduced to a thermocouple and a propeller anemometer (Castellvi and Snyder, 2009). In this case, net radiation, soil and sensible heat flux (H) are measured and latent heat flux (an energy equivalent for ET) is estimated as the residual of the surface energy-balance equation. In our experiment, thermocouples (Type E Fine-Wire Thermocouple, FW3) were deployed next to the EC system and combined with mean horizontal wind speed measurements to obtain H using SR method for three weeks. After compensating the temperature signal for non-ideal frequency response in the wavelet half-plane and correcting the sonic anemometer for the flow distortion (Horst et al., 2015), the SR H fluxes compared well to those measured by EC (r2 = 0.9, slope = 0.92). This result encouraged us to install thermocouples over 16 rice fields under different irrigation treatments (continuous cascade flood, continuous multiple inlet rice irrigation, alternate wetting and drying, and furrow irrigation). The EC measurements with net radiometer and soil heat flux plates are deployed at three of these fields to provide a direct comparison. The measurement campaign will finish soon and the data will be processed to evaluate the SR approach for ET estimation. The results will be used to show better spatial resolution of ET measurements to support irrigation decisions in agricultural crops.

  16. Soft computing in green and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Iowa Bioeconomy Inst.; US Department of Energy, Ames, IA (United States). Ames Lab; Kalogirou, Soteris [Cyprus Univ. of Technology, Limassol (Cyprus). Dept. of Mechanical Engineering and Materials Sciences and Engineering; Khaitan, Siddhartha Kumar (eds.) [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Electrical Engineering and Computer Engineering

    2011-07-01

    Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful. (orig.)

  17. Renewable enthusiasm

    International Nuclear Information System (INIS)

    Duffin, Tony

    2000-01-01

    A reduction in energy consumption by the energy intensive sectors will be rewarded by a tax credit. The advantages of renewable sources of energy in terms of reducing emissions of carbon dioxide are extolled. The Government will reward the use of renewables through exemption from the Climate Change Levy. Many major companies are now committed to renewables and Shell predict that 50% of world energy will come from renewables by 2050. World-wide there is now 10,000 MW of installed wind power and the annual rate of growth is more than 20%. Other renewables such as biomass, energy from waste, solar power, hydropower, wind power and tidal power are discussed. The Government would like to see 10% of the UK's electricity coming from renewables by 2010. (UK)

  18. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  19. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    International Nuclear Information System (INIS)

    Gürkan, Gül; Langestraat, Romeo

    2014-01-01

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies

  20. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia

    OpenAIRE

    Ben Jebli, Mehdi; Ben Youssef, Slim

    2013-01-01

    We use the autoregressive distributed lag (ARDL) bounds testing approach for cointegration with structural breaks and the vector error correction model (VECM) Granger causality approach in order to investigate relationships between per capita CO2 emissions, GDP, renewable and non-renewable energy consumption and international trade (exports or imports) for Tunisia during the period 1980-2009. We show the existence of a short-run unidirectional causality running from trade, GDP, CO2 emission a...

  1. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    Science.gov (United States)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  2. Renewables without limits : moving Ontario to advanced renewable tariffs by updating Ontario's groundbreaking standard offer program

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-11-01

    The Ontario Sustainable Energy Association (OSEA) promotes the development of community-owned renewable energy generation. It was emphasized that in order to achieve OSEA's original objectives of developing as much renewable energy as quickly as possible through community participation, changes are needed to Ontario's groundbreaking standard offer contract (SOC) program. This report examined the status of Ontario's SOC program and proposed changes to the program as part of the program's first two-year review. The report provided a summary of the program and discussed each of the program's goals, notably to encourage broad participation; eliminate barriers to distributed renewable generation; provide a stable market for renewable generation; stimulate new investment in renewable generation; provide a rigorous pricing model for setting the tariffs; create a program applicable to all renewable technologies; provide a simple, streamlined, and cost-effective application process; and provide a dispute resolution process. The program goals as developed by the Ontario Power Authority and Ontario Energy Board were discussed with reference to mixed results to date; simplicity; removing barriers; balancing targets with value to ratepayers; and building on the efforts of OSEA. Advanced renewable tariffs (ART) and tariff determination was also discussed along with ART's in Germany, France, Spain and Ontario. Inflation indexing; tariff degression; proposed new tariffs by technology; and other costs and factors affecting profitability were also reviewed. ref., tabs

  3. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  4. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  5. Hybrid modeling to support energy-climate policy: Effects of feed-in tariffs to promote renewable energy in Portugal

    International Nuclear Information System (INIS)

    Proença, Sara; St Aubyn, Miguel

    2013-01-01

    Feed-in tariffs have been the main policy instrument applied in Portugal for the promotion of electricity produced from renewable energy sources under the EU Directives on energy and climate regulation. In this paper, we provide an empirical impact assessment of the economic and environmental effects of Portugal's FITs policy to promote RES-E generation. Impact assessment of policy instruments plays a crucial role on decision-making process. For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium modeling approach, which represents a reliable tool to analyze the complex interactions between economic, energy, and environmental issues related to energy policies. Numerical simulations confirm the empirical evidence that the FITs policy implemented by Portugal was both an effective and a cost-efficient way to increase the generation of electricity from renewable energy sources and thus to achieve the national RES-E target of 45% in 2010. Results show relatively modest macroeconomic impacts indicating potentially low economic adjustment costs. From an environmental perspective, the deployment of renewable energy source results in significant carbon emissions reductions. - Highlights: ► We provide an impact assessment of Portugal's FITs policy to promote RES-E generation. ► For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium model. ► Portugal's FITs policy proved to be a cost-efficient way to increase generation of renewable electricity. ► Results show relatively modest macroeconomic effects indicating potentially low economic adjustment costs. ► The deployment of renewable energy sources results in significant carbon emission reductions

  6. A Kolmogorov-Brutsaert structure function model for evaporation into a turbulent atmosphere

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-05-01

    In 1965, Brutsaert proposed a model that predicted mean evaporation rate E¯ from rough surfaces to scale with the 3/4 power law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The working hypothesis explored here is that E¯˜Dmu∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous cutoff thereby bypassing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E¯ may be more general than its original derivation implied.

  7. Different types of antagonists modify the outcome of complete denture renewal.

    Science.gov (United States)

    Berteretche, Marie Violaine; Frot, Amélie; Woda, Alain; Pereira, Bruno; Hennequin, Martine

    2015-01-01

    The effect of renewing removable dentures on masticatory function was evaluated according to the occlusion offered by different types of mandibular arches. Twenty-eight patients with complete maxillary dentures were subdivided into three groups in terms of mandibular dentition type: dentate, partial denture, and complete denture. The participants were observed before and 8 weeks after maxillary denture renewal. The mandibular denture was also renewed in the partial and complete denture groups. The participants masticated carrots, peanuts, and three model foods of different hardnesses. The particle size distribution of the boluses obtained from natural foods was characterized by the median particle size (d50) in relation to the masticatory normative indicator (MNI). Chewing time (CT), number of chewing cycles (CC), and chewing frequency (CF) were video recorded. A self-assessment questionnaire for oral health-related quality of life (Geriatric Oral Health Assessment Index [GOHAI]) was used. Statistical analyses were carried out with a mixed model. Renewal of the dentures decreased d50 (P < .001). The number of participants with d50 values above the MNI cutoff decreased from 12 to 2 after renewal. Renewal induced an increase in mean CF while chewing model foods (P < .001). With all foods, renewal tended to affect CT, CC, and CF differently among the three groups (statistically significant renewal Å~ group interactions). The GOHAI score increased significantly for all groups. Denture renewal improves masticatory function. The complete denture group benefited least from renewal; the dentate group benefited most. This study confirmed the usefulness of denture renewal for improving functions and oral health- related quality of life.

  8. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...

  9. Comment: The Economics of Interdependent Renewable and Non-renewable Resources revisited.

    OpenAIRE

    Viktoria Kahui; Claire W. Armstrong

    2009-01-01

    This work expands upon Swallow's theoretical analysis of interactions between renewable and non-renewable resources. In this comment the interaction is such that the renewable resource prefers the non-renewable environment, as opposed to SwallowÕs (op cit) case of the non-renewable environment being essential to the renewable resource. We find that this difference strongly affects the results, and makes the resources change from being complements to being substitutes, i.e. in the essential ca...

  10. Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels

    International Nuclear Information System (INIS)

    Palander, Teijo

    2011-01-01

    In this paper, a multiple objective model to large-scale and long-term industrial energy supply chain scheduling problems is considered. The problems include the allocation of a number of fossil, peat, and wood-waste fuel procurement chains to an energy plant during different periods. This decision environment is further complicated by sequence-dependent procurement chains for forest fuels. A dynamic linear programming model can be efficiently used for modelling energy flows in fuel procurement planning. However, due to the complex nature of the problem, the resulting model cannot be directly used to solve the combined heat and electricity production problem in a manner that is relevant to the energy industry. Therefore, this approach was used with a multiple objective programming model to better describe the combinatorial complexity of the scheduling task. The properties of this methodology are discussed and four examples of how the model works based on real-world data and optional peat fuel tax, feed-in tariff of electricity and energy efficiency constraints are presented. The energy industry as a whole is subject to policy decisions regarding renewable energy production and energy efficiency regulation. These decisions should be made on the basis of comprehensive techno-economic analysis using local energy supply chain models. -- Highlights: → The energy policy decisions are made using comprehensive techno-economic analysis. → Peat tax, feed-in tariff and energy efficiency increases renewable energy production. → The potential of peat procurement deviates from the current assumptions of managers. → The dynamic MOLP model could easily be adapted to a changing decision environment.

  11. Is nuclear economical in comparison to renewables?

    International Nuclear Information System (INIS)

    Suna, Demet; Resch, Gustav

    2016-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where public money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The comparison is conducted exemplarily for the United Kingdom (UK) at a country level and for the EU 28 overall. The recent state aid case for the construction of the Hinkley Point nuclear power plant (NPP) in the UK serves as the model for the nuclear option. - Highlights: • State aids for new nuclear power is compared with incentives for renewables. • Hinkley Point C in the UK is considered as example for new nuclear power. • Comparison is conducted for the UK at a country level and for the EU 28 overall. • Analysis shows that renewable energies are more economical than nuclear power.

  12. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20

  13. Asymptotic Estimates of Gerber-Shiu Functions in the Renewal Risk Model with Exponential Claims

    Institute of Scientific and Technical Information of China (English)

    Li WEI

    2012-01-01

    This paper continues to study the asymptotic behavior of Gerber-Shiu expected discounted penalty functions in the renewal risk model as the initial capital becomes large.Under the assumption that the claim-size distribution is exponential,we establish an explicit asymptotic formula.Some straightforward consequences of this formula match existing results in the field.

  14. The influence of renewable and non-renewable energy consumption and real income on CO2 emissions in the USA: evidence from structural break tests.

    Science.gov (United States)

    Dogan, Eyup; Ozturk, Ilhan

    2017-04-01

    The objective of this study is to explore the influence of the real income (GDP), renewable energy consumption and non-renewable energy consumption on carbon dioxide (CO 2 ) emissions for the United States of America (USA) in the environmental Kuznets curve (EKC) model for the period 1980-2014. The Zivot-Andrews unit root test with a structural break and the Clemente-Montanes-Reyes unit root test with a structural break report that the analyzed variables become stationary at first-differences. The Gregory-Hansen cointegration test with a structural break and the bounds testing for cointegration in the presence of a structural break show CO 2 emissions, the real income, the quadratic real income, renewable and non-renewable energy consumption are cointegrated. The long-run estimates obtained from the ARDL model indicate that increases in renewable energy consumption mitigate environmental degradation whereas increases in non-renewable energy consumption contribute to CO 2 emissions. In addition, the EKC hypothesis is not valid for the USA. Since we use time-series econometric approaches that account for structural break in the data, findings of this study are robust, reliable and accurate. The US government is advised to put more weights on renewable sources in energy mix, to support and encourage the use and adoption of renewable energy and clean technologies, and to increase the public awareness of renewable energy for lower levels of emissions.

  15. Local acceptance of renewable energy-A case study from southeast Germany

    International Nuclear Information System (INIS)

    Musall, Fabian David; Kuik, Onno

    2011-01-01

    The European 20-20-20 goals, as well as national targets for the next decade, require a substantial increase in installed renewable capacity in Germany. While public support for such measures is high on an abstract level, the situation in the local context is often very different. Here, the impact of renewable energy might cause resistance. Empirical research shows that a community ownership model can have a positive effect on local acceptance. Our study explores whether such an effect can also be demonstrated in a community co-ownership model. The question is relevant since larger projects exceed the financial possibilities of most communities, leaving them with only co-ownership as an option. The research design is based on a comparative case study, utilizing a questionnaire-based survey. The results of the survey clearly show that a significant difference in local acceptance exists between the two cases. The residents of Zschadrass, where a community co-ownership model exists, are consistently more positive towards local renewable energy and also towards renewable energy in general. The results provide evidence that the co-ownership model is a means to reconcile local acceptance with an increased use of renewable energy in Germany. - Highlights: → We study if community co-ownership affects local acceptance of renewable energy → We interviewed residents from two villages with different ownership models → Residents with co-ownership are consistently more positive towards renewable energy → Local acceptance is higher with co-ownership than with a private ownership model.

  16. Multi-region optimal deployment of renewable energy considering different interregional transmission scenarios

    International Nuclear Information System (INIS)

    Wang, Ge; Zhang, Qi; Mclellan, Benjamin C.; Li, Hailong

    2016-01-01

    Renewable energy is expected to play much more important role in future low-carbon energy system, however, renewable energy has problems with regard to load-following and regional imbalance. This study aims to plan the deployment of intermittent renewable energy in multiple regions considering the impacts of regional natural conditions and generation capacity mix as well as interregional transmission capacity using a multi-region dynamic optimization model. The model was developed to find optimized development paths toward future smart electricity systems with high level penetration of intermittent renewable energy considering regional differences and interregional transmission at national scale. As a case study, the model was applied to plan power generation in nine interconnected regions in Japan out to 2030. Four scenarios were proposed with different supporting policies for the interregional power transmission infrastructures and different nuclear power phase-out scenarios. The analysis results show that (i) the government's support for power transmission infrastructures is vital important to develop more intermittent renewable energy in appropriate regions and utilize renewable energy more efficiently; (ii) nuclear and renewable can complement rather than replace each other if enough interregional transmission capacity is provided. - Highlights: • Plan the optimal deployment of intermittent renewable energy in multiple regions. • A multi-region dynamic optimization model was developed. • The impacts of natural conditions and interregional transmission are studied. • The government's support for transmission is vital important for renewable energy. • Nuclear and renewable can complement rather than replace each other.

  17. European Schemes for Promoting Renewables in Liberalised Markets

    DEFF Research Database (Denmark)

    Meyer, Niels I.

    2003-01-01

    The paper describes possibilities and problems for penetration of supply systems based on renewable energy sources in liberalised markets. The analysis is based on recent development in EU with different models for support of installations based on renewable energy. These include feed-in models...... with guaranteed minimum tariffs, tender models for different bands of technologies, and green certificates trading models with obligatory consumer quota. The paper describes the market situation in selected European countries, including Germany, the UK, Holland and Denmark.An EU directive from September 2001 has...

  18. Renewable Energy: Policy Considerations for Deploying Renewables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis on policies for Deploying Renewables, and is intended to complement the main publication. It provides an account of the strategic drivers underpinning renewable energy (RE) technology deployment (energy security, economic development and environment protection) and assesses RE technologies with respect to these drivers, including an estimate of GHG emissions reductions due to RE technologies. The paper also explores the different barriers to deploying renewables at a given stage of market maturity and discusses what tools policy makers can avail of to succeed in removing deployment barriers. An additional topical highlight explores the challenges associated with accelerating the diffusion of RE technologies in developing countries.

  19. A cost-efficient expansion of renewable energy sources in the European electricity system. An integrated modelling approach with a particular emphasis on diurnal and seasonal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Christiane

    2012-11-01

    This thesis determines a cost-efficient expansion of electricity generated by renewable energy sources (RES-E) in the European power generation system. It is an integrated modelling approach with a particular emphasis on diurnal and seasonal patterns of renewable energy sources (RES). An integrated modelling approach optimizes the overall European electricity system while comprising fossil, nuclear, and renewable generation as well as storage capacities. The integrated model approach corresponds to a situation in which renewable generation is subject to electricity price signals. In sensitivity scenarios cases of the integrated model approach are compared to situations in which renewable generation is granted priority feed-in and is decoupled from electricity price signals. In addition, the role of different flexibility options, which can be provided by storage capacities and grid expansion are scrutinized. The methodology of the thesis consists of two parts. First, it develops an integrative model approach by extending an existing European electricity model only comprising conventional power generating technologies. Second, an appropriate representation of intermittent RES for electricity market models is established by the determination of corresponding typedays. The typeday modelling takes the spatial correlation of RES and the correlation between wind and solar power into account. Moreover, the typeday modelling captures average dispatch-relevant, diurnal and seasonal RES characteristics such as the level, the variance, and the gradient. The scenario analysis shows that separate developments of renewable and conventional technologies imply several inefficiencies. These increase with higher RES-E penetration. Inefficiencies such as an increased wind power curtailment, an augmented capital turnover, or a higher cumulative installed power generating capacity are revealed and quantified.

  20. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  1. Impact of embedded renewable on transmission and distribution network

    International Nuclear Information System (INIS)

    Pistora, M.; Maslo, K.

    2012-01-01

    This paper deals with impact of renewable energy sources on both interconnected transmission systems and distribution networks. It evaluates the role of phase-shifting transformers in controlling active power flows created by renewable as well as embedded renewable' role in is landing operation in distribution network. Model of photovoltaic power plant from MODES simulation software is described as well. (Authors)

  2. Bmi-1 Regulates Extensive Erythroid Self-Renewal

    Directory of Open Access Journals (Sweden)

    Ah Ram Kim

    2015-06-01

    Full Text Available Red blood cells (RBCs, responsible for oxygen delivery and carbon dioxide exchange, are essential for our well-being. Alternative RBC sources are needed to meet the increased demand for RBC transfusions projected to occur as our population ages. We previously have discovered that erythroblasts derived from the early mouse embryo can self-renew extensively ex vivo for many months. To better understand the mechanisms regulating extensive erythroid self-renewal, global gene expression data sets from self-renewing and differentiating erythroblasts were analyzed and revealed the differential expression of Bmi-1. Bmi-1 overexpression conferred extensive self-renewal capacity upon adult bone-marrow-derived self-renewing erythroblasts, which normally have limited proliferative potential. Importantly, Bmi-1 transduction did not interfere with the ability of extensively self-renewing erythroblasts (ESREs to terminally mature either in vitro or in vivo. Bmi-1-induced ESREs can serve to generate in vitro models of erythroid-intrinsic disorders and ultimately may serve as a source of cultured RBCs for transfusion therapy.

  3. The implementation of the EU renewable directive in Spain. Strategies and challenges

    International Nuclear Information System (INIS)

    Labriet, Maryse; Cabal, Helena; Lechon, Yolanda; Giannakidis, George; Kanudia, Amit

    2010-01-01

    Based on the European project RES2020, the analysis evaluates the energy strategies to be implemented in Spain in order to satisfy the EU Renewable Directive. The modelling framework relies on the technico-economic model TIMES-Spain, part of the Pan-European TIMES model used in the project. TIMES is a bottom-up technology rich optimisation model representing the whole energy systems of the countries. Among the results, it appears that the gap regarding the renewable deployment in Spain between the Business-as-Usual case (including the existing policies) and the EU Directive should be compensated mainly by the penetration of bioenergy in transport and industry, and by the implementation of conservation measures, which contribute to reduce the total energy demand and thus makes useless additional investments in renewable power plants compared to the Business-as-Usual case. Only higher climate mitigation ambitions result in an absolute increase in the renewable-based electricity generation compared to the Business-as-Usual case. Moreover, when allowed, Spain is offering renewable energy credits under the statistical transfer mechanism to other European countries. The cost increase of the modelled renewable and climate policies compared to the Business-as-Usual remains relatively minor.

  4. Operant models of relapse in zebrafish (Danio rerio): Resurgence, renewal, and reinstatement.

    Science.gov (United States)

    Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A

    2017-09-29

    Zebrafish are a widely used animal model in biomedical research, as an alternative to mammals, for having features such as a fully sequenced genome, high fecundity, and low-cost maintenance, but behavioral research with these fish remains scarce. The present study investigated whether zebrafish could be a new animal model for studies on the relapse of behavior (e.g., addiction and overeating) after the behavior has been extinguished. Specifically, we examined whether zebrafish would show three different types of relapse commonly studied with other species: resurgence, renewal, and reinstatement. For resurgence, a target response (i.e., approaching a sensor) was established by presenting a reinforcer (i.e., shrimp eggs) contingent upon the response in Phase 1; the target response was extinguished while introducing reinforcement for an alternative response in Phase 2; neither response produced the reinforcer in Phase 3. For renewal, a target response was established under Context A in Phase 1 and was extinguished under Context B in Phase 2; the fish were placed back in Context A in Phase 3, where extinction remained in effect. For reinstatement, a target response was established in Phase 1 and was extinguished in Phase 2; the reinforcer was presented independently of responding in Phase 3. Each type of relapse occurred in Phase 3. These results replicate and extend previous findings on relapse to a new species and suggest that zebrafish can be a useful animal model for studying the interactions of biological and environmental factors that lead to relapse. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Control of fjordic deep water renewal by runoff modification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A; Edelsten, D J

    1976-09-01

    Loch Etive is a Scottish fjord subject to fresh-water run off which renders it markedly brackish. This paper considers the frequency of deep water renewal, developing a model which relates the timing of all such renewals to runoff records. Using the model one can examine the effect of changes caused by interference with the natural runoff pattern.

  6. An Integrated Multiperiod OPF Model with Demand Response and Renewable Generation Uncertainty

    DEFF Research Database (Denmark)

    Bukhsh, Waqquas Ahmed; Zhang, Chunyu; Pinson, Pierre

    2015-01-01

    Renewable energy sources such as wind and solar have received much attention in recent years, and large amount of renewable generation is being integrated to the electricity networks. A fundamental challenge in a power system operation is to handle the intermittent nature of the renewable...... that with small flexibility on the demand-side substantial benefits in terms of re-dispatch costs can be achieved. The proposed approach is tested on all standard IEEE test cases upto 300 buses for a wide variety of scenarios....

  7. Market Mechanism Design for Renewable Energy based on Risk Theory

    Science.gov (United States)

    Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi

    2018-02-01

    Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.

  8. A case study of renewable energy for Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, V D; Takahashi, P K [Hawaii Natural Energy Inst., Manoa, HI (United States); Chuveliov, A V [I.V. Kurchatov Inst. of Atomic Energy. Moscow (SU)

    1992-02-01

    A hypothetical fuel-energy system based on indigenous, renewable resources to achieve energy self-sufficiency in Hawaii by the end of the 21st century is presented. In this case study, renewable resources would provide sufficient energy for a projected total energy consumption of approximately 335 x 10{sup 6}GJ from approximately 15 GWe of installed capacity in the year 2100. The renewable fuel-energy system would feature methanol-from-biomass to meet liquid fuel requirements for surface transportation and for the industrial, commercial, and residential sectors; hydrogen via electrolysis in liquid form for air transportation and as a gaseous fuel for industrial purposes; and electricity generated from geothermal, ocean thermal, wind, and photovoltaic sources for all power applications. A green economic analysis indicates that between the years 1987 and 2100 the switch to this hypothetical renewable fuel-energy system would require expenditures of approximately $400 billion (1986 U.S. dollars), representing a saving of approximately $200 billion over continuing a business-as-usual fuel-energy system based on imported fossil fuels. (author).

  9. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    International Nuclear Information System (INIS)

    Benítez, José Jesús; De Vargas-Parody, María Inmaculada; Cruz-Carrillo, Miguel Antonio; Heredia-Guerrero, José Alejandro; Morales-Flórez, Victor; De la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-01-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters. (paper)

  10. Talking Renewables; A renewable energy primer for everyone

    Science.gov (United States)

    Singh, Anirudh

    2018-03-01

    This book provides a clear and factual picture of the status of renewable energy and its capabilities today. The book covers all areas of renewable energy, starting from biomass energy and hydropower and proceeding to wind, solar and geothermal energy before ending with an overview of ocean energy. The book also explores how the technologies are being implemented today and takes a look at the future of renewable energy.

  11. The renewable energy development framework - II. The foundations of renewable energy development: Economic foundations of renewable energies; International foundations of renewable energies; European foundations of renewable energy development; Foundations of renewable energy development in internal law

    International Nuclear Information System (INIS)

    Combes Motel, Pascale; Thebaut, Matthieu; Loic Grard; Michallet, Isabelle

    2012-01-01

    A first article analysis the reasons for the development of renewable energies (economic and environmental reasons, European commitments in terms of production objectives), how these renewable energies can be developed (acceptation by the population, administrative, technological, and financial constraints, political instruments related to market, taxes and purchase prices). A second article proposes a discussion about the way international law deals with renewable energies as far as texts as well as actors are concerned. The third article describes the European ambitions regarding renewable energies as a product of national perspectives (national action plans and projects) as well as of European perspectives (financing, integrated actions). The last article presents and comments various legal texts dealing with the development of renewable energies in France (texts concerning the right to energy, the environment law, planning tools, incentive measures)

  12. A logistic regression approach to model the willingness of consumers to adopt renewable energy sources

    Science.gov (United States)

    Ulkhaq, M. M.; Widodo, A. K.; Yulianto, M. F. A.; Widhiyaningrum; Mustikasari, A.; Akshinta, P. Y.

    2018-03-01

    The implementation of renewable energy in this globalization era is inevitable since the non-renewable energy leads to climate change and global warming; hence, it does harm the environment and human life. However, in the developing countries, such as Indonesia, the implementation of the renewable energy sources does face technical and social problems. For the latter, renewable energy sources implementation is only effective if the public is aware of its benefits. This research tried to identify the determinants that influence consumers’ intention in adopting renewable energy sources. In addition, this research also tried to predict the consumers who are willing to apply the renewable energy sources in their houses using a logistic regression approach. A case study was conducted in Semarang, Indonesia. The result showed that only eight variables (from fifteen) that are significant statistically, i.e., educational background, employment status, income per month, average electricity cost per month, certainty about the efficiency of renewable energy project, relatives’ influence to adopt the renewable energy sources, energy tax deduction, and the condition of the price of the non-renewable energy sources. The finding of this study could be used as a basis for the government to set up a policy towards an implementation of the renewable energy sources.

  13. Equilibrium Transitions from Non Renewable Energy to Renewable Energy under Capacity Constraints

    OpenAIRE

    Amigues, Jean-Pierre; Ayong Le Kama, Alain; Moreaux, Michel

    2013-01-01

    We study the transition between non-renewable and renewable energy sources with adjustment costs over the production capacity of renewable energy. Assuming constant variable marginal costs for both energy sources, convex adjustment costs and a more expensive renewable energy, we show the following. With sufficiently abundant non-renewable energy endowments, the dynamic equilibrium path is composed of a first time phase of only non-renewable energy use followed by a transition phase substituti...

  14. Financing the alternative: renewable energy in developing and transition countries

    OpenAIRE

    Brunnschweiler, Christa N.

    2006-01-01

    This paper examines the determinants of credit allocation to renewable energy firms in developing and transition countries. Using a simple en- dogenous growth model, we show that the development of the renewable energy sector, i.e. the diversification of renewable energy resources used in primary energy production, depends on the quality of financial intermedia- tion, debtor information costs to banks, and financing needs of renewable energy firms. Policies should aim at increasing financial ...

  15. The Environmental Kuznets Curve: The Role of Renewable and Non-Renewable Energy Consumption and Trade Openness

    OpenAIRE

    Ben Jebli, Mehdi; Ben Youssef, Slim; Ozturk, Ilhan

    2013-01-01

    We use panel cointegration techniques to investigate the causal relationship between CO2 emissions, renewable and non-renewable energy consumption, and trade openness in three different models for a panel of twenty five OECD countries over the period 1980-2009. Also the validity of the Environmental Kuznets Curve (EKC) hypothesis has been tested for these countries. Short-run Granger causality tests show the existence of a unidirectional causality running from the square of per capita output ...

  16. Southern African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines the ''renewable scenario'' based on a modelling tool developed by IRENA and tested in cooperation with the South African National Energy Development Institute (SANEDI) and the Southern African Development Community (SADC). Initial results from the System Planning and Test (SPLAT) model show that the share of renewable technologies in Southern Africa could increase from the current 10% to as much as 46% in 2030, with 20% of decentralised capacity coming from renewable sources and nearly 80% of the envisaged capacity additions between 2010 and 2030 being provided by renewable energy technologies. Deployment and export of hydropower from the Democratic Republic of Congo’s Inga hydropower project to the SADC region would significantly reduce average electricity generation costs. Analysis using SPLAT – along with a similar model developed for West Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  17. West African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines a ''renewable scenario'' based on a modelling tool developed by IRENA and tested with assistance from the Economic Community of West African States (ECOWAS). Initial results from the ECOWAS Renewable Energy Planning (EREP) model for continental ECOWAS countries show that the share of renewable technologies in the region could increase from the current 22% of electricity generation to as much as 52% in 2030, provided that the cost of these technologies continues to fall and fossil fuel prices continue to rise. In this scenario, nearly half of the envisaged capacity additions between 2010 and 2030 would be with renewable technologies. Analysis using EREP – along with a similar model developed for Southern Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  18. An over painted oriental arts: Evaluation of the development of the Chinese renewable energy market using the wind power market as a model

    International Nuclear Information System (INIS)

    Yu, James; Ji, Fuxing; Zhang Ling; Chen Yushou

    2009-01-01

    China is now the largest CO 2 polluter in the world. However, the renewable energy policies in China are controversial and one can easily draw the wrong conclusions that Chinese renewable energy development has taken off from a surface assessment of the policies. By investigating and summarizing the first-hand experiences of participation in the Chinese renewable market (mainly wind farm development) in the past five years, this paper provides another dimension of policy analysis and independent review of the current issues facing the market. An investigation of policy changes and consequences clearly demonstrates the transformation of the Chinese renewable market. The domestic manufacturing quality and unprofessional design of wind farms made most developers' financial returns unrealistic in the wind market. Despite the difficulties and inconsistency in the system, China is tackling environmental issues seriously and heading in the right direction. With centrally controlled management, the Chinese strategies do not have to be justified financially. It is envisioned by the authors that re-organizing over 70 existing Chinese wind turbine manufacturers is unavoidable. Establishment of an internal renewable market, such as Renewable Obligation Certificate (ROC) system in the UK whose effectiveness is another subject of debate, would be an effective means by which the Chinese government in their post-2012 strategy could make the wind market more financially viable.

  19. Exploring energy saving policy measures by renewable energy supplying cooperatives (REScoops)

    NARCIS (Netherlands)

    Coenen, Franciscus H.J.M.; Hoppe, Thomas; Chalkiadakis, Georgios; Tsoutsos, Theocharis; Akasiadis, Charilaos

    2017-01-01

    Cooperatives for renewable energy supply (REScoops) provide their members renewably generated energy within a cooperative model that enables members to co-decide on the cooperative’s future. REScoops do not only collectively own renewable energy production facilities and supply this to their

  20. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  1. Harvesting and replenishment policies for renewable natural resources

    Science.gov (United States)

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    The current paper links the optimal intertemporal use of renewable natural resources to the harvesting activities of various economic agents. Previous contributions cite market forces as a causative factor inducing the extirpation of renewable natural resources. The analysis given here discusses investment in the stock of renewable resources and cites important examples of this activity. By introducing joint harvesting and replenishment strategies into a model of renewable resource use, the analysis adds descriptive reality and relevance to positive and normative discussions of renewable natural resource use. A high price for the yield or a high discount rate tend to diminish the size of the optimum stationary stock of the resource with a non-replenishment harvesting strategy. Optimal non-replenishment harvesting strategies for renewable natural resources will exhaustion or extirpation of the resource if the price of the yield or the discount rate are sufficiently large. However, the availability of a replenishment technology and the use of replenishment activities tends to buffer the resource against exhaustion or extirpation.

  2. Investigating 100% renewable energy supply at regional level using scenario analysis

    Directory of Open Access Journals (Sweden)

    Annicka Waenn

    2016-06-01

    Full Text Available Energy modelling work in Ireland to date has mainly taken place at a national level. A regional modelling approach is necessary however, for Ireland to reach the ambitious targets for renewable energy and emissions reduction. This paper explores the usefulness of the energy modelling tool EnergyPLAN in investigating the energy system of the South West Region of Ireland. This paper estimates a 10.5% current renewable energy share of energy use, with 40% renewable electricity. We build and assess a reference scenario and three renewable energy scenarios from a technological and resources perspective. The results show that sufficient resources are available for the South West Region energy system to become 100% renewable and quantifies the land-use implications. Moreover, EnergyPLAN can be a useful tool in exploring different technical solutions. However, thorough investigations of as many alternatives as possible, is necessary before major investments are made in a future energy system.

  3. Backup flexibility classes in emerging large-scale renewable electricity systems

    International Nuclear Information System (INIS)

    Schlachtberger, D.P.; Becker, S.; Schramm, S.; Greiner, M.

    2016-01-01

    Highlights: • Flexible backup demand in a European wind and solar based power system is modelled. • Three flexibility classes are defined based on production and consumption timescales. • Seasonal backup capacities are shown to be only used below 50% renewable penetration. • Large-scale transmission between countries can reduce fast flexible capacities. - Abstract: High shares of intermittent renewable power generation in a European electricity system will require flexible backup power generation on the dominant diurnal, synoptic, and seasonal weather timescales. The same three timescales are already covered by today’s dispatchable electricity generation facilities, which are able to follow the typical load variations on the intra-day, intra-week, and seasonal timescales. This work aims to quantify the changing demand for those three backup flexibility classes in emerging large-scale electricity systems, as they transform from low to high shares of variable renewable power generation. A weather-driven modelling is used, which aggregates eight years of wind and solar power generation data as well as load data over Germany and Europe, and splits the backup system required to cover the residual load into three flexibility classes distinguished by their respective maximum rates of change of power output. This modelling shows that the slowly flexible backup system is dominant at low renewable shares, but its optimized capacity decreases and drops close to zero once the average renewable power generation exceeds 50% of the mean load. The medium flexible backup capacities increase for modest renewable shares, peak at around a 40% renewable share, and then continuously decrease to almost zero once the average renewable power generation becomes larger than 100% of the mean load. The dispatch capacity of the highly flexible backup system becomes dominant for renewable shares beyond 50%, and reach their maximum around a 70% renewable share. For renewable shares

  4. Renewable Energy Deployment in Colorado and the West: Extended Policy Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, Clayton P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stoll, Brady [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-11

    The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.

  5. Renewable Energy Marketplace

    Science.gov (United States)

    Ghadimian, Vachik

    The renewable energy sector is evolving, and today, renewable energy has become a viable alternative for many facilities. Because this sector is in its infancy stage, lack of experience has resulted in failing solar projects. This project involves the design and implementation of a functioning web application that streamlines and automates the planning, risk assessment and financing of a solar development project. The three key stakeholders, the host facility, solar installer and financier are seamlessly integrated into a single marketplace. By designing a project development workflow, projects are vetted early on and terminated if deemed infeasible, saving time and resources. By risk assessing the project using the proposed scoring model, one can inherit more confident investors. The project scoring model also serves as a debt rating system, where investors can measure the risk/rewards. The platform will also serve as a communication medium between the three stakeholders. Besides storing documents like engineering drawings, permits, etc., the platform auto-generates all necessary transactional documents, legal documents and agreements among the three stakeholders.

  6. A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing.

    Science.gov (United States)

    Moser, Elke; Grass, Dieter; Tragler, Gernot

    Given the constantly raising world-wide energy demand and the accompanying increase in greenhouse gas emissions that pushes the progression of climate change, the possibly most important task in future is to find a carbon-low energy supply that finds the right balance between sustainability and energy security. For renewable energy generation, however, especially the second aspect turns out to be difficult as the supply of renewable sources underlies strong volatility. Further on, investment costs for new technologies are so high that competitiveness with conventional energy forms is hard to achieve. To address this issue, we analyze in this paper a non-autonomous optimal control model considering the optimal composition of a portfolio that consists of fossil and renewable energy and which is used to cover the energy demand of a small country. While fossil energy is assumed to be constantly available, the supply of the renewable resource fluctuates seasonally. We further on include learning effects for the renewable energy technology, which will underline the importance of considering the whole life span of such a technology for long-term energy planning decisions.

  7. Renewable Energy Symposium

    International Nuclear Information System (INIS)

    2016-01-01

    Representatives of state universities, public institutions and Costa Rican private sector, and American experts have exposed projects or experiences about the use and generation of renewable energy in different fields. The thematics presented have been about: development of smart grids and design of electrical energy production systems that allow money saving and reducing emissions to the environment; studies on the use of non-traditional plants and agricultural waste; sustainable energy model in the process of coffee production; experiments from biomass for the fabrication of biodiesel, biogas production and storage; and the use of non-conventional energy. Researches were presented at the Renewable Energy Symposium, organized by the Centro de Investigacion en Estructuras Microscopicas and support of the Vicerrectoria de Investigacion, both from the Universidad de Costa Rica [es

  8. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  9. Analysis of a hybrid renewable energy system on the Mures valley using Homer

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragoş

    2011-12-01

    Full Text Available Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth, and plants. Virtually all regions of the world have renewable resources of one type or another. This paper deals with the modeling and analysis of a hybrid system based on renewable energy resources, located on the Mureş valley, using a dedicated software named HOMER. Different types and topologies of renewable resources for the energy supply are analyzed; a small consumer situated on the Mureş Valley is modeled based on a load curve. Finally, the energy flows between the renewable energy system and the local supplying network are analyzed.

  10. Renewable energy

    International Nuclear Information System (INIS)

    Yoon, Cheon Seok

    2009-09-01

    This book tells of renewable energy giving description of environment problem, market of renewable energy and vision and economics of renewable energy. It also deals with solar light like solar cell, materials performance, system and merit of solar cell, solar thermal power such as solar cooker and solar collector, wind energy, geothermal energy, ocean energy like tidal power and ocean thermal energy conversion, fuel cell and biomass.

  11. Optimal Energy Mix with Renewable Portfolio Standards in Korea

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-05-01

    Full Text Available Korea is a heavily energy-dependent country whose primary energy consumption ranks ninth in the world. However, at the same time, it promised to reduce carbon emission and planned to use more renewable energy. Thus, the objective of this study is to propose an optimal energy mix planning model in electricity generation from various energy sources, such as gas, coal, nuclear, hydro, wind, photovoltaic, and biomass, which considers more renewable and sustainable portions by imposing governmental regulation named renewable portfolio standard (RPS. This optimization model minimizes various costs such as construction cost, operation and management cost, fuel cost, and carbon emission cost while satisfying minimal demand requirement, maximal annual installation potential, and renewable portfolio standard constraints. Results showed that this optimization model could successfully generate energy mix plan from 2012 to 2030 while minimizing the objective costs and satisfying all the constraints. Therefore, this optimization model contributes more efficient and objective method to the complex decision-making process with a sustainability option. This proposed energy mix model is expected to be applied not only to Korea, but also to many other countries in the future for more economical planning of their electricity generation while affecting climate change less.

  12. Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hedi ePeterson

    2013-10-01

    Full Text Available Pluripotency in human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs is regulated by three transcription factors - OCT3/4, SOX2 and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behaviour of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11 and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.

  13. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  14. Evidence of long memory behavior in U.S. renewable energy consumption

    International Nuclear Information System (INIS)

    Pestana Barros, Carlos; Gil-Alana, Luis A.; Payne, James E.

    2012-01-01

    This study examines the degrees of time persistence in U.S. total renewable energy consumption using innovative fractional integration and autoregressive models with monthly data from 1981:1 to 2010:10. The results indicate that renewable energy consumption is better explained in terms of a long memory model that incorporates persistence components and seasonality. The degree of integration is above 0.5 but significantly below 1.0, suggesting nonstationarity with mean reverting behavior. The presence of long memory behavior (persistence) in renewable energy consumption suggests that random shocks may very well move renewable energy consumption from pre-determined target levels for a period of time.

  15. The Renewable Energy Data Explorer: Mapping Our Renewable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-13

    The Renewable Energy (RE) Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based platform that allows users to visualize and analyze renewable energy potential. The RE Data Explorer informs prospecting, integrated planning, and policymaking to enable low emission development.

  16. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Renzi, Massimiliano

    2014-01-01

    This study investigates the potential of energy efficiency, renewables, and micro-cogeneration to reduce household consumption in a medium Italian town and analyses the scope for municipal local policies. The study also investigates the effects of tourist flows on town's energy consumption by modelling energy scenarios for permanent and summer homes. Two long-term energy scenarios (to 2030) were modelled using the MarkAL-TIMES generator model: BAU (business as usual), which is the reference scenario, and EHS (exemplary household sector), which involves targets of penetration for renewables and micro-cogeneration. The analysis demonstrated the critical role of end-use energy efficiency in curbing residential consumption. Cogeneration and renewables (PV (photovoltaic) and solar thermal panels) were proven to be valuable solutions to reduce the energetic and environmental burden of the household sector (−20% in 2030). Because most of household energy demand is ascribable to space-heating or hot water production, this study finds that micro-CHP technologies with lower power-to-heat ratios (mainly, Stirling engines and microturbines) show a higher diffusion, as do solar thermal devices. The spread of micro-cogeneration implies a global reduction of primary energy but involves the internalisation of the primary energy, and consequently CO 2 emissions, previously consumed in a centralised power plant within the municipality boundaries. - Highlights: • Energy consumption in permanent homes can be reduced by 20% in 2030. • High efficiency appliances have different effect according to their market penetration. • Use of electrical heat pumps shift consumption from natural gas to electricity. • Micro-CHP entails a global reduction of energy consumption but greater local emissions. • The main CHP technologies entering the residential market are Stirling and μ-turbines

  17. Modeling of solution renewal with the Kindis code: example of R7T7 glass dissolution at 90 deg C

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Clement, A.; Gerard, F.

    1994-01-01

    The deep underground environment that would correspond to a geological repository is a system open to fluid flow. It is therefore necessary to investigate the effects of solution renewal on the long-term behavior of glass in contact with water. These effects can now be simulated using the new version of the geochemical KINDIS model (thermodynamic and kinetic model). We tested the model at 90 deg C with an SA/V ratio of 400 m -1 at twelve renewal rates of pure water ranging from 200 to 0 vol% per day. With renewal rates between 200 and 0.065 vol% per day, steady-state conditions were obtained in the reaction system: i.e. the glass corrosion rate remained constant as did the concentrations of the dissolved species in solution (although at different values depending on the renewal rate). The ionic strength never exceeded 1 (the validity limit for the DEBYE-HUCKEL law) and long term predictions of the dissolved glass mass, the solution composition and the potential secondary mineral sequence are possible. For simulated renewal rates of less than 0.065 vol% per day (27% per year), the ionic strength rose above 1 (as in a closed system) before steady-state conditions were reached, making it critical to calculate long-term rates; A constant and empirical long-term rate, derived from laboratory measurement, have to be extrapolated. These calculations were based on a first order equation to describe the glass dissolution kinetic. The results obtained with the KINDIS code show discrepancies with some major experimental kinetic data (the long term rate must decrease with the ''glass-water'' reaction progress, under silica saturation conditions). This clearly indicates that a more refine kinetic relation is needed for the glass matrix. (authors). 16 refs., 4 figs., 4 tabs

  18. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  19. A generation-attraction model for renewable energy flows in Italy: A complex network approach

    Science.gov (United States)

    Valori, Luca; Giannuzzi, Giovanni Luca; Facchini, Angelo; Squartini, Tiziano; Garlaschelli, Diego; Basosi, Riccardo

    2016-10-01

    In recent years, in Italy, the trend of the electricity demand and the need to connect a large number of renewable energy power generators to the power-grid, developed a novel type of energy transmission/distribution infrastructure. The Italian Transmission System Operator (TSO) and the Distribution System Operator (DSO), worked on a new infrastructural model, based on electronic meters and information technology. In pursuing this objective it is crucial importance to understand how even more larger shares of renewable energy can be fully integrated, providing a constant and reliable energy background over space and time. This is particularly true for intermittent sources as photovoltaic installations due to the fine-grained distribution of them across the Country. In this work we use an over-simplified model to characterize the Italian power grid as a graph whose nodes are Italian municipalities and the edges cross the administrative boundaries between a selected municipality and its first neighbours, following a Delaunay triangulation. Our aim is to describe the power flow as a diffusion process over a network, and using open data on the solar irradiation at the ground level, we estimate the production of photovoltaic energy in each node. An attraction index was also defined using demographic data, in accordance with average per capita energy consumption data. The available energy on each node was calculated by finding the stationary state of a generation-attraction model.

  20. Limits of Risk Predictability in a Cascading Alternating Renewal Process Model.

    Science.gov (United States)

    Lin, Xin; Moussawi, Alaa; Korniss, Gyorgy; Bakdash, Jonathan Z; Szymanski, Boleslaw K

    2017-07-27

    Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.

  1. Essays on the integration of renewables in electricity markets

    International Nuclear Information System (INIS)

    Knaut, Andreas

    2017-01-01

    The thesis sheds light onto the integration of renewable energy generation into electricity markets based on five articles. The first article is concerned with the optimal strategies of renewable producers selling electricity in sequential markets. A model is developed in which renewable generators trade their production in two sequential markets, which can be regarded as the day-ahead and intraday markets. Trading in the first market takes place under uncertainty about the final production level of renewable generation. The results show that it might be optimal for renewable producers to sell less than the expected quantity in the day-ahead market. The second article focuses on the high variability in production from renewable electricity and its effect on prices. A model for the allocation of hourly and quarter-hourly electricity generation is developed, assuming that the participation in the market for quarter-hourly products is restricted. Restricted participation in the market for quarter-hourly products may have caused welfare losses of about EUR 96 million in 2015. In the third article, the hourly price elasticity of demand for electricity in the German day-ahead market is empirically estimated. The results indicate a high level of variation of price elasticity of demand throughout the day ranging from -0.02 to -0.13 depending on the time of the day in the German day-ahead market in 2015. The fourth article is concerned with the tariff design in retail markets for electricity. It focuses on the inefficiency from time-invariant pricing in combination with an increasing share of renewable energies. The last article finally takes a closer look at the balancing power market and the impact of different market designs on efficiency and competition. Based on a developed model, it shows that shorter tender frequencies could lower the costs of balancing power procurement by up to 15 %. While market concentration decreases in many markets with shorter provision

  2. Essays on the integration of renewables in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Knaut, Andreas

    2017-07-06

    The thesis sheds light onto the integration of renewable energy generation into electricity markets based on five articles. The first article is concerned with the optimal strategies of renewable producers selling electricity in sequential markets. A model is developed in which renewable generators trade their production in two sequential markets, which can be regarded as the day-ahead and intraday markets. Trading in the first market takes place under uncertainty about the final production level of renewable generation. The results show that it might be optimal for renewable producers to sell less than the expected quantity in the day-ahead market. The second article focuses on the high variability in production from renewable electricity and its effect on prices. A model for the allocation of hourly and quarter-hourly electricity generation is developed, assuming that the participation in the market for quarter-hourly products is restricted. Restricted participation in the market for quarter-hourly products may have caused welfare losses of about EUR 96 million in 2015. In the third article, the hourly price elasticity of demand for electricity in the German day-ahead market is empirically estimated. The results indicate a high level of variation of price elasticity of demand throughout the day ranging from -0.02 to -0.13 depending on the time of the day in the German day-ahead market in 2015. The fourth article is concerned with the tariff design in retail markets for electricity. It focuses on the inefficiency from time-invariant pricing in combination with an increasing share of renewable energies. The last article finally takes a closer look at the balancing power market and the impact of different market designs on efficiency and competition. Based on a developed model, it shows that shorter tender frequencies could lower the costs of balancing power procurement by up to 15 %. While market concentration decreases in many markets with shorter provision

  3. Recommendations for the development of cost minimized combinations of renewable energies - elaborated for four types of model communities in North-Rhine Westphalia. 10. technical report

    International Nuclear Information System (INIS)

    Mohr, M.; Skiba, M.; Gernhardt, D.; Ziolek, A.; Unger, H.

    1994-07-01

    The Tenth Technical Report of the study 'Analysis of Possibilities of Solar Power Supply and its Development in Nordrhein-Westfalen' contains a catalogue of recommended steps for the introduction of renewable energy systems into the existing energy supply structure in NRW. First, strategies for least cost renewable energy supply systems are developed and applied to modelled municipalities in such a way, that a cost optimized mix of renewable energies, depending on the desired degree of 'renewable coverage', can be given for each model community. Analogous to that, a low cost CO 2 -reduction strategy by an aimed extension of renewable energy systems is calculated and represented. The legal skeleton conditions of the power supply, information and training deficits as well as transmitted behavior patterns, which counteract an integration of renewable energy systems, are discussed in view of 'non economical' obstacles also. A catalogue of measures is presented, which contains informational, organizational and especially administrative aspects, including possibilities for governmental support. These recommendations may be used by those responsible for political decisions, i.e. by municipal planners, local or regional power suppliers and - last but not least - private consumers. (orig.) [de

  4. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  5. Renewable energies - Situation and perspectives

    International Nuclear Information System (INIS)

    Acket, Claude; Vaillant, Jacques

    2011-01-01

    The world has to face increasing energy needs while it is today dependent of fossil fuels at 80%. Getting out of the fossil fuels dependence model requires an important effort to promote the energy saving and the carbon-free energies as well, and in particular the renewable energy sources. Taking all this information into account, the authors evaluate the global share that renewable energies could represent in the energy mix, in France and in the entire world. This share represents today only 10% of the energy consumed, but will it remain marginal or will it become important and eventually prominent? (J.S.)

  6. The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry

    Directory of Open Access Journals (Sweden)

    Yuzhuo Zhang

    2017-03-01

    Full Text Available Among the regulatory policies, feed-in tariffs (FIT and renewable portfolio standards (RPS are the most popular to promote the development of renewable energy power industry. They can significantly contribute to the expansion of domestic industrial activities in terms of sustainable energy. In this paper, we synthetically consider various important factors with the analysis of the existing literature, and use system dynamics (SD to establish models of long-term development of the renewable energy power industry under FIT and RPS schemes. The model not only clearly shows the complex logical relationship between the factors but also reveals the process of coordination between the two policy tools in the development of the renewable energy power industry. In addition, as an example of development of renewable energy industry, the paper studies the development of China’s photovoltaic power industry under different scenarios. The models proposed in this paper can provide a reference for scholars to study development of the renewable energy power industry in different countries, thereby facilitating an understanding of the renewable energy power’s long-term sustainable development pattern under FIT and RPS schemes, and helping to provide references for policy-making institutions. The results show that in the perfect competitive market, the implementation of RPS can promote long-term and rapid development of China’s photovoltaic power industry given the constraints and actions of the mechanisms of RPS quota proportion, the TGC valid period, and fines, compared with FIT. At the end of the paper, policy implications are offered as references for the government.

  7. Analysis of in-situ renewal technology for the backhoe bucket bores

    Energy Technology Data Exchange (ETDEWEB)

    Torims, Toms; Ratkus, Andris; Vilcans, Janis; Zarins, Marcis; Rusa, Aldis [Department of Material Processing Technology Faculty of Transport and Mechanical Engineering Riga Technical University, Riga (Latvia)

    2011-07-01

    The overall aim of this article is to outline the progress of the research on how to develop an economically and scientifically justified backhoe buckets boreholes renewal technology by using mobile on-site technological equipment. Today the new mobile (in-situ) repair technologies are extensively used for the specialized equipment and machinery repairs. This repair technology is deployed directly on the damaged product: repair equipment is installed by using specialized centering devices. The bucket bores central axes are used as a reference base and damaged layer of material is removed mechanically applying turning operation. Subsequently the renewable surface is covered by new material layer by means of regular MIG/MAG welding. The last technological operation is final turning to the nominal diameter. Outlined renewal technology should meet high expectations – this necessitates in-depth and systematic study of pins and bores which are the most repaired objects of shovel bucket excavators. Therefore, research on established accuracy and technical requirements, both for the repaired unit and technological equipment in line with in-situ repair technology specifics, has been done. It was supported by impact analysis of the technological regimes to surface integrity with ambition to provide practical recommendations for the optimal choice of the technological regimes. Key words: in-situ repair technology, surface integrity, technological parameters.

  8. A novel integrated renewable energy system modelling approach, allowing fast FPGA controller prototyping

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Ruiz, Alberto Parera; Cirstea, Marcian

    2008-01-01

    The paper describes a new holistic approach to the modeling of integrated renewable energy systems. The method is using the DK5 modeling/design environment from Celoxica and is based on the new Handel-C programming language. The goal of the work carried out was to achieve a combined model...... containing a Xilinx Spartan II FPGA and was successfully experimentally tested. This approach enables the design and fast hardware implementation of efficient controllers for Distributed Energy Resource (DER) hybrid systems....... of a photovoltaic energy system and a wind power system, which would allow an optimized holistic digital control system design, followed by rapid prototyping of the controller into a single Field Programmable Gate Array (FPGA). Initially, the system was simulated using Matlab / Simulink, to create a reference...

  9. Renewable heating: Perspectives and the impact of policy instruments

    International Nuclear Information System (INIS)

    Kranzl, Lukas; Hummel, Marcus; Müller, Andreas; Steinbach, Jan

    2013-01-01

    In the light of the EU directive for renewable energy (2009/28/EC) this paper deals with the question how various policy instruments could impact the development of renewable heating technologies. The paper applies the simulation model Invert/EE-Lab for the building related heat demand in selected European countries (Austria, Lithuania and United Kingdom). The resulting scenarios up to 2030 are compared to RES-Heat targets from literature, stakeholder consultation processes and the targets in the national renewable energy action plans submitted by EU Member States in 2010. The results demonstrate that use obligations for renewable heating can be effective in achieving RES-Heat market growth. However, in order to attain a balanced technology mix and more ambitious targets, policy packages are required combining use obligations with economic incentives and accompanying measures. Technology specific conclusions are derived. Moreover, conclusions indicate that the action plans are not always consistent with policy measures in place or under discussion. - Highlights: • Modeling of RES-Heat policies in the building sector. • Application of the model Invert/EE-Lab for the cases of AT, LT, UK. • RES-Heat use obligations are effective but should be integrated in policy packages. • The design of use obligations has substantial impact on the RES-H technology mix. • National renewable energy action plans are not always consistent with policies

  10. Output, renewable energy consumption and trade in Africa

    International Nuclear Information System (INIS)

    Ben Aïssa, Mohamed Safouane; Ben Jebli, Mehdi; Ben Youssef, Slim

    2014-01-01

    We use panel cointegration techniques to examine the relationship between renewable energy consumption, trade and output in a sample of 11 African countries covering the period 1980–2008. The results from panel error correction model reveal that there is evidence of a bidirectional causality between output and exports and between output and imports in both the short and long-run. However, in the short-run, there is no evidence of causality between output and renewable energy consumption and between trade (exports or imports) and renewable energy consumption. Also, in the long-run, there is no causality running from output or trade to renewable energy. In the long-run, our estimations show that renewable energy consumption and trade have a statistically significant and positive impact on output. Our energy policy recommendations are that national authorities should design appropriate fiscal incentives to encourage the use of renewable energies, create more regional economic integration for renewable energy technologies, and encourage trade openness because of its positive impact on technology transfer and on output. - Highlights: • We examine the relationship between renewable energy consumption, trade and output in African countries. • There is a bidirectional causality between output and trade in both the short and long-run. • In the short-run, there is no causality between renewable energy consumption and trade or output. • In the long-run, renewable energy consumption and trade have a statistically significant positive impact on output. • African authorities should encourage trade openness because of its positive impact on technology transfer and on output

  11. Effect of increased renewables generation on operation of thermal power plants

    International Nuclear Information System (INIS)

    Eser, Patrick; Singh, Antriksh; Chokani, Ndaona; Abhari, Reza S.

    2016-01-01

    Highlights: • Impacts of increased renewables in central European transmission system are assessed. • Individual transmission lines and power plants of transmission system are modelled. • Starts and ramps of thermal power plants significantly increase with increased renewables. • Impact of renewables on thermal power plants is highly dependent on location. - Abstract: High spatial and temporal resolution optimal power flow simulations of the 2013 and 2020 interconnected grid in Central Western and Eastern Europe regions are undertaken to assess the impact of an increased penetration of renewables on thermal power plants. In contrast to prior studies, the present work models each individual transmission line and power plant within the two regions. Furthermore, for conventional plants, electricity costs are determined with respect to fuel type, nameplate capacity, operating condition and geographic location; cycling costs are modeled as function of the recent operational history. For renewable power plants, costs and available power are determined using mesoscale weather simulations and hydrology models. Countrywide validation of the simulations shows that all renewable and most conventional power production is predicted with less than 10% error. It is shown that the increased penetration of renewables in 2020 will induce a 4–23% increase in the number of starts of conventional plants. The number of load ramps significantly increases by 63–181%, which underlines the necessity for equipment manufacturers and utilities to adapt to scenarios of high penetration of renewables. The increased cycling operation of coal plants is shown to depend strongly on the power plant’s location and is mainly observed in Germany and the Czech Republic. Austrian coal plants are cycled less because they supply more base load power to southern Germany, where several nuclear power plants will be phased out by 2020. Thus there is a need for more transmission capacity along

  12. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  13. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  14. Renewable Energy versus Nuclear Power (Summary)

    International Nuclear Information System (INIS)

    Mraz, G.; Wallner, A.

    2014-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas- emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where our money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The recent state aid case for the construction of the nuclear power plant Hinkley Point in United Kingdom serves as the model for the nuclear option. New milestone in nuclear state aid: Hinkley Point It is planned to construct two additional reactors at Hinkley Point. The EU estimates the total capital needed for construction at € 43 billion. The UK government intends to grant state aid for this project; in accordance with EU state aid rules, the suggested state aid scheme was submitted to the EU Commission for approval as public funds would be used for a company. A central part of the state aid scheme is the Contract for Difference which runs for 35 years. According to this contract, the state commits to compensating any difference between the electricity market price (reference price) and the negotiated Strike Price. Consequently, the plant operator, NNB Generation Company Limited (NNBG), has received a long term price guarantee which, in principle, is analogous to the feed-in tariffs commonly used to support renewable energies. The Strike Price for the first unit to be constructed has been set at € 108 per MWh (with

  15. Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region

    International Nuclear Information System (INIS)

    Zoss, Toms; Dace, Elina; Blumberga, Dagnija

    2016-01-01

    Highlights: • A mathematical modeling framework developed for assessing power-to-methane systems. • An integrated system of wind power, electrolysis, biogas and methanation assessed. • Power system is more stable with methanizing biogas with H_2 from excess wind power. • Accumulation of H_2 limits production of renewable methane. • Large potential for wind power development in the Baltic States. - Abstract: The explicit tendency to increase the power generation from stochastic renewable resources forces to look for technological solutions of energy management and storage. In the recent years, the concept of power-to-gas, where the excess energy is converted into hydrogen and/or further methanized into renewable methane, is gaining high popularity among researchers. In this study, we assess the power-to-renewable methane system as the potential technology for power grid balancing. For the assessment, a mathematical model has been developed that assists in understanding of whether a power-to-renewable methane system can be developed in a region with specific installed and planned capacities of wind energy and biogas plants. Considering the varying amount of excess power available for H_2 production and the varying biogas quality, the aim of the model is to simulate the system to determine, if wind power generation meets the needs of biogas plants for storing the excess energy in the form of methane via the methanation process. For the case study, the Baltic States (Estonia, Latvia, and Lithuania) have been selected, as the region is characterized by high dependence on fossil energy sources and electricity import. The results show that with the wind power produced in the region it would be possible to increase the average CH_4 content in the methanized biogas by up to 48.4%. Yet, even with a positive H_2 net production rate, not in all cases the maximum possible quality of the renewable methane would be achieved, as at moments the necessary amount of H_2 for

  16. Uncertainty in Fleet Renewal: A Case from Maritime Transportation

    DEFF Research Database (Denmark)

    Pantuso, Giovanni; Fagerholt, Kjetil; Wallace, Stein W.

    2016-01-01

    This paper addresses the fleet renewal problem and particularly the treatment of uncertainty in the maritime case. A stochastic programming model for the maritime fleet renewal problem is presented. The main contribution is that of assessing whether or not better decisions can be achieved by using...

  17. Meaningful Field Trip in Education of Renewable Energy Technologies

    Directory of Open Access Journals (Sweden)

    Hasan Said Tortop

    2013-06-01

    Full Text Available Renewable energy sources, in terms of countries‟ obtaining their energy needs from clean and without harming the environment is becoming increasingly important. This situation also requires improving the quality of science education will be given in this field. In this activity, in a field trip to the center for the renewable energy resources technologies, the application of learning cycle model appropriate for constructivist approach is shown. In the example of solar chimney activity according to 5E model, in elaboration step, students, by using their imagination and creativity, put out recommendations and new designs for the efficiency of the application of solar chimney. It is quite important for educators to follow what kind of acquisitions that students will gain and what kind of changes will occur in their perceptions and attitudes towards renewable energy technologies thanks to this activity. Related documents are in attachments. This activity has been very helpful in the education of young scientists on the field of renewable energy sources technologies.

  18. Incentive-compatible guaranteed renewable health insurance premiums.

    Science.gov (United States)

    Herring, Bradley; Pauly, Mark V

    2006-05-01

    Theoretical models of guaranteed renewable insurance display front-loaded premium schedules. Such schedules both cover lifetime total claims of low-risk and high-risk individuals and provide an incentive for those who remain low-risk to continue to purchase the policy. Questions have been raised of whether actual individual insurance markets in the US approximate the behavior predicted by these models, both because young consumers may not be able to "afford" front-loading and because insurers may behave strategically in ways that erode the value of protection against risk reclassification. In this paper, the optimal competitive age-based premium schedule for a benchmark guaranteed renewable health insurance policy is estimated using medical expenditure data. Several factors are shown to reduce the amount of front-loading necessary. Indeed, the resulting optimal premium path increases with age. Actual premium paths exhibited by purchasers of individual insurance are close to the optimal renewable schedule we estimate. Finally, consumer utility associated with the feature is examined.

  19. RESGen: Renewable Energy Scenario Generation Platform

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Pinson, Pierre

    2016-01-01

    studies remains. Consequently, our aim here is to propose an open-source platform for space-time probabilistic forecasting of renewable energy generation (wind and solar power). This document covers both methodological and implementation aspects, to be seen as a companion document for the open......-source scenario generation platform. It can generate predictive densities, trajectories and space-time interdependencies for renewable energy generation. The underlying model works as a post-processing of point forecasts. For illustration, two setups are considered: the case of day-ahead forecasts to be issued......Space-time scenarios of renewable power generation are increasingly used as input to decision-making in operational problems. They may also be used in planning studies to account for the inherent uncertainty in operations. Similarly using scenarios to derive chance-constraints or robust...

  20. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  1. Renewable energy diffusion in Asia: Can it happen without government support?

    International Nuclear Information System (INIS)

    Dulal, Hari Bansha; Shah, Kalim U.; Sapkota, Chandan; Uma, Gengaiah; Kandel, Bibek R.

    2013-01-01

    The dramatically increasing population of Asia necessitates equally as dramatic increase in energy supply to meet demand. Rapidly increasing energy demand is a major concern for Asian countries because the increase in demand is being met through the increased use of fossil fuel supply, largely domestic coal and imported fuel. Renewable energy supply presents a lower emission pathway that could be a viable option for steering off the higher emissions path. However, several market, economic, institutional, technical, and socio-cultural barriers hinder countries in moving from high to low emission pathway. Following a discussion on the rising demand for energy in Asia and the prospects of partly satisfying it with renewable energy, we outline the reasons for government support to tackle the barriers for widespread diffusion of grid-based renewable energy. Additionally, we also discuss workable models for strategic government intervention to support diffusion of grid-based renewable energy in Asia. - Highlights: • Barriers to the diffusion of renewable energy technologies are identified. • Argues that renewable energy policy frameworks are inadequate in Asia. • Models for strategic government intervention are suggested

  2. Renewable target in sight

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Australia's renewable energy industry is expecting several billion dollars of investment over the next 10 years following passage in December last year of the Renewable Energy Electricity) Act 2000 through Federal Parliament. The Act requires an additional 9500GWh of Australia's electricity production to be sourced from renewables by the year 2010. It also establishes a market for the 'green' component of the energy separate from the electricity itself, through a Renewable Energy Certificate (REC), whereby an accredited generator of renewable energy is able to issue one REC for each megawatt-hour of renewable energy generated

  3. Renewable energy annual 1996

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary

  4. Renewable energy annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  5. Metabolic rate determines haematopoietic stem cell self-renewal.

    Science.gov (United States)

    Sastry, P S R K

    2004-01-01

    The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower. Copyright 2004 Elsevier Ltd.

  6. Renewable energies 2020. Potential atlas Germany; Erneuerbare Energien 2020. Potenzialatlas Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Janine; Muehlenhoff, Joerg

    2009-11-15

    A future energy policy equally has to pursue environmental protection and climate protection, economic efficiency as well as supply security. Renewable energies substantially contribute to this. In the last decade, the Federal Government of Germany showed that a strong development of renewable energies is possible within a short time. For the year 2020, the industry prognosticates an amount of the renewable energies of 47 % at the consumption of electricity, 25 % at the heat consumption, and 22 % at the fuel consumption in the traffic. The contribution under consideration shows that the surface which is needed for this is small. Depending upon climate, landscape, settlement structure and agrarian structure, each region offers its own different potentials.

  7. Colloquium on the stakes and new realities of renewable energies

    International Nuclear Information System (INIS)

    2001-01-01

    Today, renewable energies represent 23% of the French energy production and should become a real advantage to overcome the greenhouse effect stakes and to optimize the durable development policy. This book brings together the interventions of the different participants to this colloquium on renewable energies. The following aspects were covered: how to make renewable energies profitable in the framework of an industrial facility; which specific renewable energy models would allow to overcome the greenhouse effect stake; how emission permits can incite to the use of renewable energies and reduce the pollution tax amount; how to take advantage of the new wastes valorization techniques in the rationalization of energy expenses; advantages and limitations of renewable energies in the on-site energy optimization; opportunities and stakes of the climate risk for renewable energies; last developments of the national regulatory framework applicable to renewable energies; status and perspectives of the European directive project on renewable energies; the suitability of renewable energies with respect to the energy needs of the industry and tertiary sectors; how to insert renewable energies in a durable development policy; how to exploit the diversity of renewable energies in order to maximize their economical and environmental potentialities; how to integrate the solar thermal and photovoltaic energies in the framework of a global environmental policy. (J.S.)

  8. Renewable Distributed Generation Models in Three-Phase Load Flow Analysis for Smart Grid

    Directory of Open Access Journals (Sweden)

    K. M. Nor

    2013-11-01

    Full Text Available The paper presents renewable distributed generation  (RDG models as three-phase resource in load flow computation and analyzes their effect when they are connected in composite networks. The RDG models that have been considered comprise of photovoltaic (PV and wind turbine generation (WTG. The voltage-controlled node and complex power injection node are used in the models. These improvement models are suitable for smart grid power system analysis. The combination of IEEE transmission and distribution data used to test and analyze the algorithm in solving balanced/unbalanced active systems. The combination of IEEE transmission data and IEEE test feeder are used to test the the algorithm for balanced and unbalanced multi-phase distribution system problem. The simulation results show that by increased number and size of RDG units have improved voltage profile and reduced system losses.

  9. Renewable energy resources

    CERN Document Server

    Twidell, John

    2015-01-01

    Renewable Energy Resources is a numerate and quantitative text covering the full range of renewable energy technologies and their implementation worldwide. Energy supplies from renewables (such as from biofuels, solar heat, photovoltaics, wind, hydro, wave, tidal, geothermal, and ocean-thermal) are essential components of every nation's energy strategy, not least because of concerns for the local and global environment, for energy security and for sustainability. Thus in the years between the first and this third edition, most renewable energy technologies have grown from fledgling impact to s

  10. RENEWABLE ENERGY IN TOURISM

    Directory of Open Access Journals (Sweden)

    MĂDĂLINA MIHĂILĂ

    2012-06-01

    Full Text Available Recent reports published by the International Energy Agency and U.S. Department of Energy, regarding the global energy outlook for the first three decades of the XXI century, warns of global trends on energy demand, increasing dependence on energy imports, coal use and volume emissions of greenhouse gases, torism industry being one of the biggest energy consumption industry. Uncertainties on different models of regional development and access of the world to traditional energy resources require a change of orientation towards long-term scenarios for assessing energy domain, increasing the share of energy from renewable resources beeing one of the solutions. Intourism the renewable energy is a solution for a positive impact on enviroment , reduced operational costs and even won an extra-profit.

  11. Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Papakonstantinou, Athanasios; Pinson, Pierre

    2014-01-01

    Electricity is nowadays commonly exchanged through electricity markets, designed in a context where dispatchable generators, with non-negligible marginal costs, were dominating. By depending primarily on conventional (fossil, hydro and nuclear) power generation based on marginal pricing...... not designed to take into account the uncertainty brought by the substantial variability and limited predictability associated with stochastic sources, most notably wind power and solar energy. Due to these developments, the need for decision making models able to account for the uncertainty introduced by high...... from renewables, and on the adaption of electricity market designs and power system operations to the aforementioned characteristics of renewables. Additionally, the aim of the research group is supplemented by providing the appropriate frameworks for secure future investments in the field...

  12. Growth with Endogenous Capital, Knowledge, and Renewable Resources

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2017-03-01

    Full Text Available This paper proposes a dynamic economic model with endogenous technological change, physical capital and renewable resources. The model is a synthesis of the neoclassical growth theory, Arrow’s learning by doing, and some traditional dynamic models of renewable resources with an alternative approach to household behavior. The model describes a dynamic interdependence between technological change, physical accumulation, resource change, and division of labor under perfect competition. Because of its refined economic structure, the model analyzes some interactions between economic variables which are not found in the existing literature of economic growth. We simulate the model to demonstrate existence of equilibrium points and motion of the dynamic system. Our comparative dynamic analysis shows, for instance, that a rise in the capacity of the renewable resource increases the stock and reduces the price of the resource of the resource over time; the output levels of the two sectors, the total capital stock, and capital inputs of the two sectors are all increased; the labor distribution between the two sectors is slightly affected initially but is not affected in the long term; the rate of interest rises initially rise and is almost not affected in the long term; the per capita consumption levels of the good and the resource and the wage rate are increased.

  13. Renewable energy annual 1995

    International Nuclear Information System (INIS)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic

  14. Renewable energy annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  15. Development and Testing of Protection Scheme for Renewable-Rich Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Brahma, Sukumar [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ranade, Satish [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elkhatib, Mohamed E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As the penetration of renewables increases in the distribution systems, and microgrids are conceived with high penetration of such generation that connects through inverters, fault location and protection of microgrids needs consideration. This report proposes averaged models that help simulate fault scenarios in renewable-rich microgrids, models for locating faults in such microgrids, and comments on the protection models that may be considered for microgrids. Simulation studies are reported to justify the models.

  16. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  17. Renewable generation technology choice and policies in a competitive electricity supply industry

    Science.gov (United States)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable

  18. License renewal process

    International Nuclear Information System (INIS)

    Fable, D.; Prah, M.; Vrankic, K.; Lebegner, J.

    2004-01-01

    The purpose of this paper is to provide information about license renewal process, as defined by Nuclear Regulatory Commission (NRC). The Atomic Energy Act and NRC regulations limit commercial power reactor licenses to an initial 40 years but also permit such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations not on limitations of nuclear technology. Due to this selected time period; however, some structures and components may have been engineered on the basis of an expected 40-year service life. The NRC has established a timely license renewal process and clear requirements codified in 10 CFR Part 51 and 10 CFR Part 54, that are needed to assure safe plant operation for extended plant life. The timely renewal of licenses for an additional 20 years, where appropriate to renew them, may be important to ensuring an adequate energy supply during the first half of the 21st Century. License renewal rests on the determination that currently operating plants continue to maintain adequate levels of safety, and over the plant's life, this level has been enhanced through maintenance of the licensing bases, with appropriate adjustments to address new information from industry operating experience. Additionally, NRC activities have provided ongoing assurance that the licensing bases will continue to provide an acceptable level of safety. This paper provides additional discussion of license renewal costs, as one of key elements in evaluation of license renewal justifiability. Including structure of costs, approximately value and two different approaches, conservative and typical. Current status and position of Nuclear Power Plant Krsko, related to license renewal process, will be briefly presented in this paper. NPP Krsko is designed based on NRC Regulations, so requirements from 10 CFR 51, and 10 CFR 54, are applicable to NPP Krsko, as well. Finally, this paper will give an overview of current status of

  19. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  20. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  1. Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands

    International Nuclear Information System (INIS)

    Gils, Hans Christian; Simon, Sonja

    2017-01-01

    Highlights: • A pathway to a 100% renewable energy supply for the Canary Islands is presented. • Hourly system operation is analysed, considering flexibility options and sector linkage. • Results show feasibility of a carbon neutral energy supply with local resources. • High resolution power system model highlights importance of grid connections. - Abstract: As many other small islands and archipelagos, the Canary Islands depend to a high degree on energy imports. Despite its small surface, the archipelago has a high potential for renewable energy (RE) technologies. In this paper, we present a scenario pathway to a 100% RE supply in the Canary Islands by 2050. It relies on a back-casting approach linking the bottom-up accounting framework Mesap-PlaNet and the high resolution power system model REMix. Our analysis shows that locally available technology potentials are sufficient for a fully renewable supply of the islands’ power, heat, and land transport energy demands. To follow the pathway for achieving a carbon neutral supply, expansion of RE technology deployment needs to be accelerated in the short-term and efforts towards greater energy efficiency must be increased. According to our results, an extended linkage between energy sectors through electric vehicles as well as electric heating, and the usage of synthetic hydrogen can contribute notably to the integration of intermittent RE power generation. Furthermore, our results highlight the importance of power transmission in RE supply systems. Supply costs are found 15% lower in a scenario considering sea cable connections between all islands.

  2. Policies for Renewable Heat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This paper builds on IEA publications, Deploying Renewables, Principles for Effective Policies and Deploying Renewables, Best and Future Policy Practice, that discuss the 'integrated policy approach,' whereby renewable energy technologies require different support policies at different stages of their maturity pathways. The paper discusses how the integrated policy approach applies to renewable heat. It attempts to provide guidance for policy-makers on renewable heat throughout the different phases of the policy lifecycle, allowing for the specific challenges of renewable heat and needs of the many stakeholders involved. Stimulating a market for heat involves challenges that are different and, often, more difficult to overcome than in the electricity and transport sectors.

  3. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  4. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  5. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, H.

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa. (author)

  6. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, Harald

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa

  7. Some reflections on the Renewal-theory paradox in queueing theory

    Directory of Open Access Journals (Sweden)

    Robert B. Cooper

    1998-01-01

    Full Text Available The classical renewal-theory (waiting time, or inspection paradox states that the length of the renewal interval that covers a randomly-selected time epoch tends to be longer than an ordinary renewal interval. This paradox manifests itself in numerous interesting ways in queueing theory, a prime example being the celebrated Pollaczek-Khintchine formula for the mean waiting time in the M/G/1 queue. In this expository paper, we give intuitive arguments that “explain” why the renewal-theory paradox is ubiquitous in queueing theory, and why it sometimes produces anomalous results. In particular, we use these intuitive arguments to explain decomposition in vacation models, and to derive formulas that describe some recently-discovered counterintuitive results for polling models, such as the reduction of waiting times as a consequence of forcing the server to set up even when no work is waiting.

  8. Renewable energy export network

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    A Renewable Energy Exporters Network (REEN) has recently been established, following a meeting of renewable energy exporters and government agencies on 30 October 2000. REEN will assist the Australian renewable energy industry to take advantage of the opportunities offered by the burgeoning global market for renewable energy goods and services. Recent estimates of the significant potential global growth is renewable energy demand have reinforced the industry and Government's view that, in the medium to long-term, growth in the Australian renewable energy industry will largely depend on capturing export market share. Expanding the export market was identified as a crucial component in the Renewable Energy Action Agenda, developed jointly by industry and Government and released in June 2000. It was estimated that, for the industry to achieve its vision of sales of $4 billion per year by 2010, exports would need to comprise approximately 50% of the forecast growth in sales. As such, the need for a specific export strategy for the Australian renewable energy industry was recognised in the Action Agenda, and the establishment of the REEN is one of the first initiatives undertaken as part of the Renewable Energy Export Strategy. The REEN comprises approximately 50 export-ready renewable energy companies, the Department of Industry, Science and Resources, Austrade, and Stage Government agencies such as NSW's Sustainable Energy Development Authority. The Export Network will operate electronically, with face-to-face meetings held as appropriate. The Department of Industry, Science and Resources will facilitate the Export Network and has published a website at www.isr.gov.au/industry/reen. The site includes: a members directory; a discussion forum; information on opportunities to showcase Australian renewable; energy products and services; and Iinks to sites containing information that may be useful to renewable energy exporters. Other actions that are being undertaken as

  9. Urban renewal, gentrification and health equity: a realist perspective.

    Science.gov (United States)

    Mehdipanah, Roshanak; Marra, Giulia; Melis, Giulia; Gelormino, Elena

    2018-04-01

    Up to now, research has focused on the effects of urban renewal programs and their impacts on health. While some of this research points to potential negative health effects due to gentrification, evidence that addresses the complexity associated with this relation is much needed. This paper seeks to better understand when, why and how health inequities arise from urban renewal interventions resulting in gentrification. A realist review, a qualitative systematic review method, aimed to better explain the relation between context, mechanism and outcomes, was used. A literature search was done to identify theoretical models of how urban renewal programs can result in gentrification, which in turn could have negative impacts on health. A systematic approach was then used to identify peer-reviewed studies that provided evidence to support or refute the initial assumptions. Urban renewal programs that resulted in gentrification tended to have negative health effects primarily in residents that were low-income. Urban renewal policies that were inclusive of populations that are vulnerable, from the beginning were less likely to result in gentrification and more likely to positively impact health through physical and social improvements. Research has shown urban renewal policies have significant impacts on populations that are vulnerable and those that result in gentrification can result in negative health consequences for this population. A better understanding of this is needed to impact future policies and advocate for a community-participatory model that includes such populations in the early planning stages.

  10. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey.

    Science.gov (United States)

    Bulut, Umit

    2017-06-01

    As a result of great increases in CO 2 emissions in the last few decades, many papers have examined the relationship between renewable energy and CO 2 emissions in the energy economics literature, because as a clean energy source, renewable energy can reduce CO 2 emissions and solve environmental problems stemming from increases in CO 2 emissions. When one analyses these papers, he/she will observe that they employ fixed parameter estimation methods, and time-varying effects of non-renewable and renewable energy consumption/production on greenhouse gas emissions are ignored. In order to fulfil this gap in the literature, this paper examines the effects of non-renewable and renewable energy on CO 2 emissions in Turkey over the period 1970-2013 by employing fixed parameter and time-varying parameter estimation methods. Estimation methods reveal that CO 2 emissions are positively related to non-renewable energy and renewable energy in Turkey. Since policy makers expect renewable energy to decrease CO 2 emissions, this paper argues that renewable energy is not able to satisfy the expectations of policy makers though fewer CO 2 emissions arise through production of electricity using renewable sources. In conclusion, the paper argues that policy makers should implement long-term energy policies in Turkey.

  11. A Study of Synchronous Machine Model Implementations in Matlab/Simulink Simulations for New and Renewable Energy Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Iov, Florin

    2005-01-01

    A direct phase model of synchronous machines implemented in MA TLAB/SIMULINK is presented. The effects of the machine saturation have been included. Simulation studies are performed under various conditions. It has been demonstrated that the MATLAB/SIMULINK is an effective tool to study the compl...... synchronous machine and the implemented model could be used for studies of various applications of synchronous machines including in renewable and DG generation systems....

  12. Optimal investment paths for future renewable based energy systems - Using the optimisation model Balmorel

    DEFF Research Database (Denmark)

    Karlsson, Kenneth Bernard; Meibom, Peter

    2008-01-01

    that with an oil price at 100 $/barrel, a CO2 price at40 €/ton and the assumed penetration of hydrogen in the transport sector, it is economically optimal to cover more than 95% of the primary energy consumption for electricity and district heat by renewables in 2050. When the transport sector is converted......: A model for analyses of the electricity and CHP markets in the Baltic Sea Region. 〈www.Balmorel.com〉; 2001. [1

  13. RESEARCH OF GLOBAL NEW INVESTMENT IN RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    О. Chernyak

    2015-10-01

    Full Text Available This article contains results of studying experiences of the leading countries in renewable energy technologies’ development. The classification of renewable energy was presented. In this article we investigated modern trends and prospects of wind power, solar energy, hydropower, bioenergy and geothermal energy. Authors analyzed different national strategies for attracting investments in “green” energy. Rating of the 10 countries with the largest investments in alternative energy was presented. Authors researched investments in developed countries and developing countries, depending on the type of renewable energy. A model for research and forecasting of investment in renewable energy based on annual data for the period 1990-2012 years was built. In addition, authors used methods such as moving average, exponential smoothing, Holt- Winters method and different types of trends based on quarterly data for 2004-2014 years.

  14. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  15. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  16. The Design of a Renewable Hydrogen Fuel Infrastructure for London

    International Nuclear Information System (INIS)

    Parissis, O.; Bauen, A.

    2006-01-01

    The development of a least cost hydrogen infrastructure is key to the introduction of hydrogen fuel in road transport. This paper presents a generic framework for modelling the development of a renewable hydrogen infrastructure that can be applied to different cases and geographical regions. The model was designed by means of mixed integer linear programming and developed in MATLAB. It was applied to the case of London aiming to examine the possibilities of developing a renewable hydrogen infrastructure within a 50 years time horizon. The results presented here are preliminary results from a study looking at the least cost solutions to supplying hydrogen produced exclusively from renewable energy resources to large urban centres. (authors)

  17. MANAGING RENEWABLE ENERGY IN THE EU10 REGION

    Directory of Open Access Journals (Sweden)

    BUCUREAN Mirela

    2011-07-01

    Full Text Available The problems of renewable energy and regional development have gained a global dimension, as well as the concerns about the economic growth. Therefore, this study investigates the issue of managing renewable energy in the EU10 region, within the context of recovery and anticipated growth of the region. The findings of this study disclose that an important source of economic growth in the EU10 region's countries may be to start some new investments in renewable energy. In order to develop the field of renewable energy may be used EU funds, and may be envisaged different public-private partnership models, that may contribute to lower societal costs and increased deployment rates. The study was conducted by combining a wide variety of sources, such as statistics, reports and articles. The results reported in this study could be used for further research in the area of implementing green energy projects in the EU10 region. Another direction for further research could be to identify the most attractive countries for different renewable energy investment projects in the EU10 region.

  18. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Renewable energy in Iran: Challenges and opportunities for sustainable development

    International Nuclear Information System (INIS)

    Atabi, F.

    2004-01-01

    Around the globe, developing countries have reported different cases of successfully implemented renewable energy program supported by bilateral or multilateral funding. In developing countries subsidy has played a big role in renewable energy program marketing and whether this will lead to sustainable development is yet to be determined. The adoption of implementation strategies that will support sustainable development and overcoming barriers that hinder expansion of renewable energy technologies still remains as a big challenge to stake holders involved in promotion of renewable energy resources in developing countries. In this respect, developing countries need to re-examine their environmental policy for promotion of renewable energy technologies in order to define its role in revitalization of their economics. This paper reviews by policy incentives for promotion of renewable energy technologies in the Islamic Republic of Iran. Setting-up international collaborative business ventures between local industry in Iran and companies in developed countries is proposed as an implementation strategy that will appropriate diffusion of renewable energy technologies in the country. An organizational framework that may help to attain this objective is discussed and a structural model for renewable energy business partnership is presented. It is concluded that with appropriate policy formulations and strategies, renewable energy technologies can bring about the required socio-economic development in Iran

  20. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  1. Portfolio Effects of Renewable Energies - Basics, Models, Exemplary Results

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Andreas; Herrmann, Matthias

    2007-07-01

    The combination of sites and technologies to so-called renewable energy portfolios, which are being developed and implemented under the same financing umbrella, is currently the subject of intense discussion in the finance world. The resulting portfolio effect may allow the prediction of a higher return with the same risk or the same return with a lower risk - always in comparison with the investment in a single project. Models are currently being developed to analyse this subject and derive the portfolio effect. In particular, the effect of the spatial distribution, as well as the effects of using different technologies, suppliers and cost assumptions with different level of uncertainties, are of importance. Wind parks, photovoltaic, biomass, biogas and hydropower are being considered. The status of the model development and first results are being presented in the current paper. In a first example, the portfolio effect has been calculated and analysed using selected parameters for a wind energy portfolio of 39 sites distributed over Europe. Consequently it has been shown that the predicted yield, with the predetermined probabilities between 75 to 90%, is 3 - 8% higher than the sum of the yields for the individual wind parks using the same probabilities. (auth)

  2. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    International Nuclear Information System (INIS)

    Winkler, Harald; Hughes, Alison; Haw, Mary

    2009-01-01

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO 2 -eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  3. Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2017-01-01

    This manuscript analyzes an optimal power generation mix in Japan's nation-wide power grid by considering the post-Fukushima energy policy which puts a high priority on expanding renewable energy. The study is performed, employing an optimal power generation mix model which is characterized by detailed geographical resolution derived from 135 nodes and 166 high-voltage power transmission lines with 10-min temporal resolution. Simulated results reveal that renewable energy promotion policy underlies the necessity for capacity expansion of inter- or intra-regional power transmission lines in Japan in order to realize economical power system operation. In addition, the results show that the integration of massive variable renewable (VR) such as PV and wind decreases the capacity factor of power plant including ramp generator and possibly affects that profitability, which implies the challenge to ensure power system adequacy enough to control VR variability. - Highlights: • Authors analyze installable potential of renewable by Japan's power grid model. • Power grid of the model includes 135 nodes and 166 power transmission lines. • Renewable promotion underlies the necessity for capacity expansion of power lines. • Unremunerated power plants affect power grid adequacy under extensive renewable.

  4. Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Otsuki, Takashi; Fujii, Yasumasa

    2015-01-01

    Although the extensive introduction of VRs (variable renewables) will play an essential role to resolve energy and environmental issues in Japan after the Fukushima nuclear accident, its large-scale integration would pose a technical challenge in the grid management; as one of technical countermeasures, hydrogen storage receives much attention, as well as rechargeable battery, for controlling the intermittency of VR power output. For properly planning renewable energy policies, energy system modeling is important to quantify and qualitatively understand its potential benefits and impacts. This paper analyzes the optimal grid integration of large-scale VRs using hydrogen storage in Japan by developing a high time-resolution optimal power generation mix model. Simulation results suggest that the installation of hydrogen storage is promoted by both its cost reduction and CO 2 regulation policy. In addition, hydrogen storage turns out to be suitable for storing VR energy in a long period of time. Finally, through a sensitivity analysis of rechargeable battery cost, hydrogen storage is economically competitive with rechargeable battery; the cost of both technologies should be more elaborately recognized for formulating effective energy policies to integrate massive VRs into the country's power system in an economical manner. - Highlights: • Authors analyze hydrogen storage coupled with VRs (variable renewables). • Simulation analysis is done by developing an optimal power generation mix model. • Hydrogen storage installation is promoted by its cost decline and CO 2 regulation. • Hydrogen storage is suitable for storing VR energy in a long period of time. • Hydrogen storage is economically competitive with rechargeable battery

  5. Role of renewable energy policies in energy dependency in Finland: System dynamics approach

    International Nuclear Information System (INIS)

    Aslani, Alireza; Helo, Petri; Naaranoja, Marja

    2014-01-01

    Highlights: • A system dynamics model for evaluating renewable energy policies on dependency is proposed. • The model considers the role of diversification on dependency and security of energy supply in Finland. • Dependency on imported sources will decrease depends on the defined scenarios in Finland. - Abstract: Objective: We discuss the role of diversification on dependency and security of energy supply. A system dynamics model with especial focus on the role of renewable energy resources (as a portfolio) on Finland’s energy dependency is developed. The purpose is also to cover a part of research gap exists in the system dynamics modeling of energy security investigations. Methods: A causal loops diagram and a system dynamics model evaluate Finnish scenarios of renewable energy policies. The analysis describes the relationship between dynamic factors such as RE encouragement packages, dependency, and energy demand. Results: A causal loops diagram and a system dynamics model evaluate three different Finnish scenarios of renewable energy policies by 2020. Conclusion: Analysis shows that despite 7% electricity/heat consumption growth by 2020 in Finland, dependency on imported sources will decrease between 1% and 7% depend on the defined scenarios. Practice Implications: The proposed model not only helps decision makers to test their scenarios related to renewable energy polices, it can be implemented by other countries

  6. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  7. Analysis of the EU policy package on climate change and renewables

    International Nuclear Information System (INIS)

    Capros, Pantelis; Mantzos, Leonidas; Parousos, Leonidas; Tasios, Nikolaos; Klaassen, Ger; Van Ierland, Tom

    2011-01-01

    In 2009 the EU decided to reduce greenhouse gas emissions at least by 20% in 2020 compared to 1990 and to supply 20% of energy needs by 2020 from renewable energy sources. This paper uses an energy model coupled with a non-CO 2 greenhouse gas model to assess the range of policy options that were debated to meet both targets. Policy options include trading of renewable targets, carbon trading in power plants and industry and the use of the Clean Development Mechanism to improve cost-efficiency. The models also examined fairness by analysing the distribution of emission reduction in the non-emission trading sector, the distribution of CO 2 allowances in the emission trading sector and the reallocation of renewable targets across Member States. The overall costs of meeting both targets range from 0.4% to 0.6% of GDP in 2020 for the EU as a whole. The redistribution mechanisms employed significantly improve fairness compared to a cost-effective solution. - Research highlights: → Meeting the EU's greenhouse gas and renewable targets costs 0.4-0.6% of GDP. → Trading national targets for renewable energy reduces costs. → Carbon trading in power plants and industry and CDM also lowers costs. → The redistribution mechanisms agreed by the EU significantly improve fairness.

  8. Iowa's renewable energy and infrastructure impacts

    Science.gov (United States)

    2010-04-01

    Objectives : Estimate traffic growth and pavement deterioration due to Iowas growing renewable energy industries in a multi-county area. : Develop a traffic and fiscal impact model to help assess the impact of additional biofuels plants on...

  9. Using renewables to hedge against future electricity industry uncertainties—An Australian case study

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; Riesz, Jenny; MacGill, Iain F.

    2015-01-01

    A generation portfolio modelling was employed to assess the expected costs, cost risk and emissions of different generation portfolios in the Australian National Electricity Market (NEM) under highly uncertain gas prices, carbon pricing policy and electricity demand. Outcomes were modelled for 396 possible generation portfolios, each with 10,000 simulations of possible fuel and carbon prices and electricity demands. In 2030, the lowest expected cost generation portfolio includes 60% renewable energy. Increasing the renewable proportion to 75% slightly increased expected cost (by $0.2/MWh), but significantly decreased the standard deviation of cost (representing the cost risk). Increasing the renewable proportion from the present 15% to 75% by 2030 is found to decrease expected wholesale electricity costs by $17/MWh. Fossil-fuel intensive portfolios have substantial cost risk associated with high uncertainty in future gas and carbon prices. Renewables can effectively mitigate cost risk associated with gas and carbon price uncertainty. This is found to be robust to a wide range of carbon pricing assumptions. This modelling suggests that policy mechanisms to promote an increase in renewable generation towards a level of 75% by 2030 would minimise costs to consumers, and mitigate the risk of extreme electricity prices due to uncertain gas and carbon prices. - Highlights: • A generation portfolio with 75% renewables in 2030 is the most optimal in terms of cost, cost risk and emissions. • Investment in CCGT is undesirable compared to renewables given the cost risk due to gas and carbon price uncertainties. • Renewables can hedge against extreme electricity prices caused by high and uncertain carbon and gas prices. • Existing coal-fired plants still play a key role by moving into a peaking role to complement variable renewables. • Policy mechanisms to promote renewable generation are important

  10. Renewables for sustainable village power

    International Nuclear Information System (INIS)

    Flowers, L.

    1997-03-01

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-technology, multi-application program composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets, micro-hydro and micro-biomass technologies may be integrated in the future. NREL's RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. The integration of the technology developments, institutional experiences, and the financial solutions for the implementation of renewables in the main line rural electrification processes in both the developing world and remote regions of the developed world is the goal

  11. Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan

    International Nuclear Information System (INIS)

    Chen, Wei-Ming; Kim, Hana; Yamaguchi, Hideka

    2014-01-01

    Japan, South Korea, and Taiwan are deficient of domestic fossil energy sources and depend significantly on imported fuels. Since the oil shock in the 1970s, all three countries have promoted renewable energy as an alternative energy source to improve energy security. Currently, renewable energy is being promoted to build low-carbon economies. This study reviews the development of renewable energy policies and roadmaps. It also examines and compares strengths, weaknesses, opportunities, and threats (SWOT) of these countries in the context of advancing renewable energy policies and technologies and expanding domestic renewable energy installations, as well as strategically positioning themselves in the international renewable energy market as exporters of clean energy technologies. Through the SWOT analysis, this paper identifies a capacity for additional renewable energy deployment in these countries and highlights the necessity of increased cooperation between the three countries to strengthen their domestic and regional renewable energy sectors and compete in the global renewable energy market in the post-Fukushima era. - Highlights: • Japan, South Korea and Taiwan need to develop renewable energy (RE). • These countries have been too conservative to achieve a notable share of RE. • Pro-nuclear energy policies have hindered the RE development in these countries. • The Fukushima disaster made these countries more favorable to RE. • Joint cooperation for R and D and deployment of RE is recommended

  12. What drives renewable energy development?

    International Nuclear Information System (INIS)

    Alagappan, L.; Orans, R.; Woo, C.K.

    2011-01-01

    This viewpoint reviews renewable energy development in 14 markets that differ in market structure (restructured vs. not restructured), use of feed-in-tariff (FIT) (yes vs. no), transmission planning (anticipatory vs. reactive), and transmission interconnection cost allocated to a renewable generator (high vs. low). We find that market restructuring is not a primary driver of renewable energy development. Renewable generation has the highest percent of total installed capacity in markets that use a FIT, employ anticipatory transmission planning, and have loads or end-users paying for most, if not all, of the transmission interconnection costs. In contrast, renewable developers have been less successful in markets that do not use a FIT, employ reactive transmission planning, and have generators paying for most, if not all, of the transmission interconnection costs. While these policies can lead to higher penetration of renewable energy in the short run, their high cost to ratepayers can threaten the economic sustainability of renewable energy in the long-run. - Highlights: → Market structure seems to have little effect on renewable energy development. → Renewable energy development is more successful in markets that use a FIT. → Anticipatory transmission planning aids renewable energy development. → Low interconnection costs for developers also aids renewable energy development.

  13. Renewables Global Futures Report: Great debates towards 100% renewable energy

    International Nuclear Information System (INIS)

    Teske, Sven; Fattal, Alex; Lins, Christine; Hullin, Martin; Williamson, Laura E.

    2017-01-01

    The first version of REN21's Renewables Global Futures Report (GFR) published in January 2013 identified a panorama of likely future debates related to the renewable energy transition. As a reflection of the wide range of contemporary thinking by the many experts interviewed for the report, it did not present just one vision of the future but rather a 'mosaic' of insights. Given the positive feedback in response to the first edition, a new edition has been prepared, continuing where the last one left off. The objective of this report is to gather opinions about the feasibility of a 100% renewable energy future, and the macro-economic impacts it would entail. In so doing, the report reflects on the debates of 2013, and tracks their evolution to the present time. Some remain, some have changed, some have been overtaken by progress, and new ones have arisen. They are summarised here as the Great Debates in renewable energy. The questionnaire for the survey was developed in close cooperation between the REN21 Secretariat, the Institute for Sustainable Future (ISF) of the University of Technology Sydney/Australia (UTS) and the Institute for Advanced Sustainability Studies (IASS) in Potsdam/Germany. It covered the following topics: 1. How much renewables?; 2. Power sector; 3. Heating and cooling; 4. Transport; 5. Storage; 6. Demand-side management and energy efficiency; 7. Integration of sectors; 8. Macro-economic considerations; 9. Technology and costs; 10. Policy; 11. Cities; 12. Distributed renewable energy/energy access; 13. Barriers/challenges/enablers. 114 experts were interviewed in total; the average interview time was approximately one hour. The interviews were conducted between May and October 2016. The questionnaire was also mirrored in an online version and used both by interviewers and interviewees to record the interview process. Interviewees were selected from the following regions: Africa, Australia and Oceania, China, Europe, India, Japan, Latin America

  14. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  15. Mapping of renewable energies

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Germany is the champion of green energy in Europe: the contribution of renewable energies to electricity generation reached about 20% in 2011. This article describes the situation of renewable energies in Germany in 2011 with the help of 2 maps, the first one gives the installed electrical generation capacity for each region and for each renewable energy source (wind power, hydro-electricity, biomass, photovoltaic energy and biogas) and the second one details the total number of jobs (direct and indirect) for each renewable energy source and for each region. In 2011 about 372000 people worked in the renewable energy sector in Germany. (A.C.)

  16. Renewable energy integration challenges and solutions

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book examines challenges involved in the integration of renewable energy into existing electricity grids. It provides models of power systems to show how the integration will effect conventional grids and various solutions to minimize the impacts.

  17. Agriculture and renewable energies: contribution and opportunities for farming exploitation - Synthesis

    International Nuclear Information System (INIS)

    Leveque, Benjamin; Hajjar, Ali; Noirot-Cosson, Paul-Emile; Oudin, Bertrand; Meiffren, Olivia; Khamlich, Ali; Varchavsky, Marc; Lapierre, Aline; Brinon, Alain; Nguyen, Elodie; Mhiri, Tarek; Bonnard, Philippe; Gagnepain, Bruno; Cardona Maestro, Astrid; Berthomieu, Nadine; Theobald, Olivier; Bardinal, Marc; Mousset, Jerome; Thual, Julien; Fautrad, Alice; Bastide, Guillaume; Parrouffe, Jean-Michel; Dubilly, Anne-Laure; Bellini, Robert; Gerson, Raphael; Mehl, Celine; Mainsant, Armand; Carrere, Tristan; Marchal, David; Duval, Joakim; Huet, Sebastien; Herrera, Joanna; Hascuet, Isabelle; Rousselon, Nicolas; Ollivier, Denis; Lemaignan, Benoit; Jager, Florian; Porcheyre, Edwige; Bealu, Christophe; Denninger, F.; Guggemos, Fabien; Richard, Axel; Duclos, Paul; Flajollet-Millan, Johanna; Roesner, Sven; Begue, Marie; Furois, Timothee; Oriol, Louise; Denoyer, Gerard; Pagnac-Farbiaz, Elisabeth; Guibert, Olivier de; Parisse, Sandrine; Bozonnat, Cedric; Liger, Davy; Molinie, Lea; Jarrige, Leonard; Mery, Yoann; Charrier, Virginie; Ait Amar, Samy

    2018-02-01

    This study aimed at assessing direct and indirect contributions of agriculture to renewable energy production in France from now until 2023, 2030 and 2050. It notably aims at a better knowledge of the economic contribution of renewable energies for the agriculture sector, and of the contribution of this sector to energy transition for the country. Technical, economic and environmental benefits and drawbacks of each renewable energy have been studied in order to identify levers and brakes for the development of renewable energies in this sector. A first part proposes methods of assessment and results for the contribution to renewable energy production. The second part reports an economic analysis of the impact of renewable energies on the agriculture sector. The third part evokes the diversity of business models in relationship with exploitation type. The next part reports a prospective study, while the last one reports main lessons already learned through the deployment of renewable energies in agriculture

  18. SPEAR - Strategic Penetration and Adoption of Renewables

    DEFF Research Database (Denmark)

    Meyer, Niels I; Levin-Jensen, Anna Karin Maria; Bollinger, Philippe

    1996-01-01

    The SPEAR Project has developed a methodology for regional integration of renewable energy. SPEAR partners in Germany, Portugal, the Netherlands, the United Kingdom, Ireland and Denmark have worked with a varity of local counterparts, ranging from municipalities to regional development bodies, from.......Each partner has used the Strategic Assessment Framework for the Implementation of Rational Energy (SAFIRE) cost-benefit model with local counterparts in their areas to develop integrated renewable energy plans to the year 2020. These plans have formed a framework for integrated planning at local and regional...... utilites to county councils to set out integrated renewable energy plans addressing local needs and concerns. The SPEAR Project has provided a synthesis of options and methodologies available at local levels within a number of different European political, administrative, economic and technical context...

  19. Potential for renewable energy jobs in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B.; Cameron, L.; Kober, T. [Energy research Centre of the Netherlands ECN, Policy Studies, Radarweg 60, 1043 NT, Amsterdam (Netherlands)

    2013-09-15

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m{sup 2}. This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic.

  20. Temporal and Spatial Explicit Modelling of Renewable Energy Systems : Modelling variable renewable energy systems to address climate change mitigation and universal electricity access

    NARCIS (Netherlands)

    Zeyringer, Marianne

    2017-01-01

    Two major global challenges climate change mitigation and universal electricity access, can be addressed by large scale deployment of renewable energy sources (Alstone et al., 2015). Around 60% of greenhouse gas emissions originate from energy generation and 90% of CO2 emissions are caused by fossil

  1. Storifying Samsøs Renewable Energy Transition

    DEFF Research Database (Denmark)

    Papazu, Irina

    2018-01-01

    Through a joint community effort Denmark’s Renewable Energy Island Samsø became self-sufficient with renewable energy over a period of 10 years from 1997 to 2007. Today, the story about Samsø’s successful energy transition has become a global export and a widely known model of community building...... the effects of such well-crafted transition narratives. This tendency toward the ‘storification’ of transition processes is not restricted to Samsø; it is employed as a tactics by environmental organizations operating globally....

  2. CREST Cost of Renewable Energy Spreadsheet Tool: A Model for Developing Cost-Based Incentives in the United States; User Manual Version 4, August 2009 - March 2011 (Updated July 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.

    2013-07-01

    The objective of this document is to help model users understand how to use the CREST model to support renewable energy incentives, FITs, and other renewable energy rate-setting processes. This user manual will walk the reader through the spreadsheet tool, including its layout and conventions, offering context on how and why it was created. This user manual will also provide instructions on how to populate the model with inputs that are appropriate for a specific jurisdiction's policymaking objectives and context. Finally, the user manual will describe the results and outline how these results may inform decisions about long-term renewable energy support programs.

  3. China's renewables law

    International Nuclear Information System (INIS)

    Zhu Li

    2005-01-01

    The paper discusses China's Renewable Energy Promotion Law which will come into force in January 2006. The law shows China's commitment to renewable energy sources. The target is to raise the country's energy consumption from renewables to 10% by 2020. Data for current capacity, and expected capacity by 2020, are given for wind power, solar power, biomass and hydroelectric power. The financial and technological hurdles which China must overcome are mentioned briefly

  4. Economic modelling of price support mechanisms for renewable energy: case study on Ireland

    International Nuclear Information System (INIS)

    Huber, C.; Resch, G.

    2007-01-01

    The Irish Government is considering its future targets, policy and programmes for renewable energy for the period beyond 2005. This follows a review in 2003 of policy options that identified a number of different measures to stimulate increased deployment of renewable energy generation capacity. This paper expands this review with an economic analysis of renewable energy price support mechanisms in the Irish electricity generation sector. The focus is on three primary price support mechanisms quota obligations, feed in tariffs and competitive tender schemes. The Green-X computer model is utilised to characterise the RES-E potential and costs in Ireland up until, and including, 2020. The results from this dynamic software tool are used to compare the different support mechanisms in terms of total costs to society and the average premium costs relative to the market price for electricity. The results indicate that in achieving a 20% RES-E proportion of gross electricity consumption by 2020, a tender scheme provides the least costs to society over the period 2006-2020 but only in case there is limited or no strategic bidding. Considering, however, strategic bidding, a feed-in tariff can be the more efficient solution. Between the other two support mechanisms, the total costs to society are highest for feed-in-tariffs (FIT) until 2013, at which point the costs for the quota system begin to rise rapidly and overtake FIT in 2014-2020. The paper also provides a sensitivity analysis of the support mechanism calculations by varying default parameters such as the interim (2010) target, the assumed investment risk levels and the amount of biomass co-firing. This analysis shows that a 2010 target of 15% rather than 13.2% generates lower costs for society over the whole period 2006-2020, but higher costs for the RES-E strategy over the period 2006-2010. (author)

  5. Economic modelling of price support mechanisms for renewable energy: Case study on Ireland

    International Nuclear Information System (INIS)

    Huber, Claus; Ryan, Lisa; O Gallachoir, Brian; Resch, Gustav; Polaski, Katrina; Bazilian, Morgan

    2007-01-01

    The Irish Government is considering its future targets, policy and programmes for renewable energy for the period beyond 2005. This follows a review in 2003 of policy options that identified a number of different measures to stimulate increased deployment of renewable energy generation capacity. This paper expands this review with an economic analysis of renewable energy price support mechanisms in the Irish electricity generation sector. The focus is on three primary price support mechanisms quota obligations, feed in tariffs and competitive tender schemes. The Green-X computer model is utilised to characterise the RES-E potential and costs in Ireland up until, and including, 2020. The results from this dynamic software tool are used to compare the different support mechanisms in terms of total costs to society and the average premium costs relative to the market price for electricity. The results indicate that in achieving a 20% RES-E proportion of gross electricity consumption by 2020, a tender scheme provides the least costs to society over the period 2006-2020 but only in case there is limited or no strategic bidding. Considering, however, strategic bidding, a feed-in tariff can be the more efficient solution. Between the other two support mechanisms, the total costs to society are highest for feed-in-tariffs (FIT) until 2013, at which point the costs for the quota system begin to rise rapidly and overtake FIT in 2014-2020. The paper also provides a sensitivity analysis of the support mechanism calculations by varying default parameters such as the interim (2010) target, the assumed investment risk levels and the amount of biomass co-firing. This analysis shows that a 2010 target of 15% rather than 13.2% generates lower costs for society over the whole period 2006-2020, but higher costs for the RES-E strategy over the period 2006-2010

  6. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  7. A population-induced renewable energy timeline in nine world regions

    International Nuclear Information System (INIS)

    Warner, Kevin J.; Jones, Glenn A.

    2017-01-01

    Approximately 1.1 billion people worldwide do not have access to electricity. The World Bank's Sustainable Energy for All initiative seeks to provide universal access to energy by the year 2030. The current world population of 7.3 billion is projected to reach 8.5 billion by 2030 and 11.2 billion by 2100. Population growth and increasing energy access are incongruous with forecasts of declining non-renewable energy production and climate change concerns. Previous studies have examined these issues at global or at individual regional or national levels. Here we use a nine region model of the world with two per capita energy consumption scenarios to find that significant restructuring of the current energy mix will be necessary in order to support population projections. Modelled interaction between the regions highlights the importance of examining energy and population concerns in a systemic manner, as each of the nine regions faces unique energy-population challenges in the coming decades. As non-renewable energy reserves decline globally, the transition to a renewable energy infrastructure will develop at different times in each region. - Highlights: • A 9-region model of energy, population, and development through 2100 is presented. • Developing >50% renewable energy is required in 8 regions, though not concurrently. • Population growth and development will compound energy scarcity issues. • Early and significant renewable energy investment is key to realizing development. • Each region will face unique, though interlacing, challenges this century.

  8. On the battleground of environmental and competition policy: The renewable electricity market

    Science.gov (United States)

    Meszaros, Matyas Tamas

    Renewable energy sources have become increasingly important in the efforts to provide energy security and to fight global warming. In the last decade environmental policy has increased the support for renewable electricity. At the same time the electricity sector was often subject of antitrust investigation because of relevant market concentration, and market power. This dissertation looks at the renewable electricity market to analyze the effect of environmental policy on competition. The first chapter provides a short introduction into the regulatory schemes of electricity markets. The second chapter analyzes the demand side of the electricity market. The estimations show that there was no significant change in the income and price elasticity in the electricity consumption of the US households between 1993 an 2001, although there was several policy initiatives to increase energy efficiency and decrease consumption. The third chapter derives a theoretical model where the feed-in tariff and the tradable green certificate system can be analyzed under oligopolistic market structure. The results of the model suggest that the introduction of the environmentally friendly regulatory schemes can decrease the electricity prices compared to the case when there is no support for renewable energy. The other findings of this model is that the price of electricity rises when the requirement for renewable energy increases. In the fourth chapter a simulation model of the UK electricity market is used to test the effect of mergers and acquisitions under the environmental support scheme. The results emphasize the importance of the capacity limit, because it can constrain the strategic action of the electricity producers. The results of the simulation also suggest that the increasing concentration can increase the production and lower the price of electricity and renewable energy certificates in the British Renewable Obligation system.

  9. Renewable, ethical? Assessing the energy justice potential of renewable electricity

    Directory of Open Access Journals (Sweden)

    Aparajita Banerjee

    2017-08-01

    Full Text Available Energy justice is increasingly being used as a framework to conceptualize the impacts of energy decision making in more holistic ways and to consider the social implications in terms of existing ethical values. Similarly, renewable energy technologies are increasingly being promoted for their environmental and social benefits. However, little work has been done to systematically examine the extent to which, in what ways and in what contexts, renewable energy technologies can contribute to achieving energy justice. This paper assesses the potential of renewable electricity technologies to address energy justice in various global contexts via a systematic review of existing studies analyzed in terms of the principles and dimensions of energy justice. Based on publications including peer reviewed academic literature, books, and in some cases reports by government or international organizations, we assess renewable electricity technologies in both grid integrated and off-grid use contexts. We conduct our investigation through the rubric of the affirmative and prohibitive principles of energy justice and in terms of its temporal, geographic, socio-political, economic, and technological dimensions. Renewable electricity technology development has and continue to have different impacts in different social contexts, and by considering the different impacts explicitly across global contexts, including differences between rural and urban contexts, this paper contributes to identifying and understanding how, in what ways, and in what particular conditions and circumstances renewable electricity technologies may correspond with or work to promote energy justice.

  10. Dynamic taxation of non-renewable natural resources under asymmetric information about reserves

    International Nuclear Information System (INIS)

    Osmundsen, P.

    1998-01-01

    A study was conducted in which a model was developed for the effective tax collection of non-renewable natural resources, subject to private information about reserves. Most governments are faced with the problem that resource exploitation companies possess private information about the size of reserves. Often governments do not know if a company's high costs are due to low reserves or to strategic cost reporting. This model was designed to solve that problem. It was shown that the specific cost characteristics of extracting non-renewable natural resource make it desirable to reduce both the extent and the pace of extraction. This conclusion was reached using both a two-period model and a time terminal endogenized model. Although this paper referred specifically to petroleum, the model applies for all types of non-renewable natural resources. 21 refs

  11. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Strik, David P.B.T.B.; Terlouw, Hilde; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-Dept. of Environmental Technology

    2008-12-15

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m{sup 2} projected anode surface area and a maximum power production of 110 mW/m{sup 2} surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products. (orig.)

  12. Do state renewable portfolio standards promote in-state renewable generation

    International Nuclear Information System (INIS)

    Yin, Haitao; Powers, Nicholas

    2010-01-01

    Several US states have passed renewable portfolio standard (RPS) policies in order to encourage investment in renewable energy technologies. Existing research on their effectiveness has either employed a cross-sectional approach or has ignored heterogeneity among RPS policies. In this paper, we introduce a new measure for the stringency of an RPS that explicitly accounts for some RPS design features that may have a significant impact on the strength of an RPS. We also investigate the impacts of renewable portfolio standards on in-state renewable electricity development using panel data and our new measure of RPS stringency, and compare the results with those when alternative measures are used. Using our new measure, the results suggest that RPS policies have had a significant and positive effect on in-state renewable energy development, a finding which is masked when design differences among RPS policies are ignored. We also find that another important design feature - allowing 'free trade' of REC's - can significantly weaken the impact of an RPS. These results should prove instructive to policy makers, whether considering the development of a federal-level RPS or the development or redesign of a state-level RPS. (author)

  13. Renewable energy to boost job creation

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    European Union member states are encouraging renewable energies as alternative energy sources with low environmental impacts, making the renewable energy industry one of Europe's fastest growing sectors. An energy scenario has been defined for the next 20 years and a model has been used to compute the employment impact of this new energy policy. The analysis calculates net employment values which includes direct and indirect impacts and takes into account the loss of jobs in conventional energy sectors. The simulation predicts that energy produced from renewable sources will more than double by 2020. The overall number of net additional jobs predicted to be created in the fifteen countries from 1995 to 2020 is about 900000. This figure includes 515000 jobs that are expected to be created as a consequence of investment in biomass fuel production from agricultural and forestry residues and from energy crops. The analysis foresees that around 20% of the total employment creation will occur in Germany and 15% in France. (A.C.)

  14. Renewable energy

    International Nuclear Information System (INIS)

    Berghmans, J.

    1994-01-01

    Renewable energy sources have a small environmental impact and can be easily integrated within existing structures. Moreover, the use of renewable energy sources can contribute to achieve a zero emission of carbon dioxide by 2100, provided an efficient environmental policy during the next 40 years. This includes a correct pricing policy of renewable energy sources with respect to nuclear energy and fossil fuel. The latter energy sources have been favoured in the past. In addition, an open market policy, the restructuring or conversion of existing international energy institutes, and international treaties for the protection of the natural environment are needed in view of achieving the zero carbon dioxide emission objective. (A.S.)

  15. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  16. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  17. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  18. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  19. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  20. Renewables 2017 Global Status Report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Seyboth, Kristin; Adib, Rana; Murdock, Hannah E.; Lins, Christine; Edwards, Isobel; Hullin, Martin; Nguyen, Linh H.; Prillianto, Satrio S.; Satzinger, Katharina; Appavou, Fabiani; Brown, Adam; Chernyakhovskiy, Ilya; Logan, Jeffrey; Milligan, Michael; Zinaman, Owen; Epp, Baerbel; Huber, Lon; Lyons, Lorcan; Nowak, Thomas; Otte, Pia; Skeen, Jonathan; Sovacool, Benjamin; Witkamp, Bert; Musolino, Evan; Brown, Adam; Williamson, Laura E.; Ashworth, Lewis; Mastny, Lisa

    2017-01-01

    Renewable energy technologies increase their hold across developing and emerging economies throughout the year The year 2016 saw several developments and ongoing trends that all have a bearing on renewable energy, including the continuation of comparatively low global fossil fuel prices; dramatic price declines of several renewable energy technologies; and a continued increase in attention to energy storage. For the third consecutive year, global energy-related carbon dioxide emissions from fossil fuels and industry were nearly flat in 2016, due largely to declining coal use worldwide but also due to improvements in energy efficiency and to increasing use of renewable energy. As of 2015, renewable energy provided an estimated 19.3% of global final energy consumption, and growth in capacity and production continued in 2016. The power sector experienced the greatest increases in renewable energy capacity in 2016, whereas the growth of renewables in the heating and cooling and transport sectors was comparatively slow. Most new renewable energy capacity is installed in developing countries, and largely in China, the single largest developer of renewable power and heat over the past eight years. In 2016, renewable energy spread to a growing number of developing and emerging economies, some of which have become important markets. For the more than 1 billion people without access to electricity, distributed renewable energy projects, especially those in rural areas far from the centralised grid, offer important and often cost-effective options to provide such access. The renewable energy sector employed 9.8 million people in 2016, an increase of 1.1% over 2015. By technology, solar PV and biofuels provided the largest numbers of jobs. Employment shifted further towards Asia, which accounted for 62% of all renewable energy jobs (not including large-scale hydropower), led by China. The development of community renewable energy projects continued in 2016, but the pace of

  1. Save with Renewable Energy: A Technical Bulletin for Federal Renewable Energy Champions

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    This eight-page publication, prepared in 2003 for the U.S. Department of Energy's Federal Energy Management Program by the DOE National Renewable Energy Laboratory, is an updated version of the former Save with Solar and Wind bulletin. Save with Renewable Energy provides up-to-date information about the progress that the government is making in achieving federal goals for renewable energy use; agencies have achieved about 60% of the current goal for 2005 of 1384 gigawatt-hours from renewable energy systems. This publication also describes current and planned federal projects featuring wind, solar, and geothermal systems in several different states.

  2. Joint surface modeling with thin-plate splines.

    Science.gov (United States)

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  3. Modeling the optimal energy mix in 2030 : Impact of the integration of renewable energy sources

    OpenAIRE

    Arthur, Camu

    2016-01-01

    The European Council has recently set objectives in the matter of energy and climate policies and thus the interest in renewable energies is more than ever at stake. However, the introduction of renewable energies in an energy mix is also accelerated and altered by political targets. The two most widespread renewable technologies, photovoltaic and wind farms, have specific characteristics - decentralized, intermittency, uncertain production forecast up until a few hours ahead - that oblige to...

  4. Application of a microgrid with renewables for a water treatment plant

    International Nuclear Information System (INIS)

    Soshinskaya, Mariya; Crijns-Graus, Wina H.J.; Meer, Jos van der; Guerrero, Josep M.

    2014-01-01

    Highlights: • Research assesses application of renewable microgrid for Dutch water treatment plant. • Grid-connected and stand-alone cases are modeled with and without demand response. • Results show a high potential for wind and solar electricity generation at the site. • The plant can become 70–96% self-sufficient with renewable electricity. • A grid connected system with both wind, PV and demand response is most cost-effective. - Abstract: This research explores the techno-economic potential for a predominantly renewable electricity-based microgrid serving an industrial-sized drink water plant in the Netherlands. Grid-connected and stand-alone microgrid scenarios were modeled, utilizing measured wind speed and solar irradiation data, real time manufacturer data for technology components, and a bottom-up approach to model a flexible demand from demand response. The modeled results show that there is a very high potential for renewable electricity at the site, which can make this drink water treatment plant’s electricity consumption between 70% and 96% self-sufficient with renewable electricity from solar PV and wind power production. The results show that wind production potential is very high onsite and can meet 82% of onsite demand without adding solar PV. However, PV production potential is also substantial and provides a more balanced supply which can supply electricity at times when wind production is insufficient. Due to the supplemental supply over different parts of the day, adding solar PV also increases the benefits gained from the demand response strategy. Therefore, a solar–wind system combination is recommended over a wind only system. A 100% renewable system would require extremely large battery storage, which is not currently cost effective. Ultimately, even at the low wholesale electricity and sell-back price for large electricity consumers, grid-connection and the ability to trade excess electricity is extremely important for the

  5. The role of renewable energy on animal farms

    Science.gov (United States)

    Csatári, Nándor; Vántus, András

    2015-04-01

    The recent measures in the European Union promote the usage of renewable energies and enhancing the energy efficiency. These measures also effect agriculture, on the one hand by using biofuels mixed into fuel for machinery. Besides biofuels animal farms have opportunities in using renewable energy in several other ways. There are sectors in animal farming, where the energy demand is continuously high in electricity (e.g. forage grinders, mixers, milk coolers, air ventilation systems) or in heating (e.g. stables for poultry or piglets). Beside the energy demand in agricultural sector there are several products and side products suitable for energy production. For example different kinds of organic manures and corn silage could be raw materials for biogas production; plant residues like cereal straw and corn stalk bales could be combusted in boilers. Furthermore solar cells or solar collectors can be mounted on the big roof surfaces of animal farm buildings. Among animal farming sectors, dairy farming in the most energy intensive, and uses the widest variety of energy forms. It is often mentioned as the "heavy industry" of animal farming. In this research 14 dairy farms were examined in Hajdú-Bihar County in the topic of energy demand, renewable energy usage. The questioned farms covers 35% of the dairy cow population in Hajdú-Bihar County. The questions covered the general attributes of the farms and the details of the (existing or planned) renewable energy application. In terms of economic analysis saving, the investment return time and the employment effect was examined. The results show wide variety of applied renewable energy application. Fifty percent of farms uses at least one kind of renewable energy. Two biogas plants, 6 boilers for solid biomass, 2 solar cells. Regarding employment effect biogas plants created some full time workplaces, biomass boilers also needs some work hours to maintain, but none of the farms applied more labour. Besides renewable

  6. European schemes for promoting renewables in liberalised markets

    International Nuclear Information System (INIS)

    Meyer, Niels I.

    2003-01-01

    The paper describes possibilities and problems for penetration of supply systems based on renewable energy sources in liberalised markets. The analysis is based on recent development in EU with different models for support of installations based on renewable energy. These include feed-in models with guaranteed minimum tariffs, tender models for different bands of technologies, and green certificates trading models with obligatory consumer quota. The paper describes the market situation in selected European countries, including Germany, the UK, Holland and Denmark. An EU directive from September 2001 has postponed the decision on a possible harmonisation of promotional models until at least 2005 in order to obtain more practical experience with the different support schemes. A critical evaluation is given in this paper of the different models with proposals for a balanced development between environmental and trading concerns. It is argued that too much emphasis is presently given to the side of free trade at the expense of long range planning for a sustainable energy development

  7. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  8. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare

    2008-01-01

    per kilogram of desired product to illustrate in which processes the use of renewable resources lead to the most substantial reduction of CO2 emissions. The steps towards a renewable chemicals industry will most likely involve intimate integration of biocatalytic and conventional catalytic processes......The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple...

  9. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  10. Renewable energies in Germany, a national commitment... at the local scale

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of renewable energies in Germany: share in the national energy mix, the central role of municipalities, economical fallouts and added-value at the local scale (example of a 2 MW wind farm), key-role of the citizen in the development of renewable energies, cooperative companies: an appreciated model, citizen's solar facilities: when municipalities and citizens work side by side, citizen's wind farms: a model supported by citizens, French-German comparison of wind farms development, wind energy and photovoltaic development in Germany, French-German comparison of employment in the renewable energies industry, German consumers' contribution and electricity prices

  11. Potential for renewable energy jobs in the Middle East

    International Nuclear Information System (INIS)

    Zwaan, Bob van der; Cameron, Lachlan; Kober, Tom

    2013-01-01

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m 2 . This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic. - Highlights: • An analysis of the potential for renewable energy jobs in the Middle East is presented. • With the TIAM-ECN model we inspect the technology requirements for meeting a radiative forcing of 2.9 W/m 2 . • Wind and solar power account for approximately 60% of total electricity supply in 2050. • We estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs. • Manufacturing jobs are assumed to be partly local, while installation and O and M jobs are all domestic

  12. Emissions reductions from expanding state-level renewable portfolio standards.

    Science.gov (United States)

    Johnson, Jeremiah X; Novacheck, Joshua

    2015-05-05

    In the United States, state-level Renewable Portfolio Standards (RPS) have served as key drivers for the development of new renewable energy. This research presents a method to evaluate emissions reductions and costs attributable to new or expanded RPS programs by integrating a comprehensive economic dispatch model and a renewable project selection model. The latter model minimizes incremental RPS costs, accounting for renewable power purchase agreements (PPAs), displaced generation and capacity costs, and net changes to a state's imports and exports. We test this method on potential expansions to Michigan's RPS, evaluating target renewable penetrations of 10% (business as usual or BAU), 20%, 25%, and 40%, with varying times to completion. Relative to the BAU case, these expanded RPS policies reduce the CO2 intensity of generation by 13%, 18%, and 33% by 2035, respectively. SO2 emissions intensity decreased by 13%, 20%, and 34% for each of the three scenarios, while NOx reductions totaled 12%, 17%, and 31%, relative to the BAU case. For CO2 and NOx, absolute reductions in emissions intensity were not as large due to an increasing trend in emissions intensity in the BAU case driven by load growth. Over the study period (2015 to 2035), the absolute CO2 emissions intensity increased by 1% in the 20% RPS case and decreased by 6% and 22% for the 25% and 40% cases, respectively. Between 26% and 31% of the CO2, SO2, and NOx emissions reductions attributable to the expanded RPS occur in neighboring states, underscoring the challenges quantifying local emissions reductions from state-level energy policies with an interconnected grid. Without federal subsidies, the cost of CO2 mitigation using an RPS in Michigan is between $28 and $34/t CO2 when RPS targets are met. The optimal renewable build plan is sensitive to the capacity credit for solar but insensitive to the value for wind power.

  13. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Does a renewable fuel standard for biofuels reduce climate costs?

    Energy Technology Data Exchange (ETDEWEB)

    Greaker, Mads; Hoel, Michael; Rosendahl, Knut Einar

    2012-07-01

    Recent contributions have questioned whether biofuels policies actually lead to emissions reductions, and thus lower climate costs. In this paper we make two contributions to the literature. First, we study the market effects of a renewable fuel standard. Opposed to most previous studies we model the supply of fossil fuels taking into account that fossil fuels is a non-renewable resource. Second, we model emissions from land use change explicitly when we evaluate the climate effects of the renewable fuel standard. We find that extraction of fossil fuels most likely will decline initially as a consequence of the standard. Thus, if emissions from biofuels are sufficiently low, the standard will have beneficial climate effects. Furthermore, we find that the standard tends to reduce total fuel (i.e., oil plus biofuels) consumption initially. Hence, even if emissions from biofuels are substantial, climate costs may be reduced. Finally, if only a subset of countries introduce a renewable fuel standard, there will be carbon leakage to the rest of the world. However, climate costs may decline as global extraction of fossil fuels is postponed.(Author)

  15. Renewable energies 2020. Potential atlas Germany. 2. ed.; Erneuerbare Energien 2020. Potenzialatlas Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Janine; Muehlenhoff, Joerg

    2010-02-15

    A future energy policy equally has to pursue environmental protection and climate protection, economic efficiency as well as supply security. Renewable energies substantially contribute to this. In the last decade, the Federal Government of Germany showed that a strong development of renewable energies is possible within a short time. For the year 2020, the industry prognosticates an amount of the renewable energies of 47% at the consumption of electricity, 25% at the heat consumption, and 22% at the fuel consumption in the traffic. The contribution under consideration shows that the surface which is needed for this is small. Depending upon climate, landscape, settlement structure and agrarian structure, each region offers its own different potentials.

  16. Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships

    International Nuclear Information System (INIS)

    Huh, Sung-Yoon; Lee, Chul-Yong

    2014-01-01

    Renewable energy technologies (RETs) have attracted significant public attention for several reasons, the most important being that they are clean alternative energy sources that help reduce greenhouse gas emissions. To increase the probability that RETs will be successful, it is essential to reduce the uncertainty about its adoption with accurate long-term demand forecasting. This study develops a diffusion model that incorporates the effect of competitive interrelationships among renewable sources to forecast the growth pattern of five RETs: solar photovoltaic, wind power, and fuel cell in the electric power sector, and solar thermal and geothermal energy in the heating sector. The 2-step forecasting procedure is based on the Bayus, (1993. Manage. Sci. 39, 11, 1319–1333) price function and a diffusion model suggested by Hahn et al. (1994. Marketing Sci. 13, 3, 224–247). In an empirical analysis, the model is applied to the South Korean renewable energy market. - Highlights: • We develop a diffusion model incorporating the competition among renewables. • A price function and a diffusion model are used in 2-step forecasting procedure. • The annual demand through 2035 for five renewables in South Korea is forecasted. • Wind power will maintain the largest market share in the electric power sector. • The supply of geothermal energy will be larger than that of solar thermal energy

  17. What are the costs of Scotland's climate and renewable policies?

    International Nuclear Information System (INIS)

    Anandarajah, Gabrial; McDowall, Will

    2012-01-01

    The UK government has established ambitious policies to address climate change and promote renewable energy, and has set targets both for reducing carbon emissions and for deploying renewables. Scotland, a constituent nation of the UK, has also set its own targets for climate change mitigation and renewable electricity. This paper analyses the energy, economic and environmental implications of carbon and renewable electricity targets in Scotland and the UK using a newly developed two-region UK MARKAL energy system model, where Scotland (SCT) and rest of the UK (RUK) are the two regions. The paper shows that meeting Scotland's carbon targets does not require additional decarbonisation effort if the UK meets its own targets at least cost; and that Scotland's renewable energy ambitions do imply additional costs above the least cost path to the meeting the UK's obligations under the EU renewable energy directive. Meeting Scottish renewable electricity targets diverts investment and deployment in renewables from rest of the UK to Scotland. In addition to increased energy system cost, Scottish renewable electricity targets may also require early investment in new electricity transmission capacity between Scotland and rest of the UK. - Highlights: ► Scottish climate policy is less stringent than UK policy. ► Scottish targets would complement UK targets if UK policies fail to meet UK targets. ► The possible conclusion here is that Scottish carbon targets are unnecessary. ► Scottish renewable policy is more stringent than UK policy. ► As expected, this increased stringency leads to additional costs.

  18. Renewable energy and macroeconomic efficiency of OECD and non-OECD economies

    International Nuclear Information System (INIS)

    Chien, Taichen; Hu, Jin-Li

    2007-01-01

    This article analyzes the effects of renewable energy on the technical efficiency of 45 economies during the 2001-2002 period through data envelopment analysis (DEA). In our DEA model, labor, capital stock, and energy consumption are the three inputs and real GDP is the single output. Increasing the use of renewable energy improves an economy's technical efficiency. Conversely, increasing the input of traditional energy decreases technical efficiency. Compared to non-OECD economies, OECD economies have higher technical efficiency and a higher share of geothermal, solar, tide, and wind fuels in renewable energy. However, non-OECD economies have a higher share of renewable energy in their total energy supply than OECD economies

  19. How Do Oil Prices, Macroeconomic Factors and Policies Affect the Market for Renewable Energy?:Oil Price, Macroeconomic Factors and Renewable Energy

    OpenAIRE

    Shah, Imran; Hiles, Carlie; Morley, Bruce

    2017-01-01

    The aim of this study is to determine the nature of any relationship between renewable energy investment, oil prices, GDP and the interest rate, using a time series approach. We concentrate on three countries with different relationships to the renewable energy industry, with Norway and the UK being oil-exporters for most of the sample and the USA an importer. Following estimation using a VAR model, the results provide evidence of considerable heterogeneity across the countries, with the USA ...

  20. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  1. Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt; Meyer, Seth

    2017-01-01

    This study investigates the economic interactions between a national renewable fuel policy, namely the Renewable Fuel Standard (RFS) in the United States, and a sub-national renewable fuel policy, the Low Carbon Fuel Standard (LCFS) in California. The two policies have a similar objective of reducing greenhouse gas emissions, but the policies differ in the manner in which those objectives are met. The RFS imposes a hierarchical mandate of renewable fuel use for each year whereas the LCFS imposes a specific annual carbon-intensity reduction with less of a fuel specific mandate. We model the interactions using a partial-equilibrium structural model of agricultural and energy markets in the US and Rest-of-World regions. Our results suggest the policies are mutually reinforcing in that the compliance costs of meeting one of the requirements is lower in the presence of the other policy. In addition, the two policies combine to create a spatial shift in renewable fuel use toward California even though overall renewable fuel use remains relatively unchanged. - Highlights: • Results suggest the RFS and LCFS are mutually reinforcing. • Overall level of renewable fuel use is similar across scenarios. • Renewable fuel use shifts toward California in the presence of the LCFS. • Higher ethanol blend (e.g. E85) use also shifts toward California.

  2. Probabilistic generation assessment system of renewable energy in Korea

    Directory of Open Access Journals (Sweden)

    Yeonchan Lee

    2016-01-01

    Full Text Available This paper proposes probabilistic generation assessment system introduction of renewable energy generators. This paper is focused on wind turbine generator and solar cell generator. The proposed method uses an assessment model based on probabilistic model considering uncertainty of resources (wind speed and solar radiation. Equivalent generation function of the wind and solar farms are evaluated. The equivalent generation curves of wind farms and solar farms are assessed using regression analysis method using typical least square method from last actual generation data for wind farms. The proposed model is applied to Korea Renewable Generation System of 8 grouped 41 wind farms and 9 grouped around 600 solar farms in South Korea.

  3. Are government policies effective in promoting deployment of renewable electricity resources?

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Kniefel, Joshua

    2011-01-01

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: → Ascertains the impact of state policies on increasing the renewable capacity. → Renewable portfolio requirements have an (sometimes unexpected) impact. → Clean energy funds and required green power options have a positive impact. → Voluntary renewable standards as well as state green power purchasing requirements are ineffective. → Economics as well as political and structural variables are ineffective.

  4. Evaluating investments in renewable energy under policy risks

    International Nuclear Information System (INIS)

    Gatzert, Nadine; Vogl, Nikolai

    2016-01-01

    The considerable amount of required infrastructure and renewable energy investments expected in the forthcoming years also implies an increasingly relevant contribution of private and institutional investors. In this context, especially regulatory and policy risks have been shown to play a major role for investors when evaluating investments in renewable energy and should thus also be taken into account in risk assessment and when deriving risk-return profiles. In this paper, we provide a stochastic model framework to quantify policy risks associated with renewable energy investments (e.g. a retrospective reduction of a feed-in tariff), thereby also taking into account energy price risk, resource risk, and inflation risk. The model is illustrated by means of simulations and scenario analyses, and it makes use of expert estimates and fuzzy set theory for quantifying policy risks. Our numerical results for a portfolio of onshore wind farms in Germany and France show that policy risk can strongly impact risk-return profiles, and that cross-country diversification effects can considerably decrease the overall risk for investors. - Highlights: •Quantification of policy risks associated with renewable energy investments. •Results emphasize that policy risk has a major impact on risk and return. •Study of the cross-country diversification potential. •Cross-country diversification can considerably decrease the risk for an investor.

  5. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  6. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  7. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  8. Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept

    International Nuclear Information System (INIS)

    Wang Wenbin; Banjevic, Dragan

    2012-01-01

    The delay time concept and the techniques developed for modelling and optimising plant inspection practice have been reported in many papers and case studies. For a system subject to a few major failure modes, component based delay time models have been developed under the assumptions of an age-based inspection policy. An age-based inspection assumes that an inspection is scheduled according to the age of the component, and if there is a failure renewal, the next inspection is always, say τ times, from the time of the failure renewal. This applies to certain cases, particularly important plant items where the time since the last renewal or inspection is a key to schedule the next inspection service. However, in most cases, the inspection service is not scheduled according to the need of a particular component, rather it is scheduled according to a fixed calendar time regardless whether the component being inspected was just renewed or not. This policy is called a block-based inspection which has the advantage of easy planning and is particularly useful for plant items which are part of a larger system to be inspected. If a block-based inspection policy is used, the time to failure since the last inspection prior to the failure for a particular item is a random variable. This time is called the forward time in this paper. To optimise the inspection interval for block-based inspections, the usual criterion functions such as expected cost or down time per unit time depend on the distribution of this forward time. We report in this paper the development of a theoretical proof that a limiting distribution for such a forward time exists if certain conditions are met. We also propose a recursive algorithm for determining such a limiting distribution. A numerical example is presented to demonstrate the existence of the limiting distribution.

  9. Renewable Energy Development in India

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.M.

    2007-07-01

    India has done a significant progress in the power generation in the country. The installed generation capacity was 1300 megawatt (MW) at the time of Independence i.e. about 60 years back. The total generating capacity anticipated at the end of the Tenth Plan on 31-03-2007, is 1, 44,520 MW which includes the generation through various sectors like Hydro, Thermal and Nuclear. Emphasis is given to the renewable energy programme towards gradual commercialization. This programme is looked after by the Ministry of Non-Conventional Sources of energy. Since the availability of fossil fuel is on the decline therefore, in this backdrop the norms for conventional or renewable sources of energy (RSE) is given importance not only in India but has attracted the global attention. The main items under RSE are as follows: (i) Hydro Power (ii) Solar Power (iii) Wind Power (iv) Bio-mass Power (v) Energy from waste (vi) Ocean energy, and (vii) Alternative fuel for surface transportation. Evolution of power transformer technology in the country during the past five decades is quite impressive. There are manufacturers in the country with full access to the latest technology at the global level. Some of the manufacturers have impressive R&D set up to support the technology. Renewable energy is very much promoted by the Chinese Government. At the same time as the law was passed, the Chinese Government set a target for renewable energy to contribute 10% of the country's gross energy consumption by 2020, a huge increase from the current 1%. It has been felt that there is rising demand for energy, food and raw materials by a population of 2.5 billion Chinese and Indians. Both these countries have large coal dominated energy systems in the world and the use of fossil fuels such as coal and oil releases carbon dioxide (CO2) into the air which adds to the greenhouse gases which lead to global warming. (auth)

  10. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  11. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  12. Renewable energy in Europe

    International Nuclear Information System (INIS)

    Deshaies, M.

    2009-01-01

    Europe's increasing demand for energy and its environmental preoccupations are creating a favourable environment for the development of renewable energy sources. This article stated that although many European countries have adopted voluntary policies since the 1990s to increase the use of renewable energy sources, they have not been developed in an equal or consistent manner. A table was included to show the consumption of renewable energies by country; the percentage of renewable energies in 1995 as compared to 2006; and the consumption of primary energy resources. Combined, Germany, Spain and Denmark produce 75 per cent of wind energy in Europe, while 75 per cent of Europe's hydroelectricity is produced in Norway, Sweden, France, Italy, Austria and Switzerland. Germany has also made significant contributions in developing biomass energy. The article emphasized that the development of renewable energy sources is limited by the fact that it cannot keep up with growing energy demands. In addition, renewable energies cannot yet replace all fossil fuel consumption in Europe because of the variation in development from one country to another. 1 ref., 2 tabs., 4 figs.

  13. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  14. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  15. Building a sustainable market for renewables

    Energy Technology Data Exchange (ETDEWEB)

    Rader, N.

    1996-12-31

    Opinions regarding marketing approaches for electricity generation from renewable resources are presented in the paper. The Renewables Portfolio Standard of the California Public Utilities Commission is described. This system is based on renewable energy credits. Other marketing approaches, including surcharges, auctioned renewables credit, green pricing, and green marketing are also assessed. It is concluded that the Renewables Portfolio Standard creates a stable economic environment for the renewable energy industries.

  16. Renewable energy handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fine, R

    1976-01-01

    The potential for renewable energy use in Canada is examined. It is pointed out that Canada can choose to begin to diversify its energy supply now, moving rapidly and smoothly towards an efficient energy society based on renewable energy sources; or, it can continue on its present course and face the possibility of being forced by necessity to make a later transition to renewable sources, probably with a great deal of economic and political disruption. The handbook begins with a discussion on major issues and options available. This second section deals with the technology, applications, and costs of direct solar energy utilization, solar thermal electricity generation, photovoltaic conversion, wind energy, biomass energy, tidal power, wave energy, ocean thermal energy, geothermal energy, heat pumps, and energy storage. Section three discusses how renewable energy might realistically supply Canada's energy requirements within a reasonable period of time. Some issues on how government, industry, and the individual may become involved to make this happen are suggested. A list of resource people and renewable energy businesses is provided in the last section. A recommended reading list and bibliography complete the handbook. (MCW)

  17. Renewable energy education in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Acikgoz, Caglayan [Department of Chemical and Process Engineering, Faculty of Engineering, Bilecik University, P.O.11030, Bilecik (Turkey)

    2011-02-15

    Utilization of renewable energy sources and the application of environmentally sound energy technologies are essential to sustainable development and will help to secure the quality of living and the well-being of the future generations. Turkey presently has considerable renewable energy sources. The most important renewable sources are hydropower, wind, solar, geothermal, and biomass. The use of renewable energy as a topic to study energy and its forms permits a novel way to motivate students, particularly those who energy topics taking conscience with the environment. This paper presents the analysis and classification of renewable energy sources and how to find out their origin and a way to motivate students in energy topics related to renewable sources and also, the development of didactic competencies in special blended learning arrangements for educationalists, trainers and lecturers in adult education in the field of renewable energies in Turkey. (author)

  18. SMUD Community Renewable Energy Deployment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sison-Lebrilla, Elaine [Sacramento Municipal Utility District, Sacramento, CA (United States); Tiangco, Valentino [Sacramento Municipal Utility District, Sacramento, CA (United States); Lemes, Marco [Sacramento Municipal Utility District, Sacramento, CA (United States); Ave, Kathleen [Sacramento Municipal Utility District, Sacramento, CA (United States)

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  19. Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption

    International Nuclear Information System (INIS)

    Doytch, Nadia; Narayan, Seema

    2016-01-01

    This study examines the link between foreign direct investment (FDI) and energy demand. FDI is a source of financing that allows businesses to grow. At the same time, FDI can be a source of innovation that promotes energy efficiency. Existing evidence on the impact of aggregate FDI inflows on energy consumption is scarce and inconclusive. In the current study, we disaggregate FDI inflows into mining, manufacturing, total services, and financial services components and examine the impact of these FDI flows on renewable – and non-renewable industrial energy – sources for 74 countries for the period 1985–2012. We employ a Blundell–Bond dynamic panel estimator to control for endogeneity and omitted variable biases in our panels. The results point broadly to an energy consumption-reducing effect with respect to non-renewable sources of energy and an energy consumption-augmenting effects with respect to renewable energy. We find that these effects vary in magnitude and significance by sectoral FDI. - Highlights: • FDI generally discourages the use of unclean energy. • Economic growth promotes non-renewable energy consumption. • Service FDI save energy and encourage the switch to renewable energy. • Mining FDI to low and lower middle-income panels save energy. • These results are mainly consistent with the FDI halo effect.

  20. Resilient Renewable Energy Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Butt, Robert S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cutler, Dylan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Allison [Unaffiliated

    2017-11-14

    This presentation for the Cable-Tec Expo 2017 offers information about how renewable microgrids can be used to increase resiliency. It includes information about why renewable energy battery diesel hybrids microgrids should be considered for backup power, how to estimate economic savings of microgrids, quantifying the resiliency gain of microgrids, and where renewable microgrids will be successful.

  1. Enhancement of the REMix energy system model. Global renewable energy potentials, optimized power plant siting and scenario validation

    Energy Technology Data Exchange (ETDEWEB)

    Stetter, Daniel

    2014-04-10

    As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool

  2. Enhancement of the REMix energy system model. Global renewable energy potentials, optimized power plant siting and scenario validation

    International Nuclear Information System (INIS)

    Stetter, Daniel

    2014-01-01

    As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool

  3. Precise large deviations of aggregate claims in a size-dependent renewal risk model with stopping time claim-number process

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2017-04-01

    Full Text Available Abstract In this paper, we consider a size-dependent renewal risk model with stopping time claim-number process. In this model, we do not make any assumption on the dependence structure of claim sizes and inter-arrival times. We study large deviations of the aggregate amount of claims. For the subexponential heavy-tailed case, we obtain a precise large-deviation formula; our method substantially relies on a martingale for the structure of our models.

  4. Does moving towards renewable energy causes water and land inefficiency? An empirical investigation

    International Nuclear Information System (INIS)

    Al-mulali, Usama; Solarin, Sakiru Adebola; Sheau-Ting, Low; Ozturk, Ilhan

    2016-01-01

    This study investigates the effect of renewable energy production on water and land footprint in 58 developed and developing countries for the period of 1980–2009. Utilizing the ecological footprint as an indicator, the fixed effects, difference and system generalized method of moment (GMM) approaches were employed and eight different models were constructed to achieve robustness in the empirical outcomes. Despite the use of different methods and models, the outcome was the same whereby GDP growth, urbanization, and trade openness increase the water and land footprint. Moreover, renewable energy production increases the water and land inefficiency because of its positive effect on ecological footprint. Additionally, based on the square of GDP it is concluded that the EKC hypothesis does not exist while the square of renewable energy production indicates that renewable energy production will continue to increase water and land footprint in the future. From the outcome of this study, a number of recommendations were provided to the investigated countries. - Highlights: •The effect of renewable energy production on water and land footprint is studied. •58 developed and developing countries were examined for the period of 1980–2009. •Eight different models were constructed to achieve robustness in the outcomes. •GDP, urbanization, and trade openness increase the water and land footprint. •Renewable energy production increases the water and land inefficiency.

  5. Finsler Geometry Modeling of an Orientation-Asymmetric Surface Model for Membranes

    Science.gov (United States)

    Proutorov, Evgenii; Koibuchi, Hiroshi

    2017-12-01

    In this paper, a triangulated surface model is studied in the context of Finsler geometry (FG) modeling. This FG model is an extended version of a recently reported model for two-component membranes, and it is asymmetric under surface inversion. We show that the definition of the model is independent of how the Finsler length of a bond is defined. This leads us to understand that the canonical (or Euclidean) surface model is obtained from the FG model such that it is uniquely determined as a trivial model from the viewpoint of well definedness.

  6. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  7. Renewables. The clean advantage

    International Nuclear Information System (INIS)

    Klein, A.

    2006-01-01

    Europe's big utilities are increasingly seeing renewable energy as a viable alternative to conventional forms of power generation which at present have disadvantages in terms of cost and/or environment. Europe's biggest 20 utilities aim to double their renewables capacity in the next five years and nearly 20 billion US dollars have been earmarked for such projects. This report by Emerging Energy Research discusses the likely trends for the next five years. The various sources of renewable energy and how they might be developed are discussed. The companies leading exploitation of renewables and their market share are named

  8. Notebook 'Electricity with a renewable origin: a changing Europe'

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2013-01-01

    This publication gathers several articles or links to articles which state that the solar photovoltaic will cost less than 5 cent per KWh within 16 years, outline that a third of the Danish electricity has been produced by wind energy in 2013, notice that wind energy and solar energy are stagnating in France, describe the content and meaning of the EEG 2.0 reform in Germany which addresses renewable energy, indicate that Portugal has reached 70 pc of electricity based on renewable energy, describes the example of the energy autonomy of the El Hierro island (one of the Canary Islands) by using renewable energies, discuss the fact that the abundance of fossil energies hides the potential of renewable energies, comments the example of the French Polynesia where half of the electricity will have a renewable origin in 2020, and deny the fact that solar energy would boost coal consumption in Germany. This publication also contains a study made by the Fraunhofer Institute for Solar Energy Systems which analyzes the levelized cost of electricity (LCOE) of renewable energy technologies in the third quarter of 2013, and predicts their future cost development through 2030 based on technology-specific learning curves and market scenarios. This study more specifically proposes an analysis of the current situation and of future market development of photovoltaic (PV), wind power and biogas power plants in Germany, an economic modelling of the technology-specific LCOE (Status 3. quarter of 2013) for different types of power plants and local conditions (e.g. solar irradiation and wind conditions) on the basis of common market conditions, an assessment of the different technology and financial parameters based on sensitivity analysis of the individual technologies, a forecast for the future LCOE of renewable energy technologies through 2030 based on learning curve models and market scenarios, and an analysis of the current situation and future market development of PV

  9. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...... installations in the local landscape. A number of countries have introduced financial incentives to promote community acceptance. The tool box of incentives is still limited but in recent years it has been expanded to address local concerns. Certain general characteristics can be identified, suggesting...... that there are at least three distinct categories of incentives: individual compensation, community benefits and ownership measures. Local opposition must be approached with caution, as financial incentives to promote local acceptance can be seen as buying consent or even ‘bribery’, stirring up further opposition....

  10. WIRE: Weather Intelligence for Renewable Energies

    Science.gov (United States)

    Heimo, A.; Cattin, R.; Calpini, B.

    2010-09-01

    Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of

  11. Analysis, Design, Modeling, and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold

    2017-01-01

    This paper presents the design, modeling, and control of an isolated dc-dc three-port converter (TPC) based on an interleaved-boost full-bridge converter with pulsewidth modulation (PWM) and phase-shift control for hybrid renewable energy systems. In the proposed topology, the switches are driven...

  12. Renewal processes based on generalized Mittag-Leffler waiting times

    Science.gov (United States)

    Cahoy, Dexter O.; Polito, Federico

    2013-03-01

    The fractional Poisson process has recently attracted experts from several fields of study. Its natural generalization of the ordinary Poisson process made the model more appealing for real-world applications. In this paper, we generalized the standard and fractional Poisson processes through the waiting time distribution, and showed their relations to an integral operator with a generalized Mittag-Leffler function in the kernel. The waiting times of the proposed renewal processes have the generalized Mittag-Leffler and stretched-squashed Mittag-Leffler distributions. Note that the generalizations naturally provide greater flexibility in modeling real-life renewal processes. Algorithms to simulate sample paths and to estimate the model parameters are derived. Note also that these procedures are necessary to make these models more usable in practice. State probabilities and other qualitative or quantitative features of the models are also discussed.

  13. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  14. NRC's license renewal regulations

    International Nuclear Information System (INIS)

    Akstulewicz, Francis

    1991-01-01

    In order to provide for the continuity of the current generation of nuclear power plant operating licenses and at the same time ensure the health and safety of the public, and the quality of the environment, the US Nuclear Regulatory Commission (NRC) established a goal of developing and issuing regulations and regulatory guidance for license renewal in the early 1990s. This paper will discuss some of those activities underway to achieve this goal. More specifically, this paper will discuss the Commission's regulatory philosophy for license renewal and the two major license renewal rule makings currently underway. The first is the development of a new Part 54 to address procedural and technical requirements for license renewal; the second is a revision to existing Part 51 to exclude environmental issues and impacts from consideration during the license renewal process. (author)

  15. Determinants of CO2 emissions in the MERCOSUR: the role of economic growth, and renewable and non-renewable energy.

    Science.gov (United States)

    de Souza, Emerson Santana; Freire, Fátima de Souza; Pires, Josimar

    2018-05-13

    The main objective of this study was to analyze the impact of energy consumption (divided into renewable and non-renewable sources) and income on CO 2 emissions within the environmental Kuznets curve (EKC) model for the Southern Common Market (MERCOSUR). To do so, the annual panel data collected during the 1990-2014 periods was used. The CO 2 variable, representing carbon dioxide emissions in metric tons per capita, was used as a proxy for the emission of pollutants. The annual data were obtained from the World Bank (World Development Indicators). The sample consisted of the five MERCOSUR member countries: Argentina, Brazil, Paraguay, Uruguay, and Venezuela, comprising a period of 25 consecutive years. The results showed that energy consumption from renewable sources had a negative impact on CO 2 emissions, while the energy consumption from non-renewable sources had a positive impact. The positive impact of economic development on CO 2 emissions was also seen. In addition, this study supports the validity of the EKC hypothesis for the MERCOSUR because GDP (real output) leads to environmental degradation while GDP 2 reduces the level of gas emissions.

  16. Renewable energy burden sharing. REBUS. Effects of burden sharing and certificate trade on the renewable electricity market in Europe

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.; De Noord, M.; Skytte, K.; Nielsen, L.H.; Leonardi, M.; Whiteley, M.H.; Chapman, M.

    2001-05-01

    Creation of an internal market for renewable electricity will involve a political negotiation process, similar to previous European Union (EU) greenhouse gas negotiations. The Energy Ministers in the EU have agreed upon an overall target of 22% of electricity supply from Renewable Energy Sources (RES-E) and a distribution of targets over the individual Member States. The REBUS project provides insights in the effects of implementing targets for renewable electricity generation at EU Member State level and the impact of introducing burden sharing systems within the EU, such as a Tradable Green Certificate (TGC) system. Member States can participate in such burden sharing systems to reduce the costs of achieving RES-E targets. The project concentrated on the development of the REBUS model, which quantifies the impact of trade (in green certificates, quotas or targets), the specification of cost potential curves for renewable electricity options in each of the 15 EU Member States and the implementation of different rules to setting targets at individual Member State level. In addition, utilities and consumer organisations were interviewed on their requirements and expectations for an international burden sharing scheme. 49 refs

  17. Exploratory analysis of prospects for renewable energy private investment in the U.S

    International Nuclear Information System (INIS)

    Aguilar, Francisco X.; Cai, Zhen

    2010-01-01

    Opportunities for private investments in renewable energies were explored using a stated-preference investment allocation instrument. Allocation alternatives included conventional and renewable energy investments. Among renewable energy investments, solar and wind energy were ranked the highest while grass and wood-based technologies were at the bottom of the renewable energy list. This ranking mirrors the allocation of investments in sustainable energy technologies in global markets. Results were analyzed using a two-limit tobit model which suggests that certainty of investments, a diversified portfolio and expectation on financial returns were the primary drivers behind funds allocated to renewable energy investments. Using cluster analysis, twenty-three percent of our sample of current and future investors was identified as individuals most willing to invest in renewable energies. (author)

  18. Renewables 2013. Global Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sawin, J. L. [and others

    2013-07-01

    Renewable energy markets, industries, and policy frameworks have evolved rapidly in recent years. The Renewables Global Status Report provides a comprehensive and timely overview of renewable energy market, industry, investment, and policy developments worldwide. It relies on the most recent data available, provided by many contributors and researchers from around the world, all of which is brought together by a multi-disciplinary authoring team. The report covers recent developments, current status, and key trends; by design, it does not provide analysis or forecasts. This latest Renewables Global Status Report saw: a shift in investment patterns that led to a global decrease in clean energy investment; continuing growth in installed capacity due to significant technology cost reductions and increased investment in developing countries; renewables progressively supplementing established electricity systems, demonstrating that the implementation of suitable policies can enable the successful integration of higher shares of variable renewables; and the emergence of integrated policy approaches that link energy efficiency measures with the implementation of renewable energy technologies.

  19. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  20. Renewables 2018 - Global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition - Highlights of the REN21 Renewables 2018 Global Status Report in perspective

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Rutovitz, Jay; Dwyer, Scott; Teske, Sven; Murdock, Hannah E.; Adib, Rana; Guerra, Flavia; Murdock, Hannah E.; Blanning, Linh H.; Guerra, Flavia; Hamirwasia, Vibhushree; Misra, Archita; Satzinger, Katharina; Williamson, Laura E.; Lie, Mimi; Nilsson, Anna; Aberg, Emma; Weckend, Stephanie; Wuester, Henning; Ferroukhi, Rabia; Garcia, Celia; Khalid, Arslan; Renner, Michael; Taylor, Michael; Epp, Barbel; Seyboth, Kristin; Skeen, Jonathan; Kamiya, George; Munuera, Luis; Appavou, Fabiani; Brown, Adam; Kondev, Bozhil; Musolino, Evan; Brown, Adam; Mastny, Lisa; Arris, Lelani

    2018-06-01

    REN21's Renewables 2018 Global Status Report presents developments and trends through the end of 2017, as well as observed trends from early 2018 where available. Renewable power accounted for 70% of net additions to global power generating capacity in 2017, the largest increase in renewable power capacity in modern history, according to REN21's Renewables 2018 Global Status Report (GSR). But the heating, cooling and transport sectors - which together account for about four-fifths of global final energy demand - continue to lag far behind the power sector. The GSR, published today, is the most comprehensive annual overview of the state of renewable energy worldwide. New solar photovoltaic (PV) capacity reached record levels: Solar PV additions were up 29% relative to 2016, to 98 GW. More solar PV generating capacity was added to the electricity system than net capacity additions of coal, natural gas and nuclear power combined. Wind power also drove the uptake of renewables with 52 GW added globally. Investment in new renewable power capacity was more than twice that of net, new fossil fuel and nuclear power capacity combined, despite large, ongoing subsidies for fossil fuel generation. More than two-thirds of investments in power generation were in renewables in 2017, thanks to their increasing cost-competitiveness - and the share of renewables in the power sector is expected to only continue to rise. Investment in renewables was regionally concentrated: China, Europe and the United States accounted for nearly 75% of global investment in renewables in 2017. However, when measured per unit of gross domestic product (GDP), the Marshall Islands, Rwanda, the Solomon Islands, Guinea Bissau, and many other developing countries are investing as much as or more in renewables than developed and emerging economies. Both energy demand and energy-related CO 2 emissions rose substantially for the first time in four years. Energy-related CO 2 emissions rose by 1

  1. Financing investments in renewable energy: The role of policy design and restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Pickle, S. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.

    1997-03-01

    The costs of electric power projects utilizing renewable energy technologies are highly sensitive to financing terms. Consequently, as the electricity industry is restructured and new renewables policies are created, it is important for policymakers to consider the impacts of renewables policy design on project financing. This report describes the power plant financing process and provides insights to policymakers on the important nexus between renewables policy design and finance. A cash-flow model is used to estimate the impact of various financing variables on renewable energy costs. Past and current renewable energy policies are then evaluated to demonstrate the influence of policy design on the financing process and on financing costs. The possible impacts of electricity restructuring on power plant financing are discussed and key design issues are identified for three specific renewable energy programs being considered in the restructuring process: (1) surcharge-funded policies; (2) renewables portfolio standards; and (3) green marketing programs. Finally, several policies that are intended to directly reduce financing costs and barriers are analyzed. The authors find that one of the key reasons that renewables policies are not more effective is that project development and financing processes are frequently ignored or misunderstood when designing and implementing renewable energy incentives. A policy that is carefully designed can reduce renewable energy costs dramatically by providing revenue certainty that will, in turn, reduce financing risk premiums.

  2. Marine Renewable Energies

    DEFF Research Database (Denmark)

    Azzellino, Arianna; Conley, Daniel; Vicinanza, Diego

    2013-01-01

    Countries with coastlines may have valuable renewable energy resources in the form of tides, currents, waves, and offshorewind.The potential to gather energy from the sea has recently gained interest in several nations, so Marine Renewable Energy Installations (hereinafter MREIs) will likely become...

  3. Optimization Under Uncertainty for Management of Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Zugno, Marco

    -by-price. In a similar setup, the optimal trading (and pricing) problem for a retailer connected to flexible consumers is considered. Finally, market and system operators are challenged by the increasing penetration of renewables, which put stress on markets that were designed to accommodate a generation mix largely......This thesis deals with the development and application of models for decision-making under uncertainty to support the participation of renewables in electricity markets. The output of most renewable sources, e.g., wind, is intermittent and, furthermore, it can only be predicted with a limited...... accuracy. As a result of their non-dispatchable and stochastic nature, the management of renewables poses new challenges as compared to conventional sources of electricity. Focusing in particular on short-term electricity markets, both the trading activities of market participants (producers, retailers...

  4. Analytical fitting model for rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  5. On the thermodynamics of biomolecule surface transformations.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Maiolo, Daniele; Depero, Laura E; Colombo, Italo; Bergese, Paolo

    2012-06-01

    Biological surface science is receiving great and renewed attention owing the rising interest in applications of nanoscience and nanotechnology to biological systems, with horizons that range from nanomedicine and biomimetic photosynthesis to the unexpected effects of nanomaterials on health and environment. Biomolecule surface transformations are among the fundamental aspects of the field that remain elusive so far and urgently need to be understood to further the field. Our recent findings indicate that surface thermodynamics can give a substantial contribution toward this challenging goal. In the first part of the article, we show that biomolecule surface transformations can be framed by a general and simple thermodynamic model. Then, we explore its effectiveness by addressing some typical cases, including ligand-receptor surface binding, protein thin film machines, nanomechanical aspects of the biomolecule-nanoparticle interface and nanomechanical biosensors. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Willingness to pay for renewable energy investment in Korea: A choice experiment study

    International Nuclear Information System (INIS)

    Ku, Se-Ju; Yoo, Seung-Hoon

    2010-01-01

    Renewable energy sources are considered as alternatives for coping with the high price of oil and global warming. The Korean government has set a target that 11% of the total primary energy supply should be obtained through renewable energy sources until 2030. In order to develop proper policies for renewable energy investment, it is necessary to analyze the benefits of renewable energy investment based on households' willingness to pay. This study attempts to apply a choice experiment (CE) for assessing renewable energy investment in Korea. Moreover, we employ a multinomial probit (MNP) model to relax the assumption that all respondents have the same preferences for the attributes being valued, which is usually required in empirical CE studies. An MNP model allows the most flexible pattern of error correlation structure. The results reveal that the Korean public puts a value on the protection of wildlife, reduction of pollution, and increased employment opportunities. On the other hand, respondents do not derive significant values from the improvement of landscapes. This study is expected to provide policy-makers with useful information for evaluating and planning policies related to renewable energy investment. (author)

  7. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  8. The first step towards a 100% renewable energy-system for Ireland

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2011-01-01

    In 2007 Ireland supplied 96% of the total energy demand with fossil fuels (7% domestic and 89% imported) and 3% with renewable energy, even though there are enough renewable resources to supply all the energy required. As energy prices increase and the effects of global warming worsen, it is essential that Ireland begins to utilise its renewable resources more effectively. Therefore, this study presents the first step towards a 100% renewable energy-system for Ireland. The energy-system analysis tool used was EnergyPLAN, as it accounts for all sectors of the energy-system that need to be considered when integrating large penetrations of renewable energy: the electricity, heat, and transport sectors. Initially, a reference model of the existing Irish energy-system was constructed, and subsequently three different 100% renewable energy-systems were created with each focusing on a different resource: biomass, hydrogen, and electricity. These energy-systems were compared so that the benefits from each could be used to create an 'optimum' scenario called combination. Although the results illustrate a potential 100% renewable energy-system for Ireland, they have been obtained based on numerous assumptions. Therefore, these will need to be improved in the future before a serious roadmap can be defined for Ireland's renewable energy transition. (author)

  9. The impact of renewable energies on EEX day-ahead electricity prices

    International Nuclear Information System (INIS)

    Paraschiv, Florentina; Erni, David; Pietsch, Ralf

    2014-01-01

    In this paper, we analyze the impact of renewable energies, wind and photovoltaic, on the formation of day-ahead electricity prices at EEX. We give an overview of the policy decisions concerning the promotion of renewable energy sources in Germany and discuss their consequences on day-ahead prices. An analysis of electricity spot prices reveals that the introduction of renewable energies enhances extreme price changes. In the frame of a dynamic fundamental model, we show that there has been a continuous electricity price adaption process to market fundamentals. Furthermore, the fundamental drivers of prices differ among hours with different load profiles. Our results imply that renewable energies decrease market spot prices and have implications on the traditional fuel mix for electricity production. However, the prices for the final consumers increased overall because they must pay in addition the feed-in tariffs for the promotion of renewable energy. - Highlights: • We analyze the impact of renewable energies on the day-ahead electricity prices at EEX. • We discuss the impact of renewables on day-ahead prices. • We show a continuous electricity price adaption process to market fundamentals. • Renewable energies decrease market spot prices and shift the merit order curve. • The prices for the final consumers however increased because of feed-in tariffs

  10. Future Costs, Benefits, and Impacts of Renewables Used to Meet U.S. Renewable Portfolio Standards

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    This brochure provides a brief overview of the report titled 'A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards.' The report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.

  11. The Park of Renewable Energy geoethical project

    Directory of Open Access Journals (Sweden)

    Patrizia Sibi

    2012-07-01

    Full Text Available The Park of Renewable Energy is an environmental technology park in the middle of Italy that has an innovative integrated system for the production of renewable energy. Recently, the Park launched a public invitation: to become part of a great widespread community for the production of renewable energy, and to promote energy conservation and a sustainable lifestyle. This empowerment process that turns consumers into energy producers – and also into those who convey the culture of sustainability – might, over time, give life to a community that actually lives according to the geoethical principles of biosustainability. The route for the identification and dissemination of the Park of Renewable Energy community is an interesting example of the generative process, whereby rather than doggedly pursuing a predetermined objective, such as a model to be implemented, the actors involved, “look for directions and values that are inherent in the means available” [Bateson 2000], including communication networks and methodologies of social participation. The community components focus their attention on the action and relationship effects, rather than on ways to reach a predefined goal. In this perspective, the Park of Renewable Energy experience aims to become an interesting object of observation and reflection for its green ethics. This ecological approach promises unexpected new creations: there is a chance we will at last see the birth of a sustainable form of social organization adapted to the human community.

  12. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    Science.gov (United States)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  13. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald, E-mail: Harald.Winkler@uct.ac.z [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Hughes, Alison [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Haw, Mary [PJ Carew Consulting, 103 Hout Street, Cape Town 8001 (South Africa)

    2009-11-15

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO{sub 2}-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  14. Renewables 2015 global status report - Annual Reporting on Renewables: Ten years of excellence

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Rickerson, Wilson; Lins, Christine; Williamson, Laura E.; Adib, Rana; Murdock, Hannah E.; Musolino, Evan; Hullin, Martin; Reith, Ayla; Valero, Alana; Mastny, Lisa; Petrichenko, Ksenia; Seyboth, Kristin; Skeen, Jonathan; Sovacool, Benjamin; Wouters, Frank; Martinot, Eric

    2015-01-01

    Renewable energy continued to grow in 2014 against the backdrop of increasing global energy consumption, particularly in developing countries, and a dramatic decline in oil prices during the second half of the year. Despite rising energy use, for the first time in four decades, global carbon emissions associated with energy consumption remained stable in 2014 while the global economy grew; this stabilisation has been attributed to increased penetration of renewable energy and to improvements in energy efficiency. Globally, there is growing awareness that increased deployment of renewable energy (and energy efficiency) is critical for addressing climate change, creating new economic opportunities, and providing energy access to the billions of people still living without modern energy services. Although discussion is limited to date, renewables also are an important element of climate change adaptation, improving the resilience of existing energy systems and ensuring delivery of energy services under changing climatic conditions. Renewable energy provided an estimated 19.1% of global final energy consumption in 2013, and growth in capacity and generation continued to expand in 2014. Heating capacity grew at a steady pace, and the production of bio-fuels for transport increased for the second consecutive year, following a slowdown in 2011-2012. The most rapid growth, and the largest increase in capacity, occurred in the power sector, led by wind, solar PV, and hydropower. Growth has been driven by several factors, including renewable energy support policies and the increasing cost-competitiveness of energy from renewable sources. In many countries, renewables are broadly competitive with conventional energy sources. At the same time, growth continues to be tempered by subsidies to fossil fuels and nuclear power, particularly in developing countries. Although Europe remained an important market and a centre for innovation, activity continued to shift towards other

  15. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  16. The renewable energy market in Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Australia is committed to an 8 per cent reduction in its emissions of greenhouse gases above 1990 levels as a result of the Kyoto Protocol for the period 2008-2012. At present, the emissions stand at 17.4 per cent above 1990 levels. Total electrical power in Australia resulting from renewable energy is in the order of 10.5 per cent. A mandatory renewable energy target of 9500 gigawatt hour (GWh) of extra renewable energy is to be produced annually by 2010, under the Renewable Energy (Electricity) Act. An emissions trading system has been implemented, involving one renewable energy certificate (REC) created for each megawatt hour of renewable energy generated. A significant expansion of the demand for renewable energy is expected in Australia over the next ten years, according to the Australian Greenhouse Office. Increased opportunities for local and international firms operating in the field of renewable energy are being created by the Australian government through initiatives such as the Renewable Energy Commercialization Program, and the Renewable Remote Power Generation Program. Solar, biomass, and wind power are comprised in the wealth of renewable energy resources in Australia. The market remains largely undeveloped. Firms from the United States and the European Union are the leading exporters of renewable energy technology to Australia. Public utilities and independent power producers having entered the deregulated electricity market are the consumers of renewable energy technology and services. A country with minimal duties in most cases, Australia has much in common with Canada, including similar regulatory and legal systems. Australia applies a 10 per cent goods and services tax, which would apply to Canadian exports. It was advised to consult the Australian Customs Service for additional information concerning duties that might be applicable to the renewable energy industry. 28 refs., 3 tabs

  17. Issue on supply chain of renewable energy

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano

    2013-01-01

    Highlights: • One of the most relevant debates, is related to energy and environmental issue. • The development of renewable energy usage is due to several factors. • Indeed challenges from a supply chain point of view are required. • Thorough survey on topics of supply chain and renewable energy has been conducted. • Findings are discussed against the backdrop of SCs as sustainable RE option. - Abstract: Actually, one of the most relevant debates, among both citizens that government, is related to energy and environmental issue. The development of renewable energy usage is due to several factors such as the political strategic decisions and geographical situation. Indeed the high development of renewable energies requires challenges from a supply chain point of view. In this paper, a thorough survey of the extant literature on the topic of supply chain (SC) and renewable energy (RE) has been conducted. English papers published on international peer-reviewed journals from 2003 to 2013 have been considered. Sustainable Supply Chain Management (SSCM) resolves the duality between environmental, economic and social aspects. Sustainable manufacturing practices play an essential role in promoting renewable energy development and commercialization; this will require significant changes to the industry’s traditional Supply Chain Management and business model. The aim of the paper is investigate literature insights useful to increase the performance and overcome barriers to the RE supply chain development. Like many typical supply chains, also supply chain related to RE includes elements such as: physical, information, and financial flows. The present research is useful to individualize characteristics of a RE supply chain. Moreover, the research is useful improve the performance of RE supply chain in some aspects like: • better control supply chain costs to make renewable energy more affordable; • manage supply chain to address weakened demand in the near

  18. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    NARCIS (Netherlands)

    Gurkan, G.; Langestraat, R.

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of

  19. Renewable Energy Policy Fact sheet - Ireland

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. With Ireland's current 'trajectory' of renewable energy growth, it is likely to slightly fall short of its 2020 nationally binding renewable energy target. Ireland initiated a 'moratorium' on its REFIT (Renewable Energy Feed-in Tariff) support scheme in December 2015, with the aim of introducing a revised scheme in 2017 in line with market developments. Grants and tax relief remain in place for renewable heat promotion. An Offshore Renewable Energy Development Plan (OREDP) was introduced in 2014, which sets out Government policy in relation to the sustainable development of Ireland's abundant offshore renewable energy resource

  20. renewables 2011 - Global status report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Martinot, Eric; Barnes, Douglas; Martinot, Eric; McCrone, Angus; Roussell, Jodie; Sawin, Janet L.; Sims, Ralph; Sonntag-O'Brien, Virginia; Adib, Rana; Skeen, Jonathan; Musolino, Evan; Riahi, Lily; Mastny, Lisa

    2011-01-01

    Changes in renewable energy markets, investments, industries, and policies have been so rapid in recent years that perceptions of the status of renewable energy can lag years behind the reality. This report captures that reality and provides a unique overview of renewable energy worldwide as of early 2011. The report covers both current status and key trends; by design, it does not provide analysis or forecast the future. Global energy consumption rebounded in 2010 after an overall downturn in 2009. Renewable energy, which experienced no downturn in 2009, continued to grow strongly in all end-use sectors - power, heat and transport - and supplied an estimated 16% of global final energy consumption. Renewable energy accounted for approximately half of the estimated 194 gigawatts (GW) of new electric capacity added globally during the year. Renewables delivered close to 20% of global electricity supply in 2010, and by early 2011 they comprised one quarter of global power capacity from all sources. In several countries, renewables represent a rapidly growing share of total energy supply, including heat and transport

  1. Balancing renewable on intra day electricity markets

    International Nuclear Information System (INIS)

    Sokol, R.; Bems, J.

    2012-01-01

    Intra day electricity markets contribute to facilitate transition from conventional sources to renewable which need to be balanced on real-time basic due to the unpredictable nature of weather. This paper describes the way from regional electricity markets to a single pan-european market model which is target model of the European Commission. Single liquid intra day electricity market where market participants can balance their portfolios is prerequisite to a full utilisation of renewable power sources and a solution for some problems experienced by TSOs with loop and parallel flows from neighbouring countries. Integrated German and French intra day electricity market which uses Flexible Intra day Trading Scheme is described in this paper as a market which could be extended further to the CEE region with very poor liquidity of its local intra day markets. (Authors)

  2. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.

    Science.gov (United States)

    Kim, Sung-Kon; Kim, Yun Ki; Lee, Hyunjoo; Lee, Sang Bok; Park, Ho Seok

    2014-04-01

    Strong demand for high-performance energy-storage devices has currently motivated the development of emerging capacitive materials that can resolve their critical challenge (i.e., low energy density) and that are renewable and inexpensive energy-storage materials from both environmental and economic viewpoints. Herein, the pseudocapacitive behavior of lignin nanocrystals confined on reduced graphene oxides (RGOs) used for renewable energy-storage materials is demonstrated. The excellent capacitive characteristics of the renewable hybrid electrodes were achieved by synergizing the fast and reversible redox charge transfer of surface-confined quinone and the interplay with electron-conducting RGOs. Accordingly, pseudocapacitors with remarkable rate and cyclic performances (~96 % retention after 3000 cycles) showed a maximum capacitance of 432 F g(-1), which was close to the theoretical capacitance of 482 F g(-1) and sixfold higher than that of RGO (93 F g(-1)). The chemical strategy delineated herein paves the way to develop advanced renewable electrodes for energy-storage applications and understand the redox chemistry of electroactive biomaterials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Distributed Model Predictive Control approach for the integration of flexible loads, storage and renewables

    DEFF Research Database (Denmark)

    Ferrarini, Luca; Mantovani, Giancarlo; Costanzo, Giuseppe Tommaso

    2014-01-01

    This paper presents an innovative solution based on distributed model predictive controllers to integrate the control and management of energy consumption, energy storage, PV and wind generation at customer side. The overall goal is to enable an advanced prosumer to autoproduce part of the energy...... he needs with renewable sources and, at the same time, to optimally exploit the thermal and electrical storages, to trade off its comfort requirements with different pricing schemes (including real-time pricing), and apply optimal control techniques rather than sub-optimal heuristics....

  4. Cost effects of international trade in meeting EU renewable electricity targets

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.

    2006-01-01

    The European market for renewable electricity received a major stimulus from the adoption of the Directive on the Promotion of Renewable Electricity. The Directive specifies the indicative targets for electricity supply from renewable energy sources (RES-E) to be reached in European Union (EU) Member States in the year 2010. It also requires Member States to certify the origin of their renewable electricity production. This article presents a first EU-wide quantitative evaluation of the effects of meeting the targets, using an EU-wide system for tradable green certificates (TGC). We calculate the equilibrium price of green certificates and identify which countries are likely to export or import certificates. Cost advantages of participating in such an EU-wide trading scheme are determined for each of the Member States. Moreover, we identify which choice of technologies results in meeting targets at least costs. Results are obtained from a model that quantifies the effects of achieving the RES-E targets in the EU with and without trade. The article provides a brief insight in this model as well as the methodology that was used to specify cost potential curves for renewable electricity in each of the 15 EU Member States. Model calculations show that within the EU-wide TGC system, the total production costs of the last option needed to satisfy the overall EU RES-E target equals 9.2 eurocent/kWh. Assuming that the production price of electricity on the European power market would equal 3 eurocent/kWh in the year 2010, the indicative green certificate price equals 6.2 eurocent/kWh. We conclude that implementation of an EU-wide TGC system is a cost-efficient way of stimulating renewable electricity supply

  5. Unforeseen consequences of dedicated renewable energy transmission: Potential implications for renewable electricity development

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, Roger

    2010-09-15

    Renewable electricity generation requires expansion of electricity transmission, and the U.S. is planning to build a 'green' transmission lines restricted to renewable electricity. However, local jurisdictions are resisting this unless the transmission serves local constituents and existing power plants. This paper finds that if such transmission is built and local access allowed, then the major beneficiaries may be existing power plants. Their access to added transmission could enable them to sell electric power at rates against which renewables cannot compete. These issues must be addressed if large additions of new transmission lines are to facilitate expansion of renewable electricity generation worldwide.

  6. Renewable energy education for 21st century

    International Nuclear Information System (INIS)

    Charters, W.W.S.

    2000-01-01

    The major technological developments in equipment, designed to harness new and renewable sources of energy, have only taken place in the last four decades of the twentieth century, although the principles involved have been previously known for many centuries and were clearly formulated in many of the ancient civilizations. The term renewable energy (RE) itself is of relatively recent origin and only came into widespread use worldwide in the eighties, after the United Nations Conference on New and Renewable Sources of Energy, held in Nairobi, Kenya in 1981, Ref 1. Currently, the term renewable s is extensively used to describe the full range of direct and indirect uses of solar radiation incident on the earth's surface, and is often extended to include energy resources, such as tidal power or geothermal energy, neither of which is strictly renewable in the true sense of the word. Energy extracted from biomass is also generally included under this heading, although biomass is truly renewable only if continuous plantation development and replanting is carried out as the biomass is harvested. On a global scale, relatively extensive teaching about renewable energy started in the late seventies and early eighties, after the first impact of the OPEC oil price shock. Up till this time, there were only a few centres around the world where individual dedicated researchers and university teachers were involved in such activity. The next impetus to course and teaching material development came with national movements for energy independence and finally, in the latter years of this century, considerable stimulation has been given due to the increasing realisation of global environmental factors such as global warming, ozone depletion in the upper atmosphere, acid rain formation, and many other environmental degradation effects due to the increasing use of fossil fuel reserves. Considerable attention has been focused in the last twenty years through the many national and

  7. Renewable energy technologies and the European industry

    International Nuclear Information System (INIS)

    Whiteley, M.; Bess, M.

    2000-01-01

    The European renewable energy industry has the potential to be a world leader. This has been achieved within the European region for specific technologies, through a set of policy activities at a national and regional level, driven primarily by employment, energy self-sufficiency and industrial competitiveness. Using the experience gained in recent years, European industry has the opportunity to continue to expand its horizons on a worldwide level. Through the use of the SAFIRE rational energy model, an assessment has been made of the future penetration of renewable energy within Europe and the effects on these socio-economic factors. In conjunction with these outputs, assessments of the worldwide markets for wind, photovoltaics, solar thermal plant and biomass have been assessed. A case study of the Danish wind industry is used as a prime example of a success story from which the learning opportunities are replicated to other industries, so that the European renewable energy industry can achieve its potential. (orig.)

  8. The market value of variable renewables

    International Nuclear Information System (INIS)

    Hirth, Lion

    2013-01-01

    This paper provides a comprehensive discussion of the market value of variable renewable energy (VRE). The inherent variability of wind speeds and solar radiation affects the price that VRE generators receive on the market (market value). During windy and sunny times the additional electricity supply reduces the prices. Because the drop is larger with more installed capacity, the market value of VRE falls with higher penetration rate. This study aims to develop a better understanding on how the market value with penetration, and how policies and prices affect the market value. Quantitative evidence is derived from a review of published studies, regression analysis of market data, and the calibrated model of the European electricity market EMMA. We find the value of wind power to fall from 110% of the average power price to 50–80% as wind penetration increases from zero to 30% of total electricity consumption. For solar power, similarly low value levels are reached already at 15% penetration. Hence, competitive large-scale renewable deployment will be more difficult to accomplish than as many anticipate. - Graphical abstract: Wind value factor estimates from a literature review (a), the numerical model EMMA (b), and German historical market data (c). The value factor (wind revenue over base price) decreases with higher penetration rates. Highlights: ► The variability of solar and wind power affects their market value. ► The market value of variable renewables falls with higher penetration rates. ► We quantify the reduction with market data, numerical modeling, and a lit review. ► At 30% penetration, wind power is worth only 50–80% of a constant power source

  9. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    Science.gov (United States)

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  10. Renewable energy: Method and measures

    International Nuclear Information System (INIS)

    Nilsen, Trond Hartvedt

    2003-01-01

    The thesis presents various possibilities for renewable energy in Norway. The wind power would give a practical and economic alternative. The external costs for the wind power would be moderate. In chapter 3 the utility cost analysis for renewable alternatives are studied relative to the macroeconomic efficiency. Some methodical problems and how these analyses are used are reviewed. In the practical utility cost analyses wind power is studied relative to gas power which is the non-renewable alternative present in Norway today. A qualitative part is included. It is not possible to determine whether wind power is preferable to gas power in the macroeconomic perspective. Wind power would be the choice if high environmental and CO2 cleaning costs are expected. The first conclusion to be drawn is that it is difficult to decide whether wind power is the best solution based on cost benefit analysis. However, the alternative seems to be quite robust in the analysis. Due to the central position the energy supplies have in the society this business should be heavily regulated. The sector is also overtaxed as a reduction in consumption is desired. The analysis shows that the system does not function perfectly. The thesis surveys various measures for improving the renewable energy supply and focuses on the wind power. A model for and analysis of the measures are carried out and resulted in a second conclusion. The measures have various properties as to the influence on the market. A subsidy is a fine measure for stimulation production of green power while a tax reduces efficiently the production of black power. A system with green licenses in combination with a subsidy and a tax would be preferable as to increasing the part of renewable energy of the total production. It is therefore necessary to have clearly defined goals and use suitable measures for achieving them. The costs of wind power is falling and it would therefore soon be macroeconomic profitable. It is also

  11. Creation and evaluation of a database of renewable production time series and other data for energy system modelling

    International Nuclear Information System (INIS)

    Janker, Karl Albert

    2015-01-01

    This thesis describes a model which generates renewable power generation time series as input data for energy system models. The focus is on photovoltaic systems and wind turbines. The basis is a high resolution global raster data set of weather data for many years. This data is validated, corrected and preprocessed. The composition of the hourly generation data is done via simulation of the respective technology. The generated time series are aggregated for different regions and are validated against historical production time series.

  12. 2010 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  13. 2013 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  14. 2011 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  15. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  16. Exploration can cause falling non-renewable resource prices

    International Nuclear Information System (INIS)

    Boyce, John R.

    2003-01-01

    This note shows that when marginal exploration costs are increasing in the rate of exploration that it is possible to observe non-renewable resource prices falling over a portion of the extraction profile. Thus, while the model of Pindyck (J. Polit. Econ. 86 (1978) 841) was based on an incorrect specification of the aggregate extraction cost function, its general conclusion that exploration can cause falling non-renewable resource prices is upheld. This result is in contrast to Mendelsohn and Swierzbinski (Int. Econ. Rev. 30 (1989) 175), who assumed that marginal extraction costs were constant

  17. The value of renewables

    International Nuclear Information System (INIS)

    Koch, H.J.

    2001-01-01

    The article extols the virtues of renewable energy sources. Based largely on the outcome of an IAE meeting in May 2001, the author has outlined an approach for accelerating the development of renewables. The article quotes several statements made by the IAE with respect to the need for a secure supply of affordable energy, sustainable development, diversification, the value of renewables and challenges confronting developers of renewables. The article is presented under the sub-headings of: (i) harnessing energy market forces; (ii) understanding costs in the context of diversification; (iii) economic performance; (iv) environmental protection; (v) an IAE action plan and (vi) conclusions. The author was once the IAE's director for energy efficiency, technology and R and D

  18. Mitigation of global warming through renewable biomass

    International Nuclear Information System (INIS)

    Dhillon, R.S.; Wuehlisch, George von

    2013-01-01

    Rising level of atmospheric CO 2 and consequent global warming is evident. Global surface temperature have already increased by 0.8 °C over the 20th century and is projected to increase by 1.4–5.8 °C during the twenty-first century. The global warming will continue till atmospheric concentrations of the major greenhouse gases are stabilized. Among them, CO 2 is mainly responsible and is expected to account for about 60% of the warming over the next century. This study reviews advances on causes and consequences of global climate change and its impact on nature and society. Renewable biomass has tremendous potential to mitigate the global warming. Renewable biomass is expected to play a multifunctional role including food production, source of energy and fodder, biodiversity conservation, yield of goods and services to the society as well as mitigation of the impact of climate change. The review highlights the different management and research strategies in forestry, agriculture, agroforestry and grasslands to mitigate the global warming. -- Highlights: ► Rising level of atmospheric CO 2 and consequent global warming is evident. ► CO 2 is mainly responsible for global warming. ► Global temperature is predicted to increase by 1.4–5.8 °C during 21st century. ► Renewable biomass has great potential to mitigate the global warming

  19. The daily hour forecasting of the electrical energy production from renewable energy sources – a required condition for the operation of the new energy market model

    International Nuclear Information System (INIS)

    Kalpachka, Gergana; Kalpachki, Georgi

    2011-01-01

    The report presented the new energy market model in Bulgaria and the main attention is directed to a daily hour forecasting of the electrical energy production from renewable energy sources. The need of development of a methodology and the development of the most precise methods for predicting is reviewed and some of the used methods at the moment are presented. An analysis of the problems related to the daily hour forecasting is done using data from the producers of electrical energy from renewable energy sources in the territory of western Bulgaria. Keywords: Renewable energy sources, daily hour forecasting, electrical energy

  20. On the determinants of renewable energy consumption: International Evidence

    OpenAIRE

    Anis Omri; Duc Khuong Nguyen

    2014-01-01

    Over recent years, renewable energy sources have emerged as an important component of world energy consumption. Little is however known about the determinants of renewable energy consumption. This article tackles this issue for a global panel consisting of 64 countries over the period 1990-2011 by using a dynamic system- GMM panel model. We also consider three homogeneous subpanels which are constructed based on the income level of sample countries (high-, middle-, and low-income subpanels). ...

  1. Russian Energy Strategy and development of renewable power industry

    OpenAIRE

    Bazhanov, Andrei; Tyukhov, Igor

    2008-01-01

    We consider two scenarios of the development of renewable power industry in Russia on an example of the Dasgupta-Heal-Solow-Stiglitz model. We assume that the resource rent is being invested into capital in the form of renewable power technologies according to the standard Hartwick saving rule. We use the modified Hotelling rule that reflects externalities implying, in particular, growing rates of oil extraction. We have shown that the growing extraction, prescribed by the Russian Energy Stra...

  2. Will domestic consumers take up the renewable heat incentive? An analysis of the barriers to heat pump adoption using agent-based modelling

    International Nuclear Information System (INIS)

    Snape, J.R.; Boait, P.J.; Rylatt, R.M.

    2015-01-01

    The UK Government introduced the tariff-based domestic Renewable Heat Incentive (RHI) in April 2014 to encourage installation of renewable heat technologies as a key component of its carbon reduction policy. Of these, heat pumps are considered to be the most promising for widespread adoption and as such are the subject of this paper. Pilot studies prior to introduction of the policy identified non-financial barriers to uptake, such as the “hassle factor” involved, and initial figures indeed indicate that uptake is lower than expected. We analyse these non-financial barriers using an agent-based model and conclude that there is a tipping point beyond which adoption is likely to fall very sharply. We suggest that the RHI’s complex and stringent compliance requirements for home inspections and heat emitter performance may well have driven adoption past this point and that further intervention may be required if the key aims of the RHI are to be achieved. -- Highlights: •We examine the uptake of the UK Renewable Heat Incentive (RHI). •We use Agent-based modelling to simulate uptake in a heterogeneous population. •Simulation modelling suggests that uptake is sensitive to non-financial barriers. •Non-financial barriers were introduced after RHI policy impact assessment. •New barriers combined with sensitivity could explain observed lower than expected uptake

  3. Renewables global status report - 2009 Update

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Martinot, Eric; Mastny, Lisa; Lempp, Philippe; Sonntag-O'Brien, Virginia; Lempp, Philippe; Foulon, Samia; Roussell, Jodie; Welker, Bettina

    2009-01-01

    from conventional sources (including gas, coal, oil, and nuclear). Renewable energy industries boomed during most of 2008. Global solar PV production increased by 90 percent to 6.9 GW in 2008. China usurped Japan to become the new world leader in PV cell production and also experienced huge growth in its wind power industry, with many new companies producing wind turbines and components. Globally, the wind industry continued to push turbine sizes higher, with models of 3 MW or larger becoming more widespread. The concentrating solar power (CSP) industry saw many entrants and new manufacturing facilities. The ethanol and bio-diesel industries similarly expanded, particularly in North America and Latin America, and the cellulosic ethanol industry was in the process of booming, with 300 million liters per year of capacity under construction. Although the clean energy sector initially weathered the financial crisis in late 2008 better than many other sectors, renewable investment did experience a downturn after September 2008. However, projects continued to progress and many economic stimulus bills included components for supporting renewable energy. At the same time, development assistance for renewables in developing countries expanded greatly, reaching about $2 billion in 2008. By early 2009, policy targets existed in at least 73 countries, and at least 64 countries had policies to promote renewable power generation, including 45 countries and 18 states/provinces/territories with feed-in tariffs (many of these recently updated). The number of countries/states/ provinces with renewable portfolio standards increased to 49. Policy targets for renewable energy were added, supplemented, revised, or clarified in a large number of countries in 2008. Many forms of policy support for renewables were added, supplemented, or extended in a number of countries during 2008. For example, new solar PV subsidy programs were adopted in Australia, China, Japan, Luxembourg, the Netherlands

  4. Damn renewable energies

    International Nuclear Information System (INIS)

    Gay, Michel

    2017-01-01

    In this book, the author describes how renewable energies have been developed in a way he considers as scandalous, whereas they are a technical, financial and ecological dead end. He also explains how ecologists (notably the ADEME) manipulate figures to make believe that these energies could be an answer to the needs of France, of Europe and of humanity. In a first chapter, he criticises the influence of a so-called green ideology on the design of energy transition. In the second one, he denounces twelve tales about energy transition. In the next chapters, he denounces the sham of renewable energies, and finally tells some unfortunate renewable experiments

  5. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  6. Renewable energy policy. Into the mainstream

    International Nuclear Information System (INIS)

    2003-01-01

    Renewable energy today is at a critical stage of development: renewable technologies are maturing, and costs for some technologies are in the competitive range. Beyond the energy they produce, renewable energy technologies offer a variety of other benefits towards the achievement of sustainable development goals. This promise has led to all IEA governments to support their greater development. But, while renewables markets are growing strongly, additional steps must be taken to accelerate the achievement of sustainable, large-scale markets. This report by the IEA's Renewable Energy Working Party outlines those steps, and the benefits of moving renewable energy into the mainstream

  7. Countervailing inequality effects of globalization and renewable energy generation in Argentina

    OpenAIRE

    Andrea Vaona

    2013-01-01

    The present paper assesses the impacts of renewable energy generation and globalization on income inequality in Argentina. We make use of vector autoregression models. We find that globalization and hydroelectric power increase inequality, while the opposite holds true for other renewable energy sources. Several robustness checks are considered. Policy implications are discussed keeping into account the specific Argentinean context.

  8. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  9. Economics of nuclear and renewables

    International Nuclear Information System (INIS)

    Khatib, Hisham; Difiglio, Carmine

    2016-01-01

    This paper provides an assessment of the economic challenges faced by both nuclear power and “new” renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks – investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. - Highlights: •Renewables are increasing their energy share. •Renewables system cost is higher than their production cost. •Nuclear share is not increasing and their costs are not reduced. •Discount rate and subsidies are important in economics of renewables and nuclear.

  10. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  11. The effect of real-time pricing on load shifting in a highly renewable power system dominated by generation from the renewable sources of wind and photovoltaics

    Science.gov (United States)

    Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan

    2017-04-01

    The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on

  12. Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

    OpenAIRE

    Hussain Ali Bekhet; Nor Hamisham Harun

    2016-01-01

    The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable ener...

  13. Risk analysis for renewable energy projects due to constraints arising

    Science.gov (United States)

    Prostean, G.; Vasar, C.; Prostean, O.; Vartosu, A.

    2016-02-01

    Starting from the target of the European Union (EU) to use renewable energy in the area that aims a binding target of 20% renewable energy in final energy consumption by 2020, this article illustrates the identification of risks for implementation of wind energy projects in Romania, which could lead to complex technical implications, social and administrative. In specific projects analyzed in this paper were identified critical bottlenecks in the future wind power supply chain and reasonable time periods that may arise. Renewable energy technologies have to face a number of constraints that delayed scaling-up their production process, their transport process, the equipment reliability, etc. so implementing these types of projects requiring complex specialized team, the coordination of which also involve specific risks. The research team applied an analytical risk approach to identify major risks encountered within a wind farm project developed in Romania in isolated regions with different particularities, configured for different geographical areas (hill and mountain locations in Romania). Identification of major risks was based on the conceptual model set up for the entire project implementation process. Throughout this conceptual model there were identified specific constraints of such process. Integration risks were examined by an empirical study based on the method HAZOP (Hazard and Operability). The discussion describes the analysis of our results implementation context of renewable energy projects in Romania and creates a framework for assessing energy supply to any entity from renewable sources.

  14. 2012 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  15. Enhancing the representation of subgrid land surface characteristics in land surface models

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2013-09-01

    Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs. The subgrid structure of the Community Land Model (CLM was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands–N PFTs method; SGC2: N PFTs–M elevation bands method. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0° with three maximum-allowed total number of LRUs (i.e., NLRU of 24, 18 and 12 over North America (NA, the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity (NLRU = 18. It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on

  16. Using modeling, satellite images and existing global datasets for rapid preliminary assessments of renewable energy resources: The case of Mali

    International Nuclear Information System (INIS)

    Nygaard, Ivan; Badger, Jake; Larsen, Soeren; Rasmussen, Kjeld; Nielsen, Thomas Theis; Hansen, Lars Boye; Stisen, Simon; Mariko, Adama; Togola, Ibrahim

    2010-01-01

    This paper presents a novel approach to the preliminary, low-cost, national-scale mapping of wind energy, solar energy and certain categories of bio-energy resources in developing countries, using Mali as an example. The methods applied make extensive use of satellite remote sensing and meteorological mesoscale modeling. The paper presents first results from applying the methodology in Mali and discusses the appropriateness of the results obtained. It is shown that northern Mali has considerable wind energy potential, while average wind speeds in the southern part are too low to make wind power a competitive option. Solar energy resources are shown to be abundant in all of Mali, though the highest values are found in the south. The temporal variation is relatively limited. Bio-energy resources are also concentrated in the south, but there are small pockets of high vegetation productivity in the irrigated areas of the Niger inland delta that might be interesting from a renewable energy resource perspective. Finally, the paper discusses the role that renewable energy resources might play in the energy systems of Mali, given the spatio-temporal distribution of renewable energy resources. It is argued that at the current price of about 70 US$/barrel for fossil fuels, renewable energy resources are becoming economically as well as environmentally attractive options. (author)

  17. Renewable energies in France. New financing modes and challenges for French actors

    International Nuclear Information System (INIS)

    2014-11-01

    This document comprises three reports and a video. The first report is an executive summary which focuses on the main factors of evolution of the activity in the field of renewable energies, and stresses factors of change and their strategic consequences. The second report proposes a strategic analysis which addresses key challenges and problematic of the sector, analyses the evolution of competition, deciphers the strategies of the main operators, and tries to identify the best performing business models. It proposes an overview of the situation of the French market of renewable energies (hydraulic, wind, solar photovoltaic, solar thermal, biomass including biogas, waste combustion, geothermal and heat pumps), a precise description of renewable energy financing modes (notably four models: capital-investment, green bonds, institutional financing, participative financing), an analysis of opportunities for the different French renewable energy sectors on the medium term, and an identification of actors with an analysis of their market positioning. The third report proposes data which provide a comprehensive and structured overview of the market, of its dynamics and of operators. It presents the market environment (energy policy, energy assessment, housing fleet, GDP, other environmental factors), the French market of renewable energies (final consumption, primary production, turnover of 5 component suppliers and of 5 operators, renewable heat production and consumption, renewable electric power production and consumption), and the competitive environment (economic structure, overview of main manufacturers, exploiters and operators in France) with a more detailed presentation of 18 manufacturers, owners and operators). The video proposes a presentation of operational conclusions of this study

  18. Optimal portfolio selection between different kinds of Renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Zakerinia, MohammadSaleh; Piltan, Mehdi; Ghaderi, Farid

    2010-09-15

    In this paper, selection of the optimal energy supply system in an industrial unit is taken into consideration. This study takes environmental, economical and social parameters into consideration in modeling along with technical factors. Several alternatives which include renewable energy sources, micro-CHP systems and conventional system has been compared by means of an integrated model of linear programming and three multi-criteria approaches (AHP, TOPSIS and ELECTRE III). New parameters like availability of sources, fuels' price volatility, besides traditional factors are considered in different scenarios. Results show with environmental preferences, renewable sources and micro-CHP are good alternatives for conventional systems.

  19. Renewal processes with costs and rewards

    NARCIS (Netherlands)

    Vlasiou, M.; Cochran, J.J.; Cox, L.A.; Keskinocak, P.; Kharoufeh, J.P.; Smith, J.C.

    2011-01-01

    We review the theory of renewal reward processes, which describes renewal processes that have some cost or reward associated with each cycle. We present a new simplified proof of the renewal reward theorem that mimics the proof of the Elementary Renewal Theorem and avoids the technicalities in the

  20. Renewable energy: GIS-based mapping and modelling of potentials and demand

    Science.gov (United States)

    Blaschke, Thomas; Biberacher, Markus; Schardinger, Ingrid.; Gadocha, Sabine; Zocher, Daniela

    2010-05-01

    Worldwide demand of energy is growing and will continue to do so for the next decades to come. IEA has estimated that global primary energy demand will increase by 40 - 50% from 2003 to 2030 (IEA, 2005) depending on the fact whether currently contemplated energy policies directed towards energy-saving and fuel-diversification will be effectuated. The demand for Renewable Energy (RE) is undenied but clear figures and spatially disaggregated potentials for the various energy carriers are very rare. Renewable Energies are expected to reduce pressures on the environment and CO2 production. In several studies in Germany (North-Rhine Westphalia and Lower Saxony) and Austria we studied the current and future pattern of energy production and consumption. In this paper we summarize and benchmark different RE carriers, namely wind, biomass (forest and non-forest, geothermal, solar and hydro power. We demonstrate that GIS-based scalable and flexible information delivery sheds new light on the prevailing metaphor of GIS as a processing engine serving needs of users more on demand rather than through ‘maps on stock'. We compare our finding with those of several energy related EU-FP7 projects in Europe where we have been involved - namely GEOBENE, REACCESS, ENERGEO - and demonstrate that more and more spatial data will become available together with tools that allow experts to do their own analyses and to communicate their results in ways which policy makers and the public can readily understand and use as a basis for their own actions. Geoportals in combination with standardised geoprocessing today supports the older vision of an automated presentation of data on maps, and - if user privileges are given - facilities to interactively manipulate these maps. We conclude that the most critical factor in modelling energy supply and demand remain the economic valuation of goods and services, especially the forecast of future end consumer energy costs.

  1. The class of L ∩ D and its application to renewal reward process

    Science.gov (United States)

    Kamışlık, Aslı Bektaş; Kesemen, Tülay; Khaniyev, Tahir

    2018-01-01

    The class of L ∩ D is generated by intersection of two important subclasses of heavy tailed distributions: The long tailed distributions and dominated varying distributions. This class itself is also an important member of heavy tailed distributions and has some principal application areas especially in renewal, renewal reward and random walk processes. The aim of this study is to observe some well and less known results on renewal functions generated by the class of L ∩ D and apply them into a special renewal reward process which is known in the literature a semi Markovian inventory model of type (s, S). Especially we focused on Pareto distribution which belongs to the L ∩ D subclass of heavy tailed distributions. As a first step we obtained asymptotic results for renewal function generated by Pareto distribution from the class of L ∩ D using some well-known results by Embrechts and Omey [1]. Then we applied the results we obtained for Pareto distribution to renewal reward processes. As an application we investigate inventory model of type (s, S) when demands have Pareto distribution from the class of L ∩ D. We obtained asymptotic expansion for ergodic distribution function and finally we reached asymptotic expansion for nth order moments of distribution of this process.

  2. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  3. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  4. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  5. Priority to renewable energies - on the amendment to the renewable energies act

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The Federal Ministry for the Environment, which has been the competent authority for renewable energies since the 2002 federal election, has presented draft legislation on the accelerated development of renewable energies in the electricity sector. This is to reduce, through internalization, the costs to the national economy arising from power supply, to conserve nature and the environment, avoid conflicts over fossil energy resources, and promote the advanced development of renewable energy technologies. Emphasis is put solely on protection of the climate and of the environment. The way towards sustainable energy supply by taking into account ecological, economic and social aspects is abandoned. The funding rates laid down in legislation are not going to offer major incentives for further plant improvement by technological development. The quantitative goals of this draft legislation onesidedly aimed at electricity production are doubtful. Renewable energies are hardly the right way to replace nuclear power plants operated in the baseload mode. What is missing in the draft legislation, though it would be urgently needed, is a clear time limit on the eligibility of renewable energy plants for subsidizing, as this would counteract the impression of permanent subsidizing. (orig.)

  6. Renewable Electricity Futures Study. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  7. Renewables 2010 - Global status report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Martinot, Eric; Sonntag-O'Brien, Virginia; McCrone, Angus; Roussell, Jodie; Barnes, Douglas; Flavin, Christopher; Mastny, Lisa; Kraft, Diana; Wang, Shannon; Ellenbeck, Saskia; Ilieva, Lili; Griebenow, Christof; Adib, Rana; Lempp, Philippe; Welker, Bettina

    2010-01-01

    Changes in renewable energy markets, investments, industries, and policies have been so rapid in recent years that perceptions of the status of renewable energy can lag years behind the reality. This report captures that reality and provides a unique overview of renewable energy worldwide as of early 2010. The report covers both current status and key trends. By design, the report does not provide analysis, discuss current issues, or forecast the future. Many of the trends reflect the increasing significance of renewable energy relative to conventional energy sources (including coal, gas, oil, and nuclear). By 2010, renewable energy had reached a clear tipping point in the context of global energy supply. Renewables comprised fully one quarter of global power capacity from all sources and delivered 18 percent of global electricity supply in 2009. In a number of countries, renewables represent a rapidly growing share of total energy supply-including heat and transport. The share of households worldwide employing solar hot water heating continues to increase and is now estimated at 70 million households. And investment in new renewable power capacity in both 2008 and 2009 represented over half of total global investment in new power generation. Trends reflect strong growth and investment across all market sectors-power generation, heating and cooling, and transport fuels. Grid-connected solar PV has grown by an average of 60 percent every year for the past decade, increasing 100-fold since 2000. During the past five years from 2005 to 2009, consistent high growth year-after-year marked virtually every other renewable technology. During those five years, wind power capacity grew an average of 27 percent annually, solar hot water by 19 percent annually, and ethanol production by 20 percent annually. Biomass and geothermal for power and heat also grew strongly. Much more active policy development during the past several years culminated in a significant policy milestone

  8. Renewable Energy Policy Fact sheet - Romania

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. The promotion of renewable electricity in Romania relies primarily on a renewable quota scheme. Since 2017 the scheme has been closed for new projects. Renewable heating and cooling is promoted through investment subsidies. Renewable energy sources in the transport sector are promoted by a bio-fuels quota scheme and indirectly through a subsidy scheme for the purchase of electric vehicles

  9. Technology learning for renewable energy. Implications for South Africa's long-term mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Harald; Hughes, Alison [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Haw, Mary [PJ Carew Consulting, 103 Hout Street, Cape Town 8001 (South Africa)

    2009-11-15

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO{sub 2}-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa. (author)

  10. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  11. 90–100% renewable electricity for the South West Interconnected System of Western Australia

    International Nuclear Information System (INIS)

    Lu, Bin; Blakers, Andrew; Stocks, Matthew

    2017-01-01

    Rapidly increasing penetration of renewables, primarily wind and photovoltaics (PV), is causing a move away from fossil fuel in the Australian electric power industry. This study focuses on the South West Interconnected System in Western Australia. Several high (90% and 100%) renewables penetration scenarios have been modelled, comprising wind and PV supplemented with a small amount of biogas, and compared with a “like-for-like” fossil-fuel replacement scenario. Short-term off-river (closed cycle) pumped hydro energy storage (PHES) is utilised in some simulations as a large-scale conventional storage technology. The scenarios are examined by using a chronological dispatch model. An important feature of the modelling is that only technologies that have been already deployed on a large scale (>150 gigawatts) are utilised. This includes wind, PV and PHES. The modelling results demonstrate that 90–100% penetration by wind and PV electricity is compatible with a balanced grid. With the integration of off-river PHES, 90% renewables penetration is able to provide low-carbon electricity at competitive prices. Pumped hydro also facilitates a 100% renewables scenario which produces zero greenhouse gas emissions with attractive electricity prices. A sensitivity analysis shows the most important factors in the system cost are discount rate and wind turbine cost. - Highlights: • Short-term off-river pumped hydro energy storage (STORES). • 90–100% renewables for a large-scale self-contained power system. • PV and wind serves 80–90% of the total energy. • 90% renewables system costs $116 ($103)/MWh using 2016 (2030) prices.

  12. 48 CFR 570.401 - Renewal options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Renewal options. 570.401... Requirements 570.401 Renewal options. (a) Exercise of options. Before exercising an option to renew, follow the... survey. Before exercising an option to renew a lease, review current market information to ensure the...

  13. Modeling the power of renewable energy sources in the context of classical electricity system transformation

    Directory of Open Access Journals (Sweden)

    Rafał Kasperowicz

    2017-10-01

    Full Text Available Many regions, not only in the Europe, introduce plans for the modernization of energy systems so that in a few or several years most of the demand for electricity was being able to cover using renewable energy sources. The aim of this paper is to present the possibility of estimation of appropriate power supply based on the renewable energy sources in the context of the whole energy system in the annual balance, taking into account the technical and the economic optimization strategies. The article presents also the simplified structure of the 100% renewable energy system supported by energy storage systems and the production of synthetic fuels.

  14. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  15. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    International Nuclear Information System (INIS)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-01-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  16. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-07-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  17. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  18. Modeling the effects of the new Russian capacity mechanism on renewable energy investments

    International Nuclear Information System (INIS)

    Kozlova, Mariia; Collan, Mikael

    2016-01-01

    Russian renewable energy policy, introduced in May 2013, is a capacity mechanism-based approach to support wind, solar, and small hydro power development in Russia. This paper explores the effect of the new mechanism on the profitability of new renewable energy investments with a numerical example. The sensitivity of project profitability to selected factors is studied and the results are compared ceteris paribus to results from a generic feed-in premium case. Furthermore, the paper gives a complete and detailed presentation of the capacity price calculation procedure tied to the support mechanism. The results show that the new Russian renewable energy capacity mechanism offers a significant risk reduction to the investor in the form of dampening the sensitivity to external market factors. At the same time it shields the energy market system from excessive burden of renewable energy support. Even if the complexity of the method is a clear drawback to the detailed understanding of how the mechanism works, the design of the incentive policy could be an appealing alternative also for other emerging economies. - Highlights: •New Russian RE investment incentive mechanism is presented in detail. •Effect of the mechanism on RE investment profitability is numerically illustrated. •Sensitivity of project profitability to selected variables is studied. •Sensitivity results are compared to results under a generic feed-in premium. •The mechanism is shown to reduce market-related risks of RE investments.

  19. Renewable Energy Certificates (RECs)

    Science.gov (United States)

    Renewable Energy Certificates (RECs), are tradable, non-tangible energy commodities in the United States that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource.

  20. Complementarity and substitution of renewable energy in target year energy supply-mix plannin–in the case of Taiwan

    International Nuclear Information System (INIS)

    Wang, Hsiao-Fan; Sung, Meng-Ping; Hsu, Hsin-Wei

    2016-01-01

    Renewable energies are eco-friendly and sustainable. However, their development faces two critical issues: the uncontrollable generation variability, and the high levelized cost. These two issues impede the development of renewables substitution for a government from lacking of clearly argument of how to promote renewables substitution, and what is the role of traditional generation resources should play to back up the renewable energies in a target year. This study aims to depict the possibility of the concerned topic from the aspects of economy, security, and environment, taking a top–down viewpoint of policy-making to address an energy supply problem, and proposes an Energy Supply-Mix Model by considering the complimentary and substitution possibilities between renewable and non-renewable energies, and also among the renewable energies. The solution provides an overall assessment of three aspects under the conditions of supply and demand balance, desired generation percentage of renewable energies, and also ensure no shortage in peak-hour demand. Parametric analysis on the carbon tax is particularly conducted for policy making reference. This study takes Taiwan as a case and performs the scenario analysis according to the recent energy policies. The results have shown that the proposed model can effectively support a decision body for policy formulation. - Highlights: • Discuss renewable and non-renewable energy substitution. • Discuss the complementary among renewable energies. • The MOLP model achieves goals of economy, environment, energy supply-mix. • Scenario and sensitivity analyses are for policy support. • Case of Taiwan supports the applicability and validity.

  1. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Gevorgian, Vahan; Wallen, Robb

    2016-01-01

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers....... The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in...

  2. Renewable-energy applications in Egypt

    International Nuclear Information System (INIS)

    Hammad, M.A.

    2005-01-01

    The paper illustrates the main activities carried out concerning development and application of renewable-energy technologies in Egypt. Main attention is devoted to biogas technology, solar and wind energy technologies. The main constraints for implementation of renewable-energy technologies in Egypt and the activities carried out for its release are highlighted. The coordination between the Islamic and other developing countries is highly needed, to achieve marked progress in implementation of renewable energy and sustainable development. Establishment of a network for renewable energy among the Islamic countries can play an active role in these aspects. (author)

  3. Regulatory guidance for license renewal

    International Nuclear Information System (INIS)

    Thoma, John A.

    1991-01-01

    The proposed 10 CFR Part 54 rule proceduralizes the process for license renewal by identifying both the administrative and technical requirements for a renewal application. To amplify and support this regulation, written guidance has been provided in the form of a draft Regulatory Guide (DG 1009) and a draft Standard Review Plan for License Renewal (NUREG 1299). This guidance is scheduled to be finalized in 1992. Similar guidance will be provided for the proposed revisions to 10 CFR Part 51 concerning the environmental aspects of license renewal. (author)

  4. Modeling decision making as a support tool for policy making on renewable energy development

    International Nuclear Information System (INIS)

    Cannemi, Marco; García-Melón, Mónica; Aragonés-Beltrán, Pablo; Gómez-Navarro, Tomás

    2014-01-01

    This paper presents the findings of a study on decision making models for the analysis of capital-risk investors’ preferences on biomass power plants projects. The aim of the work is to improve the support tools for policy makers in the field of renewable energy development. Analytic Network Process (ANP) helps to better understand capital-risk investors preferences towards different kinds of biomass fueled power plants. The results of the research allow public administration to better foresee the investors’ reaction to the incentive system, or to modify the incentive system to better drive investors’ decisions. Changing the incentive system is seen as major risk by investors. Therefore, public administration must design better and longer-term incentive systems, forecasting market reactions. For that, two scenarios have been designed, one showing a typical decision making process and another proposing an improved decision making scenario. A case study conducted in Italy has revealed that ANP allows understanding how capital-risk investors interpret the situation and make decisions when investing on biomass power plants; the differences between the interests of public administrations’s and promoters’, how decision making could be influenced by adding new decision criteria, and which case would be ranked best according to the decision models. - Highlights: • We applied ANP to the investors’ preferences on biomass power plants projects. • The aim is to improve the advising tools for renewable energy policy making. • A case study has been carried out with the help of two experts. • We designed two scenarios: decision making as it is and how could it be improved. • Results prove ANP is a fruitful tool enhancing participation and transparency

  5. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  6. Renewable electricity market developments in the European Union. Final Report of the ADMIRE REBUS project

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Daniels, B.W.; De Noord, M.; De Vries, H.J.; De Zoeten - Dartenset, C.; Skytte, K.; Meibom, P.; Lescot, D.; Hoffmann, T.; Stronzik, M.; Gual, M.; Del Rio, P.; Hernandez, F.

    2003-10-01

    Which countries offer the best markets for renewables? Are present support policies sufficient to meet the EU (European Union) renewables target for 2010? Which renewable technologies will have the largest growth in the present decade? The ADMIRE REBUS project has addressed these questions by giving an outlook on the future of electricity from renewable energy sources. The ADMIRE REBUS project team has analysed the market barriers, support policies and potentials for renewable electricity production in Europe. For these analyses a new tool was developed that simulates the development of the European renewable electricity market under different policy scenarios. The report starts with describing the approach and key assumptions used in the analysis. Next, an overview is provided of EU legislation and different support policies for renewable energy. After a brief overview of the different challenges that an investor faces when investing in renewable energy technologies with respect to lead times, risks and transaction costs, several policy scenarios for the future are discussed. Next, the report presents ADMIRE REBUS model analyses of different policy strategies for meeting the targets stated in the EU Renewables Directive. The report continues the analysis of model results with presenting prospects for individual technologies and market prices under different scenarios. Next, case studies are presented for four different EU Member States. The analysis results are put into perspective by a sensitivity analysis. Finally, conclusions are drawn and recommendations are formulated based on the above

  7. Renewable energy systems the earthscan expert guide to renewable energy technologies for home and business

    CERN Document Server

    Jenkins, Dilwyn

    2013-01-01

    This book is the long awaited guide for anyone interested in renewables at home or work. It sweeps away scores of common misconceptions while clearly illustrating the best in renewable and energy efficiency technologies. A fully illustrated guide to renewable energy for the home and small business, the book provides an expert overview of precisely which sustainable energy technologies are appropriate for wide-spread domestic and small business application. The sections on different renewable energy options provide detailed descriptions of each technology along with case studies, installatio

  8. Deploying Renewables -- principles for effective policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-29

    Renewable energy can play a fundamental role in tackling climate change, environmental degradation and energy security. As these challenges have become ever more pressing, governments and markets are seeking innovative solutions. Yet, what are the key factors that will determine the success of renewable energy policies? How can current policies be improved to encourage greater deployment of renewables? What impact can more effective policies have on renewables' share in the future global energy mix and how soon? This publication addresses these questions. Responding to the Gleneagles G8 call for a clean and secure energy future, it highlights key policy tools to fast-track renewables into the mainstream. This analysis illustrates good practices by applying the combined metrics of effectiveness and efficiency to renewable energy policies in the electricity, heating and transport sectors. It highlights significant barriers to accelerating renewables penetration, and argues that the great potential of renewables can be exploited much more rapidly and to a much larger extent if good practices are adopted. Carefully designed policy frameworks, customised to support technologies at differing stages of maturity, will deliver a strong portfolio of renewable energy technologies. The document provides recommendations on key principles for policy design as a template for decision makers.

  9. Renewable resources - future possibilities

    International Nuclear Information System (INIS)

    Thomas, Martin H.

    1998-01-01

    The paper describes the Australian Cooperative Research Centre for Renewable Energy and Related Greenhouse Gas Abatement Technologies (ACRE), its technologies, commercial relationships and markets. The relevance of ACRE to developing country communities which lack reliable, adequate power supplies, is discussed. The opportunities for mutual collaboration between Australia and the developing countries in the application of renewable energy have never been stronger. Renewable energy promises real advantages to those who deploy it wisely, as well as significant job creation. Education at all level together with operational training, public awareness of what is possible and increased system reliability, are also vital ingredients for acceptance of these new technologies. They underpin successful commercialisation. The author concludes with the hope for a united international cooperative approach to the development of the renewable energy industry. (author)

  10. Renewable energy in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung

    2010-01-01

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  11. Renewable energy in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung [Institute of Applied Mechanics, National Taiwan University, Taipei 10617 (China)

    2010-09-15

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  12. A State-Based Approach to Building a Liquid National Market for Renewable Energy Certificates: The REC-EX Model

    International Nuclear Information System (INIS)

    Berendt, Christopher B.

    2006-01-01

    RECs are the currency driving the growth of renewable energy markets and the sale of RECs from renewable energy generation projects could promise a predictable return. But the existing REC markets in the U.S. sorely lack the liquidity needed to make good on that promise. The author proposes a Renewable Energy Certificate Exchange program rooted in the construction of a national trading platform for RECs in tandem with the execution of a new agreement among the states with REC-based renewable portfolio standards. (author)

  13. Online driver's license renewal.

    Science.gov (United States)

    2015-09-01

    The Kentucky Department of Vehicle Regulation is exploring the possibility of developing and implementing online : drivers license renewal. The objective of this project was to: 1) evaluate online drivers license and REAL ID renewal : programs ...

  14. Renewables in Global Energy Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Renewable energies are essential contributors to the energy supply portfolio as they contribute to world energy supply security, reducing dependency on fossil fuel resources, and provide opportunities for mitigating greenhouse gases. Differences in definition and lack of adequate data complicated the discussion between participants on these key issues. The International Energy Agency believes that this fact sheet can be of use to all to facilitate the debate on the past, current and future place and role of renewables in total energy supply. Our goal is to present as objectively as possible the main elements of the current renewables energy situation. The definitions and coverage of national statistics vary between countries and organisations. In this fact sheet, the renewables definition includes combustible renewables and waste (CRW), hydro, geothermal, solar, wind, tide and wave energy.

  15. Renewable energy technology acceptance in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Kardooni, Roozbeh; Yusoff, Sumiani Binti; Kari, Fatimah Binti

    2016-01-01

    Despite various policies, renewable energy resources have not been developed in Malaysia. This study investigates the factors that influence renewable energy technology acceptance in Peninsular Malaysia and attempts to show the impact of cost and knowledge on the perceived ease of use and perceived usefulness of renewable energy technology. The results show that cost of renewable energy has an indirect effect on attitudes towards using renewable energy through the associated impact on the perceived ease of use and perceived usefulness. The results also indicate that public knowledge in Peninsular Malaysia does not affect perceived ease of use, although the positive impact of knowledge on perceived usefulness is supported. Furthermore, our results show that the current business environment in Peninsular Malaysia does not support the adoption of renewable energy technology, and thus, renewable energy technology is not commercially viable in Peninsular Malaysia. Additionally, the population of Peninsular Malaysia associates the use of renewable energy with a high level of effort and therefore has a negative attitude towards the use of renewable energy technology. There is, therefore, a definite need to pay more attention to the role of public perception and awareness in the successes and failures of renewable energy policy. - Highlights: • Public acceptance is an essential element in the diffusion of renewable energy. • Perceived ease of use and perceived usefulness affect intention to use renewables. • It is important to reduce the cost of renewable energy, particularly for end users. • Renewable energy policies should address issues of public perception and awareness.

  16. Renewable energy sources in European energy supply and interactions with emission trading

    International Nuclear Information System (INIS)

    Moest, Dominik; Fichtner, Wolf

    2010-01-01

    This paper presents a model-based approach, which allows to determine the optimised structure and operation of the EU-15 electricity supply under different political and economic framework conditions, with a focus on the integration of renewable energy sources for electricity generation (RES-E) in the EU-15 countries. The approach is designed to take into account the characteristics of power production from both renewable and conventional sources, including the technological and economic characteristics of existing plants as well as those of future capacity expansion options. Beyond that, fuel supply structures are modelled, as well as the international markets for power and CO 2 -certificates with their restrictions. Thus, a profound evaluation of the exploitation of mid-term renewable potentials and an assessment of the market penetration of the various renewable power generation technologies under the (normative) premise of a cost-optimised evolution of the power system becomes possible. Results show that a promotion of renewable energies reduces the scarcity of CO 2 -emission allowances and thus lowers marginal costs of CO 2 reduction up to 30% in 2030. Despite the higher overall costs, a diversification of the energy resource base by RES-E use is observed, as primarily natural gas and nuclear fuels are replaced.

  17. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  18. Turn on the Lights: Macroeconomic Factors Affecting Renewable in Pakistan

    OpenAIRE

    Ihtisham Abdul Malik; Ghamz-e-Ali Siyal; Alias Bin Abdullah; Arif Alam; Khalid Zaman

    2014-01-01

    The objective of the study is to examine the relationship between macroeconomic factors (i.e., population growth; urbanization, industrialization, exchange rate, price level, food production index and live stock production index) and renewable energy in Pakistan over a period of 1975-2012. In addition, this study uses oil rent as an intervening variable to overcome the biasness of the single equation model. The results indicate that macroeconomic factors positively contributed to renewable en...

  19. Renewable Energy Policy Fact sheet - Sweden

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Sweden surpassed its 2020 nationally binding renewable energy in 2013. Main support measures to promote renewable energy in Sweden consists of a quota system, various tax regulation mechanisms and subsidy schemes. Sweden has a joint support scheme with Norway, thus being the first EU Member State to implement a cooperation mechanism, as defined under the 2009 EU Renewable Energy Directive. The Swedish coalition government has agreed on a target of 100% renewable electricity production by 2040

  20. Renewables 2016 Global Status Report. Key findings. A Record Breaking Year for Renewable Energy: New Installations, Policy Targets, Investment and Jobs. Mainstreaming renewables: guidance for policy makers

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Seyboth, Kristin; Adib, Rana; Murdock, Hannah E.; Lins, Christine; Brown, Adam; Di Domenico, Stefanie E.; Kielmanowicz, Daniele; Williamson, Laura E.; Jawahar, Rashmi; Appavou, Fabiani; Musolino, Evan; Petrichenko, Ksenia; Farrell, Timothy C.; Thorsch Krader, Thomas; Skeen, Jonathan; Epp, Baerbel; Anna Leidreiter; Tsakiris, Aristeidis; Sovacool, Benjamin; Saraph, Aarth; Mastny, Lisa; Martinot, Eric

    2016-01-01

    2015 was an extraordinary year for renewable energy. Renewables are now cost competitive with fossil fuels in many markets and are established around the world as mainstream sources of energy. Cities, communities and companies are leading the rapidly expanding '100% renewable' movement. Distributed renewable energy is advancing rapidly to close the energy access gap. The REN21 Renewables Global Status Report (GSR) provides an annual look at the tremendous advances in renewable energy markets, policy frameworks and industries globally. Each report uses formal and informal data to provide the most up-to-date information available. Reliable, timely and regularly updated data on renewables energy are essential as they are used for establishing baselines for decision makers; for demonstrating the increasing role that renewables play in the energy sector; and illustrating that the renewable energy transition is a reality. This year's GSR marks 11 years of REN21 reporting. Over the past decade the GSR has expanded in scope and depth with its thematic and regional coverage and the refinement of data collection. The GSR is the product of systematic data collection resulting in thousands of data points, the use of hundreds of documents, and personal communication with experts from around the world. It benefits from a multi-stakeholder community of over 700 experts. Country information for 148 countries were received and used as basis for GSR2016 preparation. The country data received is featured in the REN21 Renewables Interactive Map (www.ren21.net/map)