WorldWideScience

Sample records for surface protein-1 msp-119

  1. The production of SPusp45-MSP-119 gene construct and its recombinant protein in Lactococcus lactis to be used as a malaria vaccine

    Directory of Open Access Journals (Sweden)

    Amino V.A. Kusuma

    2018-02-01

    Full Text Available Background: Merozoite surface protein 1 (MSP-1 is a major protein used by the Plasmodium during red blood cells invasion in malaria. MSP-119, one of MSP-1 is highly conserved, and  it is a potential malaria vaccine candidate because the monoclonal antibodies are capable blocking erythrocyte invasion in vitro. The aim of this study was to produce MSP-119 gene construct and the recombinant protein in Lactococcus lactis.Methods: Usp45-MSP-119, derived from codon optimization and the synthetic gene, was inserted into the pMAT cloning vector. A vector expressing MSP-119 included usp45 has been constructed by the manipulation of recombinant DNA using restriction enzymes. The MSP-119 protein was expressed to 45% ammonium sulfate precipitation and purified using Sephadex-G50 gel filtration chromatography. The expressed protein was characterized by SDS-PAGE and dot blot.Results: usp45-MSP-119 gene was amplified using specific primers and inserted into the multiple cloning sites in the expression vector pNZ8148 with size 3,538 bp as a recombinant vector. The protein of  MSP-119 was successfully expressed in L. lactis with molecular weight of 10.45 kDa. The dot blot was tested in 3 different comparisons between the host cells, non-induced cells, and induced cells with 10 ng/ml nisin. The results showed that 10 ng/ml nisin gave a positive reaction as detected by dot blot assay.Conclusion: This study confirmed that the usp45-MSP-119 gene was successfully inserted into the multiple cloning sites of the pNZ8148 expression vector and the MSP-119 protein expressed in the NICE system of the L. lactis host cell.

  2. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theander, T G; Kurtzhals, J A

    1999-01-01

    The 19-kDa conserved C-terminal part of the Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is a malaria vaccine candidate antigen, and human antibody responses to PfMSP119 have been associated with protection against clinical malaria. In this longitudinal study carried out in an are...

  3. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theander, T G; Kurtzhals, J A

    1999-01-01

    The 19-kDa conserved C-terminal part of the Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is a malaria vaccine candidate antigen, and human antibody responses to PfMSP119 have been associated with protection against clinical malaria. In this longitudinal study carried out in an area...... of stable but seasonal malaria transmission with an estimated parasite inoculation of about 20 infective bites/year, we monitored 266 3- to 15-year-old Ghanaian children clinically and parasitologically over a period of 18 months. Blood samples were collected at the beginning of the study before the major...

  4. Generation, characterization and immunogenicity of a novel chimeric recombinant protein based on Plasmodium vivax AMA-1 and MSP119.

    Science.gov (United States)

    Rocha, Mariana Vilela; Françoso, Kátia Sanches; Lima, Luciana Chagas; Camargo, Tarsila Mendes; Machado, Ricardo L D; Costa, Fabio T M; Rénia, Laurent; Nosten, Francois; Russell, Bruce; Rodrigues, Mauricio M; Soares, Irene S

    2017-04-25

    Plasmodium vivax is the most widely distributed malaria species and the most prevalent species of malaria in America and Asia. Vaccine development against P. vivax is considered a priority in the global program for the eradication of malaria. Earlier studies have characterized the Apical Membrane Antigen 1 (AMA-1) ectodomain and the C-terminal region (19kDa) of the Merozoite Surface Protein 1 (MSP-1) of P. vivax as immunodominant antigens. Based on this characterization, we designed a chimeric recombinant protein containing both merozoite immunodominant domains (PvAMA1 66 -MSP1 19 ). The recombinant PvAMA1 66 -MSP1 19 was successfully expressed in Pichia pastoris and used to immunize two different mouse strains (BALB/c and C57BL/6) in the presence of the Poly (I:C) as an adjuvant. Immunization with the chimeric protein induced high antibody titers against both proteins in both strains of mice as detected by ELISA. Antisera also recognized the native proteins expressed on the merozoites of mature P. vivax schizonts. Moreover, this antigen was able to induce IFN-gamma-secreting cells in C57BL/6 mice. These findings indicate that this novel yeast recombinant protein containing PvAMA1 66 and PvMSP1 19 is advantageous, because of improved antibody titers and cellular immune response. Therefore, this formulation should be further developed for pre-clinical trials in non-human primates as a potential candidate for a P. vivax vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  6. Naturally-acquired cellular immune response against Plasmodium vivax merozoite surface protein-1 paralog antigen.

    Science.gov (United States)

    Changrob, Siriruk; Leepiyasakulchai, Chaniya; Tsuboi, Takafumi; Cheng, Yang; Lim, Chae Seung; Chootong, Patchanee; Han, Eun-Taek

    2015-04-15

    Plasmodium vivax merozoite surface protein-1 paralog (PvMSP1P) is a glycosylphosphatidylinositol-anchored protein expressed on the merozoite surface. This molecule is a target of natural immunity, as high anti-MSP1P-19 antibody levels were detected during P. vivax infection and the antibody inhibited PvMSP1P-erythrocyte binding. Recombinant PvMSP1P antigen results in production of a significant Th1 cytokine response in immunized mice. The present study was performed to characterize natural cellular immunity against PvMSP1P-19 and PvDBP region II in acute and recovery P. vivax infection. Peripheral blood mononuclear cells (PBMCs) from acute and recovery P. vivax infection were obtained for lymphocyte proliferation assay upon PvMSP1P-19 and PvDBP region II antigen stimulation. The culture supernatant was examined for the presence of the cytokines IL-2, TNF, IFN-γ and IL-10 by enzyme-linked immunosorbent assay (ELISA). To determine whether Th1 or Th2 have a memory response against PvMSP1P-19 and PvDBPII protein antigen, PBMCs from subjects who had recovered from P. vivax infection 8-10 weeks prior to the study were obtained for lymphocyte proliferation assay. Cytokine-producing cells were analysed by flow cytometry. IL-2 was detected at high levels in lymphocyte cultures from acutely infected P. vivax patients upon PvMSP1P-19 stimulation. Analysis of the Th1 or Th2 memory response in PBMC cultures from subjects who had recovered from P. vivax infection showed significantly elevated levels of PvMSP1P-19 and PvDBPII-specific IFN-γ-producing cells (P  response of IFN-γ-producing cells in PvMSP1P stimulation was fourfold greater in recovered subjects than that in acute-infection patients. CD4(+) T cells were the major cell phenotype involved in the response to PvMSP1P-19 and PvDBPII antigen. PvMSP1P-19 strongly induces a specific cellular immune response for protection against P. vivax compared with PvDBPII as the antigen induces activation of IFN

  7. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    Energy Technology Data Exchange (ETDEWEB)

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  8. Characterization of surface antigen protein 1 (SurA1) from Acinetobacter baumannii and its role in virulence and fitness.

    Science.gov (United States)

    Liu, Dong; Liu, Zeng-Shan; Hu, Pan; Cai, Ling; Fu, Bao-Quan; Li, Yan-Song; Lu, Shi-Ying; Liu, Nan-Nan; Ma, Xiao-Long; Chi, Dan; Chang, Jiang; Shui, Yi-Ming; Li, Zhao-Hui; Ahmad, Waqas; Zhou, Yu; Ren, Hong-Lin

    2016-04-15

    Acinetobacter baumannii is a Gram-negative bacillus that causes nosocomial infections, such as bacteremia, pneumonia, and meningitis and urinary tract and wound infections. In the present study, the surface antigen protein 1 (SurA1) gene of A. baumannii strain CCGGD201101 was identified, cloned and expressed, and then its roles in fitness and virulence were investigated. Virulence was observed in the human lung cancer cell lines A549 and HEp-2 at one week after treatment with recombinant SurA1. One isogenic SurA1 knock-out strain, GR0015, which was derived from the A. baumannii strain CCGGD201101 isolated from diseased chicks in a previous study, highlighted the effect of SurA1 on fitness and growth. Its growth rate in LB broth and killing activity in human sera were significantly decreased compared with strain CCGGD201101. In the Galleria mellonella insect model, the isogenic SurA1 knock-out strain exhibited a lower survival rate and decreased dissemination. These results suggest that SurA1 plays an important role in the fitness and virulence of A. baumannii. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites.

    Science.gov (United States)

    Moormann, Ann M; Sumba, Peter Odada; Chelimo, Kiprotich; Fang, Hua; Tisch, Daniel J; Dent, Arlene E; John, Chandy C; Long, Carole A; Vulule, John; Kazura, James W

    2013-07-01

     Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts.  The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya.  Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia.  Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone.

  10. A longitudinal study of type-specific antibody responses to Plasmodium falciparum merozoite surface protein-1 in an area of unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Cavanagh, D R; Elhassan, I M; Roper, C

    1998-01-01

    Merozoite surface protein-1 (MSP-1) of Plasmodium falciparum is a malaria vaccine candidate Ag. Immunity to MSP-1 has been implicated in protection against infection in animal models. However, MSP-1 is a polymorphic protein and its immune recognition by humans following infection is not well unde...

  11. Plasmodium falciparum merozoite surface protein 1 - Glycosylation and localization to low-density, detergent-resistant membranes in the parasitized erythrocyte

    DEFF Research Database (Denmark)

    Hoessli, D.C.; Poincelet, M.; Gupta, Ramneek

    2003-01-01

    In addition to the major carbohydrate moieties of the glycosylphosphatidylinositol (GPI) anchor, we report that Plasmodium falciparum merozoite surface protein 1 (MSP-1) bears O-GlcNAc modifications predominantly in beta-anomeric configuration, in both the C- and N-terminal portions of the protei...

  12. Genetic Diversity of Plasmodium falciparum Merozoite Surface Protein-1 Block 2 in Sites of Contrasting Altitudes and Malaria Endemicities in the Mount Cameroon Region

    Science.gov (United States)

    Wanji, Samuel; Kengne-Ouafo, Arnaud J.; Joan Eyong, Ebanga E.; Kimbi, Helen K.; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L.; Nana-Djeunga, Hugues C.; Bourguinat, Catherine; Sofeu-Feugaing, David D.; Charvet, Claude L.

    2012-01-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein–enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction–based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms. PMID:22556072

  13. Plasmodium falciparum Infection during Suppressive Prophylaxis with Mefloquine Does Not Induce an Antibody Response to Merozoite Surface Protein-1(42)

    Science.gov (United States)

    Moon, James E.; Deye, Gregory A.; Miller, Lori; Fracisco, Susan; Miller, R. Scott; Tosh, Donna; Cummings, James F.; Ohrt, Colin; Magill, Alan J.

    2011-01-01

    A sensitive biomarker of malaria infection would obviate the need for placebo control arms in clinical trials of malaria prophylactic drugs. Antibodies to the 42-kDa fragment of merozoite surface protein-1 (MSP142) have been identified as a potential marker of malaria exposure in individuals receiving prophylaxis with mefloquine. We conducted an open-label trial to determine the sensitivity of seroconversion to MSP142, defined as a fourfold rise in enzyme-linked immunosorbant assay (ELISA) titer, among 23 malaria naïve volunteers receiving mefloquine prophylaxis and 6 controls after Plasmodium falciparum sporozoite challenge. All members of the control cohort but none of the mefloquine cohort developed patent parasitemia. Four of six controls but zero of the mefloquine cohort seroconverted to MSP142. We conclude that malaria infection during suppressive prophylaxis does not induce antibody response to the blood-stage antigen MSP142 in a malaria-naïve study population. PMID:21540397

  14. Formation of the food vacuole in Plasmodium falciparum: a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19.

    Directory of Open Access Journals (Sweden)

    Anton R Dluzewski

    2008-08-01

    Full Text Available Plasmodium falciparum Merozoite Surface Protein 1 (MSP1 is synthesized during schizogony as a 195-kDa precursor that is processed into four fragments on the parasite surface. Following a second proteolytic cleavage during merozoite invasion of the red blood cell, most of the protein is shed from the surface except for the C-terminal 19-kDa fragment (MSP1(19, which is still attached to the merozoite via its GPI-anchor. We have examined the fate of MSP1(19 during the parasite's subsequent intracellular development using immunochemical analysis of metabolically labeled MSP1(19, fluorescence imaging, and immuno-electronmicroscopy. Our data show that MSP1(19 remains intact and persists to the end of the intracellular cycle. This protein is the first marker for the biogenesis of the food vacuole; it is rapidly endocytosed into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP1(19 and the chloroquine resistance transporter (CRT as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP1(19 does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.

  15. Genetic diversity in the C-terminus of merozoite surface protein 1 among Plasmodium knowlesi isolates from Selangor and Sabah Borneo, Malaysia.

    Science.gov (United States)

    Yap, Nan Jiun; Goh, Xiang Ting; Koehler, Anson V; William, Timothy; Yeo, Tsin Wen; Vythilingam, Indra; Gasser, Robin B; Lim, Yvonne A L

    2017-10-01

    Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-1 42 ; consisting of MSP-1 19 and MSP-1 33 ) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-1 42 (comprising Pk-msp-1 19 and Pk-msp-1 33 ) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-1 42 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-1 19 sequence was found to be more conserved than Pk-msp-1 33 . We have found evidence for negative selection in Pk-msp- 42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Wallich, Reinhard; Kraiczy, Peter; Zipfel, Peter F.; Lea, Susan M.

    2013-01-01

    B. burgdorferi binds complement factor H using a dimeric surface protein, CspA (BbCRASP-1). Presented here is a new structure of CspA that suggests that there is a degree of flexibility between subunits which may have implications for complement regulator binding. Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators

  17. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    Directory of Open Access Journals (Sweden)

    Zipfel Peter F

    2010-02-01

    Full Text Available Abstract Background B. burgdorferi sensu lato (sl is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH or Factor H-like protein1 (FHL-1 to Complement Regulator-Acquiring Surface Proteins (CRASPs. Results We demonstrate that B. garinii OspA serotype 4 (ST4 PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii.

  18. Genetic Diversity and Natural Selection in 42 kDa Region of Plasmodium vivax Merozoite Surface Protein-1 from China-Myanmar Endemic Border.

    Science.gov (United States)

    Zhou, Xia; Tambo, Ernest; Su, Jing; Fang, Qiang; Ruan, Wei; Chen, Jun-Hu; Yin, Ming-Bo; Zhou, Xiao-Nong

    2017-10-01

    Plasmodium vivax merozoite surface protein-1 (PvMSP1) gene codes for a major malaria vaccine candidate antigen. However, its polymorphic nature represents an obstacle to the design of a protective vaccine. In this study, we analyzed the genetic polymorphism and natural selection of the C-terminal 42 kDa fragment within PvMSP1 gene (Pv MSP142) from 77 P. vivax isolates, collected from imported cases of China-Myanmar border (CMB) areas in Yunnan province and the inland cases from Anhui, Yunnan, and Zhejiang province in China during 2009-2012. Totally, 41 haplotypes were identified and 30 of them were new haplotypes. The differences between the rates of non-synonymous and synonymous mutations suggest that PvMSP142 has evolved under natural selection, and a high selective pressure preferentially acted on regions identified of PvMSP133. Our results also demonstrated that PvMSP142 of P. vivax isolates collected on China-Myanmar border areas display higher genetic polymorphisms than those collected from inland of China. Such results have significant implications for understanding the dynamic of the P. vivax population and may be useful information towards China malaria elimination campaign strategies.

  19. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein.

    Science.gov (United States)

    Sarmah, Nilanju Pran; Sarma, Kishore; Bhattacharyya, Dibya Ranjan; Sultan, Ali; Bansal, Devendra; Singh, Neeru; Bharti, Praveen K; Kaur, Hargobinder; Sehgal, Rakesh; Mohapatra, Pradyumna Kishore; Mahanta, Jagadish

    2017-09-01

    Northeast (NE) India is one of the high endemic regions for malaria with a preponderance of Plasmodium falciparum, resulting in high morbidity and mortality. The P. falciparum parasite of this region showed high polymorphism in drug-resistant molecular biomarkers. However, there is a paucity of information related to merozoite surface protein 1 (msp-1) and glutamate-rich protein (glurp) which have been extensively studied in various parts of the world. The present study was, therefore, aimed at investigating the genetic diversity of P. falciparum based on msp-1 and glurp in Arunachal Pradesh, a State in NE India. Two hundred and forty nine patients with fever were screened for malaria, of whom 75 were positive for P. falciparum. Blood samples were collected from each microscopically confirmed patient. The DNA was extracted; nested polymerase chain reaction and sequencing were performed to study the genetic diversity of msp-1 (block 2) and glurp. The block 2 of msp-1 gene was found to be highly polymorphic, and overall allelic distribution showed that RO33 was the dominant allele (63%), followed by MAD20 (29%) and K1 (8%) alleles. However, an extensive diversity (9 alleles and 4 genotypes) and 6-10 repeat regions exclusively of R2 type were observed in glurp. The P. falciparum population of NE India was diverse which might be responsible for higher plasticity leading to the survival of the parasite and in turn to the higher endemicity of falciparum malaria of this region.

  20. Immunogenetic markers associated with a naturally acquired humoral immune response against an N-terminal antigen of Plasmodium vivax merozoite surface protein 1 (PvMSP-1).

    Science.gov (United States)

    Cassiano, Gustavo Capatti; Furini, Adriana A C; Capobianco, Marcela P; Storti-Melo, Luciane M; Almeida, Maria E; Barbosa, Danielle R L; Póvoa, Marinete M; Nogueira, Paulo A; Machado, Ricardo L D

    2016-06-03

    Humoral immune responses against proteins of asexual blood-stage malaria parasites have been associated with clinical immunity. However, variations in the antibody-driven responses may be associated with a genetic component of the human host. The objective of the present study was to evaluate the influence of co-stimulatory molecule gene polymorphisms of the immune system on the magnitude of the humoral immune response against a Plasmodium vivax vaccine candidate antigen. Polymorphisms in the CD28, CTLA4, ICOS, CD40, CD86 and BLYS genes of 178 subjects infected with P. vivax in an endemic area of the Brazilian Amazon were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The levels of IgM, total IgG and IgG subclasses specific for ICB2-5, i.e., the N-terminal portion of P. vivax merozoite surface protein 1 (PvMSP-1), were determined by enzyme-linked immuno assay. The associations between the polymorphisms and the antibody response were assessed by means of logistic regression models. After correcting for multiple testing, the IgG1 levels were significantly higher in individuals recessive for the single nucleotide polymorphism rs3116496 in CD28 (p = 0.00004). Furthermore, the interaction between CD28 rs35593994 and BLYS rs9514828 had an influence on the IgM levels (p = 0.0009). The results of the present study support the hypothesis that polymorphisms in the genes of co-stimulatory components of the immune system can contribute to a natural antibody-driven response against P. vivax antigens.

  1. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1.

    Science.gov (United States)

    Qian, Feng; Reiter, Karine; Zhang, Yanling; Shimp, Richard L; Nguyen, Vu; Aebig, Joan A; Rausch, Kelly M; Zhu, Daming; Lambert, Lynn; Mullen, Gregory E D; Martin, Laura B; Long, Carole A; Miller, Louis H; Narum, David L

    2012-01-01

    Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42)) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42) conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42) self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42) specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.

  2. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1.

    Directory of Open Access Journals (Sweden)

    Feng Qian

    Full Text Available Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25, was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42 was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42 conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42 self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42 specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.

  3. Lineage-specific positive selection at the merozoite surface protein 1 (msp1 locus of Plasmodium vivax and related simian malaria parasites

    Directory of Open Access Journals (Sweden)

    Kawai Satoru

    2010-02-01

    Full Text Available Abstract Background The 200 kDa merozoite surface protein 1 (MSP-1 of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors. It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. Results We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1 from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species

  4. New candidate vaccines against blood-stage Plasmodium falciparum malaria: prime-boost immunization regimens incorporating human and simian adenoviral vectors and poxviral vectors expressing an optimized antigen based on merozoite surface protein 1

    NARCIS (Netherlands)

    Goodman, Anna L.; Epp, C.; Moss, D.; Holder, A. A.; Wilson, J. M.; Gao, G. P.; Long, C. A.; Remarque, E. J.; Thomas, A. W.; Ammendola, V.; Colloca, S.; Dicks, M. D. J.; Biswas, S.; Seibel, D.; van Duivenvoorde, L. M.; Gilbert, S. C.; Hill, A. V. S.; Draper, S. J.

    2010-01-01

    Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we

  5. Changes in B Cell Populations and Merozoite Surface Protein-1-Specific Memory B Cell Responses after Prolonged Absence of Detectable P. falciparum Infection.

    Directory of Open Access Journals (Sweden)

    Cyrus Ayieko

    Full Text Available Clinical immunity to malaria declines in the absence of repeated parasite exposure. However, little is known about how B cell populations and antigen-specific memory B cells change in the absence of P. falciparum infection. A successful indoor residual insecticide spraying campaign in a highland area of western Kenya, led to an absence of blood-stage P. falciparum infection between March 2007 and April 2008. We assessed memory B cell responses in 45 adults at the beginning (April 2008 and end (April 2009 of a subsequent 12-month period during which none of the adults had evidence of asymptomatic parasitemia or clinical disease. Antibodies and memory B cells to the 42-kDa portion of the merozoite surface protein-1 (MSP-142 were measured using ELISA and ELISPOT assays, respectively. B cell populations were characterized by flow cytometry. From 2008 to 2009, the prevalence of MSP-142-specific memory B cells (45% vs. 55%, respectively, P = 0.32 or antibodies (91% vs. 82%, respectively, P = 0.32 did not differ significantly, although specific individuals did change from positive to negative and vice versa, particularly for memory B cells, suggesting possible low-level undetected parasitemia may have occurred in some individuals. The magnitude of MSP-142-specific memory B cells and levels of antibodies to MSP-142 also did not differ from 2008 to 2009 (P>0.10 for both. However, from 2008 to 2009 the proportions of both class-switched atypical (CD19+IgD-CD27-CD21-IgM- and class-switched activated (CD19+IgD-CD27+CD21-IgM- memory B cells decreased (both P<0.001. In contrast, class-switched resting classical memory B cells (CD19+IgD-CD27+CD21+IgM- increased (P<0.001. In this area of seasonal malaria transmission, a one- year absence of detectable P. falciparum infection was not associated with changes in the prevalence or level of MSP-142 specific memory B cells, but was associated with major changes in overall memory B cell subsets.

  6. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P ..., suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P

  7. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  8. Coarse-grained modeling of proline rich protein 1 (PRP-1) in bulk solution and adsorbed to a negatively charged surface.

    Science.gov (United States)

    Skepö, Marie; Linse, Per; Arnebrant, Thomas

    2006-06-22

    Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.

  9. Identification and characterization of the factor H and FHL-1 binding complement regulator-acquiring surface protein 1 of the Lyme disease spirochete Borrelia spielmanii sp. nov.

    Science.gov (United States)

    Herzberger, Pia; Siegel, Corinna; Skerka, Christine; Fingerle, Volker; Schulte-Spechtel, Ulrike; Wilske, Bettina; Brade, Volker; Zipfel, Peter F; Wallich, Reinhard; Kraiczy, Peter

    2009-02-01

    Borrelia spielmanii, one of the etiological agents of Lyme disease found in Europe, evades host complement-mediated killing by recruitment of the immune regulators factor H and FHL-1 from human serum. Serum-resistant and intermediate serum-resistant isolates express up to 3 distinct complement regulator-acquiring surface proteins (CRASPs) that bind factor H and/or FHL-1. The present study describes identification and functional characterization of BsCRASP-1 as the dominant factor H and FHL-1 binding protein of B. spielmanii. BsCRASP-1 is a 27.7kDa outer surface lipoprotein, which after processing has a predicted mass of 24.9kDa. BsCRASP-1 is encoded by a single copy gene, cspA, that maps to a linear plasmid of approximately 55kb. Ligand affinity blot techniques revealed that both native and recombinant BsCRASP-1 from different isolates can strongly bind FHL-1, but only weakly factor H. Deletion mutants of recombinant BsCRASP-1 were generated and a high-affinity binding site for factor H and FHL-1 was mapped to its carboxy-terminal 10-amino-acid residue domain. Similarly, the dominant binding site of factor H and FHL-1 was localized to short consensus repeats (SCRs) 5-7. Factor H and FHL-1 maintained cofactor activity for factor I-mediated C3b inactivation when bound to full-length BsCRASP-1 but not to a deletion mutant lacking the carboxy-terminal 10-amino-acid residue domain. In conclusion, BsCRASP-1 binds the host immune regulators factor H and FHL-1, and is suggested to represent a key molecule of B. spielmanii for complement resistance. Thus, BsCRASP-1 most likely contributes to persistence of B. spielmanii and to pathogenesis of Lyme disease.

  10. The Suitability of P. falciparum Merozoite Surface Proteins 1 and 2 as Genetic Markers for In Vivo Drug Trials in Yemen

    Science.gov (United States)

    Al-abd, Nazeh M.; Mahdy, Mohammed A. K.; Al-Mekhlafi, Abdulsalam M. Q.; Snounou, Georges; Abdul-Majid, Nazia B.; Al-Mekhlafi, Hesham M.; Fong, Mun Y.

    2013-01-01

    Background The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers’ allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen. Methods Blood samples were collected from 511 patients with fever and screened for malaria parasites using Giemsa-stained blood films. A total 74 samples were infected with P. falciparum, and the genetic diversity was assessed by nested PCR targeting Pfmsp1 (Block2) and Pfmsp2 (block 3). Results Overall, 58%, 28% and 54% of the isolates harboured parasites of the Pfmsp1 K1, MAD20 and RO33 allelic families, and 55% and 89% harboured those of the Pfmsp2 FC27 and 3D7 allelic families, respectively. For both genetic makers, the multiplicity of the infection (MOI) was significantly higher in the isolates from the foothills/coastland areas as compared to those from the highland (PYemen Pfmsp1 should not be used for PCR correction of in vivo clinical trials outcomes, and that caution should be exercised when employing Pfmsp2. PMID:23861823

  11. A Reduced Risk of Infection with Plasmodium vivax and Clinical Protection against Malaria Are Associated with Antibodies against the N Terminus but Not the C Terminus of Merozoite Surface Protein 1

    Science.gov (United States)

    Nogueira, Paulo Afonso; Piovesan Alves, Fabiana; Fernandez-Becerra, Carmen; Pein, Oliver; Rodrigues Santos, Neida; Pereira da Silva, Luiz Hildebrando; Plessman Camargo, Erney; del Portillo, Hernando A.

    2006-01-01

    Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rondônia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite. PMID:16622209

  12. Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice.

    Science.gov (United States)

    Mehrizi, Akram Abouie; Rezvani, Niloufar; Zakeri, Sedigheh; Gholami, Atefeh; Babaeekhou, Laleh

    2018-04-01

    Malaria vaccine development has been confronted with various challenges such as poor immunogenicity of malaria vaccine candidate antigens, which is considered as the main challenge. However, this problem can be managed using appropriate formulations of antigens and adjuvants. Poly(I:C) is a potent Th1 inducer and a human compatible adjuvant capable of stimulating both B- and T-cell immunity. Plasmodium falciparum merozoite surface protein 1 42 (PfMSP-1 42 ) is a promising vaccine candidate for blood stage of malaria that has faced several difficulties in clinical trials, mainly due to improper adjuvants. Therefore, in the current study, poly(I:C), as a potent Th1 inducer adjuvant, was evaluated to improve the immunogenicity of recombinant PfMSP-1 42 , when compared to CFA/IFA, as reference adjuvant. Poly(I:C) produced high level and titers of anti-PfMSP-1 42 IgG antibodies in which was comparable to CFA/IFA adjuvant. In addition, PfMSP-1 42 formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-4 (23.9) and IgG2a/IgG1 (3.77) with more persistent, higher avidity, and titer of IgG2a relative to CFA/IFA, indicating a potent Th1 immune response. Poly(I:C) could also help to induce anti-PfMSP-1 42 antibodies with higher growth-inhibitory activity than CFA/IFA. Altogether, the results of the current study demonstrated that poly(I:C) is a potent adjuvant that can be appropriate for being used in PfMSP-1 42 -based vaccine formulations.

  13. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142 administered intramuscularly with adjuvant system AS01

    Directory of Open Access Journals (Sweden)

    Otsyula Nekoye

    2013-01-01

    Full Text Available Abstract Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1 antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele previously tested at both study sites. Conclusions Given that the primary

  14. AUXIN BINDING PROTEIN1: the outsider.

    Science.gov (United States)

    Sauer, Michael; Kleine-Vehn, Jürgen

    2011-06-01

    AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence.

  15. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...

  16. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES w...

  17. Expression of the domain cassette 8 Plasmodium falciparum erythrocyte membrane protein 1 is associated with cerebral malaria in Benin

    DEFF Research Database (Denmark)

    Bertin, Gwladys I; Lavstsen, Thomas; Guillonneau, François

    2013-01-01

    Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a highly polymorphic adherence receptor expressed on the surface of infected erythrocytes. Based on sequence homology PfEMP-1 variants have been grouped into three major groups A-C, the highly conserved VAR2CSA variants, and semi-c...

  18. Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Kurtis, Jonathan D

    2010-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60 diffe...

  19. Monocyte chemoattractant protein-1: a key mediator in inflammatory processes.

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2009-05-01

    Monocyte chemoattractant protein-1 (MCP-1) is a potent chemoattractant for monocytes and macrophages to areas of inflammation. MCP-1 is a prototypical chemokine subject to coordinated regulation by immunomodulatory agents. Since MCP-1 is implicated in multiple inflammatory diseases, it is a potential target for the treatment of these disorders. In this review, we will provide background information and summarize the MCP-1 structure and signaling pathways. Its involvement in multiple diseases, such as tumour development, atherogenesis and rare autoimmune diseases is also revised.

  20. Age-specific malaria seroprevalence rates: a cross-sectional analysis of malaria transmission in the Ouest and Sud-Est departments of Haiti.

    Science.gov (United States)

    von Fricken, Michael E; Weppelmann, Thomas A; Lam, Brandon; Eaton, Will T; Schick, Laura; Masse, Roseline; Beau De Rochars, Madsen V; Existe, Alexandre; Larkin, Joseph; Okech, Bernard A

    2014-09-14

    Malaria transmission continues to occur in Haiti, with 25,423 confirmed cases of Plasmodium falciparum and 161,236 suspected infections reported in 2012. At low prevalence levels, passive surveillance measures, which rely primarily on reports from health systems, becomes less appropriate for capturing annual malaria incidence. To improve understanding of malaria transmission in Haiti, participants from the Ouest and Sud-Est departments were screened using a highly sensitive enzyme-linked immunosorbent assay (ELISA). Between February and May 2013, samples were collected from four different sites including a rural community, two schools, and a clinic located in the Ouest and Sud-Est departments of Haiti. A total of 815 serum samples were screened for malaria antibodies using an indirect ELISA coated with vaccine candidates apical membrane antigen (AMA-1) and merozoite surface protein-1 (MSP-119). The classification of previous exposure was established by using a threshold value that fell three standard deviations above the mean absorbance for suspected seronegative population members (OD of 0.32 and 0.26 for AMA-1 and MSP-1, respectively). The observed seroprevalence values were used to fit a modified reverse catalytic model to yield estimates of seroconversion rates. Of the samples screened, 172 of 815 (21.1%) were AMA-1 positive, 179 of 759 (23.6%) were MSP-119 positive, and 247 of 815 (30.3%) were positive for either AMA-1 or MSP-1; indicating rates of previous infections between 21.1% and 30.3%. Not surprisingly, age was highly associated with the likelihood of previous infection (p-value Haiti, transmission has remained relatively low over multiple decades. Elimination in Haiti appears to be feasible; however, surveillance must continue to be strengthened in order to respond to areas with high transmission and measure the impact of future interventions.

  1. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    sporozoites. RESULTS: In cultures representing the first generation of parasites after hepatic release, all var genes were transcribed, but Group A var genes were transcribed at the lowest levels. In cultures established from second or third generation blood stage parasites of volunteers with high in vivo......BACKGROUND: Parasites causing severe malaria in non-immune patients express a restricted subset of variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during non-severe disease in semi-immune individuals. The most prominent VSA are the var gene......-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...

  2. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    Science.gov (United States)

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  3. Arabidopsis adaptor protein 1G is critical for pollen development.

    Science.gov (United States)

    Feng, Chong; Wang, Jia-Gang; Liu, Hai-Hong; Li, Sha; Zhang, Yan

    2017-09-01

    Pollen development is a pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultrastructural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development. © 2017 Institute of Botany, Chinese Academy of Sciences.

  4. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  5. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Lusingu, John; Vestergaard, Lasse S

    2007-01-01

    Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In are...

  6. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  7. Immunohistochemical localization of dentin matrix protein 1 in human dentin

    Directory of Open Access Journals (Sweden)

    G Orsini

    2009-08-01

    Full Text Available Dentin matrix protein 1 (DMP1 is a non-collagenous matrix protein with a recognized role in the formation of mineralized tissues such as dentin. The aim of this study was to analyze the distribution of DMP1 in human dentin by means of immunofluorescence and high-resolution immunogold labeling. Fully developed, sound human dentin specimens were submitted to fluorescence labeling and post-embedding immunolabeling techniques with a rabbit polyclonal antihuman DMP1 antibody followed by corresponding fluorochrome- conjugated or gold-conjugated secondary antibodies. Both immunofluorescence and immunogold labeling showed an intense labeling associated with the peritubular dentin. In addition, at the ultrastructural level, there was also a moderate and diffuse immunoreaction over intertubular dentin, and a weak labeling within predentin which increased in density towards the mineralization front. This study suggests that in adult human teeth, like in rodents, DMP1 is prevalently concentrated at the level of peritubular dentin and this feature is preserved also in fully developed-teeth. These data are consistent with what has been observed in rodents and suggest that DMP1 plays a role in maintenance of the dentin tubular space.

  8. Functional and Immunological Relevance of Anaplasma marginale Major Surface Protein 1a Sequence and Structural Analysis

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Passos, L.M.F.; Lis, K.; Kenneil, R.; Valdés, James J.; Ferrolho, J.; Tonk, Miray; Pohl, A.E.; Grubhoffer, Libor; Zweygarth, E.; Shkap, V.; Ribeiro, M.F.B.; Estrada-Pena, A.; Kocan, K.M.; de la Fuente, J.

    2013-01-01

    Roč. 8, č. 6 (2013), e65243 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 238511 - POSTICK Institutional support: RVO:60077344 Keywords : CD4(+) T-lymphocytes * B-cell epitopes * salivary glands Subject RIV: EC - Immunology Impact factor: 3.534, year: 2013

  9. Polymorphism of the merozoite surface protein-1 block 2 region in Plasmodium falciparum isolates from Mauritania.

    Science.gov (United States)

    Ahmedou Salem, Mohamed Salem O; Ndiaye, Magatte; OuldAbdallahi, Mohamed; Lekweiry, Khadijetou M; Bogreau, Hervé; Konaté, Lassana; Faye, Babacar; Gaye, Oumar; Faye, Ousmane; Mohamed Salem O Boukhary, Ali O

    2014-01-23

    The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Mauritania. The present study examined and compared the genetic diversity of P. falciparum isolates in Mauritania. Plasmodium falciparum isolates blood samples were collected from 113 patients attending health facilities in Nouakchott and Hodh El Gharbi regions. K1, Mad20 and RO33 allelic family of msp-1 gene were determined by nested PCR amplification. K1 family was the predominant allelic type carried alone or in association with Ro33 and Mad20 types (90%; 102/113). Out of the 113 P. falciparum samples, 93(82.3%) harboured more than one parasite genotype. The overall multiplicity of infection was 3.2 genotypes per infection. There was no significant correlation between multiplicity of infection and age of patients. A significant increase of multiplicity of infection was correlated with parasite densities. The polymorphism of P. falciparum populations from Mauritania was high. Infection with multiple P. falciparum clones was observed, as well as a high multiplicity of infection reflecting both the high endemicity level and malaria transmission in Mauritania.

  10. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia.

    Science.gov (United States)

    Ahmed, Md Atique; Fauzi, Muh; Han, Eun-Taek

    2018-03-14

    Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia. A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software. Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes. This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.

  11. In silico analysis of the polygalacturonase inhibiting protein 1 from apple, Malus domestica.

    Science.gov (United States)

    Matsaunyane, Lerato Bt; Oelofse, Dean; Dubery, Ian A

    2015-03-11

    The Malus domestica polygalacturonase inhibiting protein 1 (MdPGIP1) gene, encoding the M. domestica polygalacturonase inhibiting protein 1 (MdPGIP1), was isolated from the Granny Smith apple cultivar (GenBank accession no. DQ185063). The gene was used to transform tobacco and potato for enhanced resistance against fungal diseases. Analysis of the MdPGIP1 nucleotide sequence revealed that the gene comprises 993 nucleotides that encode a 330 amino acid polypeptide. In silico characterization of the MdPGIP1 polypeptide revealed domains typical of PGIP proteins, which include a 24 amino acid putative signal peptide, a potential cleavage site [Alanine-Leucine-Serine (ALS)] for the signal peptide, a 238 amino acid leucine-rich repeat (LRR) domain, a 46 amino acid N-terminal domain and a 22 amino acid C-terminal domain. The hydropathic evaluation of MdPGIP1 indicated a repetitive hydrophobic motif in the LRR domain and a hydrophilic surface area consistent with a globular protein. The typical consensus glycosylation sequence of Asn-X-Ser/Thr was identified in MdPGIP1, indicating potential N-linked glycosylation of MdPGIP1. The molecular mass of non-glycosylated MdPGIP1 was calculated as 36.615 kDa and the theoretical isoelectric point as 6.98. Furthermore, the secondary and tertiary structure of MdPGIP1 was modelled, and revealed that MdPGIP1 is a curved and elongated molecule that contains sheet B1, sheet B2 and 310-helices on its LRR domain. The overall properties of the MdPGIP1 protein is similar to that of the prototypical Phaseolus vulgaris PGIP 2 (PvPGIP2), and the detected differences supported its use in biotechnological applications as an inhibitor of targeted fungal polygalacturonases (PGs).

  12. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    Science.gov (United States)

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy.

    Science.gov (United States)

    Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R

    2005-11-01

    Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.

  14. Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans

    Science.gov (United States)

    Staab, Janet F.; Datta, Kausik; Rhee, Peter

    2013-01-01

    Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa. PMID:24260489

  15. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides....

  16. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  17. Uncoupling protein-1 is protective of bone mass under mild cold stress conditions.

    Science.gov (United States)

    Nguyen, Amy D; Lee, Nicola J; Wee, Natalie K Y; Zhang, Lei; Enriquez, Ronaldo F; Khor, Ee Cheng; Nie, Tao; Wu, Donghai; Sainsbury, Amanda; Baldock, Paul A; Herzog, Herbert

    2018-01-01

    Brown adipose tissue (BAT), largely controlled by the sympathetic nervous system (SNS), has the ability to dissipate energy in the form of heat through the actions of uncoupling protein-1 (UCP-1), thereby critically influencing energy expenditure. Besides BAT, the SNS also strongly influences bone, and recent studies have demonstrated a positive correlation between BAT activity and bone mass, albeit the interactions between BAT and bone remain unclear. Here we show that UCP-1 is critical for protecting bone mass in mice under conditions of permanent mild cold stress for this species (22°C). UCP-1 -/- mice housed at 22°C showed significantly lower cancellous bone mass, with lower trabecular number and thickness, a lower bone formation rate and mineralising surface, but unaltered osteoclast number, compared to wild type mice housed at the same temperature. UCP-1 -/- mice also displayed shorter femurs than wild types, with smaller cortical periosteal and endocortical perimeters. Importantly, these altered bone phenotypes were not observed when UCP-1 -/- and wild type mice were housed in thermo-neutral conditions (29°C), indicating a UCP-1 dependent support of bone mass and bone formation at the lower temperature. Furthermore, at 22°C UCP-1 -/- mice showed elevated hypothalamic expression of neuropeptide Y (NPY) relative to wild type, which is consistent with the lower bone formation and mass of UCP-1 -/- mice at 22°C caused by the catabolic effects of hypothalamic NPY-induced SNS modulation. The results from this study suggest that during mild cold stress, when BAT-dependent thermogenesis is required, UCP-1 activity exerts a protective effect on bone mass possibly through alterations in central NPY pathways known to regulate SNS activity. Copyright © 2016. Published by Elsevier Inc.

  18. Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus

    International Nuclear Information System (INIS)

    Shang, Guijun; Cang, Huaixing; Liu, Zhijie; Gao, Wei; Bi, Ruchang

    2010-01-01

    Recombinant calcineurin B-like protein 1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. Calcineurin B-like protein 1 (CBL1) is a calcium sensor in plants. It transmits the calcium signal through the downstream protein CBL-interacting protein kinase (CIPK). CBL1 and CIPK play crucial roles in the response to environmental stresses such as low K + , osmotic shock, high salt, cold and drought. Recombinant CBL1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. However, the crystal did not diffract well. A mutant prepared using the surface-entropy method and crystallized using the hanging-drop method at 298 K with PEG 2000 MME as a precipitant diffracted to 2.90 Å resolution. The crystal belonged to space group P2 1 2 1 2, with unit-cell parameters a = 99.87, b = 114.42, c = 63.80 Å, α = β = γ = 90.00° and three molecules per asymmetric unit

  19. MULTIFOCAL CHOROIDAL MELANOMA IN A PATIENT WITH GERM LINE BRCA-ASSOCIATED PROTEIN 1 MUTATION.

    Science.gov (United States)

    Rao, Raksha; Pointdujour-Lim, Renelle; Ganguly, Arupa; Shields, Carol L

    2018-01-01

    To report a case of unilateral multifocal melanoma in a patient with germ line BRCA-associated protein 1 mutation. Case report. A 67-year-old white woman with a family history of lung and liver cancers developed blurred visual acuity of 20/30 in the left eye. She was discovered to have two independent pigmented choroidal melanomas in the macula and superotemporally, both demonstrating overlying subretinal fluid and orange pigment. Both melanomas were treated with a single custom-designed Iodine 125 brachytherapy device. Upon systemic evaluation, asymptomatic renal cell carcinoma was found, and blood lymphocyte testing for germ line BRCA-associated protein 1 mutation was positive. Multifocal choroidal melanoma is exceedingly rare. Patients with uveal melanoma, especially if multifocal, and those with other systemic malignancy or family history of cancers should be tested for germ line BRCA-associated protein 1 mutation. Lifelong monitoring for other systemic malignancies is advised.

  20. The streptococcal collagen-like protein-1 (Scl1 is a significant determinant for biofilm formation by group a Streptococcus

    Directory of Open Access Journals (Sweden)

    Oliver-Kozup Heaven A

    2011-12-01

    Full Text Available Abstract Background Group A Streptococcus (GAS is a human-specific pathogen responsible for a number of diseases characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been studied and little is known about the specific surface determinants that aid biofilm formation. In this study, we demonstrate that surface-associated streptococcal collagen-like protein-1 (Scl1 plays an important role in GAS biofilm formation. Results Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing an intraspecies breadth, were analyzed spectrophotometrically following crystal violet staining, and characterized using confocal and field emission scanning electron microscopy. The M41-type strain formed the most robust biofilm under static conditions, followed by M28- and M1-type strains, while the M3-type strains analyzed here did not form biofilm under the same experimental conditions. Differences in architecture and cell-surface morphology were observed in biofilms formed by the M1- and M41-wild-type strains, accompanied by varying amounts of deposited extracellular matrix and differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative mutants examined showed significantly decreased ability to form biofilm in vitro. Furthermore, the Scl1 protein expressed on the surface of a heterologous host, Lactococcus lactis, was sufficient to induce biofilm formation by this organism. Conclusions Overall, this work (i identifies variations in biofilm formation capacity among pathogenically different GAS strains, (ii identifies GAS surface properties that may aid in biofilm stability and, (iii establishes that the Scl1 surface protein is an important determinant of GAS biofilm, which is sufficient to enable biofilm formation in the heterologous host

  1. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    Science.gov (United States)

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  2. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J; Fantner, G E; Hansma, P K [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Fisher, L W [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892 (United States)], E-mail: adams@physics.ucsb.edu, E-mail: fantner@physics.ucsb.edu, E-mail: lfisher@dir.nidcr.nih.gov, E-mail: prasant@physics.ucsb.edu

    2008-09-24

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  3. Alterations in expression levels of deafness dystonia protein 1 affect mitochondrial morphology

    DEFF Research Database (Denmark)

    Engl, Gertraud; Florian, Stefan; Tranebjærg, Lisbeth

    2012-01-01

    Deafness-Dystonia-Optic Neuropathy (DDON) Syndrome is a rare X-linked progressive neurodegenerative disorder resulting from mutations in the TIMM8A gene encoding for the deafness dystonia protein 1 (DDP1). Despite important progress in identifying and characterizing novel mutations in this gene...

  4. The Role of Fibroblast Growth Factor Binding Protein 1 in Skin Carcinogenesis and Inflammation

    DEFF Research Database (Denmark)

    Schmidt, Marcel Oliver; Garman, Khalid Ammar; Lee, Yong Gu

    2018-01-01

    Fibroblast growth factor-binding protein 1 (FGFBP1, FGF-BP) is a secreted chaperone that mobilizes paracrine-acting FGFs, stored in the extracellular matrix, and presents them to their cognate receptors. FGFBP1 enhances FGF signaling including angiogenesis during cancer progression, and is upregu...

  5. Role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Friedl, H P

    1995-01-01

    The role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the pathogenesis of acute lung injury in rats after intrapulmonary deposition of IgG immune complexes or intratracheal administration of LPS has been assessed. Critical to these studies was the cloning and functional expression...

  6. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2017-01-01

    Tyrosinase-related protein 1 (TYRP1) is one of three tyrosinase-like glycoenzymes in human melanocytes that are key to the production of melanin, the compound responsible for the pigmentation of skin, eye, and hair. Difficulties with producing these enzymes in pure form have hampered the

  7. Heterochromatin protein 1 is recruited to various types of DNA damage

    NARCIS (Netherlands)

    Luijsterburg, Martijn S.; Dinant, Christoffel; Lans, Hannes; Stap, Jan; Wiernasz, Elzbieta; Lagerwerf, Saskia; Warmerdam, Daniël O.; Lindh, Michael; Brink, Maartje C.; Dobrucki, Jurek W.; Aten, Jacob A.; Fousteri, Maria I.; Jansen, Gert; Dantuma, Nico P.; Vermeulen, Wim; Mullenders, Leon H. F.; Houtsmuller, Adriaan B.; Verschure, Pernette J.; van Driel, Roel

    2009-01-01

    Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-alpha, HP1-beta, and HP1-gamma are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in

  8. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  9. Double-stranded RNA-induced activation of activating protein-1 promoter is differentially regulated by the non-structural protein 1 of avian influenza A viruses.

    Science.gov (United States)

    Munir, Muhammad; Zohari, Siamak; Belák, Sándor; Berg, Mikael

    2012-02-01

    Non-structural protein 1 (NS1) of influenza A viruses is a multifunctional protein that antagonizes the host immune response by interfering with several host signaling pathways. Based on putative amino acid sequences, NS1 proteins are categorized into two gene pools, allele A and allele B. Here we identified that allele A NS1 proteins of H6N8 and H4N6 are able to inhibit double-stranded RNA (dsRNA)-induced activating protein-1 (AP-1) promoter in cultured cell lines (human A549 and mink lung cells). Allele B NS1 proteins from corresponding subtypes of influenza A viruses are weak in this inhibition, despite significant levels of expression of each NS1 protein in human A549 cells. Furthermore, the capability to inhibit AP-1 promoter was mapped in the effector domain, since RNA binding domain alone lost its ability to inhibit this promoter activation. Chimeric forms of NS1 protein, composed of either RNA binding domain of allele A or B and effector domain of allele A or B, showed comparable inhibition to that of their wild-type NS1 proteins, or to the effector domain of corresponding NS1 proteins. Both alleles A and B NS1 proteins of H6N8 and H4N6 were expressed to significant levels, and were localized predominantly in the nucleus of human A549 cells. These results underscore the importance of the effector domain in inhibiting AP-1 promoter activation, and the biological function of the effector domain in stabilizing the RNA binding domain. Further, we revealed the versatile nature of NS1 in inhibiting the AP-1 transcription factor, in a manner dependent on allele type. Comprehensive studies, focusing on the molecular mechanisms behind this differential inhibition, may facilitate exploration of the zoonotic and pathogenic potential of influenza A viruses.

  10. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Yinyuan Ding

    2016-05-01

    Full Text Available Low-density lipoprotein receptor-related protein-1 (LRP1 is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2 translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL triglyceride secretion.

  11. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Lusingu, John; Vestergaard, Lasse S

    2007-01-01

    where P. falciparum is endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A Pf......Variant surface antigens (VSA) on the surface of Plasmodium falciparum-infected red blood cells play a major role in the pathogenesis of malaria and are key targets for acquired immunity. The best-characterized VSA belong to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. In areas...... of antibodies to the PF11_0008 CIDR2beta domain was associated with reduced numbers of malaria episodes. These results indicate that homologues of PF11_0008 are present in P. falciparum field isolates and suggest that PF11_0008 CIDR2beta-reactive antibodies might be involved in protection against malaria...

  12. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  13. Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1

    OpenAIRE

    Zhang, Xiujun; Qu, Yinbo; Qin, Yuqi

    2016-01-01

    Background Heterochromatin protein 1 (HP1, homologue HepA in Penicillium oxalicum) binding is associated with a highly compact chromatin state accompanied by gene silencing or repression. HP1 loss leads to the derepression of gene expression. We investigated HepA roles in regulating cellulolytic enzyme gene expression, as an increasingly number of studies have suggested that cellulolytic enzyme gene expression is not only regulated by transcription factors, but is also affected by the chromat...

  14. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1

    OpenAIRE

    Ge, Xianpeng; Ritter, Susan Y.; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O.

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemis...

  15. Prognostic significance of INF-induced transmembrane protein 1 in colorectal cancer

    OpenAIRE

    He, Jingdong; Li, Jin; Feng, Wanting; Chen, Longbang; Yang, Kangqun

    2015-01-01

    Interferon-induced transmembrane protein 1 (IFITM1) has recently been implicated in tumorigenesis. However, the prognostic value of IFITM1 in colorectal cancer remains unknown. The present study aimed to examine the expression and prognostic significance of IFITM1 in human colorectal cancer. IFITM1 expression was analyzed in 144 archived, paraffin-embedded colorectal cancer tissues and corresponding normal colorectal mucosa by immunohistochemistry. The correlation of IFITM1 with clinic-pathol...

  16. Insulin-Regulated Increase of Soluble Vascular Adhesion Protein-1 in Diabetes

    OpenAIRE

    Salmi, Marko; Stolen, Craig; Jousilahti, Pekka; Yegutkin, Gennady G.; Tapanainen, Päivi; Janatuinen, Tuula; Knip, Mikael; Jalkanen, Sirpa; Salomaa, Veikko

    2002-01-01

    Vascular adhesion protein-1 (VAP-1) is one of the molecules on the endothelial cell membrane, which may guide inflammatory cells into atherosclerotic lesions. This dual function molecule may also contribute to the pathogenesis of atherosclerosis and other vasculopathies via its enzymatic activity that oxidizes primary amines to produce their corresponding aldehydes, hydrogen peroxide, and ammonium. Because VAP-1 also exists in a soluble form, we analyzed its potential usefulness as a biomarke...

  17. Dickkopf-related protein 1 inhibits the WNT signaling pathway and improves pig oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Lee D Spate

    Full Text Available The ability to mature oocytes in vitro provides a tool for creating embryos by parthenogenesis, fertilization, and cloning. Unfortunately the quality of oocytes matured in vitro falls behind that of in vivo matured oocytes. To address this difference, transcriptional profiling by deep sequencing was conducted on pig oocytes that were either matured in vitro or in vivo. Alignment of over 18 million reads identified 1,316 transcripts that were differentially represented. One pathway that was overrepresented in the oocytes matured in vitro was for Wingless-type MMTV integration site (WNT signaling. In an attempt to inhibit the WNT pathway, Dickkopf-related protein 1 was added to the in vitro maturation medium. Addition of Dickkopf-related protein 1 improved the percentage of oocytes that matured to the metaphase II stage, increased the number of nuclei in the resulting blastocyst stage embryos, and reduced the amount of disheveled segment polarity protein 1 protein in oocytes. It is concluded that transcriptional profiling is a powerful method for detecting differences between in vitro and in vivo matured oocytes, and that the WNT signaling pathway is important for proper oocyte maturation.

  18. Impaired LDL Receptor-Related Protein 1 Translocation Correlates with Improved Dyslipidemia and Atherosclerosis in apoE-Deficient Mice

    DEFF Research Database (Denmark)

    Gordts, Philip L S M; Bartelt, Alexander; Nilsson, Stefan K

    2012-01-01

    Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE.......Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE....

  19. Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Directory of Open Access Journals (Sweden)

    Shu Tang

    2016-01-01

    Full Text Available c-Jun NH2-terminal kinase (JNK-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These findings confirm that JNK-interacting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  20. Monocyte chemoattractant protein 1 (MCP-1) in temporal arteritis and polymyalgia rheumatica

    DEFF Research Database (Denmark)

    Ellingsen, T; Elling, P; Olson, A

    2000-01-01

    OBJECTIVE: To examine the localisation of monocyte chemoattractant protein 1 (MCP-1) in the inflamed vessel wall in temporal arteritis (TA) and to measure MCP-1 in plasma both in patients with TA and patients with polymyalgia rheumatica (PMR). METHODS: By immunohistochemical techniques MCP-1...... was localised to the vessel wall in patients with TA. In TA, PMR, and healthy controls MCP-1 was quantified by enzyme linked immunosorbent assay (ELISA) in plasma. RESULTS: MCP-1 was localised to the majority of mononuclear cells, some smooth muscle cells, and giant cells in the arterial biopsy specimens from...

  1. Blockade of Vascular Adhesion Protein-1 Inhibits Lymphocyte Infiltration in Rat Liver Allograft Rejection

    OpenAIRE

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-01-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174–5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/gro...

  2. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  3. Role of osteogenic protein-1/bone morphogenetic protein-7 in spinal fusion

    Directory of Open Access Journals (Sweden)

    Justin Munns

    2009-10-01

    Full Text Available Justin Munns, Daniel K Park, Kern SinghDepartment of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USAAbstract: Osteogenic protein-1 (OP-1, also known as bone morphogenetic protein-7 (BMP-7, is a protein in the TGF-β family of cellular proteins that has shown potential for application in patients undergoing spinal fusion due to its proven osteoinductive effects, particularly in patients with spondylolisthesis. OP-1 initiates numerous processes at the cellular level, acting on mesenchymal stem cells (MSCs, osteoblasts, and osteoclasts to stimulate bone growth. Animal studies of OP-1 have provided strong evidence for the ability of OP-1 to initiate ossification in posterolateral arthrodesis. Promising findings in early clinical trials with OP-1 prompted FDA approval for use in long bone nonunions in 2001 and subsequently for revision posterolateral arthrodesis in 2004 under a conditional Humanitarian Device Exemption. Larger clinical trials have recently shown no notable safety concerns or increases in adverse events associated with OP-1. However, a recent clinical trial has not conclusively demonstrated the noninferiority of OP-1 compared to autograft in revision posterolateral arthrodesis. The future of OP-1 application in patients with spondylolisthesis thus remains uncertain with the recent rejection of Premarket Approval (PMA status by the FDA (April 2009. Further investigation of its treatment success and immunological consequences appears warranted to establish FDA approval for its use in its current form.Keywords: osteogenic protein-1, bone morphogenetic protein-7, spinal fusion

  4. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  5. Synthesis and processing of ovine trophoblast protein-1 and bovine trophoblast protein-1, conceptus secretory proteins involved in the maternal recognition of pregnancy.

    Science.gov (United States)

    Anthony, R V; Helmer, S D; Sharif, S F; Roberts, R M; Hansen, P J; Thatcher, W W; Bazer, F W

    1988-09-01

    Ovine and bovine trophoblast protein-1 (oTP-1 and bTP-1) are newly discovered proteins produced by embryonic tissues for a limited period in early gestation. They appear to act as agents that prevent regression of the corpus luteum during early pregnancy in the ewe and cow. Ovine TP-1 [mol wt (Mr), 17,000] consists of three or four isoelectric variants (pI 5.4-5.7), whereas bTP-1, which cross-reacts with antiserum to oTP-1, is found as two predominant Mr classes (Mr, 22,000 and 24,000), each with several isoelectric variants (in the pI range 6.3-6.8). Cell-free translation of ovine conceptus mRNA yields pre-oTP-1 also consists of three or four isoelectric variants, assumed to have arisen by translation of multiple mRNA species. Ovine TP-1 is not glycosylated. When bovine conceptus mRNA is translated, a group of four or five isoforms of pre-bTP-1 are generated, each with a Mr of 19,000. In the presence of microsomes the Mr shifts upward to about 21,500. Bovine conceptuses cultured in presence of either [3H]glucosamine or [3H]mannose incorporate label into both size classes of bTP-1 (Mr, 22,000 and 24,000). Culture in presence of [35S]methionine and tunicamycin gave rise to a nonglycosylated form of bTP-1 with an apparent Mr of 18,000. Treatment of [35S]methionine-labeled bTP-1 with either endoglycosidase-H or peptide:N-glycosidase F yielded products with Mr of 17,000 and 16,000, respectively. bTP-1, although functionally and structurally related to oTP-1, appears to be a glycoprotein carrying at least two Asn-linked oligosaccharides. The two Mr classes of bTP-1 arise as a result of differences in either the number or structure of the carbohydrate chains. Like oTP-1, bTP-1 is probably translated from multiple mRNA species.

  6. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Backues, Steven K. [Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI 53706 (United States); Bednarek, Sebastian Y., E-mail: sybednar@wisc.edu [Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI 53706 (United States)

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  7. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  8. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania

    DEFF Research Database (Denmark)

    Kavishe, Reginald A; Paulo, Petro; Kaaya, Robert D

    2014-01-01

    ) is the recommended first-line drug in treatment of uncomplicated malaria. This study surveyed the distribution of the Plasmodium falciparum multidrug resistance protein-1 single nucleotide polymorphisms (SNPs) associated with increased parasite tolerance to ALu, in Tanzania. METHODS: A total of 687 Plasmodium...... in all regions, ranging from 17% - 26%. CONCLUSION: This is the first country-wide survey on Pfmdr1 mutations associated with ACT resistance. Distribution of individual Pfmdr1 mutations at codons 86, 184 and 1246 varies throughout Tanzanian regions. There is a general homogeneity in distribution......BACKGROUND: Resistance to anti-malarials is a major public health problem worldwide. After deployment of artemisinin-based combination therapy (ACT) there have been reports of reduced sensitivity to ACT by malarial parasites in South-East Asia. In Tanzania, artemether-lumefantrine (ALu...

  9. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Science.gov (United States)

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  10. Correlation between substitutions in penicillin-binding protein 1 and amoxicillin resistance in Helicobacter pylori.

    Science.gov (United States)

    Rimbara, Emiko; Noguchi, Norihisa; Kawai, Takashi; Sasatsu, Masanori

    2007-01-01

    The correlation between the substitutions of penicillin-binding protein 1 (PBP1) and amoxicillin resistance was studied for the determination of the substitutions in PBP1 which confer amoxicillin resistance in Helicobacter pylori. By the comparison of the amino acid sequences of PBP1 in the amoxicillinresistant (n=3), low-susceptible (n=3), and susceptible (n=13) H. pylori isolates, the substitution Asn562-->Tyr, which is adjacent to KTG motif (555-557), was common and specific to amoxicillin-resistant H. pylori. Additionally, all amoxicillin-resistant isolates had multiple substitutions such as Ser414-->Arg in the transpeptidase region of PBP1 of H. pylori. Furthermore all transformants obtained by the natural transformation using the pbp1 genes of amoxicillin-resistant H. pylori isolates had multiple substitutions including Asn562-->Tyr. These results suggest that multiple amino acid substitutions in the transpeptidase region of PBP1 are closely related to amoxicillin resistance in H. pylori.

  11. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2004-01-01

    Full Text Available MODERATE-severe depression (MSD is linked to overexpression of proinflammatory cytokines and chemokines. Fractalkine (FKN and macrophage inflammatory protein-1 alpha (MIP-1α are, respectively, members of CX3C and C-C chemokines, and both are involved in recruiting and activating mononuclear phagocytes in the central nervous system. We analysed the presence of FKN and MIP-1α in sera of untreated MSD patients and healthy donors. High FKN levels were observed in all MSD patients as compared with values only detectable in 26% of healthy donors. MIP-1α was measurable in 20% of patients, while no healthy donors showed detectable chemokine levels. In conclusion, we describe a previously unknown involvement of FKN in the pathogenesis of MSD, suggesting that FKN may represent a target for a specific immune therapy of this disease.

  12. Study of peripheral blood multidrug resistance-associated protein 1 expression of children intractable epilepsy.

    Science.gov (United States)

    Yue, Xuan; Liu, Xiaoming; Chen, Shengzhi; Li, Rui

    2018-04-01

    The aim of this study was to analyze multidrug resistance-associated protein 1 (MRP1) expression of peripheral blood of children intractable epilepsy. Sixty children with epilepsy admitted to outpatient and inpatient services of Xuzhou Children's Hospital between November 2010 and October 2011 were divided into a refractory epilepsy group and a drug-controlled epilepsy group, with 30 cases each. Thirty healthy children who went to the hospital in the same year for health examination were enrolled as a control group. Reverse transcriptase polymerase chain reaction and Western blot method were used to determine peripheral blood MRP1 level, mRNA, and protein content of the 3 groups. MRP1 expression in the refractory epilepsy group was significantly higher than those of the epilepsy group with good drug control and of the control group. All differences had statistical significance (P0.05). Peripheral blood MRP1 expression in patients with refractory epilepsy increases.

  13. A Critical Role for Cysteine 57 in the Biological Functions of Selenium Binding Protein-1.

    Science.gov (United States)

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M; Yang, Wancai

    2015-11-18

    The concentration of selenium-binding protein1 (SBP1) is often lower in tumors than in the corresponding tissue and lower levels have been associated with poor clinical outcomes. SBP1 binds tightly selenium although what role selenium plays in its biological functions remains unknown. Previous studies indicated that cysteine 57 is the most likely candidate amino acid for selenium binding. In order to investigate the role of cysteine 57 in SBP1, this amino acid was altered to a glycine and the mutated protein was expressed in human cancer cells. The SBP1 half-life, as well as the cellular response to selenite cytotoxicity, was altered by this change. The ectopic expression of SBP1(GLY) also caused mitochondrial damage in HCT116 cells. Taken together, these results indicated that cysteine 57 is a critical determinant of SBP1 function and may play a significant role in mitochondrial function.

  14. Plasma monocyte chemoattractant protein 1 is a marker for joint inflammation in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ellingsen, T; Buus, A; Stengaard-Pedersen, K.

    2001-01-01

    OBJECTIVE: Monocyte chemoattractant protein 1 (MCP-1) level in plasma is described as a marker for joint inflammation in rheumatoid arthritis (RA). METHODS: MCP-1 in plasma and synovial fluid (SF) was quantified by ELISA in 36 RA patients with synovitis of the knee at Day 1 and 30. Disease activity...... was assessed by the swollen joint count, Ritchie Articular Index (RAI), global assessment, pain on visual analog scale, Health Assessment Questionnaire, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). RESULTS: By linear regression analysis plasma MCP-1 levels correlated significantly....... MCP-1 appears to participate in the disease process in RA, and plasma MCP-1 may be useful in monitoring joint inflammation....

  15. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  16. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G

    2013-01-01

    study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded...... astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor...... cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival...

  17. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity

    Science.gov (United States)

    Lagathu, Claire; Christodoulides, Constantinos; Tan, Chong Yew; Virtue, Sam; Laudes, Matthias; Campbell, Mark; Ishikawa, Ko; Ortega, Francisco; Tinahones, Francisco J.; Fernández-Real, Jose-Manuel; Orešič, Matej; Sethi, Jaswinder K.; Vidal-Puig, Antonio

    2014-01-01

    Aim The Wnt/β-catenin signalling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. Here we investigate the role of the Wnt antagonist, secreted Frizzled related protein 1 (SFRP1) in promoting adipogenesis in vitro and adipose tissue expansion in vivo. Methods We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1. Results Secreted Frizzled related protein 1 (SFRP1) is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signalling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high fat diet-fed mice we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects. Conclusions Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signalling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals. PMID:20514047

  18. AUP1 (Ancient Ubiquitous Protein 1) Is a Key Determinant of Hepatic Very-Low-Density Lipoprotein Assembly and Secretion.

    Science.gov (United States)

    Zhang, Jing; Zamani, Mostafa; Thiele, Christoph; Taher, Jennifer; Amir Alipour, Mohsen; Yao, Zemin; Adeli, Khosrow

    2017-04-01

    AUP1 (ancient ubiquitous protein 1) is an endoplasmic reticulum-associated protein that also localizes to the surface of lipid droplets (LDs), with dual role in protein quality control and LD regulation. Here, we investigated the role of AUP1 in hepatic lipid mobilization and demonstrate critical roles in intracellular biogenesis of apoB100 (apolipoprotein B-100), LD mobilization, and very-low-density lipoprotein (VLDL) assembly and secretion. APPROACH AND RESULTS: siRNA (short/small interfering RNA) knockdown of AUP1 significantly increased secretion of VLDL-sized apoB100-containing particles from HepG2 cells, correcting a key metabolic defect in these cells that normally do not secrete much VLDL. Secreted particles contained higher levels of metabolically labeled triglyceride, and AUP1-deficient cells displayed a larger average size of LDs, suggesting a role for AUP1 in lipid mobilization. Importantly, AUP1 was also found to directly interact with apoB100, and this interaction was enhanced with proteasomal inhibition. Knockdown of AUP1 reduced apoB100 ubiquitination, decreased intracellular degradation of newly synthesized apoB100, and enhanced extracellular apoB100 secretion. Interestingly, the stimulatory effect of AUP1 knockdown on VLDL assembly was reminiscent of the effect previously observed after MEK-ERK (mitogen-activated protein kinase kinase-extracellular signal-regulated kinase) inhibition; however, further studies indicated that the AUP1 effect was independent of MEK-ERK signaling. In summary, our findings reveal an important role for AUP1 as a regulator of apoB100 stability, hepatic LD metabolism, and intracellular lipidation of VLDL particles. AUP1 may be a crucial factor in apoB100 quality control, determining the rate at which apoB100 is degraded or lipidated to enable VLDL particle assembly and secretion. © 2017 American Heart Association, Inc.

  19. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone.

    Science.gov (United States)

    Cheng, Shu-Meng; Lin, Wei-Hsiang; Lin, Chin-Sheng; Ho, Ling-Jun; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lai, Jenn-Haung; Yang, Shih-Ping

    2015-01-01

    Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-κB) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-κB in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH(2)-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-κB signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders. © 2014 by the Society for Experimental Biology and Medicine.

  20. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  1. Anabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Michael Wolf

    2014-01-01

    Full Text Available High mobility group box protein-1 (HMGB1 is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement.

  2. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Science.gov (United States)

    Bobkova, N V; Lyabin, D N; Medvinskaya, N I; Samokhin, A N; Nekrasov, P V; Nesterova, I V; Aleksandrova, I Y; Tatarnikova, O G; Bobylev, A G; Vikhlyantsev, I M; Kukharsky, M S; Ustyugov, A A; Polyakov, D N; Eliseeva, I A; Kretov, D A; Guryanov, S G; Ovchinnikov, L P

    2015-01-01

    The Y-box binding protein 1 (YB-1) is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX) mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42) inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  3. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Luke A., E-mail: luke@strubi.ox.ac.uk; Durrant, Benjamin P.; Barber, Michael; Harlos, Karl [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Fleurdépine, Sophie; Norbury, Chris J. [University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Gilbert, Robert J. C., E-mail: luke@strubi.ox.ac.uk [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2015-02-21

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.

  4. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  5. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    Science.gov (United States)

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  6. Cell division cycle-associated protein 1 as a new melanoma-associated antigen.

    Science.gov (United States)

    Tokuzumi, Aki; Fukushima, Satoshi; Miyashita, Azusa; Nakahara, Satoshi; Kubo, Yosuke; Yamashita, Junji; Harada, Miho; Nakamura, Kayo; Kajihara, Ikko; Jinnin, Masatoshi; Ihn, Hironobu

    2016-12-01

    Immune checkpoint inhibitors have increased the median survival of melanoma patients. To improve their effects, antigen-specific therapies utilizing melanoma-associated antigens should be developed. Cell division cycle-associated protein 1 (CDCA1), which has a specific function at the kinetochores for stabilizing microtubule attachment, is overexpressed in various cancers. CDCA1, which is a member of cancer-testis antigens, does not show detectable expression levels in normal tissues. Quantitative reverse transcription polymerase chain reaction and immunoblotting analyses revealed that CDCA1 was expressed in all of the tested melanoma cell lines, 74% of primary melanomas, 64% of metastatic melanomas and 25% of nevi. An immunohistochemical analysis and a Cox proportional hazards model showed that CDCA1 could be a prognostic marker in malignant melanoma (MM) patients. CDCA1-specific siRNA inhibited the cell proliferation of SKMEL2 and WM115 cells, but did not reduce the migration or invasion activity. These results suggest that CDCA1 may be a new therapeutic target of melanoma. © 2016 Japanese Dermatological Association.

  7. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Science.gov (United States)

    Ge, Xianpeng; Ritter, Susan Y; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM) surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  8. Chitinase-3-like protein-1 (YKL-40) before and after therapy in supraventricular arrhythmias.

    Science.gov (United States)

    Michelakakis, Nikolaos; Neroutsos, Georgios J; Perpinia, Anastasia S; Farmakis, Dimitrios; Voukouti, Eugenia G; Karavidas, Apostolos J; Parissis, John; Georgiakaki, Maria T; Pyrgakis, Vlassios N

    2017-09-01

    The inflammatory glycoprotein chitinase-3-like protein 1 or YKL-40 has emerged as a potential biomarker of cardiovascular diseases, including atrial fibrillation (AFib). We sought to assess YKL-40 in a wide spectrum of supraventricular arrhythmias besides AFib in comparison with other inflammatory markers. We determined serum levels of YKL-40, C-reactive protein (CRP) and IL-6 in 70 patients with AFib, atrial flutter, atrioventricular node reentry tachycardia or other supraventricular tachycardias before, immediately after therapy and 1 week after therapy; 20 healthy patients served as controls. Patients were subsequently followed for 6 months for arrhythmia recurrence. Baseline YKL-40 was significantly elevated in AFib patients [99.5 (65.5,194) ng/ml versus 47.2 (38.9,51.6) ng/ml in controls, P 40 levels correlated positively with left atrial volume index (Spearman's rho = 0.853, P 40 was independently associated with AFib recurrence (adjusted odds ratio = 1.02, 95% confidence interval = 1.00-1.04, P = 0.016). Neither CRP nor IL-6 was associated with AFib recurrence. Serum YKL-40 was elevated only in AFib and not in other supraventricular arrhythmias. In AFib, YKL-40 levels were responsive to therapy and predicted long-term recurrence.

  9. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance.

    Science.gov (United States)

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants.

  10. Detection and Quantification of the Fragile X Mental Retardation Protein 1 (FMRP

    Directory of Open Access Journals (Sweden)

    Giuseppe LaFauci

    2016-12-01

    Full Text Available The final product of FMR1 gene transcription, Fragile X Mental Retardation Protein 1 (FMRP, is an RNA binding protein that acts as a repressor of translation. FMRP is expressed in several tissues and plays important roles in neurogenesis, synaptic plasticity, and ovarian functions and has been implicated in a number of neuropsychological disorders. The loss of FMRP causes Fragile X Syndrome (FXS. In most cases, FXS is due to large expansions of a CGG repeat in FMR1—normally containing 6–54 repeats—to over 200 CGGs and identified as full mutation (FM. Hypermethylation of the repeat induces FMR1 silencing and lack of FMRP expression in FM male. Mosaic FM males express low levels of FMRP and present a less severe phenotype that inversely correlates with FMRP levels. Carriers of pre-mutations (55–200 CGG show increased mRNA, and normal to reduced FMRP levels. Alternative splicing of FMR1 mRNA results in 24 FMRP predicted isoforms whose expression are tissues and developmentally regulated. Here, we summarize the approaches used by several laboratories including our own to (a detect and estimate the amount of FMRP in different tissues, developmental stages and various pathologies; and (b to accurately quantifying FMRP for a direct diagnosis of FXS in adults and newborns.

  11. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites.

    Science.gov (United States)

    Dodge, Matthew A; Waller, Ross F; Chow, Larry M C; Zaman, Muhammad M; Cotton, Leanne M; McConville, Malcolm J; Wirth, Dyann F

    2004-03-01

    Upregulation of the multidrug resistance protein 1 (LeMDR1) in the protozoan parasite, Leishmania enriettii, confers resistance to hydrophobic drugs such as vinblastine, but increases the sensitivity of these parasites to the mitochondrial drug, rhodamine 123. In order to investigate the mechanism of action of LeMDR1, the subcellular localization of green fluorescent protein (GFP)-tagged versions of LeMDR1 and the fate of the traceable-fluorescent LeMDR1 substrate calcein AM were examined in both Leishmania mexicana and L. enriettii LeMDR1 -/- and overexpressing cell lines. The LeMDR1-GFP chimera was localized by fluorescence microscopy to a number of secretory and endocytic compartments, including the Golgi apparatus, endoplasmic reticulum (ER) and a multivesicular tubule (MVT)-lysosome. Pulse-chase labelling experiments with calcein AM suggested that the Golgi and ER pools, but not the MVT-lysosome pool, of LeMDR1 were active in pumping calcein AM out of the cell. Cells labelled with calcein AM under conditions that slow vesicular transport (low temperature and stationary growth) inhibited export and resulted in the accumulation of fluorescent calcein in both the Golgi and the mitochondria. We propose that LeMDR1 substrates are pumped into secretory compartments and exported from the parasite by exocytosis. Accumulation of MDR substrates in the ER can result in alternative transport to the mitochondrion, explaining the reciprocal sensitivity of drug-resistant Leishmania to vinblastine and rhodamine 123.

  12. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  13. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa.

    Science.gov (United States)

    Yamaguchi, Airi; Kaneko, Takane; Inai, Tetsuichiro; Iida, Hiroshi

    2014-04-01

    Tektins (TEKTs) are composed of a family of filament-forming proteins localized in cilia and flagella. Five types of mammalian TEKTs have been reported, all of which have been verified to be present in sperm flagella. TEKT2, which is indispensable for sperm structure, mobility, and fertilization, was present at the periphery of the outer dense fiber (ODF) in the sperm flagella. By yeast two-hybrid screening, we intended to isolate flagellar proteins that could interact with TEKT2, which resulted in the isolation of novel two genes from the mouse testis library, referred as a TEKT2-binding protein 1 (TEKT2BP1) and -protein 2 (TEKT2BP2). In this study, we characterized TEKT2BP1, which is registered as a coiled-coil domain-containing protein 172 (Ccdc172) in the latest database. RT-PCR analysis indicated that TEKT2BP1 was predominantly expressed in rat testis and that its expression was increased after 3 weeks of postnatal development. Immunocytochemical studies discovered that TEKT2BP1 localized in the middle piece of rat spermatozoa, predominantly concentrated at the mitochondria sheath of the flagella. We hypothesize that the TEKT2-TEKT2BP1 complex might be involved in the structural linkage between the ODF and mitochondria in the middle piece of the sperm flagella.

  14. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  15. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  17. Depletion of Paraspeckle Protein 1 Enhances Methyl Methanesulfonate-Induced Apoptosis through Mitotic Catastrophe.

    Directory of Open Access Journals (Sweden)

    Xiangjing Gao

    Full Text Available Previously, we have shown that paraspeckle protein 1 (PSPC1, a protein component of paraspeckles that was involved in cisplatin-induced DNA damage response (DDR, probably functions at the G1/S checkpoint. In the current study, we further examined the role of PSPC1 in another DNA-damaging agent, methyl methanesulfonate (MMS-induced DDR, in particular, focusing on MMS-induced apoptosis in HeLa cells. First, it was found that MMS treatment induced the expression of PSPC1. While MMS treatment alone can induce apoptosis, depletion of PSPC1 expression using siRNA significantly increased the level of apoptosis following MMS exposure. In contrast, overexpressing PSPC1 decreased the number of apoptotic cells. Interestingly, morphological observation revealed that many of the MMS-treated PSPC1-knockdown cells contained two or more nuclei, indicating the occurrence of mitotic catastrophe. Cell cycle analysis further showed that depletion of PSPC1 caused more cells entering the G2/M phase, a prerequisite of mitosis catastrophe. On the other hand, over-expressing PSPC1 led to more cells accumulating in the G1/S phase. Taken together, these observations suggest an important role for PSPC1 in MMS-induced DDR, and in particular, depletion of PSPC1 can enhance MMS-induced apoptosis through mitotic catastrophe.

  18. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    International Nuclear Information System (INIS)

    Blankenberg, F.G.; Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A.; Tait, J.F.; Post, A.M.; Strauss, H.W.

    2001-01-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  19. Prognostic significance of INF-induced transmembrane protein 1 in colorectal cancer.

    Science.gov (United States)

    He, Jingdong; Li, Jin; Feng, Wanting; Chen, Longbang; Yang, Kangqun

    2015-01-01

    Interferon-induced transmembrane protein 1 (IFITM1) has recently been implicated in tumorigenesis. However, the prognostic value of IFITM1 in colorectal cancer remains unknown. The present study aimed to examine the expression and prognostic significance of IFITM1 in human colorectal cancer. IFITM1 expression was analyzed in 144 archived, paraffin-embedded colorectal cancer tissues and corresponding normal colorectal mucosa by immunohistochemistry. The correlation of IFITM1 with clinic-pathological features and overall survival of colorectal cancer patients was evaluated. IFITM1 was overexpressed in colonic cancer tissues but not in rectal cancer tissues, compared to control normal tissues. The expression of IFITM1 was significantly higher in patients with poor differentiation (P=0.031). The patients with higher IFITM1 expression had worse overall survival outcomes than those with lower IFITM1 expression in rectal cancer (P=0.037). Univariate Cox regression suggested that older age and poorly differentiation status predict shorter overall survival in colorectal cancer (Pcancer. IFITM1 may serve as an independent prognostic biomarker for colorectal cancer.

  20. A membrane topology model for human interferon inducible transmembrane protein 1.

    Directory of Open Access Journals (Sweden)

    Stuart Weston

    Full Text Available InterFeron Inducible TransMembrane proteins 1-3 (IFITM1, IFITM2 and IFITM3 are a family of proteins capable of inhibiting the cellular entry of numerous human and animal viruses. IFITM1-3 are unique amongst the currently described viral restriction factors in their apparent ability to block viral entry. This restrictive property is dependant on the localisation of the proteins to plasma and endosomal membranes, which constitute the main portals of viral entry into cells. The topology of the IFITM proteins within cell membranes is an unresolved aspect of their biology. Here we present data from immunofluorescence microscopy, protease cleavage, biotin-labelling and immuno-electron microscopy assays, showing that human IFITM1 has a membrane topology in which the N-terminal domain resides in the cytoplasm, and the C-terminal domain is extracellular. Furthermore, we provide evidence that this topology is conserved for all of the human interferon-induced IFITM proteins. This model is consistent with that recently proposed for murine IFITM3, but differs from that proposed for murine IFITM1.

  1. A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Morris, Craig F; Geng, Hongwei; Beecher, Brian S; Ma, Dongyun

    2013-12-01

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. Gsp-1 likely plays little role in grain hardness, but has direct interest due to its utility in phylogeny and its role in arabinogalactan peptides. Further role(s) remain to be identified. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is present in a homoeologous series. Since its discovery, there have been conflicting reports and data as to the number of Gsp-1 genes and the level of sequence polymorphism. Little is known about allelic variation within a species. In the simplest model, a single Gsp-1 gene is present in each wheat and Aegilops tauschii genome. The present review critically re-examines the published and some unpublished data (sequence available in the NCBI nucleotide and MIPS Wheat Genome Databases). A number of testable hypotheses are identified, and include the level of polymorphism that may represent (and define) different Gsp-1 alleles, the existence of a fourth Gsp-1 gene, and the apparent, at times, high level of naturally-occurring or artifactual gene chimeras. In summary, the present data provide firm evidence for at most, three Gsp-1 genes in wheat, although there are numerous data that suggest a more complex model.

  2. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.).

    Science.gov (United States)

    Tian, Z; Zhang, Y

    2016-12-01

    A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment. © 2016 The Royal Entomological Society.

  3. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  4. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1.

    Directory of Open Access Journals (Sweden)

    Itsasne Bustillo-Zabalbeitia

    Full Text Available Dynamin-Related Protein 1 (Drp1, a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G, bundle signaling element (BSE and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL. Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.

  5. Cytokine-Like Protein 1(Cytl1: A Potential Molecular Mediator in Embryo Implantation.

    Directory of Open Access Journals (Sweden)

    Zhichao Ai

    Full Text Available Cytokine-like protein 1 (Cytl1, originally described as a protein expressed in CD34+ cells, was recently identified as a functional secreted protein involved in chondrogenesis and cartilage development. However, our knowledge of Cytl1 is still limited. Here, we determined the Cytl1 expression pattern regulated by ovarian hormones at both the mRNA and protein levels. We found that the endometrial expression of Cytl1 in mice was low before or on the first day of gestation, significantly increased during embryo implantation, and then decreased at the end of implantation. We investigated the effects of Cytl1 on endometrial cell proliferation, and the effects on the secretion of leukemia inhibitory factor (LIF and heparin-binding epidermal growth factor (HB-EGF. We also explored the effect of Cytl1 on endometrial adhesion properties in cell-cell adhesion assays. Our findings demonstrated that Cytl1 is an ovarian hormone-dependent protein expressed in the endometrium that enhances the proliferation of HEC-1-A and RL95-2 cells, stimulates endometrial secretion of LIF and HB-EGF, and enhances the adhesion of HEC-1-A and RL95-2 cells to JAR spheroids. This study suggests that Cytl1 plays an active role in the regulation of embryo implantation.

  6. Regulation of biosynthesis and intracellular localization of rice and tobacco homologues of nucleosome assembly protein 1.

    Science.gov (United States)

    Dong, Aiwu; Zhu, Yan; Yu, Yu; Cao, Kaiming; Sun, Chongrong; Shen, Wen-Hui

    2003-02-01

    The nucleosome assembly protein 1 (NAP1) is considered to be a conserved histone chaperone, facilitating the assembly of nucleosomes in all eukaryotes. However, studies in yeast and animal cells also indicated that NAP1 proteins have diverse functions likely independent of nucleosome-assembly activity. Here, we describe the isolation and characterization of cDNAs encoding NAP1-like proteins from the monocotyledon rice ( Oryza sativa L.) and the dicotyledon tobacco ( Nicotiana tabacum L.). Northern-blot analysis demonstrated that the two rice NAP1-like genes are predominantly expressed in stem tissues such as root and shoot apical meristems as well as in young flowers. During the cell cycle, all four tobacco NAP1-like genes are highly expressed, with one of them showing a slightly increased expression at the G1/S transition. These results are consistent with a role for plant NAP1-like proteins in cell division. In vitro binding assays revealed that different NAP1-like proteins bind, with distinct relative binding strengths, to different classes of histone. Intracellular localization analyses showed that some NAP1-like proteins could be targeted into the nucleus whereas others are exclusively cytoplasm-localized. It is thus likely that different plant NAP1-like proteins have distinct functions in vivo. Plant NAP1-like proteins were observed to concentrate around the metaphase plate and in the phragmoplast, suggesting a role in mitotic events and cytokinesis.

  7. Guanylate-binding protein 1 participates in cellular antiviral response to dengue virus

    Directory of Open Access Journals (Sweden)

    Pan Wen

    2012-11-01

    Full Text Available Abstract Background Dengue virus (DENV, the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus found in tropical and sub-tropical regions around the world. Vaccines against DENV are currently unavailable. Guanylate-binding protein 1 (GBP1 is one of the Interferon (IFN stimulated genes (ISGs and has been shown important for host immune defense against various pathogens. However, the role of GBP1 during DENV infection remains unclarified. In this study, we evaluated the relevance of GBP1 to DENV infection in in vitro model. Findings Quantitative RT-PCR (qRT-PCR and Western blot showed that the expression of mouse Gbp1 was dramatically upregulated in DENV-infected RAW264.7 cells. The intracellular DENV loads were significantly higher in Gbp1 silenced cells compared with controls. The expression levels of selective anti-viral cytokines were decreased in Gbp1 siRNA treated cells, while the transcription factor activity of NF-κB was impaired upon GBP1 silencing during infection. Conclusions Our data suggested that GBP1 plays an antiviral role during DENV infection.

  8. Identification and characterization of the RouenBd1987 Babesia divergens Rhopty-Associated Protein 1.

    Directory of Open Access Journals (Sweden)

    Marilis Rodriguez

    Full Text Available Human babesiosis is caused by one of several babesial species transmitted by ixodid ticks that have distinct geographical distributions based on the presence of competent animal hosts. The pathology of babesiosis, like malaria, is a consequence of the parasitaemia which develops through the cyclical replication of Babesia parasites in a patient's red blood cells, though symptoms typically are nonspecific. We have identified the gene encoding Rhoptry-Associated Protein -1 (RAP-1 from a human isolate of B. divergens, Rouen1987 and characterized its protein product at the molecular and cellular level. Consistent with other Babesia RAP-1 homologues, BdRAP-1 is expressed as a 46 kDa protein in the parasite rhoptries, suggesting a possible role in red cell invasion. Native BdRAP-1 binds to an unidentified red cell receptor(s that appears to be non-sialylated and non-proteinacious in nature, but we do not find significant reduction in growth with anti-rRAP1 antibodies in vitro, highlighting the possibility the B. divergens is able to use alternative pathways for invasion, or there is an alternative, complementary, role for BdRAP-1 during the invasion process. As it is the parasite's ability to recognize and then invade host cells which is central to clinical disease, characterising and understanding the role of Babesia-derived proteins involved in these steps are of great interest for the development of an effective prophylaxis.

  9. Synthesis and structure activity relationships of carbamimidoylcarbamate derivatives as novel vascular adhesion protein-1 inhibitors.

    Science.gov (United States)

    Yamaki, Susumu; Yamada, Hiroyoshi; Nagashima, Akira; Kondo, Mitsuhiro; Shimada, Yoshiaki; Kadono, Keitaro; Yoshihara, Kosei

    2017-11-01

    Vascular adhesion protein-1 (VAP-1) is a promising therapeutic target for the treatment of diabetic nephropathy. Here, we conducted structural optimization of the glycine amide derivative 1, which we previously reported as a novel VAP-1 inhibitor, to improve stability in dog and monkey plasma, and aqueous solubility. By chemical modification of the right part in the glycine amide derivative, we identified the carbamimidoylcarbamate derivative 20c, which showed stability in dog and monkey plasma while maintaining VAP-1 inhibitory activity. We also found that conversion of the pyrimidine ring in 20c into saturated rings was effective for improving aqueous solubility. This led to the identification of 28a and 35 as moderate VAP-1 inhibitors with excellent aqueous solubility. Further optimization led to the identification of 2-fluoro-3-{3-[(6-methylpyridin-3-yl)oxy]azetidin-1-yl}benzyl carbamimidoylcarbamate (40b), which showed similar human VAP-1 inhibitory activity to 1 with improved aqueous solubility. 40b showed more potent ex vivo efficacy than 1, with rat plasma VAP-1 inhibitory activity of 92% at 1h after oral administration at 0.3mg/kg. In our pharmacokinetic study, 40b showed good oral bioavailability in rats, dogs, and monkeys, which may be due to its improved stability in dog and monkey plasma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, F.G. [Div. of Pediatric Radiology, Stanford, CA (United States); Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A. [Division of Cardiovascular Medicine, Department of Medicine, Stanford, California (United States); Tait, J.F. [Dept. of Laboratory Medicine, Univ. of Washington, Seattle (United States); Post, A.M.; Strauss, H.W. [Div. of Nuclear Medicine, Stanford Univ., CA (United States)

    2001-12-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  11. Behavioral analysis of the huntingtin-associated protein 1 ortholog trak-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Norflus, Fran; Bu, Jingnan; Guyton, Evon; Gutekunst, Claire-Anne

    2016-09-01

    The precise role of huntingtin-associated protein 1 (HAP1) is not known, but studies have shown that it is important for early development and survival. A Caenorhabditis elegans ortholog of HAP1, T27A3.1 (also called trak-1), has been found and is expressed in a subset of neurons. Potential behavioral functions of three knockout lines of T27A3.1 were examined. From its suspected role in mice we hypothesize that T27A3.1 might be involved in egg hatching and early growth, mechanosensation, chemosensation, sensitivity to osmolarity, and synaptic transmission. Our studies show that the knockout worms are significantly different from the wild-type (WT) worms only in the synaptic transmission test, which was measured by adding aldicarb, an acetylcholinesterase inhibitor. The change in function was determined by measuring the number of worms paralyzed. However, when the T27A3.1 worms were tested for egg hatching and early growth, mechanosensation, chemosensation, and sensitivity to osmolarity, there were no significant differences between the knockout and WT worms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    Science.gov (United States)

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope.

  13. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  14. Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migration.

    Science.gov (United States)

    Mertsch, S; Becker, M; Lichota, A; Paulus, W; Senner, V

    2009-08-01

    Diffuse invasion of single-glioma cells is the main obstacle to successful therapy of these tumours. After identifying vesicle amine transport protein-1 (VAT-1) as being upregulated in invasive human gliomas, we study its possible function in glioblastoma cell migration. Based on data obtained from previous oligonucleotide arrays, we investigated expression of VAT-1 in glioblastoma tissue and cell lines on mRNA levels using reverse transcriptase PCR. Furthermore, we examined the amount and localization of VAT-1 protein using immunoblotting and immunohistochemistry. Using small interfering RNA technology we repressed VAT-1 expression in human glioma cell lines and analysed their migration using wound healing and transwell migration assays. Increased VAT-1 mRNA and protein levels were found in glioblastoma tissues and cell lines compared with normal human brain. Small interfering RNA-mediated VAT-1 knockdown led to significantly reduced migration of human glioma cells. VAT-1 is overexpressed in glioblastomas and functionally involved in glioma cell migration, representing a new component involved in glioma invasion

  15. Docking of calcium-binding protein 1 of Entamoeba histolytica using FDA approved drugs

    Directory of Open Access Journals (Sweden)

    Zahid Ahmad

    2017-11-01

    Full Text Available Objective: To find out an alternative potential inhibitor of Entamoeba histolytica calciumbinding protein 1 (EhCaBP1 through in silico studies. Methods: An attempt was made to find a new FDA approved, and cost effective alternative drug for amoebiasis. Sequence of the EhCaBP1 of Entamoeba histolytica was obtained through searching the UniProt database and protein BLAST was performed. The 3D structure of EhCaBP1 was retrieved from Research Collaboratory for Structural Bioinformatics and visualized using Discovery Studio Visualizer® 3.1. A total of 100 drugs were selected and docked using Patchdock and the different sorts of interactions with the target protein were studied using GS viewer, Ligplot and Discovery Studio visualizer. Results: Among the 100 selected drugs, dolutegravir, cefazedone and ergotamine showed large number of interactions with the target protein. Conclusions: The drugs cefazedone and ergotamine showed twenty and nineteen different sorts of interactions respectively with the target protein. These interactions may lead to metabolic changes and can subsequently stop the growth and cause the death of the parasite. Further investigations and experimental analysis are required to unveil the effects of these drugs.

  16. Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection.

    Science.gov (United States)

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-12-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174-5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 +/- 1.0 and 2.4 +/- 1.0 corrected increment units, respectively) compared to control (6.6 +/- 1.0) (P VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection.

  17. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Science.gov (United States)

    Lin, Marie C; Lee, Nikki P; Zheng, Ning; Yang, Pai-Hao; Wong, Oscar G; Kung, Hsiang-Fu; Hui, Chee-Kin; Luk, John M; Lau, George Ka-Kit

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins. METHODS: The gene expression profile was compared in a pair of HBV-infected twins. RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV, whereas the other became a chronic HBV carrier. Eighty-eight and forty-six genes were found to be up- or down-regulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RT-PCR. However, upon HBV core antigen stimulation, TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+ channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins. CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV. PMID:16437679

  18. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  19. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  20. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  1. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  2. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution.

    Science.gov (United States)

    Yang, Xi; Song, Li; Xue, Hong-Wei

    2008-11-01

    Overexpression of membrane steroid binding protein 1 (MSBP1) stimulates the root gravitropism and anti-gravitropism of hypocotyl, which is mainly due to the enhanced auxin redistribution in the bending regions of hypocotyls and root tips. The inhibitory effects by 1-N-naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, are suppressed under the MSBP1 overexpression, suggesting the positive effects of MSBP1 on polar auxin transport. Interestingly, sub-cellular localization studies showed that MSBP1 is also localized in endosomes and observations of the membrane-selective dye FM4-64 revealed the enhanced vesicle trafficking under MSBP1 overexpression. MSBP1-overexpressing seedlings are less sensitive to brefeldin A (BFA) treatment, whereas the vesicle trafficking was evidently reduced by suppressed MSBP1 expression. Enhanced MSBP1 does not affect the polar localization of PIN2, but stimulates the PIN2 cycling and enhances the asymmetric PIN2 redistribution under gravi-stimulation. These results suggest that MSBP1 could enhance the cycling of PIN2-containing vesicles to stimulate the auxin redistribution under gravi-stimulation, providing informative hints on interactions between auxin and steroid binding protein.

  3. Targeted deletion of fibrinogen like protein 1 reveals a novel role in energy substrate utilization.

    Directory of Open Access Journals (Sweden)

    Valeriy Demchev

    Full Text Available Fibrinogen like protein 1(Fgl1 is a secreted protein with mitogenic activity on primary hepatocytes. Fgl1 is expressed in the liver and its expression is enhanced following acute liver injury. In animals with acute liver failure, administration of recombinant Fgl1 results in decreased mortality supporting the notion that Fgl1 stimulates hepatocyte proliferation and/or protects hepatocytes from injury. However, because Fgl1 is secreted and detected in the plasma, it is possible that the role of Fgl1 extends far beyond its effect on hepatocytes. In this study, we show that Fgl1 is additionally expressed in brown adipose tissue. We find that signals elaborated following liver injury also enhance the expression of Fgl1 in brown adipose tissue suggesting that there is a cross talk between the injured liver and adipose tissues. To identify extra hepatic effects, we generated Fgl1 deficient mice. These mice exhibit a phenotype suggestive of a global metabolic defect: Fgl1 null mice are heavier than wild type mates, have abnormal plasma lipid profiles, fasting hyperglycemia with enhanced gluconeogenesis and exhibit differences in white and brown adipose tissue morphology when compared to wild types. Because Fgl1 shares structural similarity to Angiopoietin like factors 2, 3, 4 and 6 which regulate lipid metabolism and energy utilization, we postulate that Fgl1 is a member of an emerging group of proteins with key roles in metabolism and liver regeneration.

  4. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Directory of Open Access Journals (Sweden)

    Xianpeng Ge

    Full Text Available Cartilage acidic protein 1 (CRTAC1 was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  5. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice.

    Science.gov (United States)

    Wu, Yun-Ping; Proia, Richard L

    2004-06-01

    Sandhoff disease is a prototypical lysosomal storage disorder in which a heritable deficiency of a lysosomal enzyme, beta-hexosaminidase, results in the storage of the enzyme's substrates in lysosomes. As with many of the other lysosomal storage diseases, neurodegeneration is a prominent feature. Although the cellular and molecular pathways that underlie the neurodegenerative process are not yet fully understood, macrophage/microglial-mediated inflammation has been suggested as one possible mechanism. We now show that the expanded macrophage/microglial population in the CNS of Sandhoff disease mice is compounded by the infiltration of cells from the periphery. Coincident with the cellular infiltration was an increased expression of macrophage-inflammatory protein 1alpha (MIP-1alpha), a leukocyte chemokine, in astrocytes. Deletion of MIP-1alpha expression resulted in a substantial decrease in infiltration and macrophage/microglial-associated pathology together with neuronal apoptosis in Sandhoff disease mice. These mice without MIP-1alpha showed improved neurologic status and a longer lifespan. The results indicate that the pathogenesis of Sandhoff disease involves an increase in MIP-1alpha that induces monocytes to infiltrate the CNS, expand the activated macrophage/microglial population, and trigger apoptosis of neurons, resulting in a rapid neurodegenerative course.

  6. Kinetics of B Cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute......Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...... confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against...

  7. Evidence that selenium binding protein 1 is a tumor suppressor in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Emmanuel Ansong

    Full Text Available Selenium-Binding Protein 1 (SBP1, SELENBP1, hSP56 is a selenium-associated protein shown to be at lower levels in tumors, and its lower levels are frequently predictive of a poor clinical outcome. Distinguishing indolent from aggressive prostate cancer is a major challenge in disease management. Associations between SBP1 levels, tumor grade, and disease recurrence following prostatectomy were investigated by duplex immunofluorescence imaging using a tissue microarray containing tissue from 202 prostate cancer patients who experienced biochemical (PSA recurrence after prostatectomy and 202 matched control patients whose cancer did not recur. Samples were matched by age, ethnicity, pathological stage and Gleason grade, and images were quantified using the Vectra multispectral imaging system. Fluorescent labels were targeted for SBP1 and cytokeratins 8/18 to restrict scoring to tumor cells, and cell-by-cell quantification of SBP1 in the nucleus and cytoplasm was performed. Nuclear SBP1 levels and the nuclear to cytoplasm ratio were inversely associated with tumor grade using linear regression analysis. Following classification of samples into quartiles based on the SBP1 levels among controls, tumors in the lowest quartile were more than twice as likely to recur compared to those in any other quartile. Inducible ectopic SBP1 expression reduced the ability of HCT-116 human tumor cells to grow in soft agar, a measure of transformation, without affecting proliferation. Cells expressing SBP1 also demonstrated a robust induction in the phosphorylation of the p53 tumor suppressor at serine 15. These data indicate that loss of SBP1 may play an independent contributing role in prostate cancer progression and its levels might be useful in distinguishing indolent from aggressive disease.

  8. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    Science.gov (United States)

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

  9. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Although multidrug-resistance-associated protein-1 (MRP1 is a major contributor to multi-drug resistance (MDR, the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs--ARE1 and ARE2--were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC. As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.

  10. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  11. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing

    Directory of Open Access Journals (Sweden)

    Siham Hourani

    2018-03-01

    Full Text Available BackgroundLocal delivery of monocyte chemotactic protein-1 (MCP-1/CCL2 via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway.ObjectiveIn this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model.MethodsWe compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic acid (PLGA-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention.ResultsSystemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency.ConclusionWe show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  12. Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity

    Directory of Open Access Journals (Sweden)

    Lim JP

    2015-03-01

    Full Text Available Jun Pei Lim,1,2 Bernard P Leung,3 Yew Yoong Ding,1,2 Laura Tay,1,2 Noor Hafizah Ismail,2,4 Audrey Yeo,2 Suzanne Yew,2 Mei Sian Chong1,2 1Department of Geriatric Medicine, 2Institute of Geriatrics and Active Ageing, 3Department of Rheumatology, Allergy and Immunology, 4Department of Community and Continuing Care, Tan Tock Seng Hospital, Singapore Objective: Sarcopenic obesity (SO is associated with poorer physical outcomes and functional status in the older adult. A proinflammatory milieu associated with central obesity is postulated to enhance muscle catabolism. We set out to examine associations of the chemokine monocyte chemoattractant protein-1 (MCP-1 in groups of older adults, with sarcopenia, obesity, and the SO phenotypes.Methods: A total of 143 community dwelling, well, older adults were recruited. Cross-sectional clinical data, physical performance, and muscle mass measurements were collected. Obesity and sarcopenia were defined using revised National Cholesterol Education Program (NCEP obesity guidelines and those of the Asian Working Group for Sarcopenia. Serum levels of MCP-1 were measured by enzyme-linked immunosorbent assay (ELISA.Results: In all, 25.2% of subjects were normal, 15.4% sarcopenic, 48.3% obese, and 11.2% were SO. The SO groups had the lowest appendicular lean mass, highest percentage body fat, and lowest performance scores on the Short Physical Performance Battery and grip strength. The MCP-1 levels were significantly different, with the highest levels found in SO participants (P<0.05.Conclusion: Significantly raised MCP-1 levels in obese and SO subjects support the theory of chronic inflammation due to excess adiposity. Longitudinal studies will reveal whether SO represents a continuum of obesity causing accelerated sarcopenia and cardiovascular events, or the coexistence of two separate conditions with synergistic effects affecting functional performance. Keywords: chemokine C-C motif ligand 2 (CCL-2, elderly

  13. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres.

    Science.gov (United States)

    López-Panadès, Elisenda; Casacuberta, Elena

    2016-03-01

    Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Yesol; Shin, Hye-jun; Bak, In seon [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Yoon, Do-young [Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Yu, Dae-Yeul, E-mail: dyyu10@kribb.re.kr [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of)

    2015-10-30

    Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression. - Highlights: • NUPR1 is overexpressed in HBx transgenic mouse and HCC patients. • NUPR1 inactivation hampers the HBx induced growth, VM formation, and migration of HepG2 cells in vitro. • NUPR1 has a role for survival of HCC and mechanistically NUPR1 is activated by HBx-Smad4 axis.

  15. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Energy Technology Data Exchange (ETDEWEB)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Bronson, Roderick T. [Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115 (United States); Hornick, Jason L. [Department of Pathology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Cohen, David E. [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Ukomadu, Chinweike, E-mail: cukomadu@partners.org [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  16. Expression of activator protein-1 (AP-1) family members in breast cancer

    International Nuclear Information System (INIS)

    Kharman-Biz, Amirhossein; Gao, Hui; Ghiasvand, Reza; Zhao, Chunyan; Zendehdel, Kazem; Dahlman-Wright, Karin

    2013-01-01

    The activator protein-1 (AP-1) transcription factor is believed to be important in tumorigenesis and altered AP-1 activity was associated with cell transformation. We aimed to assess the potential role of AP-1 family members as novel biomarkers in breast cancer. We studied the expression of AP-1 members at the mRNA level in 72 primary breast tumors and 37 adjacent non-tumor tissues and evaluated its correlation with clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and HER2/neu status. Expression levels of Ubiquitin C (UBC) were used for normalization. Protein expression of AP-1 members was assessed using Western blot analysis in a subset of tumors. We used student’s t-test, one-way ANOVA, logistic regression and Pearson’s correlation coefficient for statistical analyses. We found significant differences in the expression of AP-1 family members between tumor and adjacent non-tumor tissues for all AP-1 family members except Fos B. Fra-1, Fra-2, Jun-B and Jun-D mRNA levels were significantly higher in tumors compared to adjacent non-tumor tissues (p < 0.001), whilst c-Fos and c-Jun mRNA levels were significantly lower in tumors compared with adjacent non-tumor tissues (p < 0.001). In addition, Jun-B overexpression had outstanding discrimination ability to differentiate tumor tissues from adjacent non-tumor tissues as determined by ROC curve analysis. Moreover, Fra-1 was significantly overexpressed in the tumors biochemically classified as ERα negative (p = 0.012) and PR negative (p = 0.037). Interestingly, Fra-1 expression was significantly higher in triple-negative tumors compared with luminal carcinomas (p = 0.01). Expression levels of Fra-1 and Jun-B might be possible biomarkers for prognosis of breast cancer

  17. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1 gene family.

    Directory of Open Access Journals (Sweden)

    Mia T Levine

    Full Text Available Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.

  18. Uncoupling protein-1 as a target for the treatment of obesity/insulin resistance

    Directory of Open Access Journals (Sweden)

    Anne-Laure ePoher

    2015-01-01

    Full Text Available Presence of brown adipose tissue (BAT, characterised by the expression of the thermogenic uncoupling protein 1 (UCP1, has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in beige cells in white adipose tissue (WAT. The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21 and bone morphogenetic protein factor-9 (BMP-9, predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to browning of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16 or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects.Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans.

  19. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves.

    Science.gov (United States)

    Barreto, Pedro; Okura, Vagner; Pena, Izabella A; Maia, Renato; Maia, Ivan G; Arruda, Paulo

    2016-01-01

    Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using (1)H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice.

    Science.gov (United States)

    Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Uozumi, Akihiro; Terao, Akira; Kimura, Kazuhiro; Saito, Masayuki

    2013-01-01

    Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.

  1. PTIP associated protein 1, PA1, is an independent prognostic factor for lymphnode negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Takashi Takeshita

    Full Text Available Pax transactivation domain interacting protein (PTIP associated protein 1, PA1, was a newly found protein participating in the modulation of transactivity of nuclear receptor super family members such as estrogen receptor (ER, androgen receptor (AR and glucocorticoid receptor (GR. Breast cancer is one of the most life threatening diseases for women and has tight association with estrogen and ER. This study was performed to understand the function of PA1 in breast cancer. The expression of PA1 had been evaluated in a total of 344 primary invasive breast cancer samples and examined the relationship with clinical output, relapse free survival (RFS, breast cancer-specific survival (BCSS. PA1 expression was observed in both nucleus and cytoplasm, however, appeared mainly in nuclear. PA1 nuclear expression was correlated with postmenopausal (P = 0.0097, smaller tumor size (P = 0.0025, negative Ki67 (P = 0.02, positive AR (P = 0.049 and positive ERβ (P = 0.0020. Kaplan-Meier analysis demonstrated PA1 nuclear positive cases seemed to have a longer survival than negative ones for RFS (P = 0.023 but not for BCSS (P = 0.23. In the Cox hazards model, PA1 nuclear protein expression proved to be a significant prognostic univariate parameter for RFS (P = 0.03, but not for BCSS (P = 0.20. In addition, for those patients without lymphnode metastasis PA1 was found to be an independent prognostic factor for RFS (P = 0.025, which was verified by univariate and multivariate analyses. These investigations suggested PA1 expression could be a potential prognostic indicator for RFS in breast cancer.

  2. Cysteine-Rich Intestinal Protein 1 Silencing Inhibits Migration and Invasion in Human Colorectal Cancer.

    Science.gov (United States)

    He, Guoyang; Zou, Liyuan; Zhou, Lin; Gao, Peiqiong; Qian, Xinlai; Cui, Jing

    2017-01-01

    Cysteine-rich intestinal protein 1 (CRIP1), a member of the LIM/double zinc finger protein family, is abnormally expressed in several tumour types. However, few data are available on the role of CRIP1 in cancer. In the present study, we aimed to investigate the expression profile and functions of CRIP1 in colorectal cancer. To examine the protein expression level of CRIP1, immunohistochemistry (IHC) was performed on 56 pairs of colon cancer tissue samples. Western blotting was performed to investigate CRIP1 protein expression in four colon cancer cell lines. The endogenous expression of CRIP1 was suppressed using short interfering RNAs (siRNAs). Cell proliferation assays were used to determine whether CRIP1 silencing affected cell proliferation. Flow cytometry analysis was used to detect cell apoptosis. The effects of silencing CRIP1 on cell migration and invasion was detected using the transwell and wound-healing assays. IHC analysis showed that protein level of CRIP1 was significantly higher in tumour tissue samples than in paired non-tumour tissue samples and that the CRIP1 level was higher in metastatic tissue samples than in non-metastatic tissue samples. In addition, protein levels of CRIP1 were higher in highly metastatic colon cancer cell lines than in colon cancer cell lines with low metastasis. Further, CRIP1 silencing had no effect on cell proliferation or apoptosis in SW620 and HT29 cells. CRIP1 silencing suppressed cell migration and invasion obviously in SW620 and HT29 cells. The present study provides new evidence that abnormal expression of CRIP1 might be related to the degree of metastasis in colorectal cancer and that CRIP1 silencing could effectively inhibit migration and invasion during colorectal cancer development. These findings might aid the development of a biomarker for colon cancer prognosis and metastasis, and thus help to treat this common type of cancer. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. Poly(C)-binding protein 1 mediates drug resistance in colorectal cancer.

    Science.gov (United States)

    Guo, Jiani; Zhu, Changli; Yang, Kangqun; Li, Jin; Du, Nan; Zong, Mingzhu; Zhou, Jianwei; He, Jingdong

    2017-02-21

    Oxaliplatin (L-OHP) is standard treatment for colorectal cancer. However, resistance to L-OHP often leads to treatment failure or cancer relapse. Understanding of the mechanism underlying L-OHP resistance is important to overcome the resistance and improve colorectal cancer treatment. This study aimed to identify new proteins that mediates L-OHP resistance in colorectal cancer and elucidate their mode of function. HT-29 cells were exposed to gradually increased concentration of L-OHP to select L-OHP resistant HT-29/L-OHP cell line. Proteomic analysis of HT-29 and HT-29/L-OHP cells were performed to identify differentially expressed proteins, including Poly(C)-binding protein 1 (PCBP1). PCBP1 expression level in 20 cases of L-OHP sensitive patients and 20 cases of L-OHP refractory patients was analyzed by immunohistochemistry. Chemoresistance and Akt activation in HT-29 and HT-29/L-OHP cells were analyzed by MTT assay and Western blot analysis. We identified 37 proteins showing differential expression in HT-29/L-OHP and HT-29 cells. In particular, PCBP1 protein level increased 15.6 fold in HT-29/L-OHP cells compared to HT-29 cells. Knockdown of PCBP1 sensitized HT-29/L-OHP and HT-29 cells to L-OHP, while overexpression of PCBP1 increased L-OHP resistance in HT-29 cells. In addition, PCBP1 expression was significantly higher in tumor samples from L-OHP refractory patients than in those from L-OHP responsive patients. Furthermore, we found that knockdown of PCBP1 inhibited the activation of Akt in HT-29/L-OHP and HT-29 cells. In conclusion, our findings suggest that PCBP1 is a molecular marker of L-OHP resistance in colorectal cancer and a promising target for colorectal cancer therapy.

  4. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves

    Science.gov (United States)

    Barreto, Pedro; Okura, Vagner; Pena, Izabella A.; Maia, Renato; Maia, Ivan G.; Arruda, Paulo

    2016-01-01

    Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using 1H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses. PMID:26494730

  5. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  6. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration.

    Science.gov (United States)

    Chen, Xiaofeng; Liu, Yu; Miao, Leiying; Wang, Yangyang; Ren, Shuangshuang; Yang, Xuebin; Hu, Yong; Sun, Weibin

    2016-01-01

    Periodontitis is a major cause for tooth loss, which affects about 15% of the adult population. Cementum regeneration has been the crux of constructing the periodontal complex. Cementum protein 1 (CEMP1) is a cementum-specific protein that can induce cementogenic differentiation. In this study, poly(ethylene glycol) (PEG)-stabilized amorphous calcium phosphate (ACP) nanoparticles were prepared by wet-chemical method and then loaded with recombinant human CEMP1 (rhCEMP1) for controlled release. An electrospun multiphasic scaffold constituted of poly(ε-caprolactone) (PCL), type I collagen (COL), and rhCEMP1/ACP was fabricated. The effects of rhCEMP1/ACP/PCL/COL scaffold on the attachment proliferation, osteogenic, and cementogenic differentiations of human periodontal ligament cells, (PDLCs) were systematically investigated. A critical size defect rat model was introduced to evaluate the effect of tissue regeneration of the scaffolds in vivo. The results showed that PEG-stabilized ACP nanoparticles formed a core-shell structure with sustained release of rhCEMP1 for up to 4 weeks. rhCEMP1/ACP/PCL/COL scaffold could suppress PDLCs proliferation behavior and upregulate the expression of cementoblastic markers including CEMP1 and cementum attachment protein while downregulating osteoblastic markers including osteocalcin and osteopontin when it was cocultured with PDLCs in vitro for 7 days. Histology analysis of cementum after being implanted with the scaffold in rats for 8 weeks showed that there was cementum-like tissue formation but little bone formation. These results indicated the potential of using electrospun multiphasic scaffolds for controlled release of rhCEMP1 for promoting cementum regeneration in reconstruction of the periodontal complex.

  7. N-acetylcysteine (NAC) ameliorates Epstein-Barr virus latent membrane protein 1 induced chronic inflammation.

    Science.gov (United States)

    Gao, Xiao; Lampraki, Eirini-Maria; Al-Khalidi, Sarwah; Qureshi, Muhammad Asif; Desai, Rhea; Wilson, Joanna Beatrice

    2017-01-01

    Chronic inflammation results when the immune system responds to trauma, injury or infection and the response is not resolved. It can lead to tissue damage and dysfunction and in some cases predispose to cancer. Some viruses (including Epstein-Barr virus (EBV)) can induce inflammation, which may persist even after the infection has been controlled or cleared. The damage caused by inflammation, can itself act to perpetuate the inflammatory response. The latent membrane protein 1 (LMP1) of EBV is a pro-inflammatory factor and in the skin of transgenic mice causes a phenotype of hyperplasia with chronic inflammation of increasing severity, which can progress to pre-malignant and malignant lesions. LMP1 signalling leads to persistent deregulated expression of multiple proteins throughout the mouse life span, including TGFα S100A9 and chitinase-like proteins. Additionally, as the inflammation increases, numerous chemokines and cytokines are produced which promulgate the inflammation. Deposition of IgM, IgG, IgA and IgE and complement activation form part of this process and through genetic deletion of CD40, we show that this contributes to the more tissue-destructive aspects of the phenotype. Treatment of the mice with N-acetylcysteine (NAC), an antioxidant which feeds into the body's natural redox regulatory system through glutathione synthesis, resulted in a significantly reduced leukocyte infiltrate in the inflamed tissue, amelioration of the pathological features and delay in the inflammatory signature measured by in vivo imaging. Reducing the degree of inflammation achieved through NAC treatment, had the knock on effect of reducing leukocyte recruitment to the inflamed site, thereby slowing the progression of the pathology. These data support the idea that NAC could be considered as a treatment to alleviate chronic inflammatory pathologies, including post-viral disease. Additionally, the model described can be used to effectively monitor and accurately measure

  8. Specificity Protein 1 Regulates Gene Expression Related to Fatty Acid Metabolism in Goat Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jiangjiang Zhu

    2015-01-01

    Full Text Available Specificity protein 1 (SP1 is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311 and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium, pig, primates (pongo, gorilla, macaca and papio and murine (rattus and mus, while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ and lower liver X receptor α (LXRα mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.

  9. Seizure semiology in leucine-rich glioma-inactivated protein 1 antibody-associated limbic encephalitis.

    Science.gov (United States)

    Chen, Chao; Wang, Xiu; Zhang, Chao; Cui, Tao; Shi, Wei-Xiong; Guan, Hong-Zhi; Ren, Hai-Tao; Shao, Xiao-Qiu

    2017-12-01

    The objective of this study was to advance the characterization of seizure semiology in leucine-rich glioma-inactivated protein 1 (LGI1) antibody-associated limbic encephalitis (LE). Eighteen patients diagnosed with LGI1 LE were identified. Seizure semiology, demographic features, MRI and fluorodeoxyglucose positron emission tomography (FDG-PET), electroencephalograms, and outcomes following immunotherapy were evaluated. Patients were divided into the following groups based on seizure semiology: faciobrachial dystonic seizure only (FBDS-only, n=4), epileptic seizure without FBDS (Non-FBDS, n=6), and FBDS plus epileptic seizure (FBDS+, n=8). In the group with Non-FBDS, the majority of patients (5/6) manifested mesial temporal lobe epilepsy (MTLE) like semiology (i.e., fear, epigastric rising, staring, and automatisms) with a frequency of 7±5 times per day and a duration of 15.3±14.3s. In the group with FBDS+, the distinctive symptom was FBDS followed by epileptic events, especially automatisms (7/8), with a frequency of 16±12 times per day and a duration of 13.0±8.0s. In these cases, 67% and 50% of the patients showed abnormalities on MRI and FDG-PET, respectively, and the mesial temporal lobe structures were most often involved. Ictal discharges were observed in 0/4, 6/6, and 8/8 of the patients in the groups with FBDS only, Non-FBDS, and FBDS+, respectively. The temporal lobe was mainly affected. Immunotherapy had favorable therapeutic effects. The LGI1 LE should be considered as one disease syndrome with a series of clinical manifestation. Identifying types of unique semiology features will facilitate the early diagnosis and the timely initiation of immunotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evidence that selenium binding protein 1 is a tumor suppressor in prostate cancer.

    Science.gov (United States)

    Ansong, Emmanuel; Ying, Qi; Ekoue, Dede N; Deaton, Ryan; Hall, Andrew R; Kajdacsy-Balla, Andre; Yang, Wancai; Gann, Peter H; Diamond, Alan M

    2015-01-01

    Selenium-Binding Protein 1 (SBP1, SELENBP1, hSP56) is a selenium-associated protein shown to be at lower levels in tumors, and its lower levels are frequently predictive of a poor clinical outcome. Distinguishing indolent from aggressive prostate cancer is a major challenge in disease management. Associations between SBP1 levels, tumor grade, and disease recurrence following prostatectomy were investigated by duplex immunofluorescence imaging using a tissue microarray containing tissue from 202 prostate cancer patients who experienced biochemical (PSA) recurrence after prostatectomy and 202 matched control patients whose cancer did not recur. Samples were matched by age, ethnicity, pathological stage and Gleason grade, and images were quantified using the Vectra multispectral imaging system. Fluorescent labels were targeted for SBP1 and cytokeratins 8/18 to restrict scoring to tumor cells, and cell-by-cell quantification of SBP1 in the nucleus and cytoplasm was performed. Nuclear SBP1 levels and the nuclear to cytoplasm ratio were inversely associated with tumor grade using linear regression analysis. Following classification of samples into quartiles based on the SBP1 levels among controls, tumors in the lowest quartile were more than twice as likely to recur compared to those in any other quartile. Inducible ectopic SBP1 expression reduced the ability of HCT-116 human tumor cells to grow in soft agar, a measure of transformation, without affecting proliferation. Cells expressing SBP1 also demonstrated a robust induction in the phosphorylation of the p53 tumor suppressor at serine 15. These data indicate that loss of SBP1 may play an independent contributing role in prostate cancer progression and its levels might be useful in distinguishing indolent from aggressive disease.

  11. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    Directory of Open Access Journals (Sweden)

    Maia M Chan

    Full Text Available Hematopoietic protein-1 (Hem-1 is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein complex, which regulates filamentous actin (F-actin polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A, which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  12. Lignans and norlignans inhibit multidrug resistance protein 1 (MRP1/ABCC1)-mediated transport.

    Science.gov (United States)

    Wróbel, Anna; Eklund, Patrik; Bobrowska-Hägerstrand, Malgorzata; Hägerstrand, Henry

    2010-11-01

    Multidrug resistance protein 1 (MRP1/ABCC1) is one of the drug efflux pumps mediating multidrug resistance in several cancer types. Efficient nontoxic inhibitors of MRP1-mediated transport are sought to potentially sensitise cancer cells to anticancer drugs. This study examined the potency of a series of plant lignans and norlignans of various structures to inhibit MRP1-mediated transport from human erythrocytes. The occurrence of MRP1 in the human erythrocyte membrane makes this cell a useful model in searching for efficient MRP1inhibitors. The inhibition of 2',7'-bis-(carboxypropyl)-5(6)-carboxyfluorescein (BCPCF) transport from human erythrocytes was measured fluorymetrically. In order to study possible membrane-perturbing effects of lignans and norlignans, the potency of these compounds to induce haemolysis, erythrocyte shape change, and phosphatidylserine (PS) exposure in the external layer of the erythrocyte membrane was examined. Nine compounds (six norlignans and three lignans) of the fourteen that were tested inhibited BCPCF transport from human erythrocytes. The most efficient inhibitor, the norlignan coded L1, had IC(50)=50 μM. Structure-activity relationship analysis showed that the strongest inhibitors were found among lignans and norlignans bearing a carbonyl function at position C-9. The highly oxidised structures and the presence of an ionisable group such as the carboxylic acid function enhance activity. All compounds that significantly decreased BCPCF transport were non-haemolytic, did not cause PS exposure and did not have any effect on erythrocyte shapes up to 200 μM. Lignans and norlignans can inhibit MRP1-mediated transport from human erythrocytes and should be further investigated as possible agents reversing multidrug resistance.

  13. Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor

    International Nuclear Information System (INIS)

    Dewji, N.N.; Wenger, D.A.; O'Brien, J.S.

    1987-01-01

    Two cDNA clones encoding prepro-sphingolipid activator protein 1 (SAP-1) were isolated from a λ gt11 human hepatoma expression library using polyclonal antibodies. These had inserts of ≅ 2 kilobases (λ-S-1.2 and λ-S-1.3) and both were both homologous with a previously isolated clone (λ-S-1.1) for mature SAP-1. The authors report here the nucleotide sequence of the longer two EcoRI fragments of S-1.2 and S-1.3 that were not the same and the derived amino acid sequences of mature SAP-1 and its prepro form. The open reading frame encodes 19 amino acids, which are colinear with the amino-terminal sequence of mature SAP-1, and extends far beyond the predicted carboxyl terminus of mature SAP-1, indicating extensive carboxyl-terminal processing. The nucleotide sequence of cDNA encoding prepro-SAP-1 includes 1449 bases from the assigned initiation codon ATG at base-pair 472 to the stop codon TGA at base-pair 1921. The first 23 amino acids coded after the initiation ATG are characteristic of a signal peptide. The calculated molecular mass for a polypeptide encoded by 1449 bases is ≅ 53 kDa, in keeping with the reported value for pro-SAP-1. The data indicate that after removal of the signal peptide mature SAP-1 is generated by removing an additional 7 amino acids from the amino terminus and ≅ 373 amino acids from the carboxyl terminus. One potential glycosylation site was previously found in mature SAP-1. Three additional potential glycosylation sites are present in the processed carboxyl-terminal polypeptide, which they designate as P-2

  14. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  15. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum isolates from children in South of Benin.

    Science.gov (United States)

    Ogouyèmi-Hounto, Aurore; Gazard, Dorothée Kinde; Ndam, Nicaise; Topanou, Elsa; Garba, Olivia; Elegbe, Pancras; Hountohotegbe, Tatiana; Massougbodji, Achille

    2013-01-01

    The aim of this study was to determine the genetic diversity of Plasmodium falciparum by analyzing the polymorphism of the msp-1 and msp-2 genes and the multiplicity of infection in children with uncomplicated malaria in southern Benin. Blood samples of children with fever or history of fever with thick smear positive P. falciparum were collected on filter paper. After extraction of DNA by Chelex®, the samples underwent nested PCR. 93 isolates from children were genotyped. For the msp-1 gene, the K1 and R033 sequences were the most represented in the study population with 85.2% and 83% prevalence, respectively. Regarding the msp-2 gene, the FC27 family was more highly represented with 99% prevalence against 81.5% for 3D7. Mixed infections accounted for 80.4% of the samples. Twenty-five alleles were identified for msp-1 and 28 for msp-2. Fourteen and ten alleles belonged to the K1 (100-500 bp) and MAD20 (100-500 bp) families, respectively. The RO33 sequence did not show any polymorphism, with only one variant (160 bp) detected. The msp-2 gene was present as 16 FC27 family fragments (250-800 bp) and 12 of the 3D7 family (350-700 bp). The multiplicity of infection was estimated at 3.8 for msp-1 and 3.9 for msp-2 with 77 (87.5%) and 84 (91.3%) samples harboring more than one parasite genotype for msp-1 and msp-2, respectively. The multiplicity of infection (MOI) was influenced neither by age nor by parasite density. This study shows a significant diversity of P. falciparum in southern Benin with an MOI unaffected by age or by parasite density. © A. Ogouyèmi-Hounto et al., published by EDP Sciences, 2013.

  16. Urinary Concentration of Monocyte Chemoattractant Protein-1 in Idiopathic Glomerulonephritis: A Long-Term Follow-Up Study

    OpenAIRE

    Tofik, Rafid; Ohlsson, Sophie; Bakoush, Omran

    2014-01-01

    Background Monocyte chemoattractant protein-1 (MCP-1), which is up regulated in kidney diseases, is considered a marker of kidney inflammation. We examined the value of urine MCP-1 in predicting the outcome in idiopathic glomerulonephritis. Methods Between 1993 and 2004, 165 patients (68 females) diagnosed with idiopathic proteinuric glomerulopathy and with serum creatinine

  17. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Turner, Louise; Saguti, Fredy

    2012-01-01

    The clinical outcome of Plasmodium falciparum infections ranges from asymptomatic parasitemia to severe malaria syndromes associated with high mortality. The virulence of P. falciparum infections is associated with the type of P. falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the...

  18. Tumor-infiltrating Cytotoxic T Lymphocytes as Independent Prognostic Factor in Epithelial Ovarian Cancer With Wilms Tumor Protein 1 Overexpression

    NARCIS (Netherlands)

    Vermeij, Renee; de Bock, Geertruida H.; Leffers, Ninke; ten Hoor, Klaske A.; Schulze, Ute; Hollema, Harry; van der Burg, Sjoerd H.; van der Zee, Ate G. J.; Daemen, Toos; Nijman, Hans W.

    2011-01-01

    Immune response characterization at the primary tumor site enables the design of therapeutic vaccination strategies with higher efficacy in epithelial ovarian cancer (EOC). In this study, we related Wilms tumor protein 1 (WT1) overexpression, a well-established immunotherapeutic target, to

  19. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  20. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  1. Regulation of Nuclear Receptor Interacting Protein 1 (NRIP1) Gene Expression in Response to Weight Loss and Exercise in Humans

    DEFF Research Database (Denmark)

    De Marinis, Yang Z; Sun, Jiangming; Bompada, Pradeep

    2017-01-01

    Objective: Nuclear receptor interacting protein 1 (NRIP1) is an important energy regulator, but few studies have addressed its role in humans. This study investigated adipose tissue and skeletal muscle NRIP1 gene expression and serum levels in response to weight loss and exercise in humans. Methods...

  2. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  3. Mammalian Clusterin associated protein 1 is an evolutionarily conserved protein required for ciliogenesis

    Directory of Open Access Journals (Sweden)

    Pasek Raymond C

    2012-11-01

    Full Text Available Abstract Background Clusterin associated protein 1 (CLUAP1 was initially characterized as a protein that interacts with clusterin, and whose gene is frequently upregulated in colon cancer. Although the consequences of these observations remain unclear, research of CLUAP1 homologs in C. elegans and zebrafish indicates that it is needed for cilia assembly and maintenance in these models. To begin evaluating whether Cluap1 has an evolutionarily conserved role in cilia in mammalian systems and to explore the association of Cluap1 with disease pathogenesis and developmental abnormalities, we generated Cluap1 mutant mice. Methods Cluap1 mutant embryos were generated and examined for gross morphological and anatomical defects using light microscopy. Reverse transcription PCR, β-galactosidase staining assays, and immunofluorescence analysis were used to determine the expression of the gene and localization of the protein in vivo and in cultured cell lines. We also used immunofluorescence analysis and qRT-PCR to examine defects in the Sonic hedgehog signaling pathway in mutant embryos. Results Cluap1 mutant embryos die in mid-gestation, indicating that it is necessary for proper development. Mutant phenotypes include a failure of embryonic turning, an enlarged pericardial sac, and defects in neural tube development. Consistent with the diverse phenotypes, Cluap1 is widely expressed. Furthermore, the Cluap1 protein localizes to primary cilia, and mutant embryos were found to lack cilia at embryonic day 9.5. The phenotypes observed in Cluap1 mutant mice are indicative of defects in Sonic hedgehog signaling. This was confirmed by analyzing hedgehog signaling activity in Cluap1 mutants, which revealed that the pathway is repressed. Conclusions These data indicate that the function of Cluap1 is evolutionarily conserved with regard to ciliogenesis. Further, the results implicate mammalian Cluap1 as a key regulator of hedgehog signaling and as an

  4. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    Science.gov (United States)

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  5. Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.

    Directory of Open Access Journals (Sweden)

    Luís Gaspar

    2018-01-01

    Full Text Available Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2 proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1 is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd (9, was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å to

  6. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Who-Whong Wang

    Full Text Available Early diagnosis of hepatocellullar carcinoma (HCC remains a challenge. The current practice of serum alpha-fetoprotein (AFP measurement is inadequate. Here we utilized a proteomic approach to identify novel serum biomarkers for distinguishing HCC patients from non-cancer controls. We profiled the serum proteins in a group of 58 resectable HCC patients and 11 non-HCC chronic hepatitis B (HBV carrier samples from the Singapore General Hospital (SGH using the RayBio® L-Series 507 Antibody Array and found 113 serum markers that were significantly modulated between HCC and control groups. Selected potential biomarkers from this list were quantified using a multiplex sandwich enzyme-linked immunosorbent assay (ELISA array in an expanded SGH cohort (126 resectable HCC patients and 115 non-HCC chronic HBV carriers (NC group, confirming that serum prolactin and monocyte chemoattractant protein-1 (MCP-1 were significantly upregulated in HCC patients. This finding of serum MCP-1 elevation in HCC patients was validated in a separate cohort of serum samples from the Mochtar Riady Institute for Nanotechnology, Indonesia (98 resectable HCC, 101 chronic hepatitis B patients and 100 asymptomatic HBV/HCV carriers by sandwich ELISA. MCP-1 and prolactin levels were found to correlate with AFP, while MCP-1 also correlated with disease stage. Subsequent receiver operating characteristic (ROC analysis of AFP, prolactin and MCP-1 in the SGH cohort and comparing their area under the ROC curve (AUC indicated that neither prolactin nor MCP-1 on their own performed better than AFP. However, the combination of AFP+MCP-1 (AUC, 0.974 had significantly superior discriminative ability than AFP alone (AUC, 0.942; p<0.001. In conclusion, prolactin and MCP-1 are overexpressed in HCC and are conveniently quantifiable in patients' sera by ELISA. MCP-1 appears to be a promising complementary biomarker for HCC diagnosis and this MCP-1+AFP model should be further evaluated as

  7. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Who-Whong; Ang, Soo Fan; Kumar, Rajneesh; Heah, Charmain; Utama, Andi; Tania, Navessa Padma; Li, Huihua; Tan, Sze Huey; Poo, Desmond; Choo, Su Pin; Chow, Wan Cheng; Tan, Chee Kiat; Toh, Han Chong

    2013-01-01

    Early diagnosis of hepatocellullar carcinoma (HCC) remains a challenge. The current practice of serum alpha-fetoprotein (AFP) measurement is inadequate. Here we utilized a proteomic approach to identify novel serum biomarkers for distinguishing HCC patients from non-cancer controls. We profiled the serum proteins in a group of 58 resectable HCC patients and 11 non-HCC chronic hepatitis B (HBV) carrier samples from the Singapore General Hospital (SGH) using the RayBio® L-Series 507 Antibody Array and found 113 serum markers that were significantly modulated between HCC and control groups. Selected potential biomarkers from this list were quantified using a multiplex sandwich enzyme-linked immunosorbent assay (ELISA) array in an expanded SGH cohort (126 resectable HCC patients and 115 non-HCC chronic HBV carriers (NC group)), confirming that serum prolactin and monocyte chemoattractant protein-1 (MCP-1) were significantly upregulated in HCC patients. This finding of serum MCP-1 elevation in HCC patients was validated in a separate cohort of serum samples from the Mochtar Riady Institute for Nanotechnology, Indonesia (98 resectable HCC, 101 chronic hepatitis B patients and 100 asymptomatic HBV/HCV carriers) by sandwich ELISA. MCP-1 and prolactin levels were found to correlate with AFP, while MCP-1 also correlated with disease stage. Subsequent receiver operating characteristic (ROC) analysis of AFP, prolactin and MCP-1 in the SGH cohort and comparing their area under the ROC curve (AUC) indicated that neither prolactin nor MCP-1 on their own performed better than AFP. However, the combination of AFP+MCP-1 (AUC, 0.974) had significantly superior discriminative ability than AFP alone (AUC, 0.942; p<0.001). In conclusion, prolactin and MCP-1 are overexpressed in HCC and are conveniently quantifiable in patients' sera by ELISA. MCP-1 appears to be a promising complementary biomarker for HCC diagnosis and this MCP-1+AFP model should be further evaluated as potential

  8. Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease

    International Nuclear Information System (INIS)

    Tacke, Frank; Kanig, Nicolas; En-Nia, Abdelaziz; Kaehne, Thilo; Eberhardt, Christiane S; Shpacovitch, Victoria; Trautwein, Christian; Mertens, Peter R

    2011-01-01

    Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases. We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation. We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients. Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should

  9. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans.

    NARCIS (Netherlands)

    Lavstsen, T.; Magistrado, P.; Hermsen, C.C.; Salanti, A.; Jensen, A.; Sauerwein, R.W.; Hviid, L.; Theander, T.G.; Staalsoe, T.

    2005-01-01

    BACKGROUND: Parasites causing severe malaria in non-immune patients express a restricted subset of variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during non-severe disease in semi-immune individuals. The most prominent VSA are the var gene-encoded

  10. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine

    2013-01-01

    at identifying PfEMP1 features associated with high virulence. Here we present the first effective method for sequence analysis of var genes expressed in field samples: a sequential PCR and next generation sequencing based technique applied on expressed var sequence tags and subsequently on long range PCR......, encoded by ~60 highly variable 'var' genes per haploid genome. PfEMP1 is exported to the surface of infected erythrocytes and is thought to be fundamental to immune evasion by adhesion to host and parasite factors. The highly variable nature has constituted a roadblock in var expression studies aimed...

  11. The group A streptococcal collagen-like protein 1, Scl1, mediates biofilm formation by targeting the EDA-containing variant of cellular fibronectin expressed in wounded tissue

    Science.gov (United States)

    Oliver-Kozup, Heaven; Martin, Karen H.; Schwegler-Berry, Diane; Green, Brett J.; Betts, Courtney; Shinde, Arti V.; Van De Water, Livingston; Lukomski, Slawomir

    2012-01-01

    Summary Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C′ loop region recognized by the α9β1 integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization. PMID:23217101

  12. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  13. Contribution of Specific Amino Acid Changes in Penicillin Binding Protein 1 to Amoxicillin Resistance in Clinical Helicobacter pylori isolates ▿

    OpenAIRE

    Qureshi, Nadia N.; Morikis, Dimitrios; Schiller, Neal L.

    2010-01-01

    Amoxicillin is commonly used to treat Helicobacter pylori, a major cause of peptic ulcers, stomach cancer, and B-cell mucosa-associated lymphoid tissue lymphoma. Amoxicillin resistance in H. pylori is increasing steadily, especially in developing countries, leading to treatment failures. In this study, we characterize the mechanism of amoxicillin resistance in the U.S. clinical isolate B258. Transformation of amoxicillin-susceptible strain 26695 with the penicillin binding protein 1 gene (pbp...

  14. Monocyte chemo attractant protein-1 in patients with chronic heart failure of different functional class with type 2 diabetes.

    Science.gov (United States)

    Kravchun, P; Narizhna, A; Ryndina, N

    2014-06-01

    The aim of the study was to assess the dynamics of monocyte chemoattractant protein-1 in patients with chronic heart failure of different functional classes depending on the presence or absence of concomitant type 2 diabetes. 95 patients with chronic heart failure II - III FC were examined due to coronary heart disease who were treated at the cardiological department of the Kharkiv City Clinical Hospital № 27 (mean age 65,13±8,66 years). The first group included 52 patients with CHF with type 2 diabetes, the second - 43 CHF patients without type 2 diabetes. Research was excluded patients with acute coronary syndrome, acute myocardial infarction. 71 patients of patients had II NYHA FC, 24 patients - III FC. Among the patients of first group 40 patients were diagnosed in CHF FC II, 12 - III FC. In II group 31 patients were with CHF class II, 12 patients - with III FC. Concentration of proinflammatory cytokine interleukin-1β and fibrosis factor monocyte chemoattractant protein-1 were determined by ELISA (enzyme-linked immunosorbent assay). In patients with chronic heart failure in presence or absence of type 2 diabetes increase in the profibrotic parameter monocyte chemoattractant protein-1 and proinflammatory cytokine interleukin-1β were increasing in parallel with NYHA FC increasing. Presence of type 2 diabetes negatively affects the work of cytokines and markers of fibrosis, as evidenced by higher levels of interleukin-1β and monocyte chemoattractant protein-1, compared with patients without diabetes in the presence of the same NYHA FC of chronic heart failure.

  15. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    OpenAIRE

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit t...

  16. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  17. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia

    DEFF Research Database (Denmark)

    Vatten, Lars J; Nilsen, Tom I L; Juul, Anders

    2008-01-01

    To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia.......To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia....

  18. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  19. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low......-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor...... both prion and LRP1 biology....

  20. Latent Membrane Protein 1 Deletion Mutants Accumulate in Reed-Sternberg Cells of Human Immunodeficiency Virus-Related Hodgkin's Lymphoma

    OpenAIRE

    Guidoboni, Massimo; Ponzoni, Maurilio; Caggiari, Laura; Lettini, Antonia A.; Vago, Luca; De Re, Valli; Gloghini, Annunziata; Zancai, Paola; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-01-01

    The origin and biological significance of deletions at the 3′ end of the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) gene are still controversial. We herein demonstrate that LMP-1 deletion mutants are highly associated with human immunodeficiency virus-related Hodgkin's lymphoma (HIV-HL) of Italian patients (29 of 31 cases; 93.5%), a phenomenon that is not due to a peculiar distribution of EBV strains in this area. In fact, although HIV-HL patients are infected by multi...

  1. Neutrophil attractant protein-1-immunoglobulin G immune complexes and free anti-NAP-1 antibody in normal human serum.

    OpenAIRE

    Sylvester, I; Yoshimura, T; Sticherling, M; Schröder, J M; Ceska, M; Peichl, P; Leonard, E J

    1992-01-01

    After obtaining data indicating the presence of a neutrophil attractant protein-1 (NAP-1)-IgG complex in normal human serum, we developed sandwich ELISAs that could quantify NAP-1 and NAP-1-IgG in mixtures of the two moieties. The ELISA for free NAP-1 used a monoclonal capture antibody that did not bind NAP-1-IgG. The ELISA for NAP-1-IgG was based on omission of the anti-NAP-1 detection antibody (required for the free NAP-1 ELISA) and on interaction of phosphatase-conjugated anti-human IgG wi...

  2. Limited cross-reactivity among domains of the Plasmodium falciparum clone 3D7 erythrocyte membrane protein 1 family

    DEFF Research Database (Denmark)

    Joergensen, Louise; Turner, Louise; Magistrado, Pamela

    2006-01-01

    The var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family is responsible for antigenic variation and sequestration of infected erythrocytes during malaria. We have previously grouped the 60 PfEMP1 variants of P. falciparum clone 3D7 into groups A and B/A (category A...... from clone 3D7 by using a competition enzyme-linked immunosorbent assay and a pool of plasma from 63 malaria-exposed Tanzanian individuals. We conclude that naturally acquired antibodies are largely directed toward epitopes varying between different domains with a few, mainly category A, domains...

  3. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bonekamp, Nina A. [Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Vormund, Kerstin; Jacob, Ralf [Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch-Str. 6, 35037 Marburg (Germany); Schrader, Michael, E-mail: mschrader@ua.pt [Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  4. Prostacyclin Inhibits Non-Small Cell Lung Cancer Growth by a Frizzled 9-Dependent Pathway That Is Blocked by Secreted Frizzled-Related Protein 1

    Directory of Open Access Journals (Sweden)

    Meredith A. Tennis

    2010-03-01

    Full Text Available The goal of this study was to assess the ability of iloprost, an orally active prostacyclin analog, to inhibit transformed growth of human non-small cell lung cancer (NSCLC and to define the mechanism of iloprost's tumor suppressive effects. In a panel of NSCLC cell lines, the ability of iloprost to inhibit transformed cell growth was not correlated with the expression of the cell surface receptor for prostacyclin, but instead was correlated with the presence of Frizzled 9 (Fzd 9 and the activation of peroxisome proliferator-activated receptor-γ (PPARγ. Silencing of Fzd 9 blocked PPARγ activation by iloprost, and expression of Fzd 9 in cells lacking the protein resulted in iloprost's activation of PPARγ and inhibition of transformed growth. Interestingly, soluble Frizzled-related protein-1, a well-known inhibitor of Wnt/Fzd signaling, also blocked the effects of iloprost and Fzd 9. Moreover, mice treated with iloprost had reduced lung tumors and increased Fzd 9 expression. These studies define a novel paradigm, linking the eicosanoid pathway and Wnt signaling. In addition, these data also suggest that prostacyclin analogs may represent a new class of therapeutic agents in the treatment of NSCLC where the restoration of noncanonical Wnt signaling maybe important for the inhibition of transformed cell growth.

  5. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    International Nuclear Information System (INIS)

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-01-01

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  6. Fitting evolution of matrix protein 1 from influenza A virus using analytical solution of system of differential equations.

    Science.gov (United States)

    Yan, Shaomin; Li, Zhenchong; Wu, Guang

    2010-04-01

    The understanding of evolutionary mechanism is important, and equally important is to describe the evolutionary process. If so, we would know where the biological evolution will go. At species level, we would know whether and when a species will extinct or be prosperous. At protein level, we would know when a protein family will mutate more. In our previous study, we explored the possibility of using the differential equation to describe the evolution of protein family from influenza A virus based on the assumption that the mutation process is the exchange of entropy between protein family and its environment. In this study, we use the analytical solution of system of differential equations to fit the evolution of matrix protein 1 family from influenza A virus. Because the evolutionary process goes along the time course, it can be described by differential equation. The results show that the evolution of a protein family can be fitted by the analytical solution. With the obtained fitted parameters, we may predict the evolution of matrix protein 1 family from influenza A virus. Our model would be the first step towards the systematical modeling of biological evolution and paves the way for further modeling.

  7. Cissampelos sympodialis has anti-viral effect inhibiting dengue non-structural viral protein-1 and pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Fagner Carvalho Leite

    Full Text Available ABSTRACT Dengue is the most important viral infection transmitted among humans by arthropod-borne. There are currently no vaccines or specific therapeutical treatment. Therefore, immunomodulatory compounds from plants have been widely examined for their antiviral effects. Cissampelos sympodialis Eichler, Menispermaceae, has scientifically proven to present immunomodulatory activities. Here we assessed the antiviral activity of leaf hydroalcoholic extract, warifteine or methylwarifteine from C. sympodialis in an in vitro dengue virus infection model. The results demonstrated that leaf hydroalcoholic extract or warifteine/methylwarifteine treatment did not reduce dengue virus-Ag+ hepatocyte (Huh-7 cell rates in present experimental conditions. However, we assessed the potential antiviral effect of leaf hydroalcoholic extract or warifteine/methylwarifteine on dengue virus-infection by the production of inflammatory molecules, TNF-α, MIF, IL-8 and PGE2. Dengue virus infection enhanced TNF-α, MIF, IL-8 and PGE2 production in infected Huh-7 cells and leaf hydroalcoholic extract but not warifteine/methylwarifteine treatments, significantly reduced these molecules in infected cells. In dengue virus-infected Huh-7 cells, non-structural protein-1 is produced and leaf hydroalcoholic extract significantly inhibited it independently of alkaloids. Our findings imply that leaf hydroalcoholic extract may attenuate dengue virus infection in Huh-7 cells by inhibiting the enhanced of pro-inflammatory mediators and non-structural protein-1 production induce by dengue virus independently of warifteine/methywarifteine its major compound.

  8. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the 'Sinton and Mulligan' Stipplings in the Cytoplasm of Monkey and Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Amuza Byaruhanga Lucky

    Full Text Available The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1 is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016. To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as 'Sinton and Mulligan' stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum.

  9. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    DEFF Research Database (Denmark)

    Bown, Matthew J; Jones, Gregory T; Harrison, Seamus C

    2011-01-01

    -density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined...... demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might...... alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression....

  10. Association of Tyrosinase (TYR and Tyrosinase-related Protein 1 (TYRP1 with Melanic Plumage Color in Korean Quails (

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2013-11-01

    Full Text Available TYR (Tyrosinase and TYRP1 (Tyrosinase-related protein 1 play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage. Two SNPs (367T→C and 1153C→T were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.

  11. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.......5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1(-/-) mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life...

  12. Epstein-Barr virus associated modulation of Wnt pathway is not dependent on latent membrane protein-1.

    Directory of Open Access Journals (Sweden)

    Natasha Webb

    2008-09-01

    Full Text Available Previous studies have indicated that Epstein-Barr virus (EBV can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1. Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, beta-catenin, Glycogen Synthase Kinase 3ss (GSK3beta, axin and alpha-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and beta-catenin interaction and did not induce transcriptional activation of beta-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1.

  13. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  14. The Role of Cdkn1A-Interacting Zinc Finger Protein 1 (CIZ1 in DNA Replication and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2016-02-01

    Full Text Available Cdkn1A-interacting zinc finger protein 1 (CIZ1 was first identified in a yeast-2-hybrid system searching for interacting proteins of CDK2 inhibitor p21Cip1/Waf1. Ciz1 also binds to CDK2, cyclin A, cyclin E, CDC6, PCNA, TCF4 and estrogen receptor-α. Recent studies reveal numerous biological functions of CIZ1 in DNA replication, cell proliferation, and differentiation. In addition, splicing variants of CIZ1 mRNA is associated with a variety of cancers and Alzheimer’s disease, and mutations of the CIZ1 gene lead to cervical dystonia. CIZ1 expression is increased in cancers and rheumatoid arthritis. In this review, we will summarize the biological functions and molecular mechanisms of CIZ1 in these physiological and pathological processes.

  15. Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Stefano Toldo, PhD

    2017-10-01

    Full Text Available Low-density lipoprotein receptor–related protein-1 (LRP1 is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure–activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16. SP16 induced a >50% reduction in infarct size (p < 0.001 and preservation of left ventricular systolic function (p < 0.001, and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function.

  16. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region

    DEFF Research Database (Denmark)

    Sandvej, K; Gratama, J W; Munch, M

    1997-01-01

    . The widespread prevalence of LMP-1 sequence variations, particularly the Xho I polymorphism and the 30-bp deletion, indicate that they cannot be used as simple markers for oncogenic viruses related to particular forms of EBV-associated tumor. Several of the structural changes detected occur, however, at sites......Sequence variations in the Epstein-Barr virus (EBV) encoded latent membrane protein-1 (LMP-1) gene have been described in a Chinese nasopharyngeal carcinoma-derived isolate (CAO), and in viral isolates from various EBV-associated tumors. It has been suggested that these genetic changes, which...... wild-type virus isolates, we sequenced the LMP-1 promoter and gene in EBV from lymphoblastoid cell lines from healthy carriers and patients without EBV-associated disease. Sequence changes were often present, and defined at least four main groups of viral isolates, which we designate Groups A through D...

  17. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    Science.gov (United States)

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  18. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3 plasmodium falciparum erythrocyte membrane protein 1

    Directory of Open Access Journals (Sweden)

    Wang Christian W

    2012-04-01

    Full Text Available Abstract Background Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1 adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. Methods In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies and the var transcript and PfEMP1 expression profiles of the generated parasites were investigated. The IgG reactivity by plasma from children living in malaria-endemic Tanzania was tested to parasites and recombinant VAR3 protein. Parasites from hospitalized children were isolated and the transcript level of var3 was investigated. Results Var3 is transcribed and its protein product expressed on the surface of infected erythrocytes. The VAR3-expressing parasites were better recognized by children´s IgG than a parasite line expressing a Group B var gene. Two in 130 children showed increased recognition of parasites expressing VAR3 and to the recombinant VAR3 protein after a malaria episode and the isolated parasites showed high levels of var3 transcripts. Conclusions Collectively, the presented data suggest that var3 is transcribed and its protein product expressed on the surface of infected erythrocytes in the same manner as seen for other var genes both in vitro and in vivo. Only very few children exhibit seroconversion to VAR3 following a malaria episode

  19. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  20. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

    Directory of Open Access Journals (Sweden)

    Kebaneilwe Lebani

    Full Text Available The multidimensional nature of dengue virus (DENV infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1 is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can

  1. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

    Science.gov (United States)

    Lebani, Kebaneilwe; Jones, Martina L; Watterson, Daniel; Ranzoni, Andrea; Traves, Renee J; Young, Paul R; Mahler, Stephen M

    2017-01-01

    The multidimensional nature of dengue virus (DENV) infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1) is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA) and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can discern amongst

  2. Absence of high molecular weight proteins 1 and/or 2 is associated with decreased adherence among non-typeable Haemophilus influenzae clinical isolates.

    Science.gov (United States)

    Vuong, Jeni; Wang, Xin; Theodore, Jordan M; Whitmon, Jennifer; Gomez de Leon, Patricia; Mayer, Leonard W; Carlone, George M; Romero-Steiner, Sandra

    2013-11-01

    High molecular weight (Hmw) proteins 1 and 2, type IV pilin protein (PilA), outer-membrane protein P5 (OmpP5), Haemophilus protein D (Hpd) and Haemophilus adhesive protein (Hap) are surface proteins involved in the adherence of non-typeable Haemophilus influenzae. One hundred clinical isolates were evaluated for the presence of the genes encoding these proteins by PCR and for their adherence capacity (AC) to Detroit 562 nasopharyngeal cells (D562). The majority of isolates were from blood (77/100); other sites were also represented. Confluent D562 monolayers (1.2×10(5) cells per well) were inoculated with standardized minimal infective doses (m.o.i.) of 10(2), 10(3) or 10(4) c.f.u. per well. The AC was categorized as low (isolates evaluated showed adherence: 69/100 (69 %) demonstrated high adherence, while 31/100 (31 %) showed low adherence. Of all the genes evaluated, hmw1A and/or hmw2A were detected in 69/100 (69 %) of isolates. The presence of hmw1A and/or hmw2A was associated with increased adherence to D562 cells (P≤0.001). Dot immunoblots were performed to detect protein expression using mAbs 3D6, AD6 and 10C5. Among the high-adherence isolates (n = 69), 72 % reacted with 3D6 and 21 % with 10C5. Our data indicate that the absence of Hmw1 and/or Hmw2 was associated with decreased adherence to D562 cells.

  3. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria

    DEFF Research Database (Denmark)

    Cavanagh, David R; Dodoo, Daniel; Hviid, Lars

    2004-01-01

    to the block 2 region of MSP-1 were measured in a cohort of 280 children before the beginning of the major malaria transmission season. The cohort was then actively monitored for malaria, clinically and parasitologically, over a period of 17 months. Evidence is presented for an association between antibody...... responses to block 2 and a significantly reduced risk of subsequent clinical malaria. Furthermore, statistical survival analysis provides new information on the duration of the effect over time. The results support a conclusion that the block 2 region of MSP-1 is a target of protective immunity against P....... falciparum and, thus, a promising new candidate for the development of a malaria vaccine....

  4. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... However, it appears to lack T-helper epitopes. Since antibody is likely the effector mechanism induced by MSP1-19, it is important to insure that recombinant vaccines based on this antigen be folded correctly and contain T-helper epitopes...

  5. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... Since antibody is likely the effector mechanism induced by MSP-(42), it is important to insure that recombinant vaccines based upon this antigen be folded correctly and contain T-helper epitopes that will enhance induction of humoral responses...

  6. Differential patterns of human immunoglobulin G subclass responses to distinct regions of a single protein, the merozoite surface protein 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Cavanagh, D R; Dobaño, C; Elhassan, I M

    2001-01-01

    Comparisons of immunoglobulin G (IgG) subclass responses to the major polymorphic region and to a conserved region of MSP-1 in three cohorts of African villagers exposed to Plasmodium falciparum revealed that responses to Block 2 are predominantly IgG3 whereas antibodies to MSP-1(19) are mainly Ig...

  7. Plasmodium falciparum merozoite surface protein 1 block 2 gene polymorphism in field isolates along the slope of mount Cameroon: a cross - sectional study.

    Science.gov (United States)

    Apinjoh, Tobias O; Tata, Rolland B; Anchang-Kimbi, Judith K; Chi, Hanesh F; Fon, Eleanor M; Mugri, Regina N; Tangoh, Delphine A; Nyingchu, Robert V; Ghogomu, Stephen M; Nkuo-Akenji, Theresa; Achidi, Eric A

    2015-08-05

    Malaria remains a major global health burden despite the intensification of control efforts, due partly to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a major impediment to vaccine development efforts and is limited in some endemic settings. The present study characterized diversity by investigating msp1 block 2 polymorphisms and the relationship between the allele families with ethnodemographic indices and clinical phenotype. Individuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural, semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the parasite DNA genotyped by nested PCR. Length polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of individuals harbored more than one parasite clone, with a significant proportion (p = 0.009) in rural compared to other settings. AP individuals had higher (p = 0.007) K1 allele frequencies but lower (p = 0.003) mean multiplicity of genotypes per infection (2.00 ± 0.98 vs. 2.56 ± 1.17) compared to UM patients. These results indicate enormous diversity of P. falciparum in the area and suggests that allele specificity and complexity may be relevant for the progression to symptomatic disease.

  8. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein

    Directory of Open Access Journals (Sweden)

    Nilanju Pran Sarmah

    2017-01-01

    Interpretation & conclusions: The P. falciparum population of NE India was diverse which might be responsible for higher plasticity leading to the survival of the parasite and in turn to the higher endemicity of falciparum malaria of this region.

  9. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    NARCIS (Netherlands)

    van Burgel, Nathalie D.; Kraiczy, Peter; Schuijt, Tim J.; Zipfel, Peter F.; van Dam, Alje P.

    2010-01-01

    B. burgdorferi sensu lato (sl) is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH)

  10. IQ-domain GTPase-activating protein 1 promotes the malignant phenotype of invasive ductal breast carcinoma via canonical Wnt pathway.

    Science.gov (United States)

    Zhao, Huan-Yu; Han, Yang; Wang, Jian; Yang, Lian-He; Zheng, Xiao-Ying; Du, Jiang; Wu, Guang-Ping; Wang, En-Hua

    2017-06-01

    IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.

  11. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1).

    Science.gov (United States)

    Wegner, Marthe-Susanna; Gruber, Lisa; Mattjus, Peter; Geisslinger, Gerd; Grösch, Sabine

    2018-02-06

    The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.

  12. Esculetin exerts anti-proliferative effects against non-small-cell lung carcinoma by suppressing specificity protein 1 in vitro.

    Science.gov (United States)

    Lee, Ra H; Jeon, Young-Joo; Cho, Jin H; Jang, Jeong-Yun; Kong, Il-Keun; Kim, Seok-Ho; Kim, MinSeok S; Chung, Hak-Jae; Oh, Keon B; Park, Seon-Min; Shin, Jae-Cheon; Seo, Jae-Min; Ko, Sungho; Shim, Jung-Hyun; Chae, Jung-Il

    2017-01-01

    Esculetin, a coumarin derivative, is a phenolic compound isolated from Artemisia capillaris, Citrus limonia, and Euphorbia lathyris. Although it has been reported to have anti-inflammatory, anti-oxidant, and anti-proliferative activities in several human cancers, its anti-proliferative activity against non-small-cell lung carcinoma (NSCLC) and the molecular mechanisms involved have not been adequately elucidated. In this study, we used two NSCLC cell lines (NCI-H358 and NCI-H1299) to investigate the anti-proliferative activity and apoptotic effect of esculetin. Our data showed that esculetin-treated cells exhibited reduced proliferation and apoptotic cell morphologies. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly suppressed by esculetin in a dose- and time-dependent manner. Furthermore, the levels of p27 and p21, two key regulators of the cell cycle, were up-regulated by the esculetin-mediated down-regulation of Sp1; the level of a third cell-cycle regulator, survivin, was decreased, resulting in caspase-dependent apoptosis. Therefore, we conclude that esculetin could be a potent anti-proliferative agent in patients with NSCLC.

  13. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration*

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-01-01

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. PMID:25739439

  15. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development.

    Science.gov (United States)

    Wirrig, Elaine E; Snarr, Brian S; Chintalapudi, Mastan R; O'neal, Jessica L; Phelps, Aimee L; Barth, Jeremy L; Fresco, Victor M; Kern, Christine B; Mjaatvedt, Corey H; Toole, Bryan P; Hoffman, Stanley; Trusk, Thomas C; Argraves, W Scott; Wessels, Andy

    2007-10-15

    To expand our insight into cardiac development, a comparative DNA microarray analysis was performed using tissues from the atrioventricular junction (AVJ) and ventricular chambers of mouse hearts at embryonic day (ED) 10.5-11.0. This comparison revealed differential expression of approximately 200 genes, including cartilage link protein 1 (Crtl1). Crtl1 stabilizes the interaction between hyaluronan (HA) and versican, two extracellular matrix components essential for cardiac development. Immunohistochemical studies showed that, initially, Crtl1, versican, and HA are co-expressed in the endocardial lining of the heart, and in the endocardially derived mesenchyme of the AVJ and outflow tract (OFT). At later stages, this co-expression becomes restricted to discrete populations of endocardially derived mesenchyme. Histological analysis of the Crtl1-deficient mouse revealed a spectrum of cardiac malformations, including AV septal and myocardial defects, while expression studies showed a significant reduction in versican levels. Subsequent analysis of the hdf mouse, which carries an insertional mutation in the versican gene (CSPG2), demonstrated that haploinsufficient versican mice display septal defects resembling those seen in Crtl1(-/-) embryos, suggesting that reduced versican expression may contribute to a subset of the cardiac abnormalities observed in the Crtl1(-/-) mouse. Combined, these findings establish an important role for Crtl1 in heart development.

  16. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  17. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system.

    Science.gov (United States)

    Rao, Meenakshi; Nelms, Bradlee D; Dong, Lauren; Salinas-Rios, Viviana; Rutlin, Michael; Gershon, Michael D; Corfas, Gabriel

    2015-06-29

    In the enteric nervous system (ENS), glia outnumber neurons by 4-fold and form an extensive network throughout the gastrointestinal tract. Growing evidence for the essential role of enteric glia in bowel function makes it imperative to understand better their molecular marker expression and how they relate to glia in the rest of the nervous system. We analyzed expression of markers of astrocytes and oligodendrocytes in the ENS and found, unexpectedly, that proteolipid protein 1 (PLP1) is specifically expressed by glia in adult mouse intestine. PLP1 and S100β are the markers most widely expressed by enteric glia, while glial fibrillary acidic protein expression is more restricted. Marker expression in addition to cellular location and morphology distinguishes a specific subpopulation of intramuscular enteric glia, suggesting that a combinatorial code of molecular markers can be used to identify distinct subtypes. To assess the similarity between enteric and extraenteric glia, we performed RNA sequencing analysis on PLP1-expressing cells in the mouse intestine and compared their gene expression pattern to that of other types of glia. This analysis shows that enteric glia are transcriptionally unique and distinct from other cell types in the nervous system. Enteric glia express many genes characteristic of the myelinating glia, Schwann cells and oligodendrocytes, although there is no evidence of myelination in the murine ENS. GLIA 2015. © 2015 Wiley Periodicals, Inc.

  18. Cellular localization of Y-box binding protein 1 in brain tissue of rats, macaques, and humans

    Directory of Open Access Journals (Sweden)

    Horn Anja

    2009-03-01

    Full Text Available Abstract Background The Y-box binding protein 1 (YB-1 is considered to be one of the key regulators of transcription and translation. However, so far only limited knowledge exists regarding its cellular distribution in the adult brain. Results Analysis of YB-1 immunolabelling as well as double-labelling with the neuronal marker NeuN in rat brain tissue revealed a predominant neuronal expression in the dentate gyrus, the cornu ammonis pyramidal cell layer, layer III of the piriform cortex as well as throughout all layers of the parahippocampal cortex. In the hilus of the hippocampus single neurons expressed YB-1. The neuronal expression pattern was comparable in the hippocampus and parahippocampal cortex of adult macaques and humans. Double-labelling of YB-1 with the endothelial cell marker Glut-1, the multidrug transporter P-glycoprotein, and the astrocytic marker GFAP did not indicate a co-localization. Following status epilepticus in rats, no induction of YB-1 occurred in brain capillary endothelial cells and neurons. Conclusion In conclusion, our study demonstrates that YB-1 is predominantly expressed in neurons in the adult brain of rats, macaques and humans. Lack of a co-localization with Glut-1 and P-glycoprotein argues against a direct role of YB-1 in the regulation of blood-brain barrier P-glycoprotein.

  19. Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity.

    Science.gov (United States)

    Anjos, Liliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João C R; Melo, Eduardo P; Power, Deborah M

    2017-02-01

    Cartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Urinary concentration of monocyte chemoattractant protein-1 in idiopathic glomerulonephritis: a long-term follow-up study.

    Science.gov (United States)

    Tofik, Rafid; Ohlsson, Sophie; Bakoush, Omran

    2014-01-01

    Monocyte chemoattractant protein-1 (MCP-1), which is up regulated in kidney diseases, is considered a marker of kidney inflammation. We examined the value of urine MCP-1 in predicting the outcome in idiopathic glomerulonephritis. Between 1993 and 2004, 165 patients (68 females) diagnosed with idiopathic proteinuric glomerulopathy and with serum creatinine 150 µmol/L at diagnosis were selected for the study. Urine concentrations of MCP-1 were analyzed by ELISA in early morning spot urine samples collected on the day of the diagnostic kidney biopsy. The patients were followed until 2009. The progression rate to end-stage kidney disease was calculated using Kaplan-Meier survival analysis. End-stage kidney disease (ESKD) was defined as the start of kidney replacement therapy during the study follow-up time. Patients with proliferative glomerulonephritis had significantly higher urinary MCP-1 excretion levels than those with non-proliferative glomerulonephritis (pexcretion group and 29.9% in the low MCP-1 excretion group. However, after adjustment for confounding variables such as glomerular filtration rate (GFR) and proteinuria, there was no significant association between urine MCP-1 concentration and progression to ESKD, (HR=1.75, 95% CI=0.64-4.75, p=0.27). Our findings indicate that progression to end-stage kidney disease in patients with idiopathic glomerulopathies is not associated with urine MCP-1 concentrations at the time of diagnosis.

  1. Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats

    Science.gov (United States)

    Warren, L. E.; Horwitz, B. A.; Hamilton, J. S.; Fuller, C. A.

    2001-01-01

    Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.

  2. Immunoglobulin G reactivities to rhoptry-associated protein-1 associated with decreased levels of Plasmodium falciparum parasitemia in Tanzanian children

    DEFF Research Database (Denmark)

    Jakobsen, P H; Lemnge, M M; Abu-Zeid, Y A

    1996-01-01

    In the Muheza region of Tanzania, an area with holoendemic malaria, the proportion of responders with IgG enzyme-linked immunosorbent assay reactivities to recombinant rhoptry-associated protein-1 (rRAP-1) as well as IgG reactivities to a repeat region of the acidic-basic repeat antigen (ABRA......) increased with age. The proportion of responders with IgM reactivities to rRAP-1 increased with age in the first three decades. However, levels of IgG reactivities to rRAP-1 did not increase with age, indicating high levels of reactivities among young children. High P. falciparum densities were only...... detectable in children less than five years of age; in this group the proportion of IgG responders to rRAP-1 and to the ABRA repeat region was low but levels of IgG reactivities to rRAP-1 were inversely correlated with parasite density, suggesting that immune recognition of the antigen may be associated...

  3. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  4. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  5. The tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), functions downstream of REPO during Drosophila gliogenesis.

    Science.gov (United States)

    Mandalaywala, Neil V; Chang, Solomon; Snyder, Randall G; Levendusky, Mark C; Voigt, Jeffrey M; Dearborn, Richard E

    2008-03-15

    The tumor suppressor, vitamin D(3) up-regulated protein 1 (VDUP1), regulates cell cycle progression by suppressing AP-1-dependent transcription. Loss of VDUP1 activity is associated with tumorigenesis but little is known about VDUP1 regulatory controls or developmental roles. Here we show that the Drosophila homolog of human VDUP1 (dVDUP1) is expressed throughout the nervous system at all stages of development, the first in vivo analysis of VDUP1 expression patterns in the brain. During neurogenesis dVDUP1 expression is transiently down-regulated coincident with neuroblast delamination. Subsequent to expression of the neuronal marker elav, dVDUP1 is up-regulated to varying degrees in developing neurons. In contrast, dVDUP1 expression is both robust and sustained during gliogenesis, and the cis-regulatory region of the dvdup1 gene contains consensus binding sites for the glial fate gene reversed polarity (repo). Expression of dVDUP1 in presumptive glia is lost in embryos deficient for the glial fate genes glial cells missing (gcm) and repo. Conversely, ectopic expression of gcm or repo was sufficient to induce dVDUP1 expression in the nervous system. Taken together, these data suggest a novel role for the dVDUP1 tumor suppressor during nervous system development as a regulatory target for REPO during gliogenesis.

  6. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1.

    Directory of Open Access Journals (Sweden)

    Anna Sandebring

    2009-05-01

    Full Text Available PTEN-induced novel kinase 1 (PINK1 mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1 exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential.

  7. Overexpression of Dentin matrix protein 1 in Nestin+cells causes bone loss in mouse long bone.

    Science.gov (United States)

    Pan, Min; Weng, Yuteng; Sun, Yao

    2017-08-19

    The well-known matrix protein Dentin matrix protein 1 (DMP1) is expressed by osteoblasts and osteocytes in bone, and it controls bone mineralization. Recently, it has been found that DMP1 is also expressed in other cell types, such as chondrocytes. Nestin + cells are one important type of progenitor cell in bone marrow and are associated with bone remodeling. In our preliminary experiment, DMP1 could also be detected in Nestin + cells in bone marrow. This study was designed to explore the effect on bone of DMP1 in Nestin + cells. A transgenic mouse model with DMP1 expression driven by the Nestin promoter was generated. In vivo and in vitro experiments revealed that overexpression of DMP1 in Nestin + cells could limit the proliferation and osteogenic differentiation of BMMSCs, subsequently leading to decreased bone mass. Lower expression of bone matrix protein and a lower bone deposition rate were also observed. Meanwhile, overexpression of DMP1 in Nestin + cells had no influence on osteoclast activity. These data indicate that DMP1 plays negative roles in differentiation of Nestin + cells and bone formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  9. The Y-Box Binding Protein 1 Suppresses Alzheimer’s Disease Progression in Two Animal Models

    Science.gov (United States)

    Bobkova, N. V.; Lyabin, D. N.; Medvinskaya, N. I.; Samokhin, A. N.; Nekrasov, P. V.; Nesterova, I. V.; Aleksandrova, I. Y.; Tatarnikova, O. G.; Bobylev, A. G.; Vikhlyantsev, I. M.; Kukharsky, M. S.; Ustyugov, A. A.; Polyakov, D. N.; Eliseeva, I. A.; Kretov, D. A.; Guryanov, S. G.; Ovchinnikov, L. P.

    2015-01-01

    The Y-box binding protein 1 (YB-1) is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11−219, suppress impairment of spatial memory in olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1–42) inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer’s disease. PMID:26394155

  10. Expression of tumor necrosis factor receptor-associated protein 1 and its clinical significance in kidney cancer.

    Science.gov (United States)

    Si, Tong; Yang, Guosheng; Qiu, Xiaofu; Luo, Youhua; Liu, Baichuan; Wang, Bingwei

    2015-01-01

    To investigate the expression and clinical significance of TRAP1 (tumor necrosis factor receptor-associated protein 1) in kidney cancer. TRAP1 expression was detected in kidney cancer and normal kidney tissues by qRT-PCR and immunohistochemistry (IHC), respectively. Then, the correlation of TRAP1 expression with clinicopathological characters and patients' prognosis was evaluated in kidney cancer. IHC results revealed that the high-expression rates of TRAP1 in kidney cancer tissues and normal kidney tissues were 51.3% (41/80), 23.3% (7/30), and the difference was statistically significant (P=0.01). Also, TRAP1 mRNA level in kidney cancer was found to be significantly greater compared with those in normal kidney by qRT-PCR. In addition, TRAP1 expression in kidney cancer significantly correlated with lymph node metastasis and clinical stage (Pkidney cancer and correlates with patients prognosis, which may be served as a potential marker for the diagnosis and treatment of kidney cancer.

  11. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  12. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed...... by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated...... positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased...

  13. Increased expression of high mobility group box protein 1 and vascular endothelial growth factor in placenta previa.

    Science.gov (United States)

    Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao

    2017-12-01

    Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.

  14. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    Directory of Open Access Journals (Sweden)

    Laura Martinez-Alvarez

    2013-06-01

    Full Text Available A hallmark of group/species A rotavirus (RVA replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1 is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV. NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.

  15. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    Full Text Available Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2, the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  16. Substitutions in Penicillin-Binding Protein 1 in Amoxicillin-Resistant Helicobacter pylori Strains Isolated from Korean Patients

    Science.gov (United States)

    Kim, Beom Jin

    2013-01-01

    Background/Aims A worldwide increase in amoxicillin resistance in Helicobacter pylori is having an adverse effect on eradication therapy. In this study, we investigated the mechanism of the amoxicillin resistance of H. pylori in terms of amino acid substitutions in penicillin-binding protein 1 (PBP1). Methods In total, 150 H. pylori strains were isolated from 144 patients with chronic gastritis, peptic ulcers, or stomach cancer. The minimum inhibitory concentrations (MICs) of the strains were determined with a serial 2-fold agar dilution method. The resistance breakpoint for amoxicillin was defined as >0.5 µg/mL. Results Nine of 150 H. pylori strains showed amoxicillin resistance (6%). The MIC values of the resistant strains ranged from 1 to 4 µg/mL. A PBP1 sequence analysis of the resistant strains revealed multiple amino acid substitutions: Val16→Ile, Val45→Ile, Ser414→Arg, Asn562→Tyr, Thr593→Ala, Gly595→Ser, and Ala599→Thr. The natural transformation of these mutated genes into amoxicillin-sensitive strains was performed in two separate pbp1 gene segments. A moderate increase in the amoxicillin MIC was observed in the segment that contained the penicillin-binding motif of the C-terminal portion, the transpeptidase domain. Conclusions pbp1 mutation affects the amoxicillin resistance of H. pylori through the transfer of the penicillin-binding motif. PMID:24312705

  17. Substitutions in penicillin-binding protein 1 in amoxicillin-resistant Helicobacter pylori strains isolated from Korean patients.

    Science.gov (United States)

    Kim, Beom Jin; Kim, Jae G

    2013-11-01

    A worldwide increase in amoxicillin resistance in Helicobacter pylori is having an adverse effect on eradication therapy. In this study, we investigated the mechanism of the amoxicillin resistance of H. pylori in terms of amino acid substitutions in penicillin-binding protein 1 (PBP1). In total, 150 H. pylori strains were isolated from 144 patients with chronic gastritis, peptic ulcers, or stomach cancer. The minimum inhibitory concentrations (MICs) of the strains were determined with a serial 2-fold agar dilution method. The resistance breakpoint for amoxicillin was defined as >0.5 µg/mL. Nine of 150 H. pylori strains showed amoxicillin resistance (6%). The MIC values of the resistant strains ranged from 1 to 4 µg/mL. A PBP1 sequence analysis of the resistant strains revealed multiple amino acid substitutions: Val16→Ile, Val45→Ile, Ser414→Arg, Asn562→Tyr, Thr593→Ala, Gly595→Ser, and Ala599→Thr. The natural transformation of these mutated genes into amoxicillin-sensitive strains was performed in two separate pbp1 gene segments. A moderate increase in the amoxicillin MIC was observed in the segment that contained the penicillin-binding motif of the C-terminal portion, the transpeptidase domain. pbp1 mutation affects the amoxicillin resistance of H. pylori through the transfer of the penicillin-binding motif.

  18. A novel role for GM-CSF: enhancement of pregnancy specific interferon production, ovine trophoblast protein-1.

    Science.gov (United States)

    Imakawa, K; Helmer, S D; Nephew, K P; Meka, C S; Christenson, R K

    1993-04-01

    Transient and massive production of ovine trophoblast protein-1 (oTP-1) by preimplantation conceptuses seems to be a critical event required for the establishment of successful pregnancy. We have previously demonstrated that one of several oTP-1 genes is predominantly expressed between days 13 and 20 of pregnancy and that this oTP-1 gene contains an AP-1 site, a transcription enhancer element, in the 5'-flanking region. We have obtained evidence, indicating a linkage between cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and conceptus production of the trophoblast interferon (IFN), oTP-1. These are: 1) oTP-1 production (both polypeptide and mRNA) is enhanced by the addition of GM-CSF in vitro and 2) GM-CSF mRNA is localized in the luminal and glandular epithelium of the uterine endometrium. Based on these observations, we propose that the massive amounts of oTP-1 produced during the period of pregnancy establishment is stimulated at least in part by maternal GM-CSF.

  19. DNA polymerase eta is regulated by poly(rC)-binding protein 1 via mRNA stability

    Science.gov (United States)

    Ren, Cong; Cho, Seong-Jun; Jung, Yong-Sam; Chen, Xinbin

    2015-01-01

    DNA polymerase eta (POLH), a target of p53 tumor suppressor, plays a key role in translesion DNA synthesis (TLS). Loss of POLH is responsible for human cancer prone syndrome, Xeroderma Pigmentosum Variant (XPV). Due to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In this study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding poly(rC)-binding protein 1 (PCBP1). We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to POLH 3′UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3′UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Altogether, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability. PMID:25268038

  20. DNA polymerase η is regulated by poly(rC)-binding protein 1 via mRNA stability.

    Science.gov (United States)

    Ren, Cong; Cho, Seong-Jun; Jung, Yong-Sam; Chen, Xinbin

    2014-12-15

    POLH (DNA polymerase η), a target of p53 tumour suppressor, plays a key role in TLS (translesion DNA synthesis). Loss of POLH is responsible for the human cancer-prone syndrome XPV (xeroderma pigmentosum variant). Owing to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In the present study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding PCBP1 [poly(rC)-binding protein 1]. We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to the POLH 3'-UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3'-UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Taken together, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability.

  1. Urine Monocyte Chemoattractant Protein-1 and Lupus Nephritis Disease Activity: Preliminary Report of a Prospective Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Sabah Alharazy

    2015-01-01

    Full Text Available Objective. This longitudinal study aimed to determine the urine monocyte chemoattractant protein-1 (uMCP-1 levels in patients with biopsy-proven lupus nephritis (LN at various stages of renal disease activity and to compare them to current standard markers. Methods. Patients with LN—active or inactive—had their uMCP-1 levels and standard disease activity markers measured at baseline and 2 and 4 months. Urinary parameters, renal function test, serological markers, and renal SLE disease activity index-2K (renal SLEDAI-2K were analyzed to determine their associations with uMCP-1. Results. A hundred patients completed the study. At each visit, uMCP-1 levels (pg/mg creatinine were significantly higher in the active group especially with relapses and were significantly associated with proteinuria and renal SLEDAI-2K. Receiver operating characteristic (ROC curves showed that uMCP-1 was a potential biomarker for LN. Whereas multiple logistic regression analysis showed that only proteinuria and serum albumin and not uMCP-1 were independent predictors of LN activity. Conclusion. uMCP-1 was increased in active LN. Although uMCP-1 was not an independent predictor for LN activity, it could serve as an adjunctive marker when the clinical diagnosis of LN especially early relapse remains uncertain. Larger and longer studies are indicated.

  2. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma.

    Science.gov (United States)

    Meng, Xin-Yu; Liu, Juan; Lv, Feng; Liu, Ming-Qiu; Wan, Jing-Ming

    2015-01-01

    To investigate the correlation between extracellular matrix protein-1 (ECM1) and the growth, metastasis and angiogenesis of laryngeal carcinoma. Forty-five samples with laryngeal benign and malignant tumors confirmed by pathology in Laiwu City People's Hospital from March 2006 to March 2011 were collected, in which there were 29 cases with laryngeal carcinoma and 16 with benign tumors. The expression of ECM1 and factor VIII-related antigens in patients with laryngeal carcinoma and those with benign tumors was respectively detected using immunohistochemical method, and the correlation between ECM1 staining grade and microvessel density (MVD) was analyzed. In laryngeal carcinoma tissue, ECM1 was mainly expressed in cytoplasm, less in cytomembrane or intercellular substance. With abundant expression in the tissue of laryngeal benign tumors (benign mesenchymoma and hemangioma), ECM1 was primarily expressed in the connective tissue, which was different from the expression in laryngeal carcinoma tissue. The proportion of positive ECM1 staining (++) in patients with laryngeal carcinoma was dramatically higher than those with benign tumors (pcorrelation analysis revealed that ECM1 staining grade in laryngeal carcinoma tissue had a significantly-positive correlation with MVD (r=0.866, p=0.000). ECM1 expression in laryngeal carcinoma is closely associated with tumor cell growth, metastasis and angiogenesis, which can be considered as an effective predictor in the occurrence and postoperative recurrence of laryngeal carcinoma.

  3. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet.

    Science.gov (United States)

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L

    2012-06-01

    We measured the effects of a diet in which D-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [(18)F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.

  4. Identification of c.483C>T polymorphism in the caprine tyrosinase-related protein 1 (TYRP1 gene

    Directory of Open Access Journals (Sweden)

    Marcel Amills

    2012-01-01

    Full Text Available Tyrosinase-related protein 1 (TYRP1 has been shown to play a fundamental role in pigmentation both in human and mouse. In this work, we aimed to characterize the variability of the caprine TYRP1 gene and investigate its segregation in a wide array of goat breeds. By partially sequencing the coding region of the TYRP1 gene in 18 individuals from eight different breeds, we were able to identify a synonymous nucleotide substitution at exon 3 (c.483C>T. An extensive survey of Iberian and Balearic (N=175, Italian (N=99, Swiss (N=54, Asian (N=14, Canarian (N=92 and North African (N=117 goats with different coat colours was carried out. We found that the C-allele has a different distribution in European vs African breeds, being almost fixed in the latter. Moreover, the C-allele showed an increased frequency in white coated breeds (Girgentana, Grigia Molisana, Blanca de Rasquera and Saanen when compared with those displaying a dark pigmentation (Cilentana Nera, Azpi Gorri and Murciano- Granadina. This could be due to genetic drift, migration and other factors associated with the demographic history of breeds under analysis or to a genetic hitchhiking event (c.483C>T frequencies would be shaped by a neighbouring causal mutation differentially selected in white and black goats. More refined studies will be needed to distinguish between these two alternative explanations.

  5. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  6. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.

  7. Sublingual immunization with a live attenuated influenza a virus lacking the nonstructural protein 1 induces broad protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Hae-Jung Park

    Full Text Available The nonstructural protein 1 (NS1 of influenza A virus (IAV enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1 induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN immunization and was associated with high levels of virus-specific antibodies (Abs. SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics.

  8. Sublingual immunization with a live attenuated influenza a virus lacking the nonstructural protein 1 induces broad protective immunity in mice.

    Science.gov (United States)

    Park, Hae-Jung; Ferko, Boris; Byun, Young-Ho; Song, Joo-Hye; Han, Gye-Yeong; Roethl, Elisabeth; Egorov, Andrej; Muster, Thomas; Seong, Baiklin; Kweon, Mi-Na; Song, Manki; Czerkinsky, Cecil; Nguyen, Huan H

    2012-01-01

    The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics.

  9. Latent membrane protein 1 deletion mutants accumulate in reed-sternberg cells of human immunodeficiency virus-related Hodgkin's lymphoma.

    Science.gov (United States)

    Guidoboni, Massimo; Ponzoni, Maurilio; Caggiari, Laura; Lettini, Antonia A; Vago, Luca; De Re, Valli; Gloghini, Annunziata; Zancai, Paola; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-02-01

    The origin and biological significance of deletions at the 3' end of the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) gene are still controversial. We herein demonstrate that LMP-1 deletion mutants are highly associated with human immunodeficiency virus-related Hodgkin's lymphoma (HIV-HL) of Italian patients (29 of 31 cases; 93.5%), a phenomenon that is not due to a peculiar distribution of EBV strains in this area. In fact, although HIV-HL patients are infected by multiple EBV variants, we demonstrate that LMP-1 deletion mutants preferentially accumulate within neoplastic tissues. Subcloning and sequencing of the 3' LMP-1 ends of two HIV-HL genes in which both variants were present showed the presence of molecular signatures suggestive of a likely derivation of the LMP-1 deletion mutant from a nondeletion ancestor. This phenomenon likely occurs within tumor cells in vivo, as shown by the detection of both LMP-1 variants in single microdissected Reed-Sternberg cells, and may at least in part explain the high prevalence of LMP-1 deletions associated with HIV-HL.

  10. Potential Role of Vascular Endothelial Growth Factor, Interleukin-8 and Monocyte Chemoattractant Protein-1 in Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    En Lee

    2003-08-01

    Full Text Available Host-mediated immunoinflammatory pathways activated by bacteria lead to destruction of the periodontal connective tissues and alveolar bone. The objective of this study was to elucidate the activation of the inflammatory processes in periodontal disease by quantitative assessment of cytokines and periodontopathogens. Gingival crevicular fluids (GCF and subgingival plaque samples were collected from patients with chronic periodontitis and gingivitis and from periodontally healthy sites. Vascular endothelial growth factor (VEGF, monocyte chemoattractant protein-1 (MCP-1, and interleukin 8 (IL-8 in GCF were analyzed by enzyme-linked immunosorbent assay. Periodontopathogens, including Bacteroides forsythus, Campylobacter rectus, Porphyromonas gingivalis and Prevotella intermedia, were analyzed by immunofluorescence and dark-field microscopy. There was significantly more VEGF and IL-8 in chronic periodontitis and gingivitis sites than in periodontally healthy sites. There were significant positive correlations between the concentrations and total amounts of VEGF and IL-8 in chronic periodontitis and gingivitis sites, and between the levels of periodontopathogens and the total amounts of VEGF, MCP-1 and IL-8. These data indicate that inflammatory processes induced by periodontopathogens and the activation of certain cytokines (VEGF, MCP-1, IL-8 in periodontal diseases may be relevant to host-mediated destruction in chronic periodontitis.

  11. Dual roles of p300 in chromatin assembly and transcriptional activation in cooperation with nucleosome assembly protein 1 in vitro.

    Science.gov (United States)

    Asahara, Hiroshi; Tartare-Deckert, Sophie; Nakagawa, Takeya; Ikehara, Tsuyoshi; Hirose, Fumiko; Hunter, Tony; Ito, Takashi; Montminy, Marc

    2002-05-01

    In a yeast two-hybrid screen to identify proteins that bind to the KIX domain of the coactivator p300, we obtained cDNAs encoding nucleosome assembly protein 1 (NAP-1), a 60-kDa histone H2A-H2B shuttling protein that promotes histone deposition. p300 associates preferentially with the H2A-H2B-bound form of NAP-1 rather than with the unbound form of NAP-1. Formation of NAP-1-p300 complexes was found to increase during S phase, suggesting a potential role for p300 in chromatin assembly. In micrococcal nuclease and supercoiling assays, addition of p300 promoted efficient chromatin assembly in vitro in conjunction with NAP-1 and ATP-utilizing chromatin assembly and remodeling factor; this effect was dependent in part on the intrinsic histone acetyltransferase activity of p300. Surprisingly, NAP-1 potently inhibited acetylation of core histones by p300, suggesting that efficient assembly requires acetylation of either NAP-1 or p300 itself. As p300 acted cooperatively with NAP-1 in stimulating transcription from a chromatin template in vitro, our results suggest a dual role of NAP-1-p300 complexes in promoting chromatin assembly and transcriptional activation.

  12. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Directory of Open Access Journals (Sweden)

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  13. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  14. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  16. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  17. 3D7-derived Plasmodium falciparum erythrocyte membrane protein 1 is a frequent target of naturally acquired antibodies recognizing protein domains in a particular pattern independent of malaria transmission intensity

    DEFF Research Database (Denmark)

    Joergensen, Louise; Vestergaard, Lasse S; Turner, Louise

    2007-01-01

    Protection against Plasmodium falciparum malaria is largely mediated by IgG against surface Ags such as the erythrocyte membrane protein 1 family (PfEMP1) responsible for antigenic variation and sequestration of infected erythrocytes. PfEMP1 molecules can be divided into groups A, B/A, B, C, and B......, the sequence by which individuals acquired Abs to particular constructs was largely the same in the three villages. This indicates that the pattern of PfEMP1 expression by parasites transmitted at the different sites was similar, suggesting that PfEMP1 expression is nonrandom and shaped by host......-parasite relationship factors operating at all transmission intensities....

  18. Association of Human Papillomavirus 16 E2 with Rad50-Interacting Protein 1 Enhances Viral DNA Replication.

    Science.gov (United States)

    Campos-León, Karen; Wijendra, Kalpanee; Siddiqa, Abida; Pentland, Ieisha; Feeney, Katherine M; Knapman, Alison; Davies, Rachel; Androphy, Elliot J; Parish, Joanna L

    2017-03-01

    Rad50-interacting protein 1 (Rint1) associates with the DNA damage response protein Rad50 during the transition from the S phase to the G 2 /M phase and functions in radiation-induced G 2 checkpoint control. It has also been demonstrated that Rint1 is essential in vesicle trafficking from the Golgi apparatus to the endoplasmic reticulum (ER) through an interaction with Zeste-White 10 (ZW10). We have isolated a novel interaction between Rint1 and the human papillomavirus 16 (HPV16) transcription and replication factor E2. E2 binds to Rint1 within its ZW10 interaction domain, and we show that in the absence of E2, Rint1 is localized to the ER and associates with ZW10. E2 expression results in a disruption of the Rint1-ZW10 interaction and an accumulation of nuclear Rint1, coincident with a significant reduction in vesicle movement from the ER to the Golgi apparatus. Interestingly, nuclear Rint1 and members of the Mre11/Rad50/Nbs1 (MRN) complex were found in distinct E2 nuclear foci, which peaked during mid-S phase, indicating that the recruitment of Rint1 to E2 foci within the nucleus may also result in the recruitment of this DNA damage-sensing protein complex. We show that exogenous Rint1 expression enhances E2-dependent virus replication. Conversely, the overexpression of a truncated Rint1 protein that retains the E2 binding domain but not the Rad50 binding domain acts as a dominant negative inhibitor of E2-dependent HPV replication. Put together, these experiments demonstrate that the interaction between Rint1 and E2 has an important function in HPV replication. IMPORTANCE HPV infections are an important driver of many epithelial cancers, including those within the anogenital and oropharyngeal tracts. The HPV life cycle is tightly regulated and intimately linked to the differentiation of the epithelial cells that it infects. HPV replication factories formed in the nucleus are locations where viral DNA is copied to support virus persistence and amplification of

  19. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Directory of Open Access Journals (Sweden)

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  20. p53 mutation status is a primary determinant of placenta-specific protein 1 expression in serous ovarian cancers.

    Science.gov (United States)

    Devor, Eric J; Gonzalez-Bosquet, Jesus; Warrier, Akshaya; Reyes, Henry D; Ibik, Nonye V; Schickling, Brandon M; Newtson, Andreea; Goodheart, Michael J; Leslie, Kimberly K

    2017-05-01

    Placenta-specific protein 1 (PLAC1) expression is co-opted in numerous human cancers. As a consequence of PLAC1 expression, tumor cells exhibit enhanced proliferation and invasiveness. This characteristic is associated with increased aggressiveness and worse patient outcomes. Recently, the presence of the tumor suppressor p53 was shown in vitro to inhibit PLAC1 transcription by compromising the P1, or distal/cancer, promoter. We sought to determine if this phenomenon occurs in primary patient tumors as well. Furthermore, we wanted to know if p53 mutation influenced PLAC1 expression as compared with wild-type. We chose to study serous ovarian tumors as they are well known to have a high rate of p53 mutation. We report herein that the phenomenon of PLAC1 transcription repression does occur in serous ovarian carcinomas but only when TP53 is wild-type. We find that mutant or absent p53 protein de-represses PLAC1 transcription. We further propose that the inability of mutant p53 to repress PLAC1 transcription is due to the fact that the altered TP53 protein is unable to occupy a putative p53 binding site in the PLAC1 P1 promoter thus allowing transcription to occur. Finally, we show that PLAC1 transcript number is significantly negatively correlated with patient survival in our samples. Thus, we suggest that characterizing tumors for TP53 mutation status, p53 protein status and PLAC1 transcription could be used to predict likely prognosis and inform treatment options in patients diagnosed with serous ovarian cancer.

  1. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer.

    Science.gov (United States)

    Nambara, Sho; Masuda, Takaaki; Nishio, Miki; Kuramitsu, Shotaro; Tobo, Taro; Ogawa, Yushi; Hu, Qingjiang; Iguchi, Tomohiro; Kuroda, Yousuke; Ito, Shuhei; Eguchi, Hidetoshi; Sugimachi, Keishi; Saeki, Hiroshi; Oki, Eiji; Maehara, Yoshihiko; Suzuki, Akira; Mimori, Koshi

    2017-12-08

    Yes-associated protein 1 (YAP1) acts as an oncogene through dephosphorylation and nuclear translocation, and nuclear accumulation of YAP1 is associated with poor prognosis in gastric cancer (GC). We previously identified ivermectin, an antiparasitic drug, as a YAP1 inhibitor. Here, we aimed to clarify whether ivermectin had antitumor effects on GC through inhibition of YAP1. First, we evaluated the antiproliferative effects of ivermectin on human GC cells using in vitro proliferation assays and a xenograft mouse model. YAP1-knockdown assays were performed to assess whether the sensitivity to ivermectin depended on YAP1 expression. Next, we explored the mechanism through which ivermectin regulated YAP1 expression or localization by immunoblotting and reverse transcription-quantitative polymerase chain reaction for YAP1 and the downstream gene CTGF . Finally, the clinical significance of YAP1 expression was examined using three independent GC datasets. We found that MKN1 GC cells were most sensitive to ivermectin, whereas MKN7 cells were most resistant. In MKN1 xenografts, ivermectin suppressed tumor growth, and the sensitivity of MKN1 cells to ivermectin was decreased by YAP1 knockdown. Ivermectin inhibited YAP1 nuclear expression and CTGF expression in MKN1 cells but not MKN7 cells. Moreover, ivermectin decreased YAP1 mRNA expression, thereby inhibiting nuclear accumulation of YAP1 in MKN1 cells. In survival analysis, low YAP1 mRNA expression was associated with a better prognosis in three independent GC datasets. In conclusion, we identified ivermectin as a potential antitumor agent and found a promising novel therapeutic strategy for inhibition of GC progression by blocking YAP1 expression.

  2. A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1

    Science.gov (United States)

    Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael

    2015-01-01

    A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952

  3. Islet cell proliferation and apoptosis in insulin-like growth factor binding protein-1 in transgenic mice.

    Science.gov (United States)

    Dheen, S T; Rajkumar, K; Murphy, L J

    1997-12-01

    Transgenic mice which overexpress insulin-like growth factor binding protein-1 (IGFPB-1) demonstrate fasting hyperglycemia, hyperinsulinemia and glucose intolerance in adult life. Here we have examined the ontogeny of pancreatic endocrine dysfunction and investigated islet cell proliferation and apoptosis in this mouse model. In addition we have examined pancreatic insulin content in transgenic mice derived from blastocyst transfer into non-transgenic mice. Transgenic mice were normoglycemic at birth but had markedly elevated plasma insulin levels, 56.2 +/- 4.5 versus 25.4 +/- 1.5 pmol/l, p < 0.001, and pancreatic insulin concentration, 60.5 +/- 2.5 versus 49.0 +/- 2.6 ng/mg of tissue, P < 0.01, compared with wild-type mice. Transgenic mice derived from blastocyst transfer to wild-type foster mothers had an elevated pancreatic insulin content similar to that seen in pups from transgenic mice. There was an age-related decline in pancreatic insulin content and plasma insulin levels and an increase in fasting blood glucose concentrations, such that adult transgenic mice had significantly less pancreatic insulin than wild-type mice. Pancreatic islet number and the size of mature islets were increased in transgenic animals at birth compared with wild-type mice. Both islet cell proliferation, measured by 5-bromo-2'-deoxyuridine labeling, and apoptosis, assessed by the in situ terminal deoxynucleotidyl transferase and nick translation assay, were increased in islets of newborn transgenic mice compared with wild-type mice. In adult mice both islet cell proliferation and apoptosis were low and similar in transgenic and wild-type mice. Islets remained significantly larger and more numerous in adult transgenic mice despite a reduction in pancreatic insulin content. These data suggest that overexpression of IGFBP-1, either directly or indirectly via local or systemic mechanisms, has a positive trophic effect on islet development.

  4. Urinary concentration of monocyte chemoattractant protein-1 in idiopathic glomerulonephritis: a long-term follow-up study.

    Directory of Open Access Journals (Sweden)

    Rafid Tofik

    Full Text Available BACKGROUND: Monocyte chemoattractant protein-1 (MCP-1, which is up regulated in kidney diseases, is considered a marker of kidney inflammation. We examined the value of urine MCP-1 in predicting the outcome in idiopathic glomerulonephritis. METHODS: Between 1993 and 2004, 165 patients (68 females diagnosed with idiopathic proteinuric glomerulopathy and with serum creatinine <150 µmol/L at diagnosis were selected for the study. Urine concentrations of MCP-1 were analyzed by ELISA in early morning spot urine samples collected on the day of the diagnostic kidney biopsy. The patients were followed until 2009. The progression rate to end-stage kidney disease was calculated using Kaplan-Meier survival analysis. End-stage kidney disease (ESKD was defined as the start of kidney replacement therapy during the study follow-up time. RESULTS: Patients with proliferative glomerulonephritis had significantly higher urinary MCP-1 excretion levels than those with non-proliferative glomerulonephritis (p<0.001. The percentage of patients whose kidney function deteriorated significantly was 39.0% in the high MCP-1 excretion group and 29.9% in the low MCP-1 excretion group. However, after adjustment for confounding variables such as glomerular filtration rate (GFR and proteinuria, there was no significant association between urine MCP-1 concentration and progression to ESKD, (HR=1.75, 95% CI=0.64-4.75, p=0.27. CONCLUSION: Our findings indicate that progression to end-stage kidney disease in patients with idiopathic glomerulopathies is not associated with urine MCP-1 concentrations at the time of diagnosis.

  5. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  6. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1).

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Abián, Olga; Velázquez-Campoy, Adrián; Iovanna, Juan L; Neira, José L

    2018-03-09

    NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma (PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small molecules could not be adequate to modulate its functions. We explored how amphipathic helical-designed peptides were capable of interacting with wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction. Peptide dissociation constants towards wild-type NUPR1 were ~ 3 μM, whereas no interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region of the Polycomb RING protein 1 (C-RING1B). Designed peptides can be used as lead compounds to inhibit NUPR1 interactions. Peptides may be exploited as drugs to target IDPs. Copyright © 2018. Published by Elsevier B.V.

  7. Shedding of membrane-associated LDL receptor-related protein-1 from microglia amplifies and sustains neuroinflammation.

    Science.gov (United States)

    Brifault, Coralie; Gilder, Andrew S; Laudati, Emilia; Banki, Michael; Gonias, Steven L

    2017-11-10

    In the CNS, microglia are activated in response to injury or infection and in neurodegenerative diseases. The endocytic and cell signaling receptor, LDL receptor-related protein-1 (LRP1), is reported to suppress innate immunity in macrophages and oppose microglial activation. The goal of this study was to identify novel mechanisms by which LRP1 may regulate microglial activation. Using primary cultures of microglia isolated from mouse brains, we demonstrated that LRP1 gene silencing increases expression of proinflammatory mediators; however, the observed response was modest. By contrast, the LRP1 ligand, receptor-associated protein (RAP), robustly activated microglia, and its activity was attenuated in LRP1-deficient cells. An important element of the mechanism by which RAP activated microglia was its ability to cause LRP1 shedding from the plasma membrane. This process eliminated cellular LRP1, which is anti-inflammatory, and generated a soluble product, shed LRP1 (sLRP1), which is potently proinflammatory. Purified sLRP1 induced expression of multiple proinflammatory cytokines and the mRNA encoding inducible nitric-oxide synthase in both LRP1-expressing and -deficient microglia. LPS also stimulated LRP1 shedding, as did the heat-shock protein and LRP1 ligand, calreticulin. Other LRP1 ligands, including α 2 -macroglobulin and tissue-type plasminogen activator, failed to cause LRP1 shedding. Treatment of microglia with a metalloproteinase inhibitor inhibited LRP1 shedding and significantly attenuated RAP-induced cytokine expression. RAP and sLRP1 both caused neuroinflammation in vivo when administered by stereotaxic injection into mouse spinal cords. Collectively, these results suggest that LRP1 shedding from microglia may amplify and sustain neuroinflammation in response to proinflammatory stimuli. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  9. Latent membrane protein 1 (LMP1) expression in Hodgkin lymphoma and its correlation with clinical and histologic parameters.

    Science.gov (United States)

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Hashmi, Kashif Ali; Zafar, Muhammad Irfan; Edhi, Muhammad Muzzammil; Faridi, Naveen; Khan, Mehmood

    2017-04-20

    Hodgkin lymphoma is one of the most prevalent lymphoproliferative disorders in Pakistan; however, no risk factors for this disease have yet to be established in our population. Epstein-Barr virus (EBV) is a well-known risk factor for Hodgkin lymphoma in endemic regions of the world; however, frequency of its association in our population has not been widely studied. Latent membrane protein 1 (LMP1) expression by immunohistochemistry (IHC) is a surrogate marker of EBV in Hodgkin lymphoma. Therefore, we aimed to evaluate the frequency of expression of LMP1 in cases of Hodgkin lymphoma at our institute and its correlation with other clinical and histologic parameters. The study included 66 cases of Hodgkin lymphoma diagnosed at Liaquat National Hospital over a duration of 2 years from January 2014 to December 2015. The slides and blocks of all cases were retrieved, and representative blocks were selected for LMP1 by IHC. LMP1 expression of >10% of cells was considered as positive expression and correlated with histologic subtypes and clinical parameters like age, gender, and site of involvement. The mean age of patients was 35.11 (+20.22). LMP1 expression was found in 68.1% (45/66) of cases of Hodgkin lymphoma. Mean age of the patients with LMP1 expression was 32.04 (+21.02). LMP1 expression was found in 40% cases of lymphocyte-rich, 66.7% of lymphocyte-depleted, 73.9% of mixed cellularity, 66.7% of nodular sclerosis, and 73.7% of classic Hodgkin lymphoma, NOS. No significant correlation of LMP1 expression with any clinical or histological parameter could be established in our studied patient population. A high frequency of expression of LMP1 is seen in cases of Hodgkin lymphoma at our setup comparable to endemic regions of the world; therefore, preventive and treatment protocols should be designed accordingly.

  10. The pattern of proline, glutamic acid, and leucine-rich protein 1 expression in Chinese women with primary breast cancer.

    Science.gov (United States)

    Zhang, Yanzhi; Wang, Peng; Shi, Mumu; Sasano, Hironobu; Chan, Monica S M; Dai, Jiali; Guo, Lunshu; Liu, Ming; Wang, Xiaoyan; Ma, Ying; Wang, Lin

    2014-03-24

    Disparities of biomarkers' expression in breast cancer across different races and ethnicities have been well documented. Proline, glutamic acid, and leucine-rich protein 1 (PELP1), a novel ER coregulator, has been considered as a promising biomarker of breast cancer prognosis; however, the pattern of PELP1 expression in Chinese women with breast cancer has never been investigated. This study aims to provide useful reference on possible racial or ethnic differences of PELP1 expression in breast cancer by exploring the pattern of PELP1 expression in Chinese women with primary breast cancer. The expression of PELP1 in primary breast cancer samples from 130 Chinese female patients was detected by immunohistochemistry and correlated to other clinicopathological parameters; for comparison, the expression of PELP1 in 26 benign breast fibroadenomas was also examined. The overall value of the PELP1 H-score in breast cancer was significantly higher than that in breast fibroadenoma (p<0.001). In our breast cancer patients, the ER/HER-2-positive group had significantly higher PELP1 H-scores than their negative counterparts (p=0.003 for ER and p=0.022 for HER-2); the Ki-67-high group also showed significantly higher PELP1 H-scores than the Ki-67-low group (p=0.008). No significant association between PELP1 H-scores and other clinicopathological parameters was found. Finally, the PELP1 H-score in breast cancers of the luminal B subtype was significantly higher than that in the triple negative subtype (p=0.002). Overexpression of PELP1 in Chinese women with primary breast cancer appears to be associated with biomarkers of poor outcome; these results are similar to other reports based on Western populations.

  11. Postoperative Changes in Aqueous Monocyte Chemotactic Protein-1 Levels and Bleb Morphology after Trabeculectomy vs. Ex-PRESS Shunt Surgery.

    Directory of Open Access Journals (Sweden)

    Kohei Shobayashi

    Full Text Available To evaluate the postoperative changes in blebs and levels of aqueous monocyte chemotactic protein-1 (MCP-1 after trabeculectomy vs. Ex-PRESS tube shunt surgery.Rabbits were subjected to trabeculectomy or Ex-PRESS tube shunt surgery and observed for up to 3 months. Intraocular pressure (IOP was measured using a rebound tonometer. The MCP-1 level was measured by enzyme-linked immunosorbent assay (ELISA. Bleb morphology was evaluated using photos and anterior-segment optical coherence tomography (OCT.There were no differences in bleb appearance or IOP at any time between the groups. Bleb wall density in the anterior-segment OCT image was significantly lower 1 week after surgery in the Ex-PRESS group than the trabeculectomy group. The MCP-1 level in control eyes was 304.1 ± 45.2 pg/mL. In the trabeculectomy group, the mean aqueous MCP-1 level was 1444.9, 1914.3, 1899.8, 516.4, 398.3, 427.3, 609.5, 1612.7, 386.2, and 167.9 pg/mL at 3, 6, and 12 h, and 1, 2, 5, 7, 14, 30, and 90 days after surgery, respectively. In the Ex-PRESS group, the corresponding values were 1744.0, 1372.0, 932.5, 711.7, 396.1, 487.3, 799.5, 1327.9, 293.6, and 184.0 pg/mL. There were no significant differences in the aqueous MCP-1 level between the groups at any time point.The postoperative changes were similar in the Ex-PRESS and trabeculectomy groups, except for bleb wall density in the anterior-segment OCT image. The postoperative aqueous MCP-1 level had bimodal peaks in both groups.

  12. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  13. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  14. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  15. Loss of heterochromatin protein 1 gamma reduces the number of primordial germ cells via impaired cell cycle progression in mice.

    Science.gov (United States)

    Abe, Kanae; Naruse, Chie; Kato, Tomoaki; Nishiuchi, Takumi; Saitou, Mitinori; Asano, Masahide

    2011-11-01

    Signals from extraembryonic tissues in mice determine which proximal epiblast cells become primordial germ cells (PGCs). After their specification, approximately 40 PGCs appear at the base of the allantoic bud and migrate to the genital ridges, where they expand to about 25 000 cells by Embryonic Day (E)13.5. The heterochromatin protein 1 (HP1) family members HP1alpha, HP1beta, and HP1gamma (CBX5, CBX1, and CBX3, respectively) are thought to induce heterochromatin structure and to regulate gene expression by binding methylated histone H3 lysine 9. We found a dramatic loss of germ cells before meiosis in HP1gamma mutant (HP1gamma(-/-)) mice that we generated previously. The reduction in PGCs in HP1gamma(-/-) embryos was detectable from the early bud stage (E7.25), and the number of HP1gamma(-/-) PGCs was gradually reduced thereafter. Bromodeoxyuridine incorporation into PGCs was significantly reduced in E7.25 and E12.5 HP1gamma(-/-) embryos. Furthermore, a lower proportion of HP1gamma(-/-) PGCs than wild-type PGCs was in S phase, and a higher proportion, respectively, was in G1 phase at E12.5. Moreover, the proportion of p21 (Cip, official symbol CDKN1A)-positive HP1gamma(-/-) PGCs was increased, suggesting that the G1/S phase transition was inhibited. However, no differences were detected between fate determination, migration, apoptosis, or histone modification of PGCs of control embryos and those of HP1gamma(-/-) embryos. Therefore, the reduction in PGCs in HP1gamma(-/-) embryos could be caused by impaired cell cycle in PGCs. These results suggest that HP1gamma plays an important role in keeping enough germ cells by regulating the PGC cell cycle.

  16. Proteolytic cleavage of vascular adhesion protein-1 induced by vascular endothelial growth factor in retinal capillary endothelial cells.

    Science.gov (United States)

    Yoshida, Shiho; Murata, Miyuki; Noda, Kousuke; Matsuda, Takashi; Saito, Michiyuki; Saito, Wataru; Kanda, Atsuhiro; Ishida, Susumu

    2018-02-01

    To investigate the mechanism of soluble vascular adhesion protein-1 (sVAP-1) accumulation induced by vascular endothelial growth factor (VEGF) in the vitreous of patients with diabetic retinopathy (DR). Experimental. Protein levels of sVAP-1 and N epsilon-(hexanoyl)lysine (HEL), an oxidative stress marker, in the vitreous samples from patients with proliferative diabetic retinopathy (PDR) with or without intravitreal bevacizumab (IVB) injection were determined by ELISA. The effect of VEGF on both mRNA expression of Vap-1 and secretion of sVAP-1 in rat retinal capillary endothelial cells (TR-iBRB2) was analyzed by real-time PCR and western blotting, respectively. In addition, the impact of VEGF on production and activation ratios of matrix metalloproteinase (MMP)-2 and MMP-9 was examined by gelatin zymography. Hydrogen peroxide production and reactive oxygen species (ROS) levels were assessed in the supernatants of TR-iBRB2 cells treated with VEGF. IVB injection decreased vitreous levels of sVAP-1 and HEL in patients with PDR. VEGF stimulation released sVAP-1 protein from TR-iBRB2 cells as a consequence of membrane-anchored VAP-1 shedding by MMP-2 and MMP-9. In addition, VEGF increased hydrogen peroxide generation and ROS augmentation through spermine oxidation by sVAP-1 as semicarbazide-sensitive amine oxidase (SSAO) in the supernatant of cultured endothelial cells. The current data demonstrate that proangiogenic factor VEGF induces sVAP-1 release from retinal capillary endothelial cells and facilitates hydrogen peroxide generation via enzymatic property of sVAP-1, followed by the increase of oxidative stress, one of the crucial factors in the pathogenesis of DR.

  17. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  18. Monocyte chemoattractant protein-1 promoter -2518 polymorphism and susceptibility to vasculitis, rheumatoid arthritis, and multiple sclerosis: A meta-analysis.

    Science.gov (United States)

    Lee, Y H; Bae, S-C

    2016-03-20

    The purpose of this study was to examine whether the monocyte chemoattractant protein-1 (MCP-1) promoter -2518 A/G polymorphism (rs1024611) is associated with susceptibility to vasculitis, rheumatoid arthritis (RA), or multiple sclerosis (MS). A meta-analysis was conducted on the association between the MCP-1 -2518 A/G polymorphism and vasculitis, RA, and MS. Fourteen studies from 13 articles, including six on vasculitis, five on RA, and three on MS, consisting of 3,038 patients and 3,545 controls were available for the meta-analysis. The meta-analysis revealed no association between the MCP-1 -2518 G allele and vasculitis (odds ratio [OR] = 0.990, 95% confidence interval [CI] = 0.749-1.309, p = 0.943). Stratification by ethnicity indicated no association between the G allele of the MCP-1 -2518 A/G polymorphism and vasculitis in Asians and Caucasians. Meta-analysis by vasculitis type revealed an association between the GG+GA genotype of the MCP-1 -2518 A/G polymorphism and Behçet's disease (BD; OR = 1.349, 95% CI = 1.013-1.796, p = 0.040). However, sensitivity analysis showed that the association was not statistically significant after removing a study that was conducted in China (OR = 1.030, 95% CI = 0.667-1.590, p = 0.895), which indicated that the association was not statistically robust. The meta-analysis revealed no association between the MCP-1 -2518 G allele and RA (OR = 0.986, 95% CI = 0.890-1.093, p = 0.793) or MS (OR = 1.281, 95% CI = 0.802-2.046, p = 0.301). Our meta-analysis demonstrates that the MCP-1 -2518 A/G polymorphism is not associated with susceptibility to vasculitis, RA, or MS.

  19. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration.

    Science.gov (United States)

    Arana, Lide; Ordoñez, Marta; Ouro, Alberto; Rivera, Io-Guané; Gangoiti, Patricia; Trueba, Miguel; Gomez-Muñoz, Antonio

    2013-06-01

    The bioactive sphingolipid ceramide 1-phosphate (C1P) is implicated in inflammatory responses and was recently shown to promote cell migration. However, the mechanisms involved in these actions are poorly described. Using J774A.1 macrophages, we have now discovered a new biological activity of C1P: stimulation of monocyte chemoattractant protein-1 (MCP-1) release. This novel effect of C1P was pertussis toxin (PTX) sensitive, suggesting the intervention of Gi protein-coupled receptors. Treatment of the macrophages with C1P caused activation of the phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase kinase (MEK)/extracellularly regulated kinases (ERK), and p38 pathways. Inhibition of these kinases using selective inhibitors or specific siRNA blocked the stimulation of MCP-1 release by C1P. C1P stimulated nuclear factor-κB activity, and blockade of this transcription factor also resulted in complete inhibition of MCP-1 release. Also, C1P stimulated MCP-1 release and cell migration in human THP-1 monocytes and 3T3-L1 preadipocytes. A key observation was that sequestration of MCP-1 with a neutralizing antibody or treatment with MCP-1 siRNA abolished C1P-stimulated cell migration. Also, inhibition of the pathways involved in C1P-stimulated MCP-1 release completely blocked the stimulation of cell migration by C1P. It can be concluded that C1P promotes MCP-1 release in different cell types and that this chemokine is a major mediator of C1P-stimulated cell migration. The PI3K/Akt, MEK/ERK, and p38 pathways are important downstream effectors in this action.

  20. Contribution of Specific Amino Acid Changes in Penicillin Binding Protein 1 to Amoxicillin Resistance in Clinical Helicobacter pylori isolates ▿

    Science.gov (United States)

    Qureshi, Nadia N.; Morikis, Dimitrios; Schiller, Neal L.

    2011-01-01

    Amoxicillin is commonly used to treat Helicobacter pylori, a major cause of peptic ulcers, stomach cancer, and B-cell mucosa-associated lymphoid tissue lymphoma. Amoxicillin resistance in H. pylori is increasing steadily, especially in developing countries, leading to treatment failures. In this study, we characterize the mechanism of amoxicillin resistance in the U.S. clinical isolate B258. Transformation of amoxicillin-susceptible strain 26695 with the penicillin binding protein 1 gene (pbp1) from B258 increased the amoxicillin resistance of 26695 to equal that of B258, while studies using biotinylated amoxicillin showed a decrease in the binding of amoxicillin to the PBP1 of B258. Transformation with 4 pbp1 fragments, each encompassing several amino acid substitutions, combined with site-directed mutagenesis studies, identified 3 amino acid substitutions in PBP1 of B258 which affected amoxicillin susceptibility (Val 469 Met, Phe 473 Leu, and Ser 543 Arg). Homology modeling showed the spatial orientation of these specific amino acid changes in PBP1 from 26695 and B258. The results of these studies demonstrate that amoxicillin resistance in the clinical U.S. isolate B258 is due solely to an altered PBP1 protein with a lower binding affinity for amoxicillin. Homology modeling analyses using previously identified amino acid substitutions of amoxicillin-resistant PBP1s demonstrate the importance of specific amino acid substitutions in PBP1 that affect the binding of amoxicillin in the putative binding cleft, defining those substitutions deemed most important in amoxicillin resistance. PMID:20956585

  1. Contribution of specific amino acid changes in penicillin binding protein 1 to amoxicillin resistance in clinical Helicobacter pylori isolates.

    Science.gov (United States)

    Qureshi, Nadia N; Morikis, Dimitrios; Schiller, Neal L

    2011-01-01

    Amoxicillin is commonly used to treat Helicobacter pylori, a major cause of peptic ulcers, stomach cancer, and B-cell mucosa-associated lymphoid tissue lymphoma. Amoxicillin resistance in H. pylori is increasing steadily, especially in developing countries, leading to treatment failures. In this study, we characterize the mechanism of amoxicillin resistance in the U.S. clinical isolate B258. Transformation of amoxicillin-susceptible strain 26695 with the penicillin binding protein 1 gene (pbp1) from B258 increased the amoxicillin resistance of 26695 to equal that of B258, while studies using biotinylated amoxicillin showed a decrease in the binding of amoxicillin to the PBP1 of B258. Transformation with 4 pbp1 fragments, each encompassing several amino acid substitutions, combined with site-directed mutagenesis studies, identified 3 amino acid substitutions in PBP1 of B258 which affected amoxicillin susceptibility (Val 469 Met, Phe 473 Leu, and Ser 543 Arg). Homology modeling showed the spatial orientation of these specific amino acid changes in PBP1 from 26695 and B258. The results of these studies demonstrate that amoxicillin resistance in the clinical U.S. isolate B258 is due solely to an altered PBP1 protein with a lower binding affinity for amoxicillin. Homology modeling analyses using previously identified amino acid substitutions of amoxicillin-resistant PBP1s demonstrate the importance of specific amino acid substitutions in PBP1 that affect the binding of amoxicillin in the putative binding cleft, defining those substitutions deemed most important in amoxicillin resistance.

  2. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila.

    Directory of Open Access Journals (Sweden)

    Danielle Vermaak

    2005-07-01

    Full Text Available Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1, which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.

  3. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    Science.gov (United States)

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  4. The mycobacterial DNA-binding protein 1 (MDP1 from Mycobacterium bovis BCG influences various growth characteristics

    Directory of Open Access Journals (Sweden)

    Maurischat Sven

    2008-06-01

    Full Text Available Abstract Background Pathogenic mycobacteria such as M. tuberculosis, M. bovis or M. leprae are characterised by their extremely slow growth rate which plays an important role in mycobacterial virulence and eradication of the bacteria. Various limiting factors influence the generation time of mycobacteria, and the mycobacterial DNA-binding protein 1 (MDP1 has also been implicated in growth regulation. Our strategy to investigate the role of MDP1 in mycobacterial growth consisted in the generation and characterisation of a M. bovis BCG derivative expressing a MDP1-antisense gene. Results The expression rate of the MDP1 protein in the recombinant M. bovis BCG containing the MDP1-antisense plasmid was reduced by about 50% compared to the reference strain M. bovis BCG containing the empty vector. In comparison to this reference strain, the recombinant M. bovis BCG grew faster in broth culture and reached higher cell masses in stationary phase. Likewise its intracellular growth in mouse and human macrophages was ameliorated. Bacterial clumping in broth culture was reduced by the antisense plasmid. The antisense plasmid increased the susceptibility of the bacteria towards Ampicillin. 2-D protein gels of bacteria maintained under oxygen-poor conditions demonstrated a reduction in the number and the intensity of many protein spots in the antisense strain compared to the reference strain. Conclusion The MDP1 protein has a major impact on various growth characteristics of M. bovis BCG. It plays an important role in virulence-related traits such as aggregate formation and intracellular multiplication. Its impact on the protein expression in a low-oxygen atmosphere indicates a role in the adaptation to the hypoxic conditions present in the granuloma.

  5. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  6. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy.

    Science.gov (United States)

    Boels, Margien G S; Koudijs, Angela; Avramut, M Cristina; Sol, Wendy M P J; Wang, Gangqi; van Oeveren-Rietdijk, Annemarie M; van Zonneveld, Anton Jan; de Boer, Hetty C; van der Vlag, Johan; van Kooten, Cees; Eulberg, Dirk; van den Berg, Bernard M; IJpelaar, Daphne H T; Rabelink, Ton J

    2017-11-01

    Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also reduced in diabetic nephropathy, we hypothesized that MCP-1 inhibition restores glomerular barrier function through influencing macrophage cathepsin L secretion, thus reducing activation of the glycocalyx-degrading enzyme heparanase. Four weeks of treatment of diabetic Apoe knockout mice with the mouse-specific NOX-E36 attenuated albuminuria without any change in systemic hemodynamics, despite persistent loss of podocyte function. MCP-1 inhibition, however, increased glomerular endothelial glycocalyx coverage, with preservation of heparan sulfate. Mechanistically, both glomerular cathepsin L and heparanase expression were reduced. MCP-1 inhibition resulted in reduced CCR2-expressing Ly6C hi monocytes in the peripheral blood, without affecting overall number of kidney macrophages at the tissue level. However, the CD206 + /Mac3 + cell ratio, as an index of presence of anti-inflammatory macrophages, increased in diabetic mice after treatment. Functional analysis of isolated renal macrophages showed increased release of IL-10, whereas tumor necrosis factor and cathepsin L release was reduced, further confirming polarization of tissue macrophages toward an anti-inflammatory phenotype during mouse-specific NOX-E36 treatment. We show that MCP-1 inhibition restores glomerular endothelial glycocalyx and barrier function and reduces tissue inflammation in the presence of ongoing diabetic injury, suggesting a therapeutic potential for NOX-E36 in diabetic nephropathy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  8. Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathy-specific point mutations in polyomavirus JC capsid viral protein 1.

    Science.gov (United States)

    Chen, Gang; Gorelik, Leonid; Simon, Kenneth J; Pavlenco, Alevtina; Cheung, Anne; Brickelmaier, Margot; Chen, Ling Ling; Jin, Ping; Weinreb, Paul H; Sidhu, Sachdev S

    2015-01-01

    Polyomavirus JC (JCV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a rare and frequently fatal brain disease that afflicts a small fraction of the immune-compromised population, including those affected by AIDS and transplantation recipients on immunosuppressive drug therapy. Currently there is no specific therapy for PML. The major capsid viral protein 1 (VP1) involved in binding to sialic acid cell receptors is believed to be a key player in pathogenesis. PML-specific mutations in JCV VP1 sequences present at the binding pocket of sialic acid cell receptors, such as L55F and S269F, abolish sialic acid recognition and might favor PML onset. Early diagnosis of these PML-specific mutations may help identify patients at high risk of PML, thus reducing the risks associated with immunosuppressive therapy. As a first step in the development of such early diagnostic tools, we report identification and characterization of affinity reagents that specifically recognize PML-specific mutations in VP1 variants using phage display technology. We first identified 2 peptides targeting wild type VP1 with moderate specificity. Fine-tuning via selection of biased libraries designed based on 2 parental peptides yielded peptides with different, yet still moderate, bindinspecificities. In contrast, we had great success in identifying synthetic antibodies that recognize one of the PML-specific mutations (L55F) with high specificity from the phage-displayed libraries. These peptides and synthetic antibodies represent potential candidates for developing tailored immune-based assays for PML risk stratification in addition to complementing affinity reagents currently available for the study of PML and JCV.

  9. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  10. Induction of gene expression via activator protein-1 in the ascorbate protection against UV-induced damage.

    Science.gov (United States)

    Catani, M V; Rossi, A; Costanzo, A; Sabatini, S; Levrero, M; Melino, G; Avigliano, L

    2001-05-15

    UV irradiation is a major insult to the skin. We have shown previously that exogenous vitamin C (ascorbate) accumulates in HaCaT keratinocytes, thus conferring the ability to prevent radical formation and cell death elicited by UV-B. Here, we have investigated the potential mechanisms accounting for the cytoprotective effects exerted by this antioxidant. Using a cDNA microarray hybridization, we identified several genes whose expression was up-regulated by ascorbate. We focused on the fra-1 gene, a member of the Fos family of transcription factors that down-regulates activator protein-1 (AP-1) target genes. Both in HaCaT and in normal human epidermal keratinocytes, we found Fra-1 mRNA induction as early as 2 h after ascorbate loading. Electrophoretic mobility-shift assay and antibody supershift analysis revealed that ascorbate modulates AP-1 DNA-binding activity and that Fra-1 is in AP-1 complexes in treated cells. Furthermore, transient-transfection studies, using an AP-1 reporter construct, showed that ascorbate was able to inhibit both basal and UV-B-induced AP-1-dependent transcription. Ascorbate also modulates UV-B-induced AP-1 activity by preventing the phosphorylation and activation of the upstream c-Jun N-terminal kinase (JNK), thus inhibiting phosphorylation of the endogenous c-Jun protein. These data suggest that ascorbate mediates cellular responses aimed at counteracting UV-mediated cell damage and cell death by interfering at multiple levels with the activity of the JNK/AP-1 pathway and modulating the expression of AP-1-regulated genes.

  11. Drosophila DNA polymerase zeta interacts with recombination repair protein 1, the Drosophila homologue of human abasic endonuclease 1.

    Science.gov (United States)

    Takeuchi, Ryo; Ruike, Tatsushi; Nakamura, Ryo-ichi; Shimanouchi, Kaori; Kanai, Yoshihiro; Abe, Yoko; Ihara, Ayumi; Sakaguchi, Kengo

    2006-04-28

    Abasic (AP) sites are a threat to cellular viability and genomic integrity, since they impede transcription and DNA replication. In mammalian cells, DNA polymerase (pol) beta plays an important role in the repair of AP sites. However, it is known that many organisms, including Drosophila melanogaster, do not have a pol beta homologue, and it is unclear how they repair AP sites. Here, we screened for DNA polymerases that interact with the Drosophila AP endonuclease 1 homologue, Rrp1 (recombination repair protein 1), and found that Drosophila pol zeta (Dmpol zeta), DmREV3 and DmREV7 bound to Rrp1 in a protein affinity column. Rrp1 directly interacted with DmREV7 in vitro and in vivo but not with DmREV3. These findings suggest that the DNA polymerase partner for Rrp1 is Dmpol zeta and that this interaction occurs through DmREV7. Interestingly, DmREV7 bound to the N-terminal region of Rrp1, which has no known protein homologue, suggesting that this binding is a species-specific event. Moreover, DmREV7 could stimulate the AP endonuclease activity of Rrp1, but not the 3'-exonuclease activity, and form a homomultimer. DmREV3 could not incorporate nucleotides at the 5'-incised tetrahydrofran sites but did show strand displacement activity for one-nucleotide-gapped DNA, which was not influenced by either DmREV7 or Rrp1. Methyl methanesulfonate and hydrogen peroxide treatments increased mRNA levels of DmREV3 and DmREV7. On the basis of the direct interaction between DmREV7 and Rrp1, we suggest that Dmpol zeta may be involved in the repair pathway of AP sites in DNA.

  12. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  13. Expression of ErbB3-binding protein-1 (EBP1 during primordial follicle formation: role of estradiol-17ß.

    Directory of Open Access Journals (Sweden)

    Anindit Mukherjee

    Full Text Available The formation of primordial follicles involves the interaction between the oocytes and surrounding somatic cells, which differentiate into granulosa cells. Estradiol-17ß (E promotes primordial follicle formation in vivo and in vitro; however, the underlying mechanisms are poorly understood. The expression of an ERBB3-binding protein 1 (EBP1 is downregulated in 8-day old hamster ovaries concurrent with the increase in serum estradiol levels and the formation of primordial follicles. The objectives of the present study were to determine the spatio-temporal expression and putative E regulation of EBP1 in ovarian cells during perinatal development with respect to primordial follicle formation. Hamster EBP1 nucleic acid and amino acid sequences were more than 93% and 98% similar, respectively, to those of mouse and human, and contained nucleolar localization signal, RNA-binding domain and several phosphorylation sites. EBP1 protein was present in somatic cells and oocytes from E15, and declined in oocytes by P1 and in somatic cells by P5. Thereafter, EBP1 expression increased through P7 with a transient decline on P8 primarily in interstitial cells. EBP1 mRNA levels mirrored protein expression pattern. E treatment on P1 and P4 upregulated EBP1 expression by P8 whereas E treatment on P4 downregulated it by 72 h suggesting a compensatory upregulation due to E pretreatment. Treatment with an FSH-antiserum, which suppressed primordial follicle formation, prevented the decline in EBP1 levels, and the effect was reversed by E treatment. Therefore, the results provide the first evidence that EBP1 may play an important role in mediating the effect of E in the differentiation of somatic cells into granulosa cells during primordial follicle formation.

  14. Neospora caninum immune mapped protein 1 (NcIMP1 is a novel vaccine candidate against neosporosis

    Directory of Open Access Journals (Sweden)

    Xia CUI,Daoyu YANG,Tao LEI,Hui WANG,Pan HAO,Qun LIU

    2015-03-01

    Full Text Available The Neospora caninum immune mapped protein 1 (NcIMP1 was identified as a membrane protein, and a previous study indicated that NcIMP1 could be a promising vaccine candidate against neosporosis. In this study, the immune response and protection efficacy of NcIMP1 were evaluated. The coding sequence of NcIMP1 was inserted into the eukaryotic expression vector pcDNA 3.1(+, resulting in the recombination plasmid pcDNA-IMP1, which was used for the intramuscular immunization of BALB/c mice. After immunization, the immune response was evaluated using a lymphoproliferative assay and cytokine and antibody measurements. Quantification of the cerebral parasite burden of mice challenged with 2 × 106N. caninum was performed 14 days after the last immunization. The results showed that the mice immunized with pcDNA-IMP1 developed a high level of specific antibody responses against recombinant NcIMP1, with a mixed IgG1/IgG2a response and a predominance of IgG2a production. The cellular immune response was associated with the production of IFN-&Ggr;, IL-2, IL-4 and IL-10 cytokines. The experiment was terminated 30 days p.i., and the cerebral parasite burden in each mouse was assessed by quantitative PCR. The parasite burden was significantly reduced in the pcDNA-IMP1-vaccinated mice. These data suggest that IMP1 is a promising vaccine candidate against neosporosis.

  15. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine.

    Science.gov (United States)

    D'Amours, Olivier; Frenette, Gilles; Bordeleau, Louis-Jean; Allard, Nancy; Leclerc, Pierre; Blondin, Patrick; Sullivan, Robert

    2012-10-01

    Previously, we showed that epididymal sperm binding protein 1 (ELSPBP1) characterizes spermatozoa already dead before ejaculation in bovine. In this study, we investigated the presence of ELSPBP1 in bull genital tract as well as its acquisition by spermatozoa during epididymal transit. As assessed by real-time RT-PCR, ELSPBP1 was highly expressed in the caput and the corpus epididymis but was present in lower expression levels in the testis and the cauda epididymis. Immunohistochemistry revealed the same expression pattern. However, Western blot on tissue homogenates showed some discrepancies, as ELSPBP1 was found in a comparable concentration all along the epididymis. This difference was due to the presence of ELSPBP1 in the epididymal fluid. In both caput and cauda epididymal fluid, ELSPBP1 was associated with the epididymosomes, small membranous vesicles secreted by epithelial cells of the epididymis and implicated in the transfer of proteins to spermatozoa. As assessed by immunocytometry, ELSPBP1 was found on a subset of dead spermatozoa in caput epididymis but was found on all dead spermatozoa in cauda epididymis. To assess ELSPBP1 acquisition by spermatozoa, caput epididymal spermatozoa were incubated with cauda epididymosomes under various conditions. ELSPBP1 detection by immunocytometry assay revealed that only spermatozoa already dead before incubation were receptive to ELSPBP1 transfer by epididymosomes. This receptivity was enhanced by the presence of zinc in the incubation medium. This specificity for a sperm subpopulation suggests that an underlying mechanism is involved and that ELSPBP1 could be a tag for the recognition of dead spermatozoa during epididymal transit.

  17. The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1.

    Directory of Open Access Journals (Sweden)

    Adrian O'Hara

    Full Text Available The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2 and regenerating protein 1 (Reg1. Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.

  18. Developmental changes in uncoupling protein 1 and F(1)-ATPase subunit levels in the golden hamster brown adipose tissue mitochondria as determined by electron microscopy in situ immunocytochemistry

    Czech Academy of Sciences Publication Activity Database

    Bednár, Jan; Soukup, Tomáš

    2003-01-01

    Roč. 22, - (2003), s. 477-486 ISSN 0231-5882 R&D Projects: GA ČR GA304/00/1653 Grant - others:NATO Research project(XX) 979876 Institutional research plan: CEZ:AV0Z5011922 Keywords : immunoelectron microscopy * uncoupling protein 1 * mitochondrial ATP synthase Subject RIV: ED - Physiology Impact factor: 0.794, year: 2003

  19. Schwangerschafts Protein 1 (SP1) adds little to the age-related detection of fetal Down syndrome in the first trimester of pregnancy

    NARCIS (Netherlands)

    Kornman, LH; Morssink, LP; Ten Hoor, KA; De Wolf, BTHM; Kloosterman, MD; Beekhuis, [No Value; Mantingh, A

    1998-01-01

    Schwangerschafts Protein 1 (SP1), being a placental protein appearing in the maternal circulation early in pregnancy, has been investigated as a potential marker for Down syndrome in the first trimester. Our study compared SP1 levels in 15 pregnancies with a Down syndrome fetus and 97 matched

  20. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Wang, Christian W; Lavstsen, Thomas; Bengtsson, Dominique C

    2012-01-01

    ABSTRACT: BACKGROUND: Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes,...

  1. Localization of macrophage inflammatory protein : Macrophage inflammatory PROTEIN-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia

    NARCIS (Netherlands)

    Gourmala, NG; Limonta, S; Bochelen, D; Sauter, A; Boddeke, HWGM

    Macrophage inflammatory protein is a member of the C-C subfamily of chemokines, which exhibits, in addition to proinflammatory activities, a potent endogenous pyrogen activity. In this study, we analysed the time-course of expression and cellular source of macrophage inflammatory protein-1 alpha and

  2. Antibody responses to Rhoptry-Associated Protein-1 (RAP-1) of Plasmodium falciparum parasites in humans from areas of different malaria endemicity

    DEFF Research Database (Denmark)

    Jakobsen, P H; Kurtzhals, J A; Riley, E M

    1997-01-01

    Plasma IgM and IgG antibody reactivities against the recombinant Plasmodium falciparum protein, Rhoptry Associated Protein-1 (rRAP-1) were measured by ELISA in individuals from Sudan, Indonesia, Kenya and The Gambia living in areas of different malaria endemicity. IgG and IgM reactivities to rRAP...

  3. High-fat diet enhances and monocyte chemoattractant protein-1 deficiency reduces bone loss in mice with pulmonary metastases of Lewis lung carcinoma

    Science.gov (United States)

    Bone is adversely affected by metastasis and metastasis-associated complications. Obesity is a risk factor for both bone and cancer. Adipose tissue is an endocrine organ that produces pro-inflammatory adipokines, such as monocyte chemotactic protein-1 (MCP-1), that contribute to obesity and obesit...

  4. Monocyte chemotactic protein-1 attenuates and high-fat diet exacerbates bone loss in mice with pulmonary metastasis of Lewis lung carcinoma

    Science.gov (United States)

    Bone can be adversely affected by obesity and cancer-associated complications including wasting. The objective of this study was to determine whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects found in male C57BL/6 mice with Lewis lung...

  5. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1)

    DEFF Research Database (Denmark)

    Fonseca, Bruno; Zakaria, Chadi; Jia, J J

    2015-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related ...

  6. Growth arrest specific 2-like protein 1 expression is upregulated in podocytes through advanced glycation end-products.

    Science.gov (United States)

    Liebisch, Marita; Bondeva, Tzvetanka; Franke, Sybille; Hause, Stephan; Wolf, Gunter

    2017-04-01

    Growth arrest specific 2-like protein 1 (GAS2L1) protein is a member of the GAS2 family of proteins, known to regulate apoptosis and cellular cytoskeleton reorganization in different cells. Recently we identified that Gas2l1 gene expression in podocytes is influenced by advanced glycation end product-bovine serum albumin(AGE-BSA). The study was performed employing cultured podocytes and diabetic ( db/db ) mice, a model of type 2 diabetes. Akbuminuria as wellas urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion as measured with specific ELISAs. Gene expression was analysed via semiquantitative and real-time polymerase chain reaction. The protein levels were determined by western blotting and immunostaining. We found that the Gas2l1 α isoform is expressed in podocytes. Treatment with AGE-BSA induced Gas2l1 α and Gas2 mRNA levels compared with controls incubated with non-glycated control BSA (Co-BSA). Moreover, application of the recombinant soluble receptor of AGEs (sRAGE), a competitor of cellular RAGE, reversed the AGE-BSA effect. Interestingly, AGE-BSA also increased the protein levels of GAS2L1α in a RAGE-dependent manner, but did not affect the GAS2 expression. Periodic acid-Schiff staining and albuminuria as well as urinary NGAL excretion revealed that db/db mice progressively developed diabetic nephropathy with renal accumulation of N ε -carboxy-methyl-lysine (immunohistochemistry, western blots). Analyses of GAS2L1α and GAS2 proteins in diabetic mice revealed that both were significantly elevated relative to their non-diabetic littermates. In addition, GAS2L1α and GAS2 proteins positively correlated with the accumulation of AGEs in the blood plasma of diabetic mice and the administration of sRAGE in diabetic mice reduced the glomerular expression of both proteins. We show for the first time that the protein expression of GAS2L1α in vitro and in vivo is regulated by the AGE-RAGE axis. The suppression of AGE ligation with their RAGE in

  7. Monocyte chemoattractant protein 1 and fractalkine play opposite roles in angiogenesis via recruitment of different macrophage subtypes

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2018-02-01

    Full Text Available AIM: To explore the interaction between macrophages and chemokines [monocyte chemoattractant protein 1 (MCP-1/CCL2 and fractalkine/CX3CL1] and the effects of their interaction on neovascularization. METHODS: Human peripheral blood mononuclear cells, donated by healthy volunteers, were separated and cultured in RPMI-1640 medium containing 10% fetal bovine serum, then induced into macrophages by stimulation with 30 μg/L granulocyte macrophage-colony stimulating factor (GM-CSF. The expression of CCR2 and/or CX3CR1 in the macrophages was examined using flow cytometry. Macrophages were then stimulated with recombinant human CCL2 (rh-CCL2 or recombinant human CX3CL1 (rh-CX3CL1. The expression of angiogenesis-related genes, including VEGF-A, THBS-1 and ADAMTS-1 were examined using real-time quantitative polymerase chain reaction (PCR. Supernatants from stimulated macrophages were used in an assay of human retinal endothelial cell (HREC proliferation. Finally, stimulated macrophages were co-cultured with HREC in a migration assay. RESULTS: The expression rate of CCR2 in macrophages stimulated by GM-CSF was 42%±1.9%. The expression rate of CX3CR1 was 71%±3.3%. Compared with vehicle-treated groups, gene expression of VEGF-A in the macrophages was greater in 150 mg/L CCL2-treated groups (P<0.05, while expression of THBS-1 and ADAMTS-1 was significantly lower (P<0.05. By contrast, compared with vehicle-treated groups, expression of VEGF-A in 150 mg/L CX3CL1-treated groups was significantly lower (P<0.05, while expression of THBS-1 and ADAMTS-1 was greater (P<0.05. Supernatants from CCL2 treated macrophages promoted proliferation of HREC (P<0.05, while supernatants from CX3CL1-treated macrophages inhibited the proliferation of HREC (P<0.05. HREC migration increased when co-cultured with CCL2-treated macrophages, but decreased with CX3CL1-treated macrophages (P<0.05. CONCLUSION: CCL2 and CX3CL1 exert different effects in regulation of macrophage in

  8. Expression of ERBB3 binding protein 1 (EBP1) in salivary adenoid cystic carcinoma and its clinicopathological relevance

    International Nuclear Information System (INIS)

    Sun, Jian; Luo, Yixi; Tian, Zhen; Gu, Liang; Xia, Shu Chi; Yu, Youcheng

    2012-01-01

    ERBB3 binding protein 1 (EBP1) gene transfer into human salivary adenoid cystic carcinoma cells has been shown to significantly inhibit cell proliferation and reduce tumor metastasis in mouse models. In the current study, to evaluate if EBP1 is a novel biomarker capable of identifying patients at higher risk of disease progression and recurrence, we examined the EBP1 expression profile in adenoid cystic carcinoma (ACC) patients and analyzed its clinicopathological relevance. To understand the underlying anti-metastatic mechanism, we investigated if EBP1 regulates invasion-related molecules. We performed immunohistochemical analysis on 132 primary adenoid cystic carcinoma and adjacent non-cancerous tissues using commercial EBP1, MMP9, E-cadherin and ICAM-1 antibodies. Results were correlated to clinicopathological parameters, long-term survival and invasion-related molecules by statistical analysis. Cell motility and invasiveness of vector or wild-type EBP1-transfected ACC-M cell lines were evaluated using wound healing and Boyden chamber assays. MMP9, E-cadherin and ICAM-1 proteins in these cell lines were detected using western blot assay. The expression of EBP1 was significantly higher in non-cancerous adjacent tissues compared with corresponding cancer tissues. The intensity and percentage of cells that reacted with EBP1 antibodies were significantly higher in cases with tubular pattern than those with solid pattern (P<0.0001). We also found adenoid cystic carcinoma with local lymphatic metastasis had significantly lower EBP1 expression than ACC with no local lymphatic node metastasis (P<0.0001). Similar findings were observed in ACC with lung metastasis compared with cases with no lung metastasis (P<0.0001), in particular, in cases with perineural invasion compared with cases with no perineural invasion (P<0.0001). Furthermore, a decrease in EBP1 expression was positively associated with a reduction in overall survival of ACC patients. Of note, EBP1 inhibits

  9. Abdominal Aortic Aneurysm Is Associated with a Variant in Low-Density Lipoprotein Receptor-Related Protein 1

    Science.gov (United States)

    Bown, Matthew J.; Jones, Gregory T.; Harrison, Seamus C.; Wright, Benjamin J.; Bumpstead, Suzannah; Baas, Annette F.; Gretarsdottir, Solveig; Badger, Stephen A.; Bradley, Declan T.; Burnand, Kevin; Child, Anne H.; Clough, Rachel E.; Cockerill, Gillian; Hafez, Hany; Scott, D. Julian A.; Futers, Simon; Johnson, Anne; Sohrabi, Soroush; Smith, Alberto; Thompson, Matthew M.; van Bockxmeer, Frank M.; Waltham, Matthew; Matthiasson, Stefan E.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Blankensteijn, Jan D.; Teijink, Joep A.W.; Wijmenga, Cisca; de Graaf, Jacqueline; Kiemeney, Lambertus A.; Assimes, Themistocles L.; McPherson, Ruth; Folkersen, Lasse; Franco-Cereceda, Anders; Palmen, Jutta; Smith, Andrew J.; Sylvius, Nicolas; Wild, John B.; Refstrup, Mette; Edkins, Sarah; Gwilliam, Rhian; Hunt, Sarah E.; Potter, Simon; Lindholt, Jes S.; Frikke-Schmidt, Ruth; Tybjærg-Hansen, Anne; Hughes, Anne E.; Golledge, Jonathan; Norman, Paul E.; van Rij, Andre; Powell, Janet T.; Eriksson, Per; Stefansson, Kari; Thompson, John R.; Humphries, Steve E.; Sayers, Robert D.; Deloukas, Panos; Samani, Nilesh J.

    2011-01-01

    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10−5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10−5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10−10, odds ratio 1.15 [1.10–1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04–1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression. PMID:22055160

  10. Activator protein-1 (AP-1): a bridge between life and death in lung epithelial (A549) cells under hypoxia.

    Science.gov (United States)

    Yadav, Seema; Kalra, Namita; Ganju, Lilly; Singh, Mrinalini

    2017-12-01

    Activator protein-1 (AP-1) transcription factor plays a central role in hypoxia to modulate the expression of genes that decides the fate of the cell. The aim of the present study was to explore the role of AP-1 subunits in lung epithelial (A549) cells under hypoxia. Cell cycle studies by flow cytometry indicated that cell viability was unaffected by the initial hypoxia exposure (0.5% O 2 at 37 °C) for 6 and 12 h. However, both transient cell cycle arrest and cell death was detected at 24 and 48 h. Flow cytometry and spectrofluorometry data confirmed the increase in ROS levels. Elevated ROS and calcium levels activated the stress-related MAPK signaling cascade. ERK and JNK were activated in early hypoxic exposure (within 6 h), whereas p38 were activated in 48 h of hypoxia. These subtypes further stimulated the subunits of AP-1 at different times of hypoxia exposure to orchestrate different genes responsible for cell proliferation (6 and 12 h) and apoptosis (24 and 48 h). Our results clearly depict the role of AP-1 heterodimer, i.e., p-c-jun/c-fos, p-c-jun/fosB, junD/c-fos, and junD/fosB in cell proliferation/survival by regulating the expression of Bcl-2 and cyclins (D1 and B1) at 6 h and 12 h of hypoxia, whereas junB/Fra-1 heterodimer have important role in apoptosis by regulating the expression of p53, Bax, and cyclin-dependent kinase inhibitors (p16, p21, p27) at 24 h and 48 h of hypoxia. Also, the cell survival signaling pathway NO-AKT interrupted at 24 h and 48 h of hypoxia indicating cell death. In conclusion, hypoxia for different time points activated different subunits of AP-1 that combined to form different heterodimers. These dimers regulated the expression of genes responsible for cell proliferation and apoptosis. Since, AP-1 plays a role in the decisive phenomenon of the cell to choose between proliferation and apoptosis; thus, its subunits or dimers could be a good therapeutic target for many diseases.

  11. Serum Vascular Adhesion Protein-1 Predicts End-Stage Renal Disease in Patients with Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Hung-Yuan Li

    Full Text Available Diabetes is the leading cause of end-stage renal disease (ESRD worldwide. Vascular adhesion protein-1 (VAP-1 participates in inflammation and catalyzes the deamination of primary amines into aldehydes, hydrogen peroxide, and ammonia, both of which are involved in the pathogenesis of diabetic complications. We have shown that serum VAP-1 is higher in patients with diabetes and in patients with chronic kidney disease (CKD, and can predict cardiovascular mortality in subjects with diabetes. In this study, we investigated if serum VAP-1 can predict ESRD in diabetic subjects.In this prospective cohort study, a total of 604 type 2 diabetic subjects were enrolled between 1996 to 2003 at National Taiwan University Hospital, Taiwan, and were followed for a median of 12.36 years. The development of ESRD was ascertained by linking our database with the nationally comprehensive Taiwan Society Nephrology registry. Serum VAP-1 concentrations at enrollment were measured by time-resolved immunofluorometric assay.Subjects with serum VAP-1 in the highest tertile had the highest incidence of ESRD (p<0.001. Every 1-SD increase in serum VAP-1 was associated with a hazard ratio of 1.55 (95%CI 1.12-2.14, p<0.01 for the risk of ESRD, adjusted for smoking, history of cardiovascular disease, body mass index, hypertension, HbA1c, duration of diabetes, total cholesterol, use of statins, ankle-brachial index, estimated GFR, and proteinuria. We developed a risk score comprising serum VAP-1, HbA1c, estimated GFR, and proteinuria, which could predict ESRD with good performance (area under the ROC curve = 0.9406, 95%CI 0.8871-0.9941, sensitivity = 77.3%, and specificity = 92.8%. We also developed an algorithm based on the stage of CKD and a risk score including serum VAP-1, which can stratify these subjects into 3 categories with an ESRD risk of 0.101%/year, 0.131%/year, and 2.427%/year, respectively.In conclusion, serum VAP-1 can predict ESRD and is a useful biomarker to

  12. Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC.

    Science.gov (United States)

    Chaib, Imane; Karachaliou, Niki; Pilotto, Sara; Codony Servat, Jordi; Cai, Xueting; Li, Xuefei; Drozdowskyj, Ana; Servat, Carles Codony; Yang, Jie; Hu, Chunping; Cardona, Andres Felipe; Vivanco, Guillermo Lopez; Vergnenegre, Alain; Sanchez, Jose Miguel; Provencio, Mariano; de Marinis, Filipo; Passaro, Antonio; Carcereny, Enric; Reguart, Noemi; Campelo, Charo Garcia; Teixido, Christina; Sperduti, Isabella; Rodriguez, Sonia; Lazzari, Chiara; Verlicchi, Alberto; de Aguirre, Itziar; Queralt, Cristina; Wei, Jia; Estrada, Roger; Puig de la Bellacasa, Raimon; Ramirez, Jose Luis; Jacobson, Kirstine; Ditzel, Henrik J; Santarpia, Mariacarmela; Viteri, Santiago; Molina, Migual Angel; Zhou, Caicun; Cao, Peng; Ma, Patrick C; Bivona, Trever G; Rosell, Rafael

    2017-09-01

    The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC) is limited by adaptive activation of cell survival signals. We hypothesized that both signal transducer and activator of transcription 3 (STAT3) and Src-YES-associated protein 1 (YAP1) signaling are dually activated during EGFR TKI treatment to limit therapeutic response. We used MTT and clonogenic assays, immunoblotting, and quantitative polymerase chain reaction to evaluate the efficacy of EGFR TKI alone and in combination with STAT3 and Src inhibition in three EGFR-mutant NSCLC cell lines. The Chou-Talalay method was used for the quantitative determination of drug interaction. We examined tumor growth inhibition in one EGFR-mutant NSCLC xenograft model (n = 4 mice per group). STAT3 and YAP1 expression was evaluated in tumors from 119 EGFR-mutant NSCLC patients (64 in an initial cohort and 55 in a validation cohort) by quantitative polymerase chain reaction. Kaplan-Meier and Cox regression analyses were used to assess the correlation between survival and gene expression. All statistical tests were two-sided. We discovered that lung cancer cells survive initial EGFR inhibitor treatment through activation of not only STAT3 but also Src-YAP1 signaling. Cotargeting EGFR, STAT3, and Src was synergistic in two EGFR-mutant NSCLC cell lines with a combination index of 0.59 (95% confidence interval [CI] = 0.54 to 0.63) for the PC-9 and 0.59 (95% CI = 0.54 to 0.63) for the H1975 cell line. High expression of STAT3 or YAP1 predicted worse progression-free survival (hazard ratio [HR] = 3.02, 95% CI = 1.54 to 5.93, P = .001, and HR = 2.57, 95% CI = 1.30 to 5.09, P = .007, respectively) in an initial cohort of 64 EGFR-mutant NSCLC patients treated with firstline EGFR TKIs. Similar results were observed in a validation cohort. Our study uncovers a coordinated signaling network centered on both STAT3 and Src-YAP signaling

  13. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans

    Science.gov (United States)

    2018-01-01

    Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall

  14. Staphylococcus aureus regulates secretion of interleukin-6 and monocyte chemoattractant protein-1 through activation of nuclear factor kappaB signaling pathway in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Rende Ning

    Full Text Available OBJECTIVE: Activation of nuclear factor kappaB by diverse bacteria regulates the secretion of chemokines and cytokines. Staphylococcus aureus (S. aureus-infected osteoblasts can significantly increase the secretion of interleukin-6 and monocyte chemoattractant protein-1. The aim of this study was to investigate whether S. aureus can activate nuclear factor kappaB in human osteoblasts, and whether the activation of nuclear factor kappaB by S. aureus regulates the secretion of interleukin-6 and monocyte chemoattractant protein-1. METHODS: Immunoblot and electrophoretic mobility shift assay were used to detect the degradation of IκBa and activation of nuclear factor kappaB in human osteoblasts in response to S. aureus, respectively. Enzyme-linked immunosorbent assay was used to measure the secretion of interleukin-6 and monocyte chemoattractant protein-1 in the supernatants. Lastly, carbobenzoxyl-l-leucinyl-l-leucinyl-l-leucinal, an inhibitor of the nuclear factor kappaB, was used to determine if activation of nuclear factor kappaB by S. aureus in human osteoblasts regulates the secretions of interleukin-6 and monocyte chemoattractant protein-1. RESULTS: Our results for the first time demonstrated that S. aureus can induce the degradation of IκBa and activation of nuclear factor kappaB in human osteoblasts in a time and dose-dependent manner. In addition, inhibition of nuclear factor kappaB by carbobenzoxyl-l-leucinyl-l-leucinyl-l-leucinal suppressed the secretion of interleukin-6 and monocyte chemoattractant protein-1 in the supernatants of S. aureus-infected human osteoblasts in a dose-dependent manner. CONCLUSION: These findings suggest that S. aureus can activate nuclear factor kappaB in human osteoblasts, and subsequently regulate the secretion of interleukin-6 and monocyte chemoattractant protein-1. The nuclear factor kappaB transcription factor regulates a number of genes involved in a wide variety of biological processes. Further study of

  15. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

    DEFF Research Database (Denmark)

    Talib, Jihan; Davies, Michael Jonathan

    2016-01-01

    of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss...... and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative...... stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part...

  16. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  17. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Jensen, T B; Overgaard, S; Lind, M

    2007-01-01

    Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  18. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    OpenAIRE

    Yinghong Ji; Xianfang Rong; Dan Li; Lei Cai; Jun Rao; Yi Lu

    2016-01-01

    Background/Aims: Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary ap...

  19. Intervertebral disc cells produce tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model.

    Science.gov (United States)

    Yoshida, Masakazu; Nakamura, Takafumi; Sei, Akira; Kikuchi, Taro; Takagi, Katsumasa; Matsukawa, Akihiro

    2005-01-01

    A new hernia model that simulates human disc herniations was developed in rabbits. The herniated discs were examined by gross appearance and histology and production of tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 was investigated. To clarify the early mechanism of spontaneous herniated disc resorption. Macrophage infiltration in herniated discs is essential for disc resorption. However, surgically removed human herniated disc tissues and existing animal hernia models are not suitable for analyzing the mechanism of macrophage infiltration. Recently, we have demonstrated that intervertebral disc cells are capable of producing monocyte chemoattractant protein-1, a potent macrophage chemoattractant, after stimulation with tumor necrosis factor alpha and interleukin-1beta. Intervertebral disc herniations were surgically developed in rabbits using a new technique. The herniated discs were excised at appropriate time intervals after the surgery, and the size and histologic findings were examined. Expressions of tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 in herniated discs were investigated immunohistochemically. A new rabbit model of disc herniation was established. The herniated discs spontaneously reduced in size by 12 weeks postsurgery. Infiltrating cells, mainly composed of macrophages, were observed from day 3. Immunohistochemically, intervertebral disc cells in the herniated discs produced tumor necrosis factor alpha and interleukin-1beta on day 1, followed by monocyte chemoattractant protein-1 on day 3. The new hernia model appears to be very useful for studying herniated disc resorption. Intervertebral disc cells may produce inflammatory cytokines/chemokine immediately after the onset of disc herniation, possibly triggering subsequent macrophage infiltration that leads to disc resorption.

  20. Retracted: siRNA Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

    Science.gov (United States)

    Huang, Wei-Yi; Chen, Dong-Hui; Ning, Li; Wang, Li-Wei

    2017-10-27

    Retraction: Retracted: siRNA mediated silencing of NIN1/RPN12 binding protein 1 homolog inhibits proliferation and growth of breast cancer cells Asian Pacific Journal of Cancer Prevention has retracted the article titled “siRNA mediated silencing of NIN1/RPN12 binding protein 1 homolog inhibits proliferation and growth of breast cancer cells”(1) for reason of similarity with a series of articles identified by Byrne and Labbé (2). 1. Huang WY1, Chen DH, Ning L, Wang LW. siRNA mediated silencing of NIN1/RPN12 binding protein 1 homolog inhibits proliferation and growth of breast cancer cells. Asian Pac J Cancer Prev. 2012;13(5):1823-7. 2. J. A. Byrne and C. Labbé, “Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines,” Scientometrics, vol. 110, no. 3, pp. 1471–1493, 2017. Authors did not respond to request for comment.

  1. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  2. Electrically driven directional motion of a four-wheeled molecule on a metal surface

    NARCIS (Netherlands)

    Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; Macia, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L.

    2011-01-01

    Propelling single molecules in a controlled manner along an unmodified surface remains extremely challenging because it requires molecules that can use light, chemical or electrical energy to modulate their interaction with the surface in a way that generates motion. Nature's motor proteins(1,2)

  3. Rumble surfaces

    CSIR Research Space (South Africa)

    National Institute for Transport and Road

    1977-01-01

    Full Text Available Rumble surfaces are intermittent short lengths of coarse-textured road surfacings on which vehicle tyres produce a rumbling sound. used in conjunction with appropriate roadsigns and markings, they can reduce accidents on rural roads by alerting...

  4. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  5. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    International Nuclear Information System (INIS)

    Lechner, Mark S.; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-01-01

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization

  6. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte.

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    Full Text Available The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine.

  7. Influence of genetic polymorphisms of multidrug and toxin extrusion protein 1 on its mRNA expression in peripheral blood cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Ando

    2016-06-01

    Full Text Available This study aimed to determine the effect of multidrug and toxin extrusion protein 1 (MATE1 genetic variants on its transcript expression in peripheral blood cells. Consistent with previous in vitro findings, MATE1 mRNA levels were significantly higher in subjects carrying rs2453579, but not rs2252281, compared to those without either of these promoter variants. In addition, the mRNA levels did not differ between subjects with both variants and those with neither allele. Thus, this study reveals that the influence of MATE1 genetic variants on its mRNA expression can be detected in vivo using peripheral blood.

  8. A simple promoter containing two Sp1 sites controls the expression of sterol-regulatory-element-binding protein 1a (SREBP-1a)

    OpenAIRE

    Zhang, Chengkang; Shin, Dong-Ju; Osborne, Timothy F.

    2005-01-01

    The mammalian gene for SREBP-1 (sterol-regulatory-element-binding protein 1) contains two promoters that control the production of two proteins, SREBP-1a and -1c, and each contains a unique N-terminal transcriptional activation domain, but they are otherwise identical. The relative level of each mRNA varies from tissue to tissue and they respond differently to regulatory stimuli. SREBP-1c is more abundantly expressed in liver, where its level is also regulated by insulin and liver X receptor ...

  9. Sterol Regulatory Element Binding Protein 1a Regulates Hepatic Fatty Acid Partitioning by Activating Acetyl Coenzyme A Carboxylase 2 ▿ ‡

    OpenAIRE

    Im, Seung-Soon; Hammond, Linda E.; Yousef, Leyla; Nugas-Selby, Cherryl; Shin, Dong-Ju; Seo, Young-Kyo; Fong, Loren G.; Young, Stephen G.; Osborne, Timothy F.

    2009-01-01

    We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregu...

  10. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein

    OpenAIRE

    Bleve, Gianluca; Zacheo, Giuseppe; Cappello, Maria Stella; Dellaglio, Franco; Grieco, Francesco

    2005-01-01

    GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1–GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter lo...

  11. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1

    Czech Academy of Sciences Publication Activity Database

    Beck, V.; Jabůrek, Martin; Breen, E. P.; Porter, R. K.; Ježek, Petr; Pohl, E. E.

    2006-01-01

    Roč. 1757, č. 5-6 (2006), s. 474-479 ISSN 0005-2728 R&D Projects: GA AV ČR(CZ) IAA5011106; GA MŠk(CZ) 1P05ME794 Grant - others:Deutsche Forschungsgemeinschaft(DE) Po-524/2-2; Deutsche Forschungsgemeinschaft(DE) 436 TSE 113/44/0-1 Institutional research plan: CEZ:AV0Z50110509 Keywords : artificial membrane s * uncoupling protein-1 Subject RIV: BO - Biophysics Impact factor: 4.237, year: 2006

  12. Low Level of Low-Density Lipoprotein Receptor-Related Protein 1 Predicts an Unfavorable Prognosis of Hepatocellular Carcinoma after Curative Resection

    OpenAIRE

    Huang, Xiao-Yong; Shi, Guo-Ming; Devbhandari, Ranjan Prasad; Ke, Ai-Wu; Wang, Yuwei; Wang, Xiao-Ying; Wang, Zheng; Shi, Ying-Hong; Xiao, Yong-Sheng; Ding, Zhen-Bin; Dai, Zhi; Xu, Yang; Jia, Wei-Ping; Tang, Zhao-You; Fan, Jia

    2012-01-01

    BACKGROUND: Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. The aim of this study was to elucidate the expression and mechanism of LRP1 in hepatocellular carcinoma (HCC). METHODS: LRP1 expression in 4 HCC cell lines and 40 HCC samples was detected. After interruption of LRP1 expression in a HCC cell line either with specific lentiviral-mediated shRNA LRP1 or in the presence of the LRP1-specif...

  13. Crystal Structure and Functional Characterization of the Complement Regulator Mannose-binding Lectin (MBL)/Ficolin-associated Protein-1 (MAP-1)

    DEFF Research Database (Denmark)

    Skjoedt, M.-o.; Roversi, P.; Hummelshoj, T.

    2012-01-01

    The human lectin complement pathway activation molecules comprise MBL, ficolin-1, -2 and -3, in complex with associated serine proteases MASP-1, -2 and -3, and the non-enzymatic sMAP. Recently, a novel plasma protein named MBL/ficolin associated protein-1 (MAP-1) was identified in humans.......5 nM, respectively. We studied structural aspects of MAP-1 and could show by multi-angle laser light scattering that MAP-1 forms a calcium-dependent homo-dimer in solution. We were able to determine the crystal structure of MAP-1, which also contains a head-to-tail dimer approximately 146 Angstrom...

  14. Low-density Lipoprotein Receptor-related Protein-1 (LRP1) Mediates Autophagy and Apoptosis Caused by Helicobacter pylori VacA*

    OpenAIRE

    Yahiro, Kinnosuke; Satoh, Mamoru; Nakano, Masayuki; Hisatsune, Junzo; Isomoto, Hajime; Sap, Jan; Suzuki, Hidekazu; Nomura, Fumio; Noda, Masatoshi; Moss, Joel; Hirayama, Toshiya

    2012-01-01

    In Helicobacter pylori infection, vacuolating cytotoxin (VacA)-induced mitochondrial damage leading to apoptosis is believed to be a major cause of cell death. It has also been proposed that VacA-induced autophagy serves as a host mechanism to limit toxin-induced cellular damage. Apoptosis and autophagy are two dynamic and opposing processes that must be balanced to regulate cell death and survival. Here we identify the low-density lipoprotein receptor-related protein-1 (LRP1) as the VacA rec...

  15. Superhydrophobic surfaces

    Science.gov (United States)

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  16. Spherical Surfaces

    DEFF Research Database (Denmark)

    Brander, David

    2016-01-01

    We study surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give...

  17. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    Science.gov (United States)

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  18. Surface boxplots

    KAUST Repository

    Genton, Marc G.

    2014-01-22

    In this paper, we introduce a surface boxplot as a tool for visualization and exploratory analysis of samples of images. First, we use the notion of volume depth to order the images viewed as surfaces. In particular, we define the median image. We use an exact and fast algorithm for the ranking of the images. This allows us to detect potential outlying images that often contain interesting features not present in most of the images. Second, we build a graphical tool to visualize the surface boxplot and its various characteristics. A graph and histogram of the volume depth values allow us to identify images of interest. The code is available in the supporting information of this paper. We apply our surface boxplot to a sample of brain images and to a sample of climate model outputs.

  19. Convex surfaces

    CERN Document Server

    Busemann, Herbert

    2008-01-01

    This exploration of convex surfaces focuses on extrinsic geometry and applications of the Brunn-Minkowski theory. It also examines intrinsic geometry and the realization of intrinsic metrics. 1958 edition.

  20. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  1. Surface phonons

    CERN Document Server

    Wette, Frederik

    1991-01-01

    In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech­ niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen­ tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...

  2. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia

    DEFF Research Database (Denmark)

    Vatten, Lars J; Nilsen, Tom I L; Juul, Anders

    2008-01-01

    OBJECTIVE: To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia. METHODS: Nested case-control study within a cohort of 29 948 pregnant women. Cases were women, who later...... developed preeclampsia, and controls were randomly selected women, who did not develop preeclampsia. IGF-I and IGFBP-1 were measured with ELISA in maternal blood samples that were collected in the first and second trimesters. We assessed associations of IGF-I and IGFBP-1 concentrations with later...... development of preterm (before the 37th week of gestation) and term preeclampsia. RESULTS: An increase in IGF-I from the first to second trimester was associated with higher risk of preterm preeclampsia; the odds ratio (OR) for the highest compared with lowest quartile of increase was 4.9 (95% confidence...

  3. Repositioning antimicrobial agent pentamidine as a disruptor of the lateral interactions of transmembrane domain 5 of EBV latent membrane protein 1.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available The lateral transmembrane protein-protein interactions (PPI have been regarded as "undruggable" despite their importance in many essential biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5 of latent membrane protein 1 (LMP-1 is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV. Herein we repurpose the antimicrobial agent pentamidine as a regulator of LMP-1 TMD-5 lateral interactions. The results of ToxR assay, tryptophan fluorescence assay, courmarin fluorescence dequenching assay, and Bis-Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE consistently show pentamidine disrupts LMP-1 TMD-5 lateral interactions. Furthermore, pentamidine inhibits LMP-1 signaling, inducing cellular apoptosis and suppressing cell proliferation in the EBV infected B cells. In contrast, EBV negative cells are less susceptible to pentamidine. This study provides a novel non-peptide small molecule agent for regulating LMP-1 TMD-5 lateral interactions.

  4. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  5. Consideration of Epstein-Barr Virus-Encoded Noncoding RNAs EBER1 and EBER2 as a Functional Backup of Viral Oncoprotein Latent Membrane Protein 1

    Directory of Open Access Journals (Sweden)

    Kristina M. Herbert

    2016-03-01

    Full Text Available The Epstein-Barr virus (EBV-encoded noncoding RNAs EBER1 and EBER2 are highly abundant through all four latency stages of EBV infection (III-II-I-0 and have been associated with an oncogenic phenotype when expressed in cell lines cultured in vitro. In vivo, EBV-infected B cells derived from freshly isolated lymphocytes show that EBER1/2 deletion does not impair viral latency. Based on published quantitative proteomics data from BJAB cells expressing EBER1 and EBER2, we propose that the EBERs, through their activation of AKT in a B-cell-specific manner, are a functionally redundant backup of latent membrane protein 1 (LMP1—an essential oncoprotein in EBV-associated malignancies, with a main role in AKT activation. Our proposed model may explain the lack of effect on viral latency establishment in EBER-minus EBV infection.

  6. [Expression of erythroblastic leukemia viral oncogene homolog 3 (ErbB-3) binding protein-1, matrix metalloproteinases, eplthelial cadherin in adenoid cystic carcinoma and correlation analysis].

    Science.gov (United States)

    Sun, Jian; Yu, You-cheng; Luo, Yi-xi; Tian, Zhen

    2012-12-01

    To investigate the expression of ErbB-3 binding protein-1 (EBP-1), matrix metalloproteinase 9 (MMP-9) and E-cadherin (E-cad) in adenoid cystic carcinoma and their correlation. Immunohistochemistry(PV6000 method) was used to detect EBP-1, MMP-9 and E-cad expression in 66 cases of adenoid cystic carcinoma tissues and matched para-cancerous normal tissues. In this study all cases were successfully followed up. The positive expression rate of EBP-1 in adenoid cystic carcinoma tissues was 85%. EBP-1 expression was significantly correlated to pathological pattern and clinical stage (P correlation between EBP-1 and E-cad expression, and positive correlation between EBP-1 and MMP-9. EBP-1 and its correlation with MMP-9 and E-cad may be used as useful indicators for clinical assessment of tumor biological behavior and prognosis in patients with adenoid cystic carcinoma.

  7. Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways.

    Science.gov (United States)

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways.

  8. Analysis of the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene and promoter in Hodgkin's disease isolates

    DEFF Research Database (Denmark)

    Sandvej, K; Andresen, B S; Zhou, X G

    2000-01-01

    AIMS: To study the distribution of Epstein-Barr virus (EBV) variants containing mutations in the latent membrane protein 1 (LMP-1) oncogene and promoter in EBV associated Hodgkin's disease and infectious mononucleosis compared with previous findings in asymptomatic EBV carriers. METHODS: Sequence...... analysis of the EBV LMP-1 promoter and gene in isolates from Danish patients with Hodgkin's disease (n = 61) and infectious mononucleosis (n = 10). RESULTS: Viruses (previously designated group D) that contain two mutations in the activating transcription factor/cAMP response element (ATF/CRE) in the LMP-1...... promoter, which are known to decrease promoter activity greatly, were significantly less frequent in Hodgkin's disease than in both infectious mononucleosis (p = 0.0081) and asymptomatic EBV carriers (p = 0.0084). In some cases, the LMP-1 gene contained mutations in a recently identified cytotoxic T cell...

  9. Non-structural protein 1 of influenza viruses inhibits rapid mRNA degradation mediated by double-stranded RNA-binding protein, staufen1.

    Science.gov (United States)

    Cho, Hana; Ahn, Sang Ho; Kim, Kyoung Mi; Kim, Yoon Ki

    2013-07-11

    Although non-structural protein 1 (NS1) of influenza viruses is not essential for virulence, this protein is involved in host-virus interactions, viral replication, and translation. In particular, NS1 is known to interact with the host protein, staufen1 (Stau1). This interaction is important for efficient viral replication. However, the underlying molecular mechanism by which NS1 influences the viral life cycle remains obscure. Here, we show using immunoprecipitation and artificial tethering that the N-terminus of NS1, NS1(1-73), interacts with Stau1, blocks the Stau1-Upf1 interaction, and consequently inhibits the efficiency of Stau1-mediated mRNA decay (SMD), but not nonsense-mediatedmRNA decay (NMD). The regulation of SMD efficiency by NS1 may contribute to building a more favorable cellular environment for viral replication. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Aspirin and PPAR-alpha activators inhibit monocyte chemoattractant protein-1 expression induced by high glucose concentration in human endothelial cells.

    Science.gov (United States)

    Dragomir, Elena; Tircol, Magdalena; Manduteanu, Ileana; Voinea, Manuela; Simionescu, Maya

    2006-06-01

    Activated endothelial cells express monocyte chemoattractant protein-1 (MCP-1), a chemokine which is reportedly involved in the recruitment of plasma monocytes in the early stages of atherosclerosis. Since accelerated atherosclerosis is the main complication of diabetes and both diseases encompass an inflammatory reaction, we hypothesized that the anti-inflammatory drugs, aspirin and peroxisome proliferator-activated receptor (PPAR-alpha) activators (fenofibrate and clofibrate), could have an effect on the high glucose-induced MCP-1 expression in endothelial cells. To test this assumption, as well as the possible mechanisms involved, the MCP-1 expression and secretion, the reactive oxygen species levels, nuclear factor-kB (NF-kB) and activator protein-1 (AP-1) expression were determined in human endothelial cells exposed to high glucose concentrations in the presence of aspirin, fenofibrate and clofibrate. Human endothelial cells kept in normal glucose concentration in the absence of drugs were used as control. The results showed that (i) aspirin, fenofibrate and clofibrate decrease significantly the MCP-1 expression and secretion in human endothelial cells; (ii) the high glucose up-regulated expression of MCP-1 in endothelial cells was significantly reduced by inhibitors of NF-kB and reactive oxygen species; (iii) all drugs notably decrease the level of the reactive oxygen species and activation of NF-kB and AP-1. Together, the findings indicate that in endothelial cells aspirin and PPAR-alpha activators reduce the high glucose-increased expression of MCP-1 by a mechanism that includes the inhibition of reactive oxygen species, and decrease of AP-1 and NF-kB activation.

  11. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1).

    Science.gov (United States)

    Fonseca, Bruno D; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M; Diao, Ilo T; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L; Hernández, Greco; Alain, Tommy; Damgaard, Christian K

    2015-06-26

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Ice Surfaces

    Science.gov (United States)

    Shultz, Mary Jane

    2017-05-01

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, Ih. Despite its prevalence, Ih remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  13. Surfacing Moves

    DEFF Research Database (Denmark)

    Lutz, Peter

    2013-01-01

    such as schedules, machines, and aging bodies. To this end, the article also experiments with ‘surfacing’ as an ethnographic heuristic for figuring these different ‘spatial-timings’. The article concludes that surfacing matters not only in senior home care but also in the field-desks of ethnographic analysis....

  14. Attack surfaces

    DEFF Research Database (Denmark)

    Gruschka, Nils; Jensen, Meiko

    2010-01-01

    The new paradigm of cloud computing poses severe security risks to its adopters. In order to cope with these risks, appropriate taxonomies and classification criteria for attacks on cloud computing are required. In this work-in-progress paper we present one such taxonomy based on the notion...... of attack surfaces of the cloud computing scenario participants....

  15. Low-Density Lipoprotein Receptor-Related Protein-1 (LRP1) C4408R Mutant Promotes Amyloid Precursor Protein (APP) α-Cleavage in Vitro.

    Science.gov (United States)

    Hou, Huayan; Habib, Ahsan; Zi, Dan; Tian, Kathy; Tian, Jun; Giunta, Brian; Sawmiller, Darrell; Tan, Jun

    2017-09-01

    Previous studies have demonstrated that the low-density lipoprotein receptor-related protein-1 (LRP1) plays conflicting roles in Alzheimer's disease (AD) pathogenesis, clearing β-amyloid (Aβ) from the brain while also enhancing APP endocytosis and resultant amyloidogenic processing. We have recently discovered that co-expression of mutant LRP1 C-terminal domain (LRP1-CT C4408R) with Swedish mutant amyloid precursor protein (APPswe) in Chinese hamster ovary (CHO) cells decreases Aβ production, while also increasing sAPPα and APP α-C-terminal fragment (α-CTF), compared with CHO cells expressing APPswe alone. Surprisingly, the location of this mutation on LRP1 corresponded with the α-secretase cleavage site of APP. Further experimentation confirmed that in CHO cells expressing APPswe or wild-type APP (APPwt), co-expression of LRP1-CT C4408R decreases Aβ and increases sAPPα and α-CTF compared with co-expression of wild-type LRP1-CT. In addition, LRP1-CT C4408R enhanced the unglycosylated form of LRP1-CT and reduced APP endocytosis as determined by flow cytometry. This finding identifies a point mutation in LRP1 which slows LRP1-CT-mediated APP endocytosis and amyloidogenic processing, while enhancing APP α-secretase cleavage, thus demonstrating a potential novel target for slowing AD pathogenesis.

  16. The Copper Metabolism MURR1 domain protein 1 (COMMD1 modulates the aggregation of misfolded protein species in a client-specific manner.

    Directory of Open Access Journals (Sweden)

    Willianne I M Vonk

    Full Text Available The Copper Metabolism MURR1 domain protein 1 (COMMD1 is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α. Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1 and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS, cause misfolding and aggregation of the mutant SOD1 (mSOD1 protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson's disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington's disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.

  17. Identification of Vanabin-interacting protein 1 (VIP1) from blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea.

    Science.gov (United States)

    Ueki, Tatsuya; Shintaku, Koki; Yonekawa, Yuki; Takatsu, Nariaki; Yamada, Hiroshi; Hamada, Toshiyuki; Hirota, Hiroshi; Michibata, Hitoshi

    2007-06-01

    Several species of ascidians, the so-called tunicates, accumulate extremely high levels of vanadium ions in their blood cells. We previously identified a family of vanadium-binding proteins, named Vanabins, from blood cells and blood plasma of a vanadium-rich ascidian, Ascidia sydneiensis samea. The 3-dimensional structure of Vanabin2, the predominant vanadium-binding protein in blood cells, has been revealed, and the vanadium-binding properties of Vanabin2 have been studied in detail. Here, we used Far Western blotting to identify a novel protein that interacts with Vanabin2 from a blood cell cDNA library. The protein, named Vanabin-interacting protein 1 (VIP1), was localized in the cytoplasm of signet ring cells and giant cells. Using a two-hybrid method, we revealed that VIP1 interacted with Vanabins 1, 2, 3, and 4 but not with Vanabin P. The N-terminal domain of VIP1 was shown to be important for the interaction. Further, Vanabin1 was found to interact with all of the other Vanabins. These results suggest that VIP1 and Vanabin1 act as metal chaperones or target proteins in vanadocytes.

  18. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  19. Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice.

    Science.gov (United States)

    Xiao, Xiangwei; Chen, Congde; Guo, Ping; Zhang, Ting; Fischbach, Shane; Fusco, Joseph; Shiota, Chiyo; Prasadan, Krishna; Dong, Henry; Gittes, George K

    2017-02-24

    The mechanisms underlying the effects of exocrine dysfunction on the development of diabetes remain largely unknown. Here we show that pancreatic depletion of SMAD7 resulted in age-dependent increases in β cell dysfunction with accelerated glucose intolerance, followed by overt diabetes. The accelerated β cell dysfunction and loss of proliferation capacity, two features of β cell aging, appeared to be non-cell-autonomous, secondary to the adjacent exocrine failure as a "bystander effect." Increased Forkhead box protein 1 (FoxO1) acetylation and nuclear retention was followed by progressive FoxO1 loss in β cells that marked the onset of diabetes. Moreover, forced FoxO1 expression in β cells prevented β cell dysfunction and loss in this model. Thus, we present a model of accelerated β cell aging that may be useful for studying the mechanisms underlying β cell failure in diabetes. Moreover, we provide evidence highlighting a critical role of FoxO1 in maintaining β cell identity in the context of SMAD7 failure. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice*

    Science.gov (United States)

    Xiao, Xiangwei; Chen, Congde; Guo, Ping; Zhang, Ting; Fischbach, Shane; Fusco, Joseph; Shiota, Chiyo; Prasadan, Krishna; Dong, Henry; Gittes, George K.

    2017-01-01

    The mechanisms underlying the effects of exocrine dysfunction on the development of diabetes remain largely unknown. Here we show that pancreatic depletion of SMAD7 resulted in age-dependent increases in β cell dysfunction with accelerated glucose intolerance, followed by overt diabetes. The accelerated β cell dysfunction and loss of proliferation capacity, two features of β cell aging, appeared to be non-cell-autonomous, secondary to the adjacent exocrine failure as a “bystander effect.” Increased Forkhead box protein 1 (FoxO1) acetylation and nuclear retention was followed by progressive FoxO1 loss in β cells that marked the onset of diabetes. Moreover, forced FoxO1 expression in β cells prevented β cell dysfunction and loss in this model. Thus, we present a model of accelerated β cell aging that may be useful for studying the mechanisms underlying β cell failure in diabetes. Moreover, we provide evidence highlighting a critical role of FoxO1 in maintaining β cell identity in the context of SMAD7 failure. PMID:28057752

  1. Effects of tibolone and its metabolites on prolactin and insulin-like growth factor binding protein-1 expression in human endometrial stromal cells.

    Science.gov (United States)

    Guzel, Elif; Buchwalder, Lynn; Basar, Murat; Kayisli, Umit; Ocak, Nehir; Bozkurt, Idil; Lockwood, Charles J; Schatz, Frederick

    2015-05-01

    The effects of the postmenopausal replacement steroid tibolone and its 3α-, 3β-OH and Δ-4 tibolone metabolites were evaluated on progesterone receptor-mediated classic decidualization markers insulin-like growth factor binding protein-1 (IGFBP-1) and prolactin expression in human endometrial stromal cells (HESCs). Supernatants of conditioned medium or erxtracted RNA from experimental cell incubations of confluent HESCs were subjected to ELISAs, Western blot analysis and RT/PCR, and results were statisically assesed. Over 21 days, specific ELISAs observed linear increases in secreted IGFBP-1 and prolactin levels elicited by tibolone and its metabolites. Cultured HESCs were refractory to E2 and dexamethasone, whereas tibolone and each metabolite exceeded medroxyprogesterone acetate in significantly elevating IGFBP-1 and prolactin output. Anti-progestins eliminated IGFBP-1 and prolactin induction by tibolone and its metabolites. Immunoblotting and RT/PCR confirmed ELISA results. These observations of IGFBP-1 and prolactin expression: (a) indicate the relevance of cultured HESCs in evaluating the chronic effects of tibolone administration to women; (b) are consistent with PR-mediated endometrial atrophy and protection against endometrial bleeding despite the persistence of circulating ER-binding, but not PR-binding metabolites following tibolone administration to women.

  2. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Karsten Jürchott

    2010-12-01

    Full Text Available Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1 by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties.

  3. Increased oxytocin-monomeric red fluorescent protein 1 fluorescent intensity with urocortin-like immunoreactivity in the hypothalamo-neurohypophysial system of aged transgenic rats.

    Science.gov (United States)

    Ohno, Shigeo; Hashimoto, Hirofumi; Fujihara, Hiroaki; Fujiki, Nobuhiro; Yoshimura, Mitsuhiro; Maruyama, Takashi; Motojima, Yasuhito; Saito, Reiko; Ueno, Hiromichi; Sonoda, Satomi; Ohno, Motoko; Umezu, Yuichi; Hamamura, Akinori; Saeki, Satoru; Ueta, Yoichi

    2018-03-01

    To visualize oxytocin in the hypothalamo-neurohypophysial system, we generated a transgenic rat that expresses the oxytocin-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In the present study, we examined the age-related changes of oxytocin-mRFP1 fluorescent intensity in the posterior pituitary (PP), the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of transgenic rats. The mRFP1 fluorescent intensities were significantly increased in the PP, the SON and the PVN of 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Immunohistochemical staining for urocortin, which belongs to the family of corticotropin-releasing factor family, revealed that the numbers of urocortin-like immunoreactive (LI) cells in the SON and the PVN were significantly increased in 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Almost all of urocortin-LI cells co-exist mRFP1-expressing cells in the SON and the PVN of aged transgenic rats. These results suggest that oxytocin content of the hypothalamo-neurohypophysial system may be modulated by age-related regulation. The physiological role of the co-existence of oxytocin and urocortin in the SON and PVN of aged rats remains unclear. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  4. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  5. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  6. Study on expressions of heat shock 27-associated protein 1 and echinoderm microtubule-associated protein-like 5 in drug-resistant epilepsy

    Directory of Open Access Journals (Sweden)

    CHEN Yun

    2012-10-01

    Full Text Available Objective To observe the expressions of heat shock 27-associated protein 1 (HSPBAP1 and echinoderm microtubule-associated protein-like 5 (EML5 in cerebrospinal fluid of drug-resistant epilepsy, and to explore the value in early diagnosis of epilepsy. Methods According to the inclusion and exclusion criteria, 79 patients admitted in Department of Neurology, Hubei Xinhua Hospital and the First and Second Affiliated Hospital of Chongqing Medical University were divided into drug-resistant epilepsy group (n = 39 and non-epileptic control group (n = 40. Cerebrospinal fluid (every sample 4 ml were collected by lumbar puncture specimens, and HSPBAP1 and EML5 were detected by sandwich enzyme-linked immunosorbent assays. SPSS 13.0 software was used for statistical analysis, and P ≤ 0.05 indicated significant differences. Results The expressions of HSPBAP1 and EML5 were 0.17 ± 0.03 and 0.13 ± 0.02 in drug-resistant epilepsy group, while were 0.10 ± 0.03 and 0.08 ± 0.02 in non-epileptic control group. There was significant difference between 2 groups (t = 3.239, P = 0.002; t = 3.294, P = 0.002, respectively. Conclusion The expressions of HSPBAP1 and EML5 were increased in drug-resistant epilepsy patients. This provides a new way for early diagnosis of drug-resistant epilepsy.

  7. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  8. A role for protein kinase PKR in the mediation of Epstein-Barr virus latent membrane protein-1-induced IL-6 and IL-10 expression.

    Science.gov (United States)

    Lin, San San; Lee, Davy C W; Law, Anna H Y; Fang, Jun Wei; Chua, Daniel T T; Lau, Allan S Y

    2010-05-01

    Expression of Epstein-Barr virus-encoded oncogenic latent membrane protein 1 (LMP1) has been substantially associated with tumorigenic transformation in the virus-infected cells. The pathogenic complexity of LMP1 is partly due to the cytokine dysregulation including IL-6 and IL-10 in perturbing the host immune responses. Here we have identified an important signaling event mediated by a dsRNA-dependent serine/threonine protein kinase, PKR, in regulating LMP1-induced IL-6 and IL-10 expression. We first demonstrated that PKR plays a significant role in mediating LMP1-induced cytokine expression by using a PKR inhibitor 2-aminopurine, and the specific role of PKR involved was confirmed by the use of siRNA oligos targeting PKR and/or a dominant-negative PKR mutant. We next revealed that PKR activity mediates LMP1-enhanced NF-kappaB nuclear translocation resulting in cytokine induction. We further demonstrated at the chromatin level that LMP1 can significantly elevate the phosphorylation of histone H3 on serine 10 (Ser 10), and the process was dependent on PKR activity. Our findings thus suggest that PKR plays an important role in mediating the cytokine gene expression induced by LMP1 through NF-kappaB activation and histone H3 Ser 10 phosphorylation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. SMALL ACIDIC PROTEIN1 acts with RUB modification components, the COP9 signalosome, and AXR1 to regulate growth and development of Arabidopsis.

    Science.gov (United States)

    Nakasone, Akari; Fujiwara, Masayuki; Fukao, Yoichiro; Biswas, Kamal Kanti; Rahman, Abidur; Kawai-Yamada, Maki; Narumi, Issay; Uchimiya, Hirofumi; Oono, Yutaka

    2012-09-01

    Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.

  10. In-vivo Generation of Dental Pulp-Like Tissue Using Human Pulpal Stem Cells, a Collagen Scaffold and Dentin Matrix Protein 1 Following Subcutaneous Transplantation in Mice

    Science.gov (United States)

    Prescott, Rebecca S.; Alsanea, Rajaa; Fayad, Mohamed I.; Johnson, Bradford R.; Wenckus, Christopher S.; Hao, Jianjun; John, Asha S.; George, Anne

    2008-01-01

    The presence of a perforation is known to significantly compromise the outcome of endodontic treatment. One potential use of regenerative endodontic therapy may be the repair of root canal perforations. In addition to nutrients and systemic in-situ interactions, the three main components believed to be essential for tissue regeneration are: stem cells, scaffold, and growth factors. This study investigated the role of each component of the tissue engineering triad in the organization and differentiation of Dental Pulp Stem Cells (DPSCs) in a simulated furcal perforation site using a mouse model. Collagen served as the scaffold and dentin matrix protein 1 (DMP1) was the growth factor. Materials were placed in simulated perforation sites in dentin slices. MTA was the control repair material. At six weeks, the animals were sacrificed and the perforation sites were evaluated by light microscopy and histological staining. Organization of newly derived pulp tissue was seen in the group containing the triad of DPSCs, a collagen scaffold, and DMP1. The other four groups did not demonstrate any apparent tissue organization. Under the conditions of the present study, it may be concluded that the triad of DPSCs, a collagen scaffold, and DMP1 can induce an organized matrix formation similar to that of pulpal tissue, which may lead to hard tissue formation. PMID:18358888

  11. Molecular dissection of Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress.

    Science.gov (United States)

    Hwang, Sun-Goo; Kim, Jung Ju; Lim, Sung Don; Park, Yong Chan; Moon, Jun-Cheol; Jang, Cheol Seong

    2016-10-01

    Ubiquitination-mediated protein degradation via Really Interesting New Gene (RING) E3 ligase plays an important role in plant responses to abiotic stress conditions. Many plant studies have found that RING proteins regulate the perception of various abiotic stresses and signal transduction. In this study, Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1) gene was selected randomly from 44 Oryza sativa RING Finger Proteins (OsRFPs) genes highly expressed in rice roots exposed to salinity stress. Transcript levels of OsSIRP1 in rice leaves after various stress treatments, including salt, heat, drought and hormone abscisic acid (ABA), were observed. Poly-ubiquitinated products of OsSIRP1 were investigated via an in vitro ubiquitination assay.35S:OsSIRP1-EYFP was distributed in the cytosol of untreated and salt-treated rice protoplasts. Heterogeneous overexpression of OsSIRP1 in Arabidopsis reduced tolerance for salinity stress during seed germination and root growth. Our findings indicate that OsSIRP1 acts as a negative regulator of salinity stress tolerance mediated by the ubiquitin 26S proteasome system. © 2016 Scandinavian Plant Physiology Society.

  12. Stress-associated endoplasmic reticulum protein 1 (SERP1) and Atg8 synergistically regulate unfolded protein response (UPR) that is independent on autophagy in Candida albicans.

    Science.gov (United States)

    Li, Jianrong; Yu, Qilin; Zhang, Bing; Xiao, Chenpeng; Ma, Tianyu; Yi, Xiao; Liang, Chao; Li, Mingchun

    2018-03-06

    Cellular stresses could activate several response processes, such as the unfolded protein response (UPR), autophagy and oxidative stress response to restore cellular homeostasis or render cell death. Herein, we identified the Candida albicans stress-associated endoplasmic reticulum protein 1 (SERP1), also known as Ysy6, which was involved in endoplasmic reticulum (ER) stress response. We found that deletion of both SERP1/YSY6 and ATG8 led to hypersensitivity to tunicamycin (TN), and resulted in severe mitochondrial dysfunction under this stress. UPR reporting systems illustrated that the double mutation attenuated splicing of HAC1 mRNA, followed by decreased level of UPR activation. In addition, the atg8Δ/Δ ysy6Δ/Δ double mutant had normal autophagic degradation of the ER component Sec63 under ER stress, suggesting that SERP1/Ysy6 and Atg8 synergistically regulated UPR that is independent on autophagy. We also found that deletion of both SERP1/YSY6 and ATG8 caused the loss of virulence. This study reveals the important role of SERP1/Ysy6 and Atg8 in ER stress response and virulence in C. albicans. Copyright © 2018. Published by Elsevier GmbH.

  13. Hedgehog-dependent down-regulation of the tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), precedes lamina development in Drosophila.

    Science.gov (United States)

    Chang, Solomon; Mandalaywala, Neil V; Snyder, Randall G; Levendusky, Mark C; Dearborn, Richard E

    2010-04-09

    The tumor suppressor vitamin D(3) up-regulated protein 1 (VDUP1) is expressed throughout the developing and mature Drosophila nervous system, but its regulatory pathways are not well understood. Within the developing Drosophila visual system, down-regulation of VDUP1 in lamina precursor cells (LPCs) coincided with the arrival of retinal axons into the lamina target field, suggesting VDUP1 regulation by an axonally transmitted signal. Hedgehog (Hh) is a signal well known to coordinate LPC proliferation and differentiation in response to retinal axon innervation, and analysis of orthologous dvdup1 promoters identified an evolutionarily conserved binding site for the Hh-dependent transcription factor cubitus interruptus (Ci). Hh-dependent regulation of VDUP1 in the developing lamina was confirmed in Hh loss-of-function backgrounds where VDUP1 expression was maintained in LPCs, inhibiting both cell proliferation and lamina neurogenesis. This putative coupling of VDUP1 to the Hh signaling pathway may provide novel insights into the mechanisms controlling brain growth and development. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Peng Zou

    2016-01-01

    Full Text Available Overactive mitochondrial fission was shown to promote cell transformation and tumor growth. It remains elusive how mitochondrial quality is regulated in such conditions. Here, we show that upregulation of mitochondrial fission protein, dynamin related protein-1 (Drp1, was accompanied with increased mitochondrial biogenesis markers (PGC1α, NRF1, and Tfam in breast cancer cells. However, mitochondrial number was reduced, which was associated with lower mitochondrial oxidative capacity in breast cancer cells. This contrast might be owing to enhanced mitochondrial turnover through autophagy, because an increased population of autophagic vacuoles engulfing mitochondria was observed in the cancer cells. Consistently, BNIP3 (a mitochondrial autophagy marker and autophagic flux were significantly upregulated, indicative of augmented mitochondrial autophagy (mitophagy. The upregulation of Drp1 and BNIP3 was also observed in vivo (human breast carcinomas. Importantly, inhibition of Drp1 significantly suppressed mitochondrial autophagy, metabolic reprogramming, and cancer cell viability. Together, this study reveals coordinated increase of mitochondrial biogenesis and mitophagy in which Drp1 plays a central role regulating breast cancer cell metabolism and survival. Given the emerging evidence of PGC1α contributing to tumor growth, it will be of critical importance to target both mitochondrial biogenesis and mitophagy for effective cancer therapeutics.

  15. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  16. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Yuan, Xian-rui; Li, Hao-yu; Zhao, Zi-jin; Liao, Yi-wei; Wang, Xiang-yu; Su, Jun; Sang, Shu-shan; Liu, Qing, E-mail: xiangyaliuqing@163.com

    2014-01-03

    Highlights: •Downregulation of Drp-1 attenuates glutamate-induced excitotoxicity. •Downregulation of Drp-1 inhibits glutamate-induced apoptosis. •Downregulation of Drp-1 reduces glutamate-induced mitochondrial dysfunction. •Downregulation of Drp-1 preserves intracellular calcium homeostasis. -- Abstract: Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Dynamin related protein 1 (Drp-1), one of the GTPase family of proteins that regulate mitochondrial fission and fusion balance, is associated with apoptotic cell death in cancer and neurodegenerative diseases. Here we investigated the effect of downregulating Drp-1 on glutamate excitotoxicity-induced neuronal injury in HT22 cells. We found that downregulation of Drp-1 with specific small interfering RNA (siRNA) increased cell viability and inhibited lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Drp-1 also inhibited an increase in the Bax/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Drp-1 siRNA transfection preserved the mitochondrial membrane potential (MMP), reduced cytochrome c release, enhanced ATP production, and partly prevented mitochondrial swelling. In addition, Drp-1 knockdown attenuated glutamate-induced increases of cytoplasmic and mitochondrial Ca{sup 2+}, and preserved the mitochondrial Ca{sup 2+} buffering capacity after excitotoxicity. Taken together, these results suggest that downregulation of Drp-1 protects HT22 cells against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the preservation of mitochondrial function through regulating intracellular calcium homeostasis.

  17. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1 Expression through Internal Ribosome Entry Site (IRES-Mediated Translation during Cellular Stress Condition

    Directory of Open Access Journals (Sweden)

    Wenqing Gao

    2016-07-01

    Full Text Available The function of ribosome binding protein 1 (RRBP1 is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5′ untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5′ UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES. Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La, which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5′ UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions.

  18. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats.

    Science.gov (United States)

    Katoh, Akiko; Fujihara, Hiroaki; Ohbuchi, Toyoaki; Onaka, Tatsushi; Hashimoto, Takashi; Kawata, Mitsuhiro; Suzuki, Hideaki; Ueta, Yoichi

    2011-07-01

    We have generated rats bearing an oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion transgene. The mRFP1 fluorescence was highly visible in ventral part of the supraoptic nucleus (SON) and the posterior pituitary in a whole mount. mRFP1 fluorescence in hypothalamic sections was also observed in the SON, the paraventricular nucleus (PVN), and the internal layer of the median eminence. Salt loading for 5 d caused a marked increase in mRFP1 fluorescence in the SON, the PVN, the median eminence, and the posterior pituitary. In situ hybridization histochemistry revealed that the expression of the mRNA encoding the OXT-mRFP1 fusion gene was observed in the SON and the PVN of euhydrated rats and increased dramatically after chronic salt loading. The expression of the endogenous OXT and the arginine vasopressin (AVP) genes were significantly increased in the SON and the PVN after chronic salt loading in both nontransgenic and transgenic rats. These responses were not different between male and female rats. Compared with nontransgenic rats, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT, and AVP levels. Finally, we succeeded in generating a double-transgenic rat that expresses both the OXT-mRFP1 fusion gene and the AVP-enhanced green fluorescent protein fusion gene. Our new transgenic rats are valuable new tools to study the physiology of the hypothalamo-neurohypophysial system.

  19. Fragile X related protein 1 clusters with ribosomes and messenger RNAs at a subset of dendritic spines in the mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Denise Cook

    Full Text Available The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system.

  20. Endothelial PAS domain protein 1 Chr2:46441523(hg18) polymorphism is associated with susceptibility to high altitude pulmonary edema in Han Chinese.

    Science.gov (United States)

    Yang, Ying-zhong; Wang, Ya-ping; Qi, Yu-juan; Du, Yang; Ma, Lan; Ga, Qin; Ge, Ri-li

    2013-12-01

    The purpose of this study was to test the hypothesis that polymorphisms in the endothelial PAS domain protein 1 (EPAS1) gene are associated with the susceptibility to high altitude pulmonary edema (HAPE) in Han Chinese. This study enrolled 153 HAPE patients (HAPE-p), matched with Han Chinese resistant to HAPE (HAPE-r) and local highland Tibetans from Yushu earthquake construction population in Qinghai where the altitude is more than 3500 m above sea level. The polymorphism of EPAS1 chr2:46441523(hg18) was genotyped by polymerase chain reaction restriction fragment length polymorphism and confirmed by DNA sequencing. The frequencies of EPAS1 chr2:46441523(hg18) polymorphism C allele were significantly higher in the HAPE-p group than in the HAPE-r group (P frequencies of heterozygous C/G were significantly higher in the HAPE-r group than in the HAPE-p group (P frequencies of the EPAS1 chr2:46441523(hg18) polymorphism G allele were significantly higher in the highland Tibetan group than in the HAPE-p and HAPE-r groups. The EPAS1 chr2:46441523(hg18) polymorphism C is strongly associated with susceptibility to HAPE in Han Chinese, and the EPAS1 chr2:46441523(hg18) polymorphism G is present at high frequency and may be associated with high altitude adaptation in the Tibetans. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  1. Cleavage of the JunB Transcription Factor by Caspases Generates a Carboxyl-terminal Fragment That Inhibits Activator Protein-1 Transcriptional Activity*

    Science.gov (United States)

    Lee, Jason K. H.; Pearson, Joel D.; Maser, Brandon E.; Ingham, Robert J.

    2013-01-01

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription. PMID:23749999

  2. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity.

    Science.gov (United States)

    Lee, Jason K H; Pearson, Joel D; Maser, Brandon E; Ingham, Robert J

    2013-07-26

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.

  3. Loss of Expression of Human Spectrin Src Homology Domain Binding Protein 1 is Associated with 10p Loss in Human Prostatic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Jill A. Macoska

    2001-01-01

    Full Text Available The gene encoding human spectrin Src homology domain binding protein 1, or Hssh3bpl, which is a marker of macropinocytic vesicles and a potential regulator of macropinocytosis, co-localizes to a YAC containing chromosome 10p sequences at loci D10S89 and D10S111 that are frequently deleted in prostate tumors. Expression of Hssh3bp1 was evaluated at the protein level in 17 paired normal and malignant prostate tumor samples using the monoclonal antibody 2G8 to Hssh3bpl. These experiments demonstrated that 4/6 tumors (67% with 10p deletion failed to express Hssh3bp1 protein compared to 5/11 (46% tumors with intact 10p. Thus, loss of Hssh3bp1 expression is concordant with allelic loss of adjacent 10p sequences in human prostate tumors. In addition, two prostate tumor cell lines contain an exon skipping mutation in the Hssh3bp1 gene that leads to the abnormal splicing of the mRNA and loss of a portion of Abl tyrosine kinase SH3 domain binding site in the protein. These data are consistent with a role for Hssh3bp1 as a candidate tumor suppressor gene inactivated during prostate tumorigenesis.

  4. The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA.

    Science.gov (United States)

    Tewary, Sunil Kumar; Zhao, Haiyan; Deng, Xuefeng; Qiu, Jianming; Tang, Liang

    2014-01-20

    The non-structural protein 1 (NS1) of human parvovirus B19 plays a critical role in viral DNA replication. Previous studies identified the origin of replication in the viral DNA, which contains four DNA elements, namely NSBE1 to NSBE4, that are required for optimal viral replication (Guan et al., 2009). Here we have demonstrated in vitro that the NS1 N-terminal domain (NS1N) binds to the origin of replication in a sequence-specific, length-dependent manner that requires NSBE1 and NSBE2, while NSBE3 and NSBE4 are dispensable. Mutagenesis analysis has identified nucleotides in NSBE1 and NSBE2 that are critical for NS1N binding. These results suggest that NS1 binds to the NSBE1-NSBE2 region in the origin of replication, while NSBE3 and NSBE4 may provide binding sites for potential cellular factors. Such a specialized nucleoprotein complex may enable NS1 to nick the terminal resolution site and separate DNA strands during replication. © 2013 Published by Elsevier Inc.

  5. Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphogenetic protein-1.

    Science.gov (United States)

    Müller, Werner E G; Binder, Michael; von Lintig, Johannes; Guo, Yue-Wei; Wang, Xiaohong; Kaandorp, Jaap A; Wiens, Matthias; Schröder, Heinz C

    2011-12-01

    The formation of the spicules in siliceous sponges involves the formation of cylinder-like structures in the extraspicular space, composed of the enzyme silicatein and the calcium-dependent lectin. Molecular cloning of the cDNAs (carotene dioxygenase, retinal dehydrogenase, and BMB-1 [bone morphogenic protein-1]) from the demosponge Suberites domuncula was performed. These tools were used to understand the retinoid metabolism in the animal by qRT-PCR, immunoblotting and TEM. We demonstrate that silintaphin-2, a silicatein-interacting protein, is processed from a longer-sized 15-kDa precursor to a truncated, shorter-sized 13kDa calcium-binding protein via proteolytic cleavage at the dipeptide Ala↓Asp, mediated by BMP-1. The expression of this protease as well as the expression of two key enzymes of the carotinoid metabolism, the β,β-carotene-15,15'-dioxygenase and the retinal dehydrogenase/reductase, were found to be strongly up-regulated by retinoic acid. Hence retinoic acid turned out to be a key factor in skeletogenesis in the most ancient still existing metazoans, the sponges. It is shown that retinoic acid regulates the formation of the organic cylinder that surrounds the axis of the spicules and enables, as a scaffold, the radial apposition of new silica layers and hence the growth of the spicules. 2011 Elsevier B.V. All rights reserved.

  6. Role of monocyte chemoattractant protein-1 (MCP-1) as an immune-diagnostic biomarker in the pathogenesis of chronic periodontal disease.

    Science.gov (United States)

    Gupta, Mili; Chaturvedi, Rashi; Jain, Ashish

    2013-03-01

    Monocyte chemoattractant protein-1 (MCP-1) is an important chemokine responsible for the initiation, regulation and mobilization of monocytes to the active sites of severe periodontal inflammation. The present study aims at evaluating the levels of MCP-1 in GCF, saliva and serum and to analyze the changes following phase I periodontal therapy. Assessment of possible correlations between levels of MCP-1 in the three biological fluids was also done. Fifteen healthy and 30 patients of severe chronic periodontitis (diseased) participated in the study. Patients of the diseased group underwent scaling/root planing. Evaluation of PI, GI, PD, CAL and collection of samples of GCF, serum and saliva was done at baseline and 6 weeks following periodontal therapy. MCP-1 levels were quantified in all samples using ELISA. Compared to healthy controls, MCP-1 levels were statistically significantly higher in GCF (pperiodontitis. Levels of MCP-1 in all the three fluids decreased significantly in patients after periodontal therapy (pperiodontitis both pre (r>0.9) and post-treatment (r>0.6). The results suggest that levels of MCP-1 in GCF and saliva can be reliable indicators of severity of periodontal destruction and their serum levels reflect the systemic impact of this local inflammatory disease thereby strengthening the reciprocal oro-systemic association. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection.

    Science.gov (United States)

    Tang, Dingzhong; Ade, Jules; Frye, Catherine A; Innes, Roger W

    2006-07-01

    We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.

  8. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    Science.gov (United States)

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI. Copyright © 2013 Wiley Periodicals, Inc.

  9. Y-box Binding Protein-1 Enhances Oncogenic Transforming Growth Factor β Signaling in Breast Cancer Cells via Triggering Phospho-Activation of Smad2.

    Science.gov (United States)

    Stope, Matthias B; Weiss, Martin; Koensgen, Dominique; Popp, Simone L; Joffroy, Christian; Mustea, Alexander; Buck, Miriam B; Knabbe, Cornelius

    2017-12-01

    Transforming growth factor β (TGFβ) plays a role in diverse oncogenic pathways including cell proliferation and cell motility and is regulated by the pleiotropic factor Y-box binding protein-1 (YB-1). In breast cancer, Sma/Mad related protein 2 (Smad2) represents the most common downstream transducer in TGFβ signaling. Here, YB-1's impact on Smad2 phospho-activation was characterized by incubation of the breast cancer cell line MCF-7 with or without TGFβ1 in the absence or presence of overexpressed YB-1 protein. The phospho-status of Smad2 was assessed via western blotting. Analysis of MCF-7 cells revealed no induction of total Smad2 neither in the presence of TGFβ1, nor during YB-1 overexpression. In contrast, incubation with TGFβ1 led to an increase of phosphorylated Smad2 forms which was significantly amplified by simultaneously overexpressed YB-1 (2.8±0.2-fold). Oncogenic YB-1 indirectly enhances TGFβ signaling cascades via Smad2 phospho-activation and may represent a promising factor for future diagnosis and therapy of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. 9-Deazapurines as Broad-Spectrum Inhibitors of the ABC Transport Proteins P-Glycoprotein, Multidrug Resistance-Associated Protein 1, and Breast Cancer Resistance Protein.

    Science.gov (United States)

    Stefan, Katja; Schmitt, Sven Marcel; Wiese, Michael

    2017-11-09

    P-Glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2) are the three major ABC transport proteins conferring resistance to many structurally diverse anticancer agents, leading to the phenomenon called multidrug resistance (MDR). Much effort has been put into the development of clinically useful compounds to reverse MDR. Broad-spectrum inhibitors of ABC transport proteins can be of great use in cancers that simultaneously coexpress two or three transporters. In this work, we continued our effort to generate new, potent, nontoxic, and multiply effective inhibitors of the three major ABC transporters. The best compound was active in a very low micromolar concentration range against all three transporters and restored sensitivity toward daunorubicin (P-gp and MRP1) and SN-38 (BCRP) in A2780/ADR (P-gp), H69AR (MRP1), and MDCK II BCRP (BCRP) cells. Additionally, the compound is a noncompetitive inhibitor of daunorubicin (MRP1), calcein AM (P-gp), and pheophorbide A (BCRP) transport.

  11. C-reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy.

    Science.gov (United States)

    Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pesić, Milica; Stanković Babić, Gordana; Milenković, Svetislav; Risimić, Dijana

    2014-08-20

    The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.

  12. Association of monocyte chemoattractant protein-1 gene 2518A/G polymorphism with diabetic retinopathy in type 2 diabetes mellitus: A meta-analysis.

    Science.gov (United States)

    Wang, Wei; He, Miao; Huang, Wenyong

    2016-10-01

    The relationship between monocyte chemoattractant protein-1 (MCP-1) 2518 A/G polymorphism and diabetic retinopathy (DR) attracted intense interest recently, but the reported results are controversial. A meta-analysis was performed to assess the MCP-1 polymorphism associated with DR susceptibility in type 2 diabetes mellitus. Eligible studies were identified from PubMed, Embase, Web of science, Chinese Biomedical database, and references of retrieved articles. Pooled odds ratios (ORs) with their 95% confidence intervals (95%CI) were calculated by fixed or random-effects models. Six studies involving 3415 patients without DR and 3468 with any DR were included in the final meta-analysis. Each 5 studies evaluated the associations of MCP-1 polymorphism and any DR and proliferative DR (PDR), respectively. Meta-analysis in fixed model demonstrated a significant association between MCP-1 polymorphism and any DR under the homozygous model (OR=1.36; 95%CI: 1.15-1.62, Pdiabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells.

    Science.gov (United States)

    Dechtawewat, Thanyaporn; Paemanee, Atchara; Roytrakul, Sittiruk; Songprakhon, Pucharee; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai; Saitornuang, Sawanan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Noisakran, Sansanee

    2016-09-01

    Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inhibition of Y-box binding protein-1 slows the growth of glioblastoma multiforme and sensitizes to temozolomide independent O6-methylguanine-DNA methyltransferase.

    Science.gov (United States)

    Gao, Yuanyuan; Fotovati, Abbas; Lee, Cathy; Wang, Michelle; Cote, Gilbert; Guns, Emma; Toyota, Brian; Faury, Damien; Jabado, Nada; Dunn, Sandra E

    2009-12-01

    Glioblastoma multiforme (GBM) is an aggressive type of brain tumor where 5 years. In adults, GBM is the most common type of brain tumor. It is rarer in children, where it constitutes approximately 15% of all brain tumors diagnosed. These tumors are often invasive, making surgical resection difficult. Further, they can be refractory to current therapies such as temozolomide. The current dogma is that temozolomide resistance rests on the expression of O6-methylguanine-DNA methyltransferase (MGMT) because it cleaves methylated DNA adducts formed by the drug. Our laboratory recently reported that another drug resistance gene known as the Y-box binding protein-1 (YB-1) is highly expressed in primary GBM but not in normal brain tissues based on the evaluation of primary tumors. We therefore questioned whether GBM depend on YB-1 for growth and/or response to temozolomide. Herein, we report that YB-1 inhibition reduced tumor cell invasion and growth in monolayer as well as in soft agar. Moreover, blocking this protein ultimately delayed tumor onset in mice. Importantly, inhibiting YB-1 enhanced temozolomide sensitivity in a manner that was independent of MGMT in models of adult and pediatric GBM. In conclusion, inhibiting YB-1 may be a novel way to improve the treatment of GBM.

  15. Clonal deleted latent membrane protein 1 variants of Epstein-Barr virus are predominant in European extranodal NK/T lymphomas and disappear during successful treatment.

    Science.gov (United States)

    Halabi, Mohamad Adnan; Jaccard, Arnaud; Moulinas, Rémi; Bahri, Racha; Al Mouhammad, Hazar; Mammari, Nour; Feuillard, Jean; Ranger-Rogez, Sylvie

    2016-08-15

    Extranodal natural killer/T-cell lymphomas (NK/TL), rare in Europe, are Epstein-Barr virus (EBV) associated lymphomas with poor outcomes. Here, we determined the virus type and analyzed the EBV latent membrane protein-1 (LMP1) gene sequence in NK/TL from French patients. Six clones of viral LMP1 were sequenced by Sanger technology in blood from 13 patients before treatment with an l-asparaginase based regimen and, for 8 of them, throughout the treatment. Blood LMP1 sequences from 21 patients without any known malignancy were tested as controls. EBV Type A was identified for 11/13 patients and for all controls. Before treatment, a clonal LMP1 gene containing a 30 bp deletion (del30) was found in 46.1% of NK/TL and only in 4.8% of controls. Treatment was less effective in these patients who died more rapidly than the others. Patients with a deleted strain evolving toward a wild-type strain during treatment reached complete remission. The LMP1 gene was sequenced by highly sensitive next-generation sequencing technology in five NK/TL nasopharyngeal biopsies, two of them originating from the previous patients. Del30 was present in 100% of the biopsies; two viruses at least coexisted in three biopsies. These results suggest that del30 may be associated with poor prognosis NK/TL and that strain evolution could be used as a potential marker to monitor treatment. © 2016 UICC.

  16. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  17. Tissue factor and monocyte chemoattractant protein-1 expression in hypertensive individuals with normal or increased carotid intima-media wall thickness.

    Science.gov (United States)

    Sardo, Maria A; Campo, Salvatore; Mandraffino, Giuseppe; Saitta, Carlo; Bonaiuto, Antonio; Castaldo, Maria; Cinquegrani, Maurizio; Pizzimenti, Giovanni; Saitta, Antonino

    2008-05-01

    People with hypertension display an inflammatory pattern that includes increased plasma concentrations of monocyte chemoattractant protein 1 (MCP-1) and C-reactive protein (CRP) and enhanced expression of tissue factor (TF) mRNA in blood monocytes. In this study, we investigated the relationship between CRP concentrations and TF and MCP-1 mRNA expression in unstimulated and lipopolysaccharide (LPS)-stimulated monocytes isolated from hypertensives with or without an increase in carotid intima-media thickness (IMT). We also investigated the expression of TF and MCP-1 mRNA and MCP-1 protein after in vitro addition of CRP to monocytes. We measured CRP (by immunonephelometry) and monocyte expression of TF and MCP-1 (by real-time PCR) in 80 untreated hypertensive patients without clinical cardiovascular disease (CVD) or additional risk factors for CVD compared with 41 controls. Based on IMT measured by carotid Doppler ultrasonography, patients were classified into the categories of normal (1 mm). TF and MCP-1 mRNA and MCP-1 protein (by Western blotting) were measured after in vitro addition of CRP to monocytes from 10 randomized controls as well as 10 hypertensives with IMT 1 mm. CRP and TF and MCP-1 mRNA concentrations were significantly higher in IMT >1 mm hypertensives vs those with IMT LPS-stimulated cells. Our findings suggest that the inflammatory response of blood monocytes plays an important role in the development of atherosclerosis and hypertension.

  18. High insulin-like growth factor-binding protein-1 (IGFBP-1) is associated with low relative muscle mass in older women.

    Science.gov (United States)

    Stilling, Frej; Wallenius, Sara; Michaëlsson, Karl; Dalgård, Christine; Brismar, Kerstin; Wolk, Alicja

    2017-08-01

    Skeletal muscles serve several important roles in maintaining good health. Insulin-like growth factor-1 (IGF-1) is a promoter of protein synthesis in skeletal muscle. Its binding protein, Insulin-like growth factor-binding protein-1 (IGFBP-1) can be one determinant of IGF-1 activity. In the present study we investigate the association between serum IGFBP-1 and muscle mass. Cross-sectional analysis of 4908 women, between 55 and 85years old, participating in the Swedish Mammography Cohort-Clinical. We defined low relative muscle mass (LRMM) as an appendicular lean mass divided by height squared of less than 5.45 (kg/m 2 ), assessed by dual energy x-ray absorptiometry. IGFBP-1 was measured by radioimmunoassay. Logistic regression was used to calculate odds-ratios of LRMM across quartiles of IGFBP-1. The odds of LRMM increased across quartiles of IGFBP-1. In the age-adjusted model the odds-ratio (OR) of LRMM was 3.41 (95% CI: 2.55-4.56), comparing the highest to the lowest quartile. This estimate was attenuated in multivariate models (OR: 1.84, 95% CI: 1.34-2.53), mainly due to inclusion of fat mass index. Women with higher IGFBP-1 were more likely to have a low relative muscle mass. High IGFBP-1 may be a marker of a catabolic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants.

    Science.gov (United States)

    Choi, Du Seok; Hong, Jeum Kyu; Hwang, Byung Kook

    2013-12-01

    Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.

  20. High insulin-like growth factor-binding protein-1 (IGFBP-1) is associated with low relative muscle mass in older women

    DEFF Research Database (Denmark)

    Stilling, Frej; Wallenius, Sara; Michaëlsson, Karl

    2017-01-01

    Objective Skeletal muscles serve several important roles in maintaining good health. Insulin-like growth factor-1 (IGF-1) is a promoter of protein synthesis in skeletal muscle. Its binding protein, Insulin-like growth factor-binding protein-1 (IGFBP-1) can be one determinant of IGF-1 activity....... In the present study we investigate the association between serum IGFBP-1 and muscle mass. Design Cross-sectional analysis of 4908 women, between 55 and 85 years old, participating in the Swedish Mammography Cohort-Clinical. Methods We defined low relative muscle mass (LRMM) as an appendicular lean mass divided......-adjusted model the odds-ratio (OR) of LRMM was 3.41 (95% CI: 2.55–4.56), comparing the highest to the lowest quartile. This estimate was attenuated in multivariate models (OR: 1.84, 95% CI: 1.34–2.53), mainly due to inclusion of fat mass index. Conclusion Women with higher IGFBP-1 were more likely to have a low...

  1. Accuracy of a combined insulin-like growth factor-binding protein-1/interleukin-6 test (Premaquick) in predicting delivery in women with threatened preterm labor.

    Science.gov (United States)

    Eleje, George Uchenna; Ezugwu, Euzebus Chinonye; Eke, Ahizechukwu Chigoziem; Eleje, Lydia Ijeoma; Ikechebelu, Joseph Ifeanyichukwu; Ezebialu, Ifeanyichukwu Uzoma; Obiora, Chukwudi Celestine; Nwosu, Betrand Obi; Ezeama, Chukwuemeka Okwudili; Udigwe, Gerald Okanandu; Okafor, Charles Ikechukwu; Ezugwu, Frank Okechukwu

    2017-11-27

    To determine values of combinations of interleukin-6 (IL-6)/cervical native insulin-like growth factor-binding protein-1 (IGFBP-1)/total IGFBP-1 (Premaquick©) in predicting spontaneous deliveries and spontaneous exclusive preterm deliveries in women with threatened preterm labor. Women with singleton pregnancies between gestation age (GA) of 24 weeks and 36 weeks and 6 days with preterm labor were recruited during a prospective multicenter study. Premaquick© was positive when at least two of three biomarkers were positive. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were estimated for both prediction of spontaneous deliveries and spontaneous exclusive preterm deliveries. Ninety-seven (99.0%) out of 98 women enrolled were analyzed. Based on delivery status 7/14 days post-enrollment of general study population, Premaquick© had a sensitivity of 87.1/85.7%, a specificity of 92.4/96.8%, a PPV of 84.4/93.8% and a NPV of 93.9/92.3% for prediction of spontaneous delivery. Predictive accuracy of Premaquick© test in relation to days of enrollment were: 90.7% (≤7 days) and 92.8% (≤14 days). For women enrolled at GA preterm delivery within 7/14 days of enrollment, respectively. PPV was most significantly different in both groups when outcomes were compared between 2 days and 14 days post-enrollment (Ppreterm deliveries in threatened preterm labor in singleton pregnancies.

  2. Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women.

    Science.gov (United States)

    Chen, Boyu; Li, Zhiqiang; Chen, Jianhua; Ji, Jue; Shen, Jingyi; Xu, Yufeng; Zhao, Yingying; Liu, Danping; Shen, Yinhuan; Zhang, Weijie; Shen, Jiawei; Wang, Yonggang; Shi, Yongyong

    2018-04-14

    Body mass index (BMI) is the most commonly used quantitative measure of adiposity. It is a kind of complex genetic diseases which are caused by multiple susceptibility genes. The first intron of fat mass and obesity-associated (FTO) has been widely discovered to be associated with BMI. Retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) is located in the upstream region of FTO and has been proved to be linked with obesity through functional tests. We carried out a genetic association analysis to figure out the role of the FTO gene and the RPGRIP1L gene in BMI. A quantitative traits study with 6,102 Chinese female samples, adjusted for age, was performed during our project. Among the twelve SNPs, rs1421085, rs1558902, rs17817449, rs8050136, rs9939609, rs7202296, rs56137030, rs9930506 and rs12149832 in the FTO gene were significantly associated with BMI after Bonferroni correction. Meanwhile, rs9934800 in the RPGRIP1L gene showed significance with BMI before Bonferroni correction, but this association was eliminated after Bonferroni correction. Our results suggested that genetic variants in the FTO gene were strongly associated with BMI in Chinese women, which may serve as targets of pharmaceutical research and development concerning BMI. Meanwhile, we didn't found the significant association between RPGRIP1L and BMI in Chinese women.

  3. Peroxiredoxins, thioredoxin, and Y-box-binding protein-1 are involved in the pathogenesis and progression of dialysis-associated renal cell carcinoma.

    Science.gov (United States)

    Fushimi, Fumiyoshi; Taguchi, Kenichi; Izumi, Hiroto; Kohno, Kimitoshi; Kuwano, Michihiko; Ono, Mayumi; Nakashima, Yutaka; Takesue, Tetsuro; Naito, Seiji; Oda, Yoshinao

    2013-10-01

    Patients with end-stage renal disease are exposed to increased oxidative stress and impairment of antioxidant mechanisms. We focused on dialysis renal cell carcinoma (RCC), including epithelial hyperplasia in acquired cystic disease of the kidney (ACDK). We attempted to obtain insight into the carcinogenesis and tumor progression in terms of cellular defense mechanisms associated with oxidative stress by investigating the expression of antioxidant proteins by immunohistochemistry. We evaluated retrospectively 43 cases of dialysis RCC and, as a control group, 49 cases of sporadic RCC. Peroxiredoxin (Prx) 1, 3, 4, 5, and 6 expression in dialysis RCC was positively correlated with the duration of dialysis. In epithelial hyperplasia, in 17 cases of acquired cystic disease of the kidney, Prxs and thioredoxin were highly expressed. Moreover, in dialysis RCC, Prx 3, 4, and 5 immunoreactivity and nuclear expression of Y-box-binding protein-1 were higher than in sporadic RCC. In dialysis RCC, Prx 3, 4, and 5 immunoreactivity positively correlated with the Fuhrman nuclear grade. These data suggest that oxidative stress during dialysis enhances antioxidant activity, with an inhibiting effect on carcinogenesis. Once cancer has developed, antioxidant activity might have a stimulating effect on the progression of dialysis RCC.

  4. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    International Nuclear Information System (INIS)

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki

    2005-01-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan

  5. Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Can Regulate E2F1 Transcription Factor-mediated Control of Cyclin Transcription*

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-01-01

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity. PMID:21653699

  6. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  7. Programmed cell death protein-1/programmed cell death ligand-1 pathway inhibition and predictive biomarkers: understanding transforming growth factor-beta role.

    Science.gov (United States)

    Santarpia, Mariacarmela; González-Cao, María; Viteri, Santiago; Karachaliou, Niki; Altavilla, Giuseppe; Rosell, Rafael

    2015-12-01

    A deeper understanding of the key role of the immune system in regulating tumor growth and progression has led to the development of a number of immunotherapies, including cancer vaccines and immune checkpoint inhibitors. Immune checkpoint inhibitors target molecular pathways involved in immunosuppression, such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, with the goal to enhance the host's own immune anticancer response. In phase I-III trials, anti-PD-1/PD-L1 antibodies have demonstrated to be effective treatment strategies by inducing significant durable tumor responses, with manageable toxicities, in patients with various malignancies, including those traditionally considered non-immunogenic, such as non-small cell lung cancer (NSCLC). Identification of predictive biomarkers to select patients for immune therapies is currently being investigated to improve their therapeutic efficacy. Transforming growth factor-β (TGF-β), a pleiotropic cytokine with immunosuppressive effects on multiple cell types of the innate and adaptive immune system, has emerged as one of the potential key factors modulating response to immune checkpoint inhibitors. However, due to the complexity of the anti-cancer immune response, the predictive value of many other factors related to cancer cells or tumor microenvironment needs to be further explored.

  8. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Ana V. Ibarra-Meneses

    2017-09-01

    Full Text Available New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1 was examined in plasma from soluble Leishmania antigen (SLA-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL, unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools.

  9. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    /2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn......Neuronal calcium (Ca2+)-binding proteins 1 and 2 (NECAB1/2) are members of the phylogenetically conserved EF-hand Ca2+-binding protein superfamily. To date, NECABs have been explored only to a limited extent and, so far, not at all at the spinal level. Here, we describe the distribution, phenotype....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  10. Expression of sheep pathogen Babesia sp. Xinjiang rhoptry-associated protein 1 and evaluation of its diagnostic potential by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Yu, Peifa; Pan, Yuping; Zhai, Bintao; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2016-12-01

    Ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. The ovine parasite Babesia sp. Xinjiang is widespread in China. In this study, recombinant full-length XJrRAP-1aα2 (rhoptry-associated protein 1aα2) and C-terminal XJrRAP-1aα2 CT of Babesia sp. Xinjiang were expressed and used to evaluate their diagnostic potential for Babesia sp. Xinjiang infections by indirect enzyme-linked immunosorbent assay (ELISA). Purified XJrRAP-1aα2 was tested for reactivity with sera from animals experimentally infected with Babesia sp. Xinjiang and other haemoparasites using Western blotting and ELISA. The results showed no cross-reactivities between XJrRAP-1aα2 CT and sera from animals infected by other pathogens. High level of antibodies against RAP-1a usually lasted 10 weeks post-infection (wpi). A total of 3690 serum samples from small ruminants in 23 provinces located in 59 different regions of China were tested by ELISA. The results indicated that the average positive rate was 30·43%, and the infections were found in all of the investigated provinces. This is the first report on the expression and potential use of a recombinant XJrRAP-1aα2 CT antigen for the development of serological assays for the diagnosis of ovine babesiosis, caused by Babesia sp. Xinjiang.

  11. Non-myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein- 1(MCP-1/CCL2

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2014-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 is a chemokine regulating the recruitment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the hypothesis, however, there was no significant reduction in MCP-1 protein or the number of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Furthermore, injection of LPS into skin air pouch also had no effect on local MCP-1 production in myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury. These results indicate that non-myeloid cells, in response to a variety of stimulants, play a previously unappreciated role in innate immune responses as the primary source of MCP-1.

  12. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.A. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Hegg, R. [Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Freitas, F.R.; Tavares, E.R.; Almeida, C.P. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Baracat, E.C. [Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Maranhão, R.C. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-04

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

  13. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Epididymal cysteine-rich secretory protein 1 encoding gene is expressed in murine hair follicles and downregulated in mice overexpressing Hoxc13.

    Science.gov (United States)

    Peterson, Ron L; Tkatchenko, Tatiana V; Pruett, Nathanael D; Potter, Christopher S; Jacobs, Donna F; Awgulewitsch, Alexander

    2005-12-01

    Members of the Hox gene family of transcriptional regulators are believed to play essential roles in hair follicle differentiation, although little is known about the molecular mechanisms mediating these putative control functions. Transgenic mice overexpressing Hoxc13 in hair follicles (GC13 mice) exhibit complex phenotypic alterations including hair shaft defects and alopecia, as well as severe epidermal abnormalities. To identify some of the genetic pathways affected by Hoxc13 overexpression in hair, we performed large-scale differential gene expression analysis on the skin of 5-d GC13 versus normal FVB mice using DNA chip assays. A surprising result of these experiments was the identification of the epididymal cysteine-rich secretory protein 1 (Crisp1) gene as one of the genes with the greatest expression differential, in this case with greater than 20-fold downregulation in skin from GC13 mice. Crisp1 encodes a secreted protein that has originally been found to be abundantly expressed in the epididymis, where it plays a role in sperm maturation. We have localized Crisp1 mRNA in 5-d postnatal murine scapular skin by in situ hybridization, showing its expression to be restricted to the medulla of the hair shaft. Furthermore, we provide evidence for specific interaction of Hoxc13 with at least one cognate binding site found in the Crisp1 promoter region, thus supporting the concept of a Hoxc13/Crisp1 regulatory relationship. In summary, these data establish the hair as a novel site for Crisp1 expression where its functional role remains to be determined.

  15. Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation.

    Science.gov (United States)

    Mathioudakis, Matthaios M; Veiga, Rita S L; Canto, Tomas; Medina, Vicente; Mossialos, Dimitris; Makris, Antonios M; Livieratos, Ioannis

    2013-08-01

    Various plant factors are co-opted by virus elements (RNA, proteins) and have been shown to act in pathways affecting virus accumulation and plant defence. Here, an interaction between Pepino mosaic virus (PepMV) triple gene block protein 1 (TGBp1; p26) and tomato catalase 1 (CAT1), a crucial enzyme in the decomposition of toxic hydrogen peroxide (H₂O₂), was identified using the yeast two-hybrid assay, and confirmed via an in vitro pull-down assay and bimolecular fluorescent complementation (BiFC) in planta. Each protein was independently localized within loci in the cytoplasm and nuclei, sites at which their interaction had been visualized by BiFC. Following PepMV inoculation, CAT mRNA and protein levels in leaves were unaltered at 0, 3 and 6 days (locally) and 8 days (systemically) post-inoculation; however, leaf extracts from the last two time points contained increased CAT activity and lower H₂O₂ evels. Overexpression of PepMV p26 in vitro and in planta conferred the same effect, suggesting an additional involvement of TGBp1 in potexvirus pathogenesis. The accumulation of PepMV genomic and subgenomic RNAs and the expression of viral coat protein in noninoculated (systemic) leaves were reduced significantly in CAT-silenced plants. It is postulated that, during PepMV infection, a p26-CAT1 interaction increases H₂O₂ cavenging, thus acting as a negative regulator of plant defence mechanisms to promote PepMV infections. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  16. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    International Nuclear Information System (INIS)

    Long, Cong; Wang, Jingchao; Guo, Wei; Wang, Huan; Wang, Chao; Liu, Yu; Sun, Xiaoping

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  17. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  18. Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies.

    Science.gov (United States)

    Johnsson, Ragnar; Strömqvist, Björn; Aspenberg, Per

    2002-12-01

    Randomized efficacy trial comparing two types of noninstrumented posterolateral fusion between L5 and S1 in patients with L5 spondylolysis and vertebral slip less than 50%, as evaluated by radiostereometric analysis. To determine whether osteogenic protein-1 (BMP-7) in the OP-1 Implant yields better stabilizing bony fusion than autograft bone. Animal studies of osteoinductive proteins in noninstrumented posterolateral fusions have shown high fusion rates. No similar conclusive study on humans has been performed. For this study, 20 patients were randomized to fusion with either OP-1 Implant or autograft bone from the iliac crest, 10 in each group. The patients were instructed to keep the trunk straight for 5 months after surgery with the aid of a soft lumbar brace. At surgery 0.8-mm metallic markers were positioned in L5 and the sacrum, enabling radiostereometric follow-up analysis during 1 year. The three-dimensional vertebral movements, as measured by radiostereometric analysis induced by positional change from supine posture to standing and sitting, were calculated with an accuracy of 0.5 to 0.7 mm and 0.5 degrees to 2.0 degrees. Conventional radiography was added. No significant difference was noted between the radiostereometric and radiographic results of fusion with the OP-1 Implant and fusion with autograft bone. There was a significant relation between reduced vertebral movements and better bone formation. No adverse effects of the OP-1 Implant occurred. Persistent minor pain at the iliac crest was noticed in one patient. There was no significant difference between the two fusion versions. Thus, the OP-1 Implant did not yield better stabilizing bony fusion than autograft bone.

  19. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation.

    Science.gov (United States)

    Safina, Dina; Schlitt, Frederik; Romeo, Ramona; Pflanzner, Thorsten; Pietrzik, Claus U; Narayanaswami, Vasanthy; Edenhofer, Frank; Faissner, Andreas

    2016-08-01

    The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study, we show that LeX-glycosylated LRP1 is also expressed in the stem cell compartment of the developing spinal cord and has broader functions in the developing CNS. We have investigated the basic properties of LRP1 conditional knockout on the neural stem/progenitor cells (NSPCs) from the cortex and the spinal cord, created by means of Cre-loxp-mediated recombination in vitro. The functional status of LRP1-deficient cells has been studied using proliferation, differentiation, and apoptosis assays. LRP1 deficient NSPCs from both CNS regions demonstrated altered differentiation profiles. Their differentiation capacity toward oligodendrocyte progenitor cells (OPCs), mature oligodendrocytes and neurons was reduced. In contrast, astrocyte differentiation was promoted. Moreover, LRP1 deletion had a negative effect on NSPCs proliferation and survival. Our observations suggest that LRP1 facilitates NSPCs differentiation via interaction with apolipoprotein E (ApoE). Upon ApoE4 stimulation wild type NSPCs generated more oligodendrocytes, but LRP1 knockout cells showed no response. The effect of ApoE seems to be independent of cholesterol uptake, but is rather mediated by downstream MAPK and Akt activation. GLIA 2016 GLIA 2016;64:1363-1380. © 2016 Wiley Periodicals, Inc.

  20. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guangwen; Qin, Mei [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Liu, Xianyong [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Suo, Jingxia; Tang, Xinming; Tao, Geru [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Han, Qian [Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 (United States); Suo, Xun [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Wu, Wenxue, E-mail: labboard@126.com [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China)

    2013-10-25

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.

  1. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs.

    Science.gov (United States)

    Hecker, Andreas; Brand, Luise H; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Harter, Klaus; Gaudin, Valérie; Wanke, Dierk

    2015-07-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Arsenic trioxide increases expression of secreted frizzled-related protein 1 gene and inhibits the WNT/β-catenin signaling pathway in Jurkat cells.

    Science.gov (United States)

    Wang, Yan; Wang, Zunsong; Li, Hong; Xu, Wenwei; Dong, Lin; Guo, Yan; Feng, Saran; Bi, Kehong; Zhu, Chuansheng

    2017-05-01

    The aim of the present study was to investigate the demethylation effect of arsenic trioxide (As 2 O 3 ) on the secreted frizzled-related protein 1 (SFRP1) gene and its ability to inhibit the Wingless-type MMTV integration site family (WNT) pathway in Jurkat cells. Methylation-specific polymerase chain reaction was used to examine the CpG island methylation status of the SFRP1 gene in leukemia cell lines. In addition, the effects on Jurkat cells of treatment with different concentrations of As 2 O 3 for 48 h were investigated. Reverse transcription-quantitative polymerase chain reaction was employed to measure the expression of mRNAs, while western blot analysis was used to examine protein expression in cells. The SFRP1 gene was methylated in Jurkat cells. However, both methylated and unmethylated SFRP1 genes were detected in HL60 and K562 cells. In normal bone marrow mononuclear cells, the SFRP1 gene was unmethylated. Following treatment with As 2 O 3 for 48 h, the SFRP1 gene was demethylated, and the mRNA and protein expression levels of the SFRP1 gene were increased. By contrast, the mRNA and protein expression levels of β-catenin and cyclin Dl were downregulated. The protein expression of c-myc was also downregulated, but As 2 O 3 exhibited no significant effect on the mRNA expression of c-myc. Abnormal methylation of the SFRP1 gene was detected in Jurkat cells. These results suggest that As 2 O 3 activates SFRP1 gene expression at the mRNA and protein levels in Jurkat cells by demethylation of the SFRP1 gene. Furthermore, they indicate that As 2 O 3 regulates WNT target genes and controls the growth of Jurkat cells through the WNT/β-catenin signaling pathway.

  3. Wilms tumor protein 1 (WT1)-- not only a diagnostic but also a prognostic marker in high-grade serous ovarian carcinoma.

    Science.gov (United States)

    Taube, Eliane Tabea; Denkert, Carsten; Sehouli, Jalid; Kunze, Catarina Alisa; Dietel, Manfred; Braicu, Ioana; Letsch, Anne; Darb-Esfahani, Silvia

    2016-03-01

    Wilms tumor protein 1 (WT1) expression is used in gynecological pathology as a diagnostic marker of serous differentiation, and is frequently co-expressed with ER-α. Early phase studies on WT1 vaccine in gynecological cancers are ongoing. In this study we aimed to determine the prognostic value of WT1 in high-grade serous ovarian carcinoma. WT1 protein expression was determined by immunohistochemistry in a cohort of 207 primary high-grade serous ovarian carcinomas. WT1 mRNA expression was evaluated in a cohort of 1137 ovarian carcinomas from publically available gene expression datasets. High WT1 expression was a significant positive prognostic factor in primary high-grade serous ovarian carcinoma regarding overall survival (OS, p=0.008) and progression free survival (PFS, p=0.015), which was independent of age, stage, and residual tumor (OS: p=0.024, PFS: p=0.047). The prognostic significance of immunohistochemical WT1 expression could be reproduced in an independent cohort of 72 patients. On the mRNA level the prognostic significance was validated in silico in publically available gene expression datasets including TCGA data (OS: p=0.002, PFS: p=0.011). WT1 expression was significantly linked to ER-α expression (p=0.001), and tumors that co-expressed both markers (WT1+/ER-α+) had a longer survival time than tumors of all other marker combinations (OS: p=0.002, PFS: p=0.013). We present WT1 as a robust prognostic marker in high-grade serous ovarian carcinoma, which adds prognostic information to ER-α. This should be kept in mind when WT1 is used as a biomarker in the context of WT1-targeting therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Positive expression of Y-box binding protein 1 and prognosis in non-small cell lung cancer: a meta-analysis.

    Science.gov (United States)

    Jiang, Liang; Yuan, Gao-Le; Liang, Qi-Lian; Zhang, Hui-Jie; Huang, Jie; Cheng, Shao-Ang; Peng, Xiao-Xia

    2017-08-15

    Y-box binding protein 1 (YB-1) belongs to the cold shock domain protein family involved in transcription and translation. We conducted a meta-analysis of the association between YB-1 expression and the survival and clinicopathological features in NSCLC. PubMed and Embase were searched to identify studies that evaluated the YB-1 expression (by immunohistochemistry) and overall survival (OS) in NSCLC. Hazard ratios (HRs) and 95% confidence intervals (CI) of OS were pooled. Odds ratios (ORs) of clinicopathological features were computed. Meta-analysis was performed using STATA 12.0 software. Data on 692 NSCLC patients were collected from six eligible studies. Meta-analysis revealed that YB-1 was associated with worse OS (HR = 1.59, 95% CI [1.27, 2.00], P fixed effect), tumor stage (OR = 0.43, 95% CI [0.22-0.82], P = 0.01, random effect), and depth of invasion (OR = 0.37, 95%CI [0.22-0.63], P fixed effect). A subgroup was analyzed by IHC staining to determine the location of YB-1 positive expression. Poor OS was observed in nucleus staining (pooled HR = 1.86, 95% CI [1.41, 2.45], P < 0.001). However, no statistical significance was observed in combined cytoplasmic and nuclear staining (pooled HR = 1.14, 95% CI [0.76, 1.72], P = 0.536). Meta-analysis indicated that YB-1 overexpression is correlated with worse OS and clinicopathological features in NSCLC. Subgroup analysis revealed that the nucleus expression of YB-1 may be more closely associated with NSCLC prognosis than cytoplasmic expression.

  5. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Yinghong Ji

    2016-11-01

    Full Text Available Background/Aims: Ultraviolet B (UVB irradiation can easily induce apoptosis in human lens epithelial cells (HLECs and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1 gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm was increased in HLECs. Further studies indicated that superoxide dismutase (SOD activity and total antioxidative (T-AOC level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA and lactate dehydrogenase (LDH were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were significantly decreased, but the concentration of interleukin-10 (IL-10 was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38, Jun amino-terminal kinases (JNK1/2, phospho-JNK1/2 (p-JNK1/2, calcium-sensing receptor (CasR, and Ca2+/calmodulin-dependent protein kinase II (CaMKII indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. Conclusion: These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment.

  6. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways.

    Science.gov (United States)

    Ji, Yinghong; Rong, Xianfang; Li, Dan; Cai, Lei; Rao, Jun; Lu, Yi

    2016-01-01

    Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS) production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm) was increased in HLECs. Further studies indicated that superoxide dismutase (SOD) activity and total antioxidative (T-AOC) level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly decreased, but the concentration of interleukin-10 (IL-10) was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38), Jun amino-terminal kinases (JNK1/2), phospho-JNK1/2 (p-JNK1/2), calcium-sensing receptor (CasR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2014-08-01

    Full Text Available CRBP1 (cellular retinol binding protein 1 and CRBP3 (cellular retinol binding protein 3, are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE, age at first egg (AFE, weight at first egg (WFE and total number of eggs with 300 age (EN. The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken.

  8. Epstein-Barr virus-encoded latent membrane protein 1 impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation.

    Directory of Open Access Journals (Sweden)

    Wen Deng

    Full Text Available Nasopharyngeal carcinoma (NPC is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1 is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development.

  9. Myeloid Zinc Finger 1 and GA Binding Protein Co-Operate with Sox2 in Regulating the Expression of Yes-Associated Protein 1 in Cancer Cells.

    Science.gov (United States)

    Verma, Narendra Kumar; Gadi, Abhilash; Maurizi, Giulia; Roy, Upal Basu; Mansukhani, Alka; Basilico, Claudio

    2017-12-01

    The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TFs, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017;35:2340-2350. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  11. A potential role of thymic stromal lymphopoietin in the recruitment of macrophages to mouse intervertebral disc cells via monocyte chemotactic protein 1 induction: implications for herniated discs.

    Science.gov (United States)

    Ohba, Tetsuro; Haro, Hirotaka; Ando, Takashi; Koyama, Kensuke; Hatsushika, Kyosuke; Suenaga, Fumiko; Ohnuma, Yuko; Nakamura, Yuki; Katoh, Ryohei; Ogawa, Hideoki; Hamada, Yoshiki; Nakao, Atsuhito

    2008-11-01

    To determine whether thymic stromal lymphopoietin (TSLP) plays a role in the resorption of herniated disc tissue. The expression of TSLP messenger RNA (mRNA) and protein in mouse intervertebral disc cells was assessed by quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical analysis. The ability of mouse intervertebral disc cells to respond to TSLP stimulation was examined by Western blot analysis, ELISA, and protein array analysis. Intracellular signaling pathways involved in TSLP signaling in mouse intervertebral disc cells were investigated using several chemical inhibitors. The role of TSLP in macrophage migration into the intervertebral disc was assessed by in vitro migration assay. Finally, TSLP expression in clinical specimens derived from patients with a herniated disc was examined by immunohistochemistry. Mouse intervertebral disc cells expressed TSLP mRNA and protein upon stimulation with NF-kappaB-activating ligands such as tumor necrosis factor alpha. In addition, the mouse intervertebral disc cells expressed the TSLP receptor and produced monocyte chemotactic protein 1 (MCP-1; CCL2) and macrophage colony-stimulating factor in response to TSLP stimulation. Both anulus fibrosus and nucleus pulposus intervertebral disc cells expressed MCP-1 upon TSLP stimulation, which was mediated via the phosphatidylinositol 3-kinase/Akt pathway. Consistently, the supernatants of TSLP-activated intervertebral disc cultures had the capacity to induce macrophage migration in an MCP-1-dependent manner. Finally, TSLP and MCP-1 were coexpressed in human herniated disc specimens in which macrophage infiltration into the tissue was observed. TSLP induced by NF-kappaB-activating ligands in intervertebral discs may contribute to the recruitment of macrophages to the intervertebral disc by stimulating MCP-1 production and may be involved in the resorption of herniated disc tissue.

  12. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1.

    Science.gov (United States)

    Singh, Vivek P; Mathison, Megumi; Patel, Vivekkumar; Sanagasetti, Deepthi; Gibson, Brian W; Yang, Jianchang; Rosengart, Todd K

    2016-11-10

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells represents a promising potential new therapy for treating heart disease, inducing significant improvements in postinfarct ventricular function in rodent models. Because reprogramming factors effective in transdifferentiating rodent cells are not sufficient to reprogram human cells, we sought to identify reprogramming factors potentially applicable to human studies. Lentivirus vectors expressing Gata4, Mef2c, and Tbx5 (GMT); Hand2 (H), Myocardin (My), or microRNA (miR)-590 were administered to rat, porcine, and human cardiac fibroblasts in vitro. induced cardiomyocyte-like cell production was then evaluated by assessing expression of the cardiomyocyte marker, cardiac troponin T (cTnT), whereas signaling pathway studies were performed to identify reprogramming factor targets. GMT administration induced cTnT expression in ≈6% of rat fibroblasts, but failed to induce cTnT expression in porcine or human cardiac fibroblasts. Addition of H/My and/or miR-590 to GMT administration resulted in cTNT expression in ≈5% of porcine and human fibroblasts and also upregulated the expression of the cardiac genes, MYH6 and TNNT2. When cocultured with murine cardiomyocytes, cTnT-expressing porcine cardiac fibroblasts exhibited spontaneous contractions. Administration of GMT plus either H/My or miR-590 alone also downregulated fibroblast genes COL1A1 and COL3A1. miR-590 was shown to directly suppress the zinc finger protein, specificity protein 1 (Sp1), which was able to substitute for miR-590 in inducing cellular reprogramming. These data support porcine studies as a surrogate for testing human cardiac reprogramming, and suggest that miR-590-mediated repression of Sp1 represents an alternative pathway for enhancing human cardiac cellular reprogramming. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  14. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. potential mechanism for the lipogenic effect of progesterone in adipose tissue.

    Science.gov (United States)

    Lacasa, D; Le Liepvre, X; Ferre, P; Dugail, I

    2001-04-13

    Fatty acid synthase (FAS), a nutritionally regulated lipogenic enzyme, is transcriptionally controlled by ADD1/SREBP1c (adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c), through insulin-mediated stimulation of ADD1/SREBP1c expression. Progesterone exerts lipogenic effects on adipocytes, and FAS is highly induced in breast tumor cell lines upon progesterone treatment. We show here that progesterone up-regulates ADD1/SREBP1c expression in the MCF7 breast cancer cell line and the primary cultured preadipocyte from rat parametrial adipose tissue. In MCF7, progesterone induced ADD1/SREBP1c and Metallothionein II (a well known progesterone-regulated gene) mRNAs, with comparable potency. In preadipocytes, progesterone increased ADD1/SREBP1c mRNA dose-dependently, but not SREBP1a or SREBP2. Run-on experiments demonstrated that progesterone action on ADD1/SREBP1c was primarily at the transcriptional level. The membrane-bound and mature nuclear forms of ADD1/SREBP1 protein accumulated in preadipocytes cultured with progesterone, and FAS induction could be abolished by adenovirus-mediated overexpression of a dominant negative form of ADD1/SREBP1 in these cells. Finally, in the presence of insulin, progesterone was unable to up-regulate ADD1/SREBP1c mRNA in preadipocytes, whereas its effect was restored after 24 h of insulin deprivation. Together these results demonstrate that ADD1/SREBP1c is controlled by progesterone, which, like insulin, acts by increasing ADD1/SREBP1c gene transcription. This provides a potential mechanism for the lipogenic actions of progesterone on adipose tissue.

  15. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    International Nuclear Information System (INIS)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong; Suo, Jingxia; Tang, Xinming; Tao, Geru; Han, Qian; Suo, Xun; Wu, Wenxue

    2013-01-01

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens

  16. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  17. Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte Chemoattractant Protein-1 From Cancer Cells

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Li Ge; Song, Kyoung-Sub; Kim, Jin-Man; Kim, Jun-Sang; Kim, Jong-Seok; Yun, Eun-Jin; Park, Jong-Il; Park, Hae-Duck; Hwang, Byung-Doo; Lim, Kyu; Yoon, Wan-Hee

    2009-01-01

    Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TP was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues

  18. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  19. Nucleus Accumbens-Associated Protein 1 Expression Has Potential as a Marker for Distinguishing Oral Epithelial Dysplasia and Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Joji Sekine

    Full Text Available Oral epithelial dysplasia (OED and carcinoma in situ (CIS are defined by dysplastic cells in the epithelium. Over a third of oral squamous cell carcinoma (OSCC patients present with associated OED. However, accurate histopathological diagnosis of such lesions is difficult. Nucleus accumbens-associated protein 1 (NAC1 is a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex family of proteins, and is overexpressed in OSCC. This study aimed to determine whether NAC1 has the potential to be used as a marker to distinguish OED and OSCC.The study included 114 patients (64 men, 50 women. There were 67, 10, and 37 patients with OED, CIS, and OSCC, respectively. NAC1 labeling indices (LIs and immunoreactivity intensities (IRI were evaluated. The patients' pathological classification was significantly associated with age, sex, NAC1 LIs, and NAC1 IRI (p = 0.025, p = 0.022, p 50% positivity the sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV were 0.766, 0.910, 0.857, and 0.847, respectively. For NAC1 IRI with ≤ 124 positive pixels, the sensitivity, specificity, PPV, and NPV were 0.787, 0.866, 0.804, and 0.853, respectively. Though there are several potential limitations to this study and the results were obtained from a retrospective analysis of a single site cohort, the data suggest that the NAC1 LIs/IRI is a strong predictor of CIS/OSCC.NAC1 has potential as a marker for distinguishing OED from CIS/OSCC.

  20. Nucleus Accumbens-Associated Protein 1 Expression Has Potential as a Marker for Distinguishing Oral Epithelial Dysplasia and Squamous Cell Carcinoma.

    Science.gov (United States)

    Sekine, Joji; Nakatani, Eiji; Ohira, Koichiro; Hideshima, Katsumi; Kanno, Takahiro; Nariai, Yoshiki; Kagimura, Tatsuo; Urano, Takeshi

    2015-01-01

    Oral epithelial dysplasia (OED) and carcinoma in situ (CIS) are defined by dysplastic cells in the epithelium. Over a third of oral squamous cell carcinoma (OSCC) patients present with associated OED. However, accurate histopathological diagnosis of such lesions is difficult. Nucleus accumbens-associated protein 1 (NAC1) is a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex family of proteins, and is overexpressed in OSCC. This study aimed to determine whether NAC1 has the potential to be used as a marker to distinguish OED and OSCC. The study included 114 patients (64 men, 50 women). There were 67, 10, and 37 patients with OED, CIS, and OSCC, respectively. NAC1 labeling indices (LIs) and immunoreactivity intensities (IRI) were evaluated. The patients' pathological classification was significantly associated with age, sex, NAC1 LIs, and NAC1 IRI (p = 0.025, p = 0.022, p 50% positivity the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 0.766, 0.910, 0.857, and 0.847, respectively. For NAC1 IRI with ≤ 124 positive pixels, the sensitivity, specificity, PPV, and NPV were 0.787, 0.866, 0.804, and 0.853, respectively. Though there are several potential limitations to this study and the results were obtained from a retrospective analysis of a single site cohort, the data suggest that the NAC1 LIs/IRI is a strong predictor of CIS/OSCC. NAC1 has potential as a marker for distinguishing OED from CIS/OSCC.

  1. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein.

    Science.gov (United States)

    Bleve, Gianluca; Zacheo, Giuseppe; Cappello, Maria Stella; Dellaglio, Franco; Grieco, Francesco

    2005-08-15

    GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1-GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter localized at the plasma membrane and endoplasmic reticulum levels of induced cells. The factors involved in proper localization and turnover of Gup1p were revealed by expression of the Gup1p-GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaerical protein was targeted to the plasma membrane through a Sec6-dependent process; on treatment with glucose, it was endocytosed through END3 and targeted for degradation in the vacuole. Gup1p belongs to the list of yeast proteins rapidly down-regulated by changing the carbon source in the culture medium, in agreement with the concept that post-translational modifications triggered by glucose affect proteins of peripheral functions. The immunoelectron microscopy assays of cells expressing either Gup1-GFP or GFP-Gup1 fusions suggested the Gup1p membrane topology: the N-terminus lies in the periplasmic space, whereas its C-terminal tail has an intracellular location. An extra cytosolic location of the N-terminal tail is not generally predicted or determined in yeast membrane transporters.

  2. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  3. EFFECT OF ULTRAVIOLET B RADIATION ON ACTIVATOR PROTEIN 1 CONSTITUENT PROTEINS AND MODULATION BY DIETARY ENERGY RESTRICTION IN SKH-1 MOUSE SKIN

    Science.gov (United States)

    Hopper, Brian D.; Przybyszewski, Joseph; Chen, Haw-Wen; Hammer, Kimberly D.P.; Birt, Diane F.

    2009-01-01

    The study examined the timing of modulation of activator protein 1(AP-1):DNA binding and production of AP-1 constituent proteins by ultraviolet B (UVB) radiation and effect of dietary energy restriction [DER, 40% calorie reduction from fat and carbohydrate compared to control ad-libitum (AL) diet] in SKH-1 mouse epidermis. AP-1:DNA binding by electromobility shift assay (EMSA) was increased in a biphasic manner after treatment with a tumor promoting suberythemal dose (750mJ/cm2) of UVB light (311-313nm) with peaks at 3 and 18 hours post irradiation. DER overall reduced AP-1:DNA binding in mock-treated and UVB treated skin at 3 and 18 hours after UVB treatment. The timing of modulation of production of AP-1 constituent proteins by western blot analysis was examined at 0hr (mock treatment), 3hr, 9hr, 18hr, and 24hr. We found that c-jun (9 hr), jun-B (9 and 18hrs), phosphorylated c-jun (3hr), and fra-1 (18hr) protein levels were increased after UVB treatment compared to mock controls. In a follow-up diet experiment, animals were placed on DER or AL diet for 10-12 weeks and treated with UVB as before. DER was found to completely block the UVB induced increase in phosphorylated c-jun protein levels and decrease in fra-2 protein levels at 18hr. In addition, DER enhanced UVB-induced increase in jun-B levels and lowered basal levels of c-fos seen 18 hours after UVB. These data suggest that DER may be able to assist in the prevention of UVB induced skin carcinogenesis by modulating AP-1:DNA binding and AP-1 constituent protein levels. PMID:19263438

  4. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  5. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  6. Clinical value of detection on ser um monocyte chemotactant protein-1 and vascular endothelial cadher in levels in patients with acute cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2016-11-01

    Full Text Available Objective: To study the correlation of serum monocyte chemotactant protein-1 (MCP-1 and vascular endothelia cadherin (VE-cadherin levels in patients with acute cerebral infarction, and nerve injury molecules, interleukins and matrix metalloproteinases. Methods: A total of 86 patients with acute cerebral infarction treated in our hospital from April 2012 to October 2015 were selected as the observation group and 50 healthy subjects in the same period treated in our hospital were selected as the control group. The serums were collected and the contents of MCP-1, VE-cadherin, heart-type fatty acid binding protein (H-FABP, S100 calcium binding protein B (S100B, neuron-specific enolase (NSE, interleukin-lb (IL-1b, IL-6, IL-17, IL-18, matrix metalloproteinase-2 (MMP2, MMP3 and MMP9 were measured. Results: The serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL- 6, IL-17, IL-18, MMP2, MMP3 and MMP9 in observation group were significantly higher than those of control group. Carotid artery plaque formation and unstable plaque properties will increase the serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 in patients with cerebral infarction. The serum levels of MCP-1, VE-cadherin and the contents of H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 were positively correlated. Conclusions: The serum levels of VE-cadherin and MCP-1 were significantly increased in patients with acute cerebral infarction. MCP-1 and VE-cadherin can increase the secretion of interleukins and matrix metalloproteinases, which can result in the carotid artery plaque formation, unstable plaque properties and the injury of nerve function.

  7. [Effect of macrophage inflammatory protein-1β on proliferation and apoptosis of human tongue squamous cell carcinoma CAL-27 cells in vitro].

    Science.gov (United States)

    Jia, Bo; Qiu, Xiao-Ling; Chu, Hong-Xing; Sun, Xiang; Pan, Jie; Wang, Zhi-Ping; Zhao, Jian-Jiang

    2017-08-20

    To detect CCR5 protein expression in different human tongue squamous cell carcinoma cells and observe the effect of macrophage inflammatory protein-1β (MIP-1β) on the proliferation and apoptosis of CAL-27 cells. Western blotting and immunofluorescence staining were used to detect the expression of the CCR5, the receptor of MIP-1β, in 3 human tongue squamous cell carcinoma cells UM-1, CAL-27, and Tca-8113. CCK-8 assay was used to assess the proliferation of CAL-27 cells stimulated with 10, 20, and 40 ng/mL MIP-1β for 12, 24, or 48 h. The apoptosis of the cells stimulated with MIP-1β (10, 20, and 40 ng/mL) for 24 h was analyzed using flow cytometry with Annexin V/PI double staining. CCR5 expression was detected both on the membrane and in the cytoplasm in all the 3 tongue squamous cell carcinoma cell lines. At the concentrations of 10, 20, and 40 ng/mL, MIP-1β stimulation for 12 and 24 h significantly promoted the proliferation of CAL-27 cells (Pproliferation of CAL-27 cells (Pcells (Pcells (P>0.05). CCR5 is expressed in all the 3 human tongue squamous cell carcinoma cells. MIP-1β can promote the proliferation of CAL-27 cells but high concentrations of MIP-1β also induced cell apoptosis. Prolonged stimulation of the cells with a high concentration of MIP-1β shows attenuated effect in promoting cell proliferation probably as a result of cell apoptosis induced by MIP-1β.

  8. Inhibition of latent membrane protein 1 impairs the growth and tumorigenesis of latency II Epstein-Barr virus-transformed T cells.

    Science.gov (United States)

    Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean; Adriaenssens, Eric

    2012-04-01

    Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.

  9. Reduced selenium-binding protein 1 in breast cancer correlates with poor survival and resistance to the anti-proliferative effects of selenium.

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    Full Text Available Supplemental dietary selenium is associated with reduced incidence of many cancers. The antitumor function of selenium is thought to be mediated through selenium-binding protein 1 (SELENBP1. However, the significance of SELENBP1 expression in breast cancer is still largely unknown. A total of 95 normal and tumor tissues assay and 12 breast cancer cell lines were used in this study. We found that SELENBP1 expression in breast cancer tissues is reduced compared to normal control. Low SELENBP1 expression in ER(+ breast cancer patients was significantly associated with poor survival (p<0.01, and SELENBP1 levels progressively decreased with advancing clinical stages of breast cancer. 17-β estradiol (E2 treatment of high SELENBP1-expressing ER(+ cell lines led to a down-regulation of SELENBP1, a result that did not occur in ER(- cell lines. However, after ectopic expression of ER in an originally ER(- cell line, down-regulation of SELENBP1 upon E2 treatment was observed. In addition, selenium treatment resulted in reduced cell proliferation in endogenous SELENBP1 high cells; however, after knocking-down SELENBP1, we observed no significant reduction in cell proliferation. Similarly, selenium has no effect on inhibition of cell proliferation in low endogenous SELENBP1 cells, but the inhibitory effect is regained following ectopic SELENBP1 expression. Furthermore, E2 treatment of an ER silenced high endogenous SELENBP1 expressing cell line showed no abolishment of cell proliferation inhibition upon selenium treatment. These data indicate that SELENBP1 expression is regulated via estrogen and that the cell proliferation inhibition effect of selenium treatment is dependent on the high level of SELENBP1 expression. Therefore, the expression level of SELENBP1 could be an important marker for predicting survival and effectiveness of selenium supplementation in breast cancer. This is the first study to reveal the importance of monitoring SELENBP1 expression

  10. Dynamic expressions of monocyte chemo attractant protein-1 and CC chamomile receptor 2 after balloon injury and their effects in intimal proliferation.

    Science.gov (United States)

    Huang, Zhigang; Li, Yuebing; Niu, Lili; Xiao, Yang; Pu, Xiaodong; Zheng, Hairong; Qian, Ming

    2015-06-11

    The dynamic expressions of monocyte chemo attractant protein-1 (MCP-1) and CC chamomile receptor 2 (CCR2) after balloon injury and their effects in intimal proliferation were discussed. In this study, the expression of MCP-1 and its receptor during the intimal proliferation in rat artery after balloon injury were studied. Using the model of balloon injury of rats' arteries, the changes of intimal proliferation were observed with optical microscopy and the expressions of MCP-1 and CCR2 at different times were examined with the methods of RT-PCR and immunohistochemistry. The expressions of MCP-1 and CCR2 in the arterial tissues were detected using reverse transcription polymerase chain reaction (RT-PCR) and analyzed by semi-quantitative method. The expressions of MCP-1 and CCR2 mRNA began to gradually increase after balloon injury. The MCP-1 reached to the peak on the first day, but decreased gradually later on. Expressions of CCR2 mRNA began to increase on the first day and reached to the peak on the 7th day, but then started to decrease gradually until 28th day when we can still detect it. The expressions of MCP-1 proteins began to increase gradually after balloon injury and were obviously detected in the VSMC on the 4th and 7th day, until 14th day when we can still detect it clearly in the proliferating intima. The dynamic expressions of MCP-1, MCP-1 proteins and CCR2 mRNA after balloon injury were shown to play an important role in intimal proliferation.

  11. Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL

    Directory of Open Access Journals (Sweden)

    H. Carvalho

    2008-04-01

    Full Text Available Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1 plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.

  12. Identification of special AT-rich sequence binding protein 1 as a novel tumor antigen recognized by CD8+ T cells: implication for cancer immunotherapy.

    Directory of Open Access Journals (Sweden)

    Mingjun Wang

    Full Text Available BACKGROUND: A large number of human tumor-associated antigens that are recognized by CD8(+ T cells in a human leukocyte antigen class I (HLA-I-restricted fashion have been identified.