WorldWideScience

Sample records for surface protein antigen

  1. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    2010-07-01

    Full Text Available Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species.We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity.The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  2. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Munro, Cindy L; Conrad, Daniel H; Xu, Ping

    2010-07-26

    Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  3. Prediction of antigenic epitopes on protein surfaces by consensus scoring

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2009-09-01

    Full Text Available Abstract Background Prediction of antigenic epitopes on protein surfaces is important for vaccine design. Most existing epitope prediction methods focus on protein sequences to predict continuous epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available and they have not yet shown satisfying performance. Results We present a new antigen Epitope Prediction method, which uses ConsEnsus Scoring (EPCES from six different scoring functions - residue epitope propensity, conservation score, side-chain energy score, contact number, surface planarity score, and secondary structure composition. Applied to unbounded antigen structures from an independent test set, EPCES was able to predict antigenic eptitopes with 47.8% sensitivity, 69.5% specificity and an AUC value of 0.632. The performance of the method is statistically similar to other published methods. The AUC value of EPCES is slightly higher compared to the best results of existing algorithms by about 0.034. Conclusion Our work shows consensus scoring of multiple features has a better performance than any single term. The successful prediction is also due to the new score of residue epitope propensity based on atomic solvent accessibility.

  4. Monoclonal Antibody Production against Human Spermatozoal Surface Antigens

    Directory of Open Access Journals (Sweden)

    M Jedi-Tehrani

    2005-10-01

    Full Text Available Introduction: As monoclonal antibodies are potential tools for characterization of soluble or cellular surface antigens, use of these proteins has always been considered in infertility and reproduction research. Therefore, in this study, monoclonal antibodies against human sperm surface antigens were produced. Material and Methods: To produce specific clones against human sperm surface antigens, proteins were extracted using solubilization methods. Balb/c mice were immunized intraperitoneally with the proteins using complete Freund’s adjuvant in the first injection and incomplete Adjuvant in the following booster injections. Hybridoma cells producing ASA were cloned by limiting dilution. Results: Five stable ASA producing hybridoma clones were achieved and their antibody isotypes were determined by ELISA. All the isotypes were of IgG class. Their cross reactivity with rat and mice spermatozoa was examined but they did not have any cross reactivity. Conclusion: The produced antibodies can be used in further studies to characterize and evaluate each of the antigens present on human sperm surface and determining their role in fertilization.

  5. Identification and characterization of surface antigens in parasites, using radiolabelling techniques

    International Nuclear Information System (INIS)

    Ramasamy, R.

    1982-04-01

    Surface proteins of Schistosoma sp and Leishmania sp were studied using 125-Iodine as tracer. The surface proteins were labelled by the Lactoperoxidase method and the proteins then separated using SDS PAG electrophoresis and autoradiography. The possible immunogens were then separated using immunoprecipitation and Fluorescent Antibody techniques using sera from patients or from artificially immunized rabbits. Four common antigens were identified from the surfaces of male and female adult worms, cercariae and schistosomulae of S.mansoni. These antigens, which had molecular weights of 150,000, 78,000, 45,000, and 22,000 were also isolated from the surfaces of S.haematobium adults. The surface antigens on promastigotes of a Kenyan strain of Leishmania donovani were separated into three protein antigens with molecular weights of 66,000, 59,000 and 43,000 respectively. The 59,000 molecular weight antigen was a glycoprotein and was common to promastigotes of an American and Indian strain of L.donovani and to L.braziliensis mexicana. None of the isolated antigens have been shown to have a protective effect when vaccinated into mice, but the study illustrates the value of radionuclide tracers in the unravelling of the mosaic of antigens which parasites possess

  6. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  7. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  8. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  9. Characterisation of surface antigens of Strongylus vulgaris of potential immunodiagnostic importance.

    Science.gov (United States)

    Nichol, C; Masterson, W J

    1987-08-01

    When antigens prepared by detergent washes of Strongylus vulgaris and Parascaris equorum were probed in an enzyme-linked immunosorbent assay test with horse sera from single species infections of S. vulgaris and P. equorum, a high degree of cross-reaction between the species was demonstrated. Western blot analysis of four common horse nematode species showed a large number of common antigens when probed with horse infection sera. Antisera raised in rabbits against the four species, including S. vulgaris, were also found to cross-react considerably. Rabbit anti-S. vulgaris sera were affinity adsorbed over a series of affinity chromatography columns, bound with cross-reactive surface antigens, to obtain S. vulgaris-specific antisera and thereby identify S. vulgaris-specific antigens by Western blotting. These studies revealed potentially specific antigens of apparent molecular weights of 100,000, 52,000, and 36,000. Of these bands, only the 52 kDa and 36 kDa appeared to be found on the surface as judged by 125I-labelling of intact worms by the Iodogen method, although neither protein was immunoprecipitated by horse infection sera. Finally, immunoprecipitation of in vitro translated proteins derived from larval S. vulgaris RNA suggests that two proteins may be parasite-derived. These findings are discussed both with respect to the surface of S. vulgaris and to the use of these species-specific antigens in immunodiagnosis.

  10. Sarcocystis neurona merozoites express a family of immunogenic surface antigens that are orthologues of the Toxoplasma gondii surface antigens (SAGs) and SAG-related sequences.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-02-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).

  11. Sarcocystis neurona Merozoites Express a Family of Immunogenic Surface Antigens That Are Orthologues of the Toxoplasma gondii Surface Antigens (SAGs) and SAG-Related Sequences†

    Science.gov (United States)

    Howe, Daniel K.; Gaji, Rajshekhar Y.; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-01-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s). PMID:15664946

  12. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    Science.gov (United States)

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  13. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    Science.gov (United States)

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  14. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii.

    Science.gov (United States)

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI-TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  15. Paired Expression Analysis of Tumor Cell Surface Antigens

    Directory of Open Access Journals (Sweden)

    Rimas J. Orentas

    2017-08-01

    Full Text Available Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19 or antibody-based therapy (anti-CD20 in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues. We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK

  16. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    Directory of Open Access Journals (Sweden)

    Alexandra eIrrgang

    2015-09-01

    Full Text Available Microalgae of the genus Prototheca (P. are associated with rare but severe infections (protothecosis and represent a potential zoonotic risk. Genotype (GT 2 of P. zopfii has been established as pathogenic agent for humans, dogs and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1 and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analysed via MALDI- TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g. malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase but some antigens and potential virulence factors, known from other pathogens, have been found (e.g. phosphomannomutase, triosephosphate isomerase. One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70, a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  17. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    Science.gov (United States)

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Novel Pneumocystis Antigen Discovery Using Fungal Surface Proteomics

    OpenAIRE

    Zheng, Mingquan; Cai, Yang; Eddens, Taylor; Ricks, David M.; Kolls, Jay K.

    2014-01-01

    Pneumonia due to the fungus Pneumocystis jirovecii is a life-threatening infection that occurs in immunocompromised patients. The inability to culture the organism as well as the lack of an annotated genome has hindered antigen discovery that could be useful in developing novel vaccine- or antibody-based therapies as well as diagnostics for this infection. Here we report a novel method of surface proteomics analysis of Pneumocystis murina that reliably detected putative surface proteins that ...

  19. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    International Nuclear Information System (INIS)

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E.; Flores, B.M.; Hagen, F.S.

    1990-01-01

    A λgt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically 35 S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface- 125 I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4 degree C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested

  20. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    Energy Technology Data Exchange (ETDEWEB)

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E. (Univ. of Washington, Seattle (USA)); Flores, B.M. (Louisiana State Univ. Medical Center, New Orleans (USA)); Hagen, F.S. (Zymogenetics Incorporated, Seattle, WA (USA))

    1990-08-01

    A {lambda}gt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically {sup 35}S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface-{sup 125}I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4{degree}C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested.

  1. Strains of Sarcocystis neurona exhibit differences in their surface antigens, including the absence of the major surface antigen SnSAG1.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Marsh, Antoinette E; Patil, Bhagyashree A; Saville, William J; Lindsay, David S; Dubey, J P; Granstrom, David E

    2008-05-01

    A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages

  2. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides.......The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...

  3. Purification and characterization of a major human Pneumocystis carinii surface antigen

    DEFF Research Database (Denmark)

    Lundgren, B; Lipschik, G Y; Kovacs, J A

    1991-01-01

    . To evaluate humoral immune responses to the human P. carinii protein, an enzyme-linked immunosorbent assay using purified protein was developed. Some, but not all, patients who subsequently developed P. carinii pneumonia demonstrated a serum antibody response to the surface antigen. Nearly all subjects...... without a history of P. carinii pneumonia had no detectable antibodies. Purified P. carinii proteins will greatly facilitate the investigation of host-P. carinii interactions....

  4. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    International Nuclear Information System (INIS)

    Wise, K.S.; Kim, M.F.

    1987-01-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface 125 I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with [ 35 S] methionine, 14 C-amino acids, or [ 3 H] palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11

  5. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    Energy Technology Data Exchange (ETDEWEB)

    Wise K.S.; Kim, M.F.

    1987-12-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface /sup 125/I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with (/sup 35/S) methionine, /sup 14/C-amino acids, or (/sup 3/H) palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11.

  6. Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, C.P.; Belt-Gritter, van de B.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2007-01-01

    Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT11 and S. mutans IB03987 with and without antigen I/II, respectively, using

  7. Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, Chun-Ping; Belt-Gritter, van de Betsy; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2007-01-01

    Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT 11 and S. mutans IB03987 with and without antigen I/II, respectively, using

  8. Rapid and specific biotin labelling of the erythrocyte surface antigens of both cultured and ex-vivo Plasmodium parasites

    Directory of Open Access Journals (Sweden)

    Thompson Joanne

    2007-05-01

    Full Text Available Abstract Background Sensitive detection of parasite surface antigens expressed on erythrocyte membranes is necessary to further analyse the molecular pathology of malaria. This study describes a modified biotin labelling/osmotic lysis method which rapidly produces membrane extracts enriched for labelled surface antigens and also improves the efficiency of antigen recovery compared with traditional detergent extraction and surface radio-iodination. The method can also be used with ex-vivo parasites. Methods After surface labelling with biotin in the presence of the inhibitor furosemide, detergent extraction and osmotic lysis methods of enriching for the membrane fractions were compared to determine the efficiency of purification and recovery. Biotin-labelled proteins were identified on silver-stained SDS-polyacrylamide gels. Results Detergent extraction and osmotic lysis were compared for their capacity to purify biotin-labelled Plasmodium falciparum and Plasmodium chabaudi erythrocyte surface antigens. The pellet fraction formed after osmotic lysis of P. falciparum-infected erythrocytes is notably enriched in suface antigens, including PfEMP1, when compared to detergent extraction. There is also reduced co-extraction of host proteins such as spectrin and Band 3. Conclusion Biotinylation and osmotic lysis provides an improved method to label and purify parasitised erythrocyte surface antigen extracts from both in vitro and ex vivo Plasmodium parasite preparations.

  9. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    Science.gov (United States)

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  10. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  11. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Deirdre R Ducken

    Full Text Available Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to

  12. Conservation of myeloid surface antigens on primate granulocytes.

    Science.gov (United States)

    Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D

    1983-02-01

    Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.

  13. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  14. The ability of IgY to recognize surface proteins of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Basri A. Gani

    2009-12-01

    Full Text Available Background: Streptococcus mutans are gram positive bacteria classified into viridians group, and have a role in pathogenesis of dental caries. It’s adhesion to the tooth surface is mediated by cell surface proteins, which interact with specific receptor located in tooth pellicle. Glucan binding protein, Glukosyltransferase, and antigen I/II are basic proteins of S. mutans, which have a role in initiating the interaction. A previous study showed that chicken’s IgY can interfere the interaction. Purpose: The objective of this study was to assess the ability of IgY in recognizing the surface molecule of Streptococcus mutans expressed by various serotypes (c, d, e, f and a strain derived from IPB, Bogor. Method: Western blot was used as a method to determine such capability. Result: The result showed that IgY has a potency to recognize antigen I/II, but not the other proteins on the cell surface of all bacteria tested. Conclusion: The ability of IgY to bind the surface protein, antigen I/II, indicates that this avian antibody could be used as a candidate for anti-adhesion in preventing dental caries.

  15. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hjerrild, L.; Gjermansen, Morten

    2004-01-01

    Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Expression of Ag43 confers aggregation and fluffing of cells, promotes biofilm formation and is associated with enhanced resistance to antimicrobial agents. Ag43 is an autotransporter protein and consi......Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Expression of Ag43 confers aggregation and fluffing of cells, promotes biofilm formation and is associated with enhanced resistance to antimicrobial agents. Ag43 is an autotransporter protein......-clumping variants, we have pinpointed the region of the protein responsible for autoaggregation to be located within the N-terminal one-third of the passenger domain. Our data suggest that ionic interactions between charged residues residing in interacting pairs of Ag43(alpha) domains may be important for the self...

  16. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea.

    Science.gov (United States)

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M K; Ghosh, Santanu; Ramamurthy, T; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook; Czerkinsky, Cecil; Nandy, Ranjan K

    2016-07-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7 (+)) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7 (+) IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7 (+) ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Interaction forces between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, C.P.; Belt-Gritter, van de B.; Dijkstra, R.J.B.; Norde, W.; Mei, van der H.C.; Busscher, H.J.

    2007-01-01

    The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and

  18. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  19. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  20. Identification of variant-specific surface proteins in Giardia muris trophozoites.

    Science.gov (United States)

    Ropolo, Andrea S; Saura, Alicia; Carranza, Pedro G; Lujan, Hugo D

    2005-08-01

    Giardia lamblia undergoes antigenic variation, a process that might allow the parasite to evade the host's immune response and adapt to different environments. Here we show that Giardia muris, a related species that naturally infects rodents, possesses multiple variant-specific surface proteins (VSPs) and expresses VSPs on its surface, suggesting that it undergoes antigenic variation similar to that of G. lamblia.

  1. Identification of Variant-Specific Surface Proteins in Giardia muris Trophozoites

    OpenAIRE

    Ropolo, Andrea S.; Saura, Alicia; Carranza, Pedro G.; Lujan, Hugo D.

    2005-01-01

    Giardia lamblia undergoes antigenic variation, a process that might allow the parasite to evade the host's immune response and adapt to different environments. Here we show that Giardia muris, a related species that naturally infects rodents, possesses multiple variant-specific surface proteins (VSPs) and expresses VSPs on its surface, suggesting that it undergoes antigenic variation similar to that of G. lamblia.

  2. CELLISA: reporter cell-based immunization and screening of hybridomas specific for cell surface antigens.

    Science.gov (United States)

    Chen, Peter; Mesci, Aruz; Carlyle, James R

    2011-01-01

    Monoclonal antibodies (mAbs) specific for cell surface antigens are an invaluable tool to study immune receptor expression and function. Here, we outline a generalized reporter cell-based approach to the generation and high-throughput screening of mAbs specific for cell surface antigens. Termed CELLISA, this technology hinges upon the capture of hybridoma supernatants in mAb arrays that facilitate ligation of an antigen of interest displayed on BWZ reporter cells in the form of a CD3ζ-fusion chimeric antigen receptor (zCAR); in turn, specific mAb-mediated cross-linking of zCAR on BWZ cells results in the production of β-galactosidase enzyme (β-gal), which can be assayed colorimetrically. Importantly, the BWZ reporter cells bearing the zCAR of interest may be used for immunization as well as screening. In addition, serial immunizations employing additional zCAR- or native antigen-bearing cell lines can be used to increase the frequency of the desired antigen-specific hybridomas. Finally, the use of a cohort of epitope-tagged zCAR (e.g., zCAR(FLAG)) variants allows visualization of the cell surface antigen prior to immunization, and coimmunization using these variants can be used to enhance the immunogenicity of the target antigen. Employing the CELLISA strategy, we herein describe the generation of mAb directed against an uncharacterized natural killer cell receptor protein.

  3. Treatment of Schistosoma mansoni with miltefosine in vitro enhances serological recognition of defined worm surface antigens.

    Directory of Open Access Journals (Sweden)

    Marwa H El-Faham

    2017-08-01

    Full Text Available Miltefosine, an anti-cancer drug that has been successfully repositioned for treatment of Leishmania infections, has recently also shown promising effects against Schistosoma spp targeting all life cycle stages of the parasite. The current study examined the effect of treating Schistosoma mansoni adult worms with miltefosine on exposure of worm surface antigens in vitro.In an indirect immunofluorescence assay, rabbit anti-S.mansoni adult worm homogenate and anti-S. mansoni infection antisera gave strong immunofluorescence of the S. mansoni adult worm surface after treatment with miltefosine, the latter antiserum having previously been shown to synergistically enhance the schistosomicidal activity of praziquantel. Rabbit antibodies that recognised surface antigens exposed on miltefosine-treated worms were recovered by elution off the worm surface in low pH buffer and were used in a western immunoblotting assay to identify antigenic targets in a homogenate extract of adult worms (SmWH. Four proteins reacting with the antibodies in immunoblots were purified and proteomic analysis (MS/MS combined with specific immunoblotting indicated they were the S. mansoni proteins: fructose-1,6 bisphosphate aldolase (SmFBPA, Sm22.6, alkaline phosphatase and malate dehydrogenase. These antibodies were also found to bind to the surface of 3-hour schistosomula and induce immune agglutination of the parasites, suggesting they may have a role in immune protection.This study reveals a novel mode of action of miltefosine as an anti-schistosome agent. The immune-dependent hypothesis we investigated has previously been lent credence with praziquantel (PZQ, whereby treatment unmasks parasite surface antigens not normally exposed to the host during infection. Antigens involved in this molecular mechanism could have potential as intervention targets and antibodies against these antigens may act to increase the drug's anti-parasite efficacy and be involved in the development

  4. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  5. Binding of hydrophobic antigens to surfaces

    DEFF Research Database (Denmark)

    2017-01-01

    A first aspect of the present invention is a method of detecting antibodies comprising the steps of: i) providing a first group of beads comprising a surface modified with C1-C10 alkyl groups comprising amine, ammonium, ether and/or hydroxyl groups, ii) contacting said first group of beads......-antigen-antibody conjugates, and v) detecting said bead-antigen-antibody conjugates. Further aspects include an antibody detection kit, a bead-antigen conjugate and a composition comprising at least two different groups of bead-antigen-conjugates....

  6. Identification of a surface antigen on Theileria parva sporozoites by monoclonal antibody.

    OpenAIRE

    Dobbelaere, D A; Shapiro, S Z; Webster, P

    1985-01-01

    A mouse monoclonal antibody (mAbD1) that neutralizes sporozoites of different stocks of the protozoan parasite Theileria parva has been used to localize and identify a sporozoite antigen. Protein A-colloidal gold was used to localize bound mAbD1 in immunoelectron microscopic studies. mAbD1 bound to sporozoite antigen, which was evenly spread over the surface of all sporozoites. Immune complexes were obtained by incubation of sporozoite suspensions with mAbD1 followed by Zwittergent 3-14 extra...

  7. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    International Nuclear Information System (INIS)

    Dooley, J.S.G.; Trust, T.J.

    1988-01-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase 125 I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to 125 I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein

  8. Identification of antigenic proteins of setaria cervi by immunoblotting technique

    International Nuclear Information System (INIS)

    Kaushal, N.A.; Kaushal, D.C.; Ghatak, S.

    1987-01-01

    Identification and characterization of antigenic proteins of Setaria cervi (bovine filarial parasite) adults and microfilariae was done by immunoblotting technique using hyperimmune rabbit sera against S. cervi and Brugia malayi. The antigens recognized by these sera were detected by using 125 I protein-A followed by autoradiography. Fifteen different antigens were observed to be common between adult and microfilarial stages of the parasite. Some stage specific antigens were also identified. Many antigens of S. cervi adults and microfilariae were also recognized by rabbit anti-B.malayi serum showing the existence of common antigenic determinants between the bovine and human filarial parasites

  9. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development.

    Science.gov (United States)

    Zhang, Xiaowei; Hu, Shumin; Du, Xue; Li, Tiejun; Han, Lanlan; Kong, Jian

    2016-12-01

    Carcinoembryonic antigen (CEA) is an attractive target for immunotherapy because it is expressed minimally in normal tissue, but is overexpressed in a wide variety of malignant epithelial tissues. Lactic acid bacteria (LABs), widely used in food processes, are attractive candidates for oral vaccination. Thus, we examined whether LABs could be used as a live vaccine vector to deliver CEA antigen. CEA was cloned into an Escherichia coli/Lactococcus lactis shuttle vector pSEC:LEISS under the control of a nisin promoter. For displaying the CEA on the cell surface of the L. lactis strain, the anchor motif LcsB from the S-layer protein of Lactobacillus crispatus was fused with CEA. Intracellular and cell surface expression of the CEA-LcsB fusion was confirmed by western blot analysis. Significantly higher levels of CEA-specific secretory immunoglobulin A in the sera of mice were observed upon oral administration of strain cultures containing the CEA-LcsB fused protein. In addition, the CEA-LcsB antigen group showed a higher spleen index compared to the CEA antigen alone or negative control, demonstrating that surface-displayed CEA antigen could induce a higher immune response. These results provided the first evidence for displaying CEA antigen on the cell surfaces of LABs as oral vaccines against cancer or infectious diseases. Copyright © 2014. Published by Elsevier B.V.

  10. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  11. A portion of the Pf155/RESA antigen of Plasmodium falciparum is accessible on the surface of infected erythrocytes

    International Nuclear Information System (INIS)

    Saul, A.; Maloy, W.L.; Howard, R.J.; Rock, E.P.

    1988-01-01

    An investigation of antigens accessible to lactoperoxidase-catalysed cell surface iodination on intact Plasmodium falciparum-infected red blood cells (RBC) has identified a 125 I-labelled antigen with an apparent size of about 155 kD. This labelled protein was specifically immunoprecipitated by the following antibodies: a rabbit antiserum and a mouse monoclonal antibody raised against a synthetic peptide comprising the 3',8-mer repeat EENVEHDA of the Pf155/RESA protein; a rabbit antiserum raised against a synthetic octapeptide comprising two copies of the 3',4-mer repeat EENV of the Pf155/RESA protein; and rabbit antisera against another synthetic peptide C(MYSNNNVED) 2 . The last antibody shows a strong reaction in asexual blood state parasites with the Pf155/RESA antigen. While this antigen has been described previously as a submembrane component of the outer membrane of infected RBC, this report shows that at least part of it is accessible to the surface of both ring and late trophozoite-infected erythrocytes. 21 refs., 4 figs

  12. Isolation of a peptide binding protein and its role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.; Pierce, S.K.; Margoliash, E.

    1986-01-01

    A mouse T cell hybrid, TPc9.1, recognizes pigeon cytochrome c (Pc) as processed and presented by histocompatible antigen presenting cells (APC). When paraformaldehyde fixed APC are employed, only a peptide fragment of Pc, Pc 81-104, and not the native Pc, is capable of stimulating TPc9.1 cells. Pc 81-104 appears to associate tightly with the APC surface since paraformaldehyde fixed APC which have been incubated with Pc 81-104 remain stimulatory following extensive washing. When APC are surface labeled with 125 I, solubilized and affinity purified on Pc 81-104-Sepharose 4B columns, two predominant polypeptides of approximately 72 and 74 kd are isolated. Little or no immunoglobulin, Class I or Class II proteins are obtained under these conditions. Antisera from rabbits immunized with the affinity purified material, but not preimmune sera, block the activation of TPc 9.1 cells by Pc as well as Pc 81-104 when presented by live APC. Furthermore, these antisera are even more effective in blocking the activation of TPc9.1 cells by either APC which had been pulsed with Pc and then paraformaldehyde fixed, or by Pc 81-104 when added to paraformaldehyde fixed APC, suggesting that these antisera were not affecting antigen processing. Thus, these peptide binding proteins may play a role in antigen presentation, and they are being further characterized

  13. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    2017-06-01

    Full Text Available Scabies, caused by the mite, Sarcoptes scabiei, infects millions of humans, and many wild and domestic mammals. Scabies mites burrow in the lower stratum corneum of the epidermis of the skin and are the source of substances that are antigenic or modulate aspects of the protective response of the host. Ordinary scabies is a difficult disease to diagnose.The goal of this project was to identify S. scabiei proteins that may be candidate antigens for use in a diagnostic test or may be used by the mite to modulate the host's protective response.An aqueous extract of S. scabiei was separated by 2-dimensional electrophoresis and proteins were identified by mass spectrometry. A parallel immunoblot was probed with serum from patients with ordinary scabies to identify IgM and/or IgG-binding antigens. The genes coding for 23 selected proteins were cloned into E. coli and the expressed recombinant proteins were screened with serum from patients with confirmed ordinary scabies.We identified 50 different proteins produced by S. scabiei, 34 of which were not previously identified, and determined that 66% were recognized by patient IgM and/or IgG. Fourteen proteins were screened for use in a diagnostic test but none possessed enough sensitivity and specificity to be useful. Six of the 9 proteins selected for the possibility that they may be immunomodulatory were not recognized by antibodies in patient serum.Thirty-three proteins that bound IgM and/or IgG from the serum of patients with ordinary scabies were identified. None of the 14 tested were useful for inclusion in a diagnostic test. The identities of 16 proteins that are not recognized as antigens by infected patients were also determined. These could be among the molecules that are responsible for this mite's ability to modulate its host's innate and adaptive immune responses.

  14. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    Science.gov (United States)

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Use of nitrocellulose blotting for the study of hepatitis B surface antigen electrophoresed in agarose gels

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, J C; Greisiger, L M; Millman, I [Institute for Cancer Research, Philadelphia, PA (USA). Fox Chase Cancer Center

    1981-08-28

    Nitrocellulose-protein blotting of serum electrophoresed in agarose gels has been adapted for the study of hepatitis B surface antigen (HBsAg). /sup 125/I-labeled anti-HBs was used as the antigen probe, and the electrophoretic migration was monitored by autoradiography. The method required 3 ..mu..l or less of serum and could detect as little as 1 pg of purified HBsAg. Typically, the authors observed two bands of HBsAg; a moving band which migrated about one-third the distance moved by human serum albumin and a non-migratory band which remained at the loading site. Some examples of the use of the method include: (1) empirical methods for correlating HBsAg concentration in serum to film darkness; (2) observations of mobility changes in serial sera from dialysis patients with chronic HBsAg antigenemia; and (3) detection of related antigens such as antigen from the PLC/PRF/5 hepatoma tissue culture line and the cross-reacting woodchuck hepatitis virus surface antigen (WHsAg).

  16. Protein-scaffold Directed Nanoscale Assembly of T Cell Ligands: Artificial Antigen Presentation with Defined Valency, Density and Ratio.

    Science.gov (United States)

    Smith, Mason R; Tolbert, Stephanie V; Wen, Fei

    2018-05-07

    Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.

  17. Leishmania-specific surface antigens show sub-genus sequence variation and immune recognition.

    Directory of Open Access Journals (Sweden)

    Daniel P Depledge

    2010-09-01

    Full Text Available A family of hydrophilic acylated surface (HASP proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic and intracellular (amastigote stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia have lost HASP genes from their genomes.We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia species, L. (V. braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L. mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o HASPs are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family.These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are

  18. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  19. Identification of sporozoite surface proteins and antigens of Eimeria nieschulzi (Apicomplexa)

    International Nuclear Information System (INIS)

    Tilley, M.; Upton, S.J.

    1990-01-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting, lectin binding, and 125 I surface labeling of sporozoites were used to probe sporozoites of the rat coccidian, Eimeria nieschulzi. Analysis of silver stained gels revealed greater than 50 bands. Surface iodination revealed about 14 well labeled, and about 10 weakly labeled but potential, surface proteins. The most heavily labeled surface proteins had molecular masses of 60, 53-54, 45, 28, 23-24, 17, 15, 14, 13, and 12 kD. Following electrophoresis and Western blotting, 2 of the 12 125I labeled lectin probes bound to two bands on the blots, which collectively indicated that two bands were glycosylated. Concanavalin A (ConA) specifically recognized a band at 53 kD, which may represent a surface glycoprotein, and a lectin derived from Osage orange (MPA) bound to a single band at 82-88 kD, that may also be a surface molecule. Immunoblotting using sera collected from rats inoculated orally with oocysts, as well as sera from mice hyperimmunized with sporozoites, revealed that many surface molecules appear to be immunogenic

  20. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  1. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    Science.gov (United States)

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  2. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory

    Science.gov (United States)

    Morgan, Marjorie S.; Rider, S. Dean; Arlian, Larry G.

    2017-01-01

    Background Scabies, caused by the mite, Sarcoptes scabiei, infects millions of humans, and many wild and domestic mammals. Scabies mites burrow in the lower stratum corneum of the epidermis of the skin and are the source of substances that are antigenic or modulate aspects of the protective response of the host. Ordinary scabies is a difficult disease to diagnose. Objective The goal of this project was to identify S. scabiei proteins that may be candidate antigens for use in a diagnostic test or may be used by the mite to modulate the host’s protective response. Methods An aqueous extract of S. scabiei was separated by 2-dimensional electrophoresis and proteins were identified by mass spectrometry. A parallel immunoblot was probed with serum from patients with ordinary scabies to identify IgM and/or IgG-binding antigens. The genes coding for 23 selected proteins were cloned into E. coli and the expressed recombinant proteins were screened with serum from patients with confirmed ordinary scabies. Results We identified 50 different proteins produced by S. scabiei, 34 of which were not previously identified, and determined that 66% were recognized by patient IgM and/or IgG. Fourteen proteins were screened for use in a diagnostic test but none possessed enough sensitivity and specificity to be useful. Six of the 9 proteins selected for the possibility that they may be immunomodulatory were not recognized by antibodies in patient serum. Conclusions Thirty-three proteins that bound IgM and/or IgG from the serum of patients with ordinary scabies were identified. None of the 14 tested were useful for inclusion in a diagnostic test. The identities of 16 proteins that are not recognized as antigens by infected patients were also determined. These could be among the molecules that are responsible for this mite’s ability to modulate its host’s innate and adaptive immune responses. PMID:28604804

  3. Genetically encoded pH sensor for tracking surface proteins through endocytosis.

    Science.gov (United States)

    Grover, Anmol; Schmidt, Brigitte F; Salter, Russell D; Watkins, Simon C; Waggoner, Alan S; Bruchez, Marcel P

    2012-05-14

    Traffic cam: a tandem dye prepared from a FRET acceptor and a fluorogenic donor functions as a cell surface ratiometric pH indicator, which upon internalization serves to follow protein trafficking during endocytosis. This sensor was used to analyze agonist-dependent internalization of β(2)-adrenergic receptors. It was also used as a surrogate antigen to reveal direct surface-to-endosome antigen transfer between dendritic cells (not shown). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens.

    Science.gov (United States)

    Kuczkowska, Katarzyna; Kleiveland, Charlotte R; Minic, Rajna; Moen, Lars F; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Mathiesen, Geir; Eijsink, Vincent G H

    2017-01-15

    Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this

  5. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries.

    Science.gov (United States)

    Nuttall, S D; Krishnan, U V; Hattarki, M; De Gori, R; Irving, R A; Hudson, P J

    2001-08-01

    The new antigen receptor (NAR) from nurse sharks consists of an immunoglobulin variable domain attached to five constant domains, and is hypothesised to function as an antigen-binding antibody-like molecule. To determine whether the NAR is present in other species we have isolated a number of new antigen receptor variable domains from the spotted wobbegong shark (Orectolobus maculatus) and compared their structure to that of the nurse shark protein. To determine whether these wNARs can function as antigen-binding proteins, we have used them as scaffolds for the construction of protein libraries in which the CDR3 loop was randomised, and displayed the resulting recombinant domains on the surface of fd bacteriophages. On selection against several protein antigens, the highest affinity wNAR proteins were generated against the Gingipain K protease from Porphyromonas gingivalis. One wNAR protein bound Gingipain K specifically by ELISA and BIAcore analysis and, when expressed in E. coli and purified by affinity chromatography, eluted from an FPLC column as a single peak consistent with folding into a monomeric protein. Naturally occurring nurse shark and wobbegong NAR variable domains exhibit conserved cysteine residues within the CDR1 and CDR3 loops which potentially form disulphide linkages and enhance protein stability; proteins isolated from the in vitro NAR wobbegong library showed similar selection for such paired cysteine residues. Thus, the New Antigen Receptor represents a protein scaffold with possible stability advantages over conventional antibodies when used in in vitro molecular libraries.

  6. ANTIGENICITY OF COW'S MILK PROTEINS IN TWO ANIMAL MODELS

    OpenAIRE

    T.R. Neyestani; M. Djalali M. I'ezeshki

    2000-01-01

    Antigenicity of proteins found in cow's milk is age dependent. This is primarily due to infants possessing a more permeable intestinal wall than that in adults. Thus infants may acquire cow's milk allergy during their first year of life. While milk antigen specific IgE may cause allergy in susceptible subjects, there is some evidence indicating that milk antigen specific IgG may play some role in chronic disease development. The puropose of this study was to determine the antigenicity of cow'...

  7. Protein C activity and antigen levels in childhood

    NARCIS (Netherlands)

    van Teunenbroek, A.; Peters, M.; Sturk, A.; Borm, J. J.; Breederveld, C.

    1990-01-01

    Hereditary protein C deficiency is an important risk factor for thrombosis. To enable its diagnosis shortly after birth, we determined reference values of protein C antigen and activity levels for the first 3 months of life. To establish an age-related range of protein C levels we also determined

  8. Antigenic profile and localization of Clonorchis sinensis proteins in the course of infection

    Science.gov (United States)

    Kim, Tae Yun; Song, Kye-Yong; Sohn, Woon-Mok; Kang, Shin-Yong

    2001-01-01

    In the course of Clonorchis sinensis infection, antigens presented to the hosts may be in a close relation to growth of the fluke. The antigenic proteins stimulating IgG antibody production were chronologically identified by immunoblot and localized by immunohistochemical staining. In the early stage of infection until 12 weeks post-infection (PI), antigens were proteins with molecular mass larger than 34 kDa which were derived from the tegument, testes and intrauterine eggs. After 20 weeks PI, antigens recognized were 29, 27 and 26 kDa proteins from the intestine, excretory bladder and reproductive organs. It is suggested that the tegumental proteins are the most potent antigens and the excretory-secretory proteins with middle molecular mass of 26-45 kDa contribute to the high level production of antibodies after 20 weeks of the C. sinensis infection. PMID:11775331

  9. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics.

    Directory of Open Access Journals (Sweden)

    Kristian E Swearingen

    2016-04-01

    Full Text Available Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP, conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens.

  10. Comparative characteristic of the methods of protein antigens epitope mapping

    Directory of Open Access Journals (Sweden)

    O. Yu. Galkin

    2014-08-01

    Full Text Available Comparative analysis of experimental methods of epitope mapping of protein antigens has been carried out. The vast majority of known techniques are involved in immunochemical study of the interaction of protein molecules or peptides with antibodies of corresponding specifici­ty. The most effective and widely applicable metho­dological techniques are those that use synthetic and genetically engineered peptides. Over the past 30 years, these groups of methods have travelled a notable evolutionary path up to the maximum automation and the detection of antigenic determinants of various types (linear and conformational epitopes, and mimotopes. Most of epitope searching algorithms were integrated into a computer program, which greatly facilitates the analysis of experimental data and makes it possible to create spatial models. It is possible to use comparative epitope mapping for solving the applied problems; this less time-consuming method is based on the analysis of competition between different antibodies interactions with the same antigen. The physical method of antigenic structure study is X-ray analysis of antigen-antibody complexes, which may be applied only to crystallizing­ proteins, and nuclear magnetic resonance.

  11. The value of serum Hepatitis B surface antigen quantification in ...

    African Journals Online (AJOL)

    The value of serum Hepatitis B surface antigen quantification in determining viralactivity in chronic Hepatitis B virus infection. ... ofCHB andalso higher in hepatitis e antigen positive patients compared to hepatitis e antigen negative patients.

  12. Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats

    Directory of Open Access Journals (Sweden)

    Adler Joël

    2007-12-01

    Full Text Available Abstract Background Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. Results We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. Conclusion Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.

  13. Identification of Surface Exposed Elementary Body Antigens of ...

    African Journals Online (AJOL)

    This study sought to identify the surface exposed antigenic components of Cowdria ruminantium elementary body (EB) by biotin labeling, determine effect of reducing and non-reducing conditions and heat on the mobility of these antigens and their reactivity to antibodies from immunized animals by Western blotting.

  14. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  15. Concurrence of hepatitis B surface antibodies and surface antigen: implications for postvaccination control of health care workers

    NARCIS (Netherlands)

    Zaaijer, Hans L.; Lelie, P. N.; Vandenbroucke-Grauls, C. M. J. E.; Koot, M.

    2002-01-01

    Among 1081 persons testing positive for hepatitis B surface antigen, 106 (10%) tested positive for antibodies to surface antigen (anti-HBs) in the same blood sample. Thirty of these persons were studied in detail: seven tested positive for hepatitis B e-antigen, nine were apparently healthy blood

  16. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber

    2013-01-01

    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...... of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB)....

  17. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display.

    Directory of Open Access Journals (Sweden)

    Tim J Schuijt

    2011-01-01

    Full Text Available Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.

  18. Facile Photoimmobilization of Proteins onto Low-Binding PEG-Coated Polymer Surfaces

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Mikkelsen, Morten Bo Lindholm; Larsen, Niels Bent

    2014-01-01

    was verified for both enzymes and antibodies, and their presence on the surface was confirmed by X-ray photoelectron spectroscopy (XPS) and confocal fluorescence microscopy. Conjugation of capture antibody onto the PEG coating was employed for a simplified ELISA protocol without the need for blocking uncoated...... surface areas, showing ng/mL sensitivity to a cytokine antigen target. Moreover, spatially patterned attachment of fluorescently labeled protein onto the low-binding PEG-coated surface was achieved with a projection lithography system that enabled the creation of micrometer-sized protein features....

  19. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based

  20. Antigen presentation by hapten-specific B lymphocytes. II. Specificity and properties of antigen-presenting B lymphocytes, and function of immunoglobulin receptors

    International Nuclear Information System (INIS)

    Abbas, A.K.; Haber, S.; Rock, K.L.

    1985-01-01

    Studies were designed to examine the ability of hapten-binding murine B lymphocytes to present hapten-protein conjugates to protein antigen-specific, Ia-restricted T cell hybridomas. BALB/c B cells specific for TNP or FITC presented hapten-modified proteins (TNP-G1 phi, TNP-OVA, or FITC-OVA) to the relevant T cell hybridomas at concentrations below 0.1 microgram/ml. Effective presentation of the same antigens by B lymphocyte-depleted splenocytes, and of unmodified proteins by either hapten-binding B cells or Ig spleen cells, required about 10(3)-to 10(4)-fold higher concentrations of antigen. The use of two different haptens and two carrier proteins showed that this extremely efficient presentation of antigen was highly specific, with hapten specificity being a property of the B cells and carrier specificity of the responding T cells. The presentation of hapten-proteins by hapten-binding B lymphocytes was radiosensitive and was not affected by the depletion of plastic-adherent cells, suggesting that conventional APCs (macrophages or dendritic cells) are not required in this phenomenon. Antigen-pulsing and antibody-blocking experiments showed that this hapten-specific antigen presentation required initial binding of antigen to surface Ig receptors. Moreover, linked recognition of hapten and carrier determinants was required, but these recognition events could be temporally separated. Finally, an antigen-processing step was found to be necessary, and this step was disrupted by ionizing radiation. These data suggest a role for B cell surface Ig in providing a specific high-affinity receptor to allow efficient uptake or focusing of antigen for its subsequent processing and presentation to T lymphocytes

  1. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in healthy mice...... ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...

  2. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var...

  3. Differential antigenic protein recovery from Taenia solium cyst tissues using several detergents.

    Science.gov (United States)

    Navarrete-Perea, José; Orozco-Ramírez, Rodrigo; Moguel, Bárbara; Sciutto, Edda; Bobes, Raúl J; Laclette, Juan P

    2015-07-01

    Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). The protein extracts of T. solium cysts are complex mixtures including cyst's and host proteins. Little is known about the influence of using different detergents in the efficiency of solubilization-extraction of these proteins, including relevant antigens. Here, we describe the use of CHAPS, ASB-14 and Triton X-100, alone or in combination in the extraction buffers, as a strategy to notably increase the recovery of proteins that are usually left aside in insoluble fractions of cysts. Using buffer with CHAPS alone, 315 protein spots were detected through 2D-PAGE. A total of 255 and 258 spots were detected using buffers with Triton X-100 or ASB-14, respectively. More protein spots were detected when detergents were combined, i.e., 2% CHAPS, 1% Triton X-100 and 1% ASB-14 allowed detection of up to 368 spots. Our results indicated that insoluble fractions of T. solium cysts were rich in antigens, including several glycoproteins that were sensitive to metaperiodate treatment. Host proteins, a common component in protein extracts of cysts, were present in larger amounts in soluble than insoluble fractions of cysts proteins. Finally, antigens present in the insoluble fraction were more appropriate as a source of antigens for diagnostic procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neuronal surface antigen antibodies in limbic encephalitis

    Science.gov (United States)

    Graus, F; Saiz, A; Lai, M; Bruna, J; López, F; Sabater, L; Blanco, Y; Rey, M J.; Ribalta, T; Dalmau, J

    2008-01-01

    Objective: To report the frequency and type of antibodies against neuronal surface antigens (NSA-ab) in limbic encephalitis (LE). Methods: Analysis of clinical features, neuropathologic findings, and detection of NSA-ab using immunochemistry on rat tissue and neuronal cultures in a series of 45 patients with paraneoplastic (23) or idiopathic (22) LE. Results: NSA-ab were identified in 29 patients (64%; 12 paraneoplastic, 17 idiopathic). Thirteen patients had voltage-gated potassium channels (VGKC)-ab, 11 novel NSA (nNSA)-ab, and 5 NMDA receptor (NMDAR)-ab. nNSA-ab did not identify a common antigen and were more frequent in paraneoplastic than idiopathic LE (39% vs 9%; p = 0.03). When compared with VGKC-ab or NMDAR-ab, the nNSA associated more frequently with intraneuronal antibodies (11% vs 73%; p = 0.001). Of 12 patients (9 nNSA-ab, 2 VGKC-ab, 1 NMDAR-ab) with paraneoplastic LE and NSA-ab, concomitant intraneuronal antibodies occurred in 9 (75%). None of these 12 patients improved with immunotherapy. The autopsy of three of them showed neuronal loss, microgliosis, and cytotoxic T cell infiltrates in the hippocampus and amygdala. These findings were compatible with a T-cell mediated neuronal damage. In contrast, 13 of 17 (76%) patients with idiopathic LE and NSA-ab (8 VGKC-ab, 4 NMDAR-ab, 1 nNSA-ab) and 1 of 5 (20%) without antibodies had clinical improvement (p = 0.04). Conclusions: In paraneoplastic limbic encephalitis (LE), novel antibodies against neuronal surface antigens (nNSA-ab) occur frequently, coexist with antibodies against intracellular antigens, and these cases are refractory to immunotherapy. In idiopathic LE, the likelihood of improvement is significantly higher in patients with NSA-ab than in those without antibodies. GLOSSARY GAD = glutamic acid decarboxylase; LE = limbic encephalitis; NMDAR = N-methyl-D-aspartate receptor; NSA = neuronal surface antigens; nNSA = novel NSA; SCLC = small-cell lung cancer; VGKC = voltage-gated potassium channels

  5. Cell Wall-Associated Protein Antigens of Streptococcus salivarius: Purification, Properties, and Function in Adherence

    OpenAIRE

    Weerkamp, Anton H.; Jacobs, Ton

    1982-01-01

    Three cell wall-associated protein antigens (antigens b, c, and d) were isolated from mutanolysin-solubilized cell walls of Streptococcus salivarius HB and purified to apparent homogeneity by a combination of ion-exchange chromatography, gel filtration, and immunoadsorption chromatography. Antigens b and c were also isolated from culture supernatants. Antigen b consisted of more than 80% protein and had an apparent molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel el...

  6. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    Science.gov (United States)

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  7. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...... and permeabilization; indirect labeling of the internal antigen using a secondary antibody tagged with a spectrally distinct fluorescent dye; and detection of the differentially labeled antigens using a laser scanning confocal microscope. The protocol can be completed in approximately 7 h. Although the protocol...... surface antigen labeling on live cells with subsequent fixation and permeabilization, which enables antibodies to penetrate the cell and label internal antigens. The key steps of the protocol are as follows: indirect labeling of the surface antigen using a fluorescently tagged secondary antibody; fixation...

  8. Characterization of antigen association with accessory cells: specific removal of processed antigens from the cell surface by phospholipases

    International Nuclear Information System (INIS)

    Falo, L.D. Jr.; Haber, S.I.; Herrmann, S.; Benacerraf, B.; Rock, K.L.

    1987-01-01

    To characterize the basis for the cell surface association of processed antigen with the antigen-presenting cell (APC) the authors analyzed its sensitivity to enzymatic digestion. Antigen-exposed APC that are treated with phospholipase and then immediately fixed lose their ability to stimulate antigen-plus-Ia-specific T-T hybridomas. This effect is seen with highly purified phospholipase A 2 and phospholipase C. In addition it is observed with three distinct antigens - ovalbumin, bovine insulin, and poly(LGlu 56 LLys 35 LPhe 9 )[(GluLysPhe)/sub n/]. The effect of phospholipases is highly specific. Identically treated APC are equivalent to control in their ability to stimulate alloreactive hybridomas specific for precisely the same Ia molecule that is corecognized by antigen-plus-Ia-specific hybrids. Furthermore, the antigen-presenting function of enzyme-treated, fixed APC can be reconstituted by the addition of exogenous in vitro processed or processing independent antigens. In parallel studies 125 I-labeled avidin was shown to specifically bind to APC that were previously exposed and allowed to process biotin-insulin. Biotin-insulin-exposed APC that are pretreated with phospholipase bind significantly less 125 I-labeled avidin than do untreated, exposed APC. Identical enzyme treatment does not reduce the binding of avidin to a biotinylated antibody already bound to class II major histocompatibility complex molecules of APC. These studies demonstrate that phospholipase effectively removes processed cell surface antigen

  9. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory.

    OpenAIRE

    Marjorie S Morgan; S Dean Rider; Larry G Arlian

    2017-01-01

    Background Scabies, caused by the mite, Sarcoptes scabiei, infects millions of humans, and many wild and domestic mammals. Scabies mites burrow in the lower stratum corneum of the epidermis of the skin and are the source of substances that are antigenic or modulate aspects of the protective response of the host. Ordinary scabies is a difficult disease to diagnose. Objective The goal of this project was to identify S. scabiei proteins that may be candidate antigens for use in a diagnostic test...

  10. Characterization of the carbohydrate components of Taenia solium oncosphere proteins and their role in the antigenicity.

    Science.gov (United States)

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H; Gilman, Robert H

    2013-10-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.

  11. Ultraviolet radiation (UVR) induces cell-surface Ro/SSA antigen expression by human keratinocytes in vitro: a possible mechanism for the UVR induction of cutaneous lupus lesions

    International Nuclear Information System (INIS)

    Jones, S.K.

    1992-01-01

    Antinuclear antibodies are useful markers of connective tissue disease. In this study, UVB but not UVA induced the expression of Ro/SSA antigen on keratinocyte surfaces in vitro. This expression was also found with the extractable nuclear antigens RnP and Sm, but not with single or double-stranded DNA. The expression was prevented by blocking protein synthesis, suggesting that it was an active process. The results suggest that UVB exposure may result in the expression of Ro/SSA antigen on the surfaces of basal keratinocytes in vivo. This antigen could then bind circulating antibody leading to the cutaneous lesions in neonatal and subacute cutaneous lupus erythematosus. (Author)

  12. Developmental expression of a cell surface protein involved in sea urchin skeleton formation

    International Nuclear Information System (INIS)

    Farach, M.C.; Valdizan, M.; Park, H.R.; Decker, G.L.; Lennarz, W.J.

    1986-01-01

    The authors have previously used a monoclonal antibody (1223) to identify a 130 Kd cell surface protein involved in skeleton formation is sea urchin embryos. In the current study the authors have examined the expression of the 1223 antigen over the course of development of embryos of two species, Strongylocentrotus purpuratus and Lytechinus pictus. The 130 Kd protein is detected in S. purp eggs on immunoblots. Labeling with [ 3 H] leucine and immunoaffinity chromatography show that it also is synthesized shortly after fertilization. Immunofluroescence reveals that at this early stage the 1223 antigen is uniformly distributed on all of the cells. Synthesis decreases to a minimum by the time of hatching (18 h), as does the total amount of antigen present in the embryo. A second period of synthesis commences at the mesenchyme blastula stage, when the spicule-forming primary mesenchyme cells (PMCs) have appeared. During this later stage, synthesis and cell surface expression are restricted to the PMCs. In contrast to S. purp., in L. pictus the 130 Kd protein does not appear until the PMCs are formed. Hybrid embryos demonstrate a pattern of expression of the maternal species. These results suggest that early expression of 1223 antigen in S. purp. is due to utilization of maternal transcripts present in the egg. In both species later expression in PMCs appears to be the result of cell-type specific synthesis, perhaps encoded by embryonic transcripts

  13. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens

    International Nuclear Information System (INIS)

    Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F.

    1989-01-01

    The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with 3 H-fatty acids, [ 3 H]ethanolamine, and [ 3 H]carbohydrates. Treatment of 3 H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment

  14. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene

    2014-01-01

    is generally known about how antigens and adjuvants interact at the molecular level. The aim of this study was to elucidate the mechanisms of interactions between the equally sized, but oppositely charged model protein antigens α-lactalbumin and lysozyme, and i) the clinically tested cationic liposomal...... antigens are presented to antigen-presenting cells, and may play an important role for the efficacy of the vaccine-induced immune response. These studies thus exemplify the importance of characterizing the molecular interactions between the vaccine antigen and adjuvant along with immunogenicity......The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...

  15. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  16. Identification of Tumor Antigen AF20 as Glycosylated Transferrin Receptor 1 in Complex with Heat Shock Protein 90 and/or Transporting ATPase.

    Directory of Open Access Journals (Sweden)

    Jason M Shapiro

    Full Text Available We previously isolated AF20, a murine monoclonal antibody that recognizes a cell surface glycoprotein of approximately 90-110 kDa. The AF20 antigen is specifically expressed in human hepatoma and colon cancer cell lines, and thus could serve as a cancer biomarker. To uncover the molecular identity of the AF20 antigen, a combination of ion-exchange chromatography, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis was employed to purify the AF20 antigen followed by trypsin digestion and mass spectrometry. Surprisingly, three host proteins were thus purified from human hepatoma and colon cancer cell lines: transferrin receptor 1 (TFR1, heat shock protein 90 (HSP90, and Na+/K+ ATPase or Mg++ ATPase. Co-immunoprecipitation followed by Western blot analysis confirmed interaction among the three proteins. However, only the cDNA encoding TFR1 conferred strong cell surface staining by the AF20 antibody following its transient transfection into a cell line lacking endogenous AF20. In support of the molecular identity of AF20 as TFR1, diferric but not iron-free transferrin could prevent AF20 antigen-antibody interaction during immunoprecipitation. Moreover, very similar patterns of AF20 and TFR1 overexpression was documented in colon cancer tissues. In conclusion, AF20 is glycosylated TFR1. This finding could explain the molecular structure of AF20, its cell surface localization, as well as overexpression in cancer cells. Glycosylated TFR1 should serve as a usefulness target for anti-cancer therapy, or a vehicle for delivery of anti-tumor drugs with high affinity and specificity. The biological significance of the complex formation between TFR1, HSP90, and/or transporting ATPase warrants further investigation.

  17. A novel merozoite surface antigen of Plasmodium falciparum (MSP-3 identified by cellular-antibody cooperative mechanism antigenicity and biological activity of antibodies

    Directory of Open Access Journals (Sweden)

    Claude Oeuvray

    1994-01-01

    Full Text Available We report the identification of a 48kDa antigen targeted by antibodies which inhibit Plasmodium falciparum in vitro growth by cooperation with blood monocytes in an ADCI assay correlated to the naturally acquired protection. This protein is located on the surface of the merozoite stage of P. falciparum, and is detectable in all isolates tested. Epidemiological studies demonstrated that peptides derived from the amino acid sequence of MSP-3 contain potent B and T-cell epitopes recognized by a majority of individuals living in endemic areas. Moreover human antibodies either purified on the recombinant protein, or on the synthetic peptide MSP-3b, as well as antibodies raised in mice, were all found to promote parasite killing mediated by monocytes.

  18. A radioimmunoassay to screen for antibodies to native conformational antigens and analyse ligand-induced structural states of antigenic proteins

    International Nuclear Information System (INIS)

    Bernotat-Danielowski, S.; Koepsell, H.

    1988-01-01

    A radioimmunoassay is described in which antigenic protein was immobilized by incubating nitrocellulose filters of defined diameter with antigen-containing solutions. Antigenic sites which are sensitive to protein denaturation by drying could be detected with the assay. The assay was also used to screen hybridoma supernatants for antibodies directed against Na + cotransport proteins from renal brush-border membranes. Monoclonal antibodies were selected which showed different binding charactertics depending on whether or not substrates of Na + cotransporters were present. One of the antibodies, which showed different antibody binding after addition of D-glucose or L-lactate, bound to a polypeptide component of the renal N + -D-glucose cotransporter and was able to inhibit Na + gradient-dependent. To investigate the effects of D-glucose and L-lactate on the binding of this antibody concentration dependence was measured. High and low affinity binding sites for D-glucose and L-lactate were characterized thereby demonstrating that the radioimmunoassay permits investigations of the properties of high and low affinity substrate binding sites. (author). refs.; 6 figs.; 2 tabs

  19. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription

    Science.gov (United States)

    Tschan, Serena; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Kremsner, Peter; Frank, Matthias

    2016-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections. PMID:27907004

  20. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  1. Characterization of a Mycobacterium leprae antigen related to the secreted Mycobacterium tuberculosis protein MPT32

    NARCIS (Netherlands)

    Wieles, B.; van Agterveld, M.; Janson, A.; Clark-Curtiss, J.; Rinke de Wit, T.; Harboe, M.; Thole, J.

    1994-01-01

    Secreted proteins may serve as major targets in the immune response to mycobacteria. To identify potentially secreted Mycobacterium leprae antigens, antisera specific for culture filtrate proteins of Mycobacterium tuberculosis were used to screen a panel of recombinant antigens selected previously

  2. Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma

    2011-04-01

    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Science.gov (United States)

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  4. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  5. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV.

    Science.gov (United States)

    Vieira, Monica L; de Morais, Zenaide M; Gonçales, Amane P; Romero, Eliete C; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2010-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    Science.gov (United States)

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-07-01

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  7. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis.

    Directory of Open Access Journals (Sweden)

    Yong Qi

    Full Text Available BACKGROUND: Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF, is an obligate intracellular bacterium. The surface-exposed proteins (SEPs of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. METHODS: R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA. RESULTS: Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. CONCLUSIONS: Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.

  8. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR).

    Science.gov (United States)

    Gomez, Sandra; Adalid-Peralta, Laura; Palafox-Fonseca, Hector; Cantu-Robles, Vito Adrian; Soberón, Xavier; Sciutto, Edda; Fragoso, Gladis; Bobes, Raúl J; Laclette, Juan P; Yauner, Luis del Pozo; Ochoa-Leyva, Adrián

    2015-05-19

    Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest.

  9. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    Science.gov (United States)

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  10. A solid phase radio immunoassay on hydrophobic membrane filters: detection of antibodies to gonocal surface antigens

    International Nuclear Information System (INIS)

    Lambden, P.R.; Watt, P.J.

    1978-01-01

    A solid phase radioimmunoassay (SPRIA) has been developed for detection of IgG antibodies to gonococcal outer membrane components. Gonococcal antigens was immobilised on a solid support by covalent coupling to CNBr-activated Sepharose in the presence of the detergent Triton X-100. Binding of specific antibody to the Sepharose-antigen complex was detected using radiolabelled Protein A as the antiglobulin. Protein A was labelled by radioacetylation with tritiated acetic anhydride, yielding a product of high specific activity and high stability. No detectable loss of activity was observed over a ten month period. The entire assay was performed on Mitex teflon hydrophobic membrane filters which held the Sepharose beads and aqueous supernatant as a discrete drop of liquid. The supernatants and incubation were easily and rapidly removed from the beads by suction on a specially-designed manifold system. This procedure removed the need for repeated and time-consuming centrifugations. Titres were obtained graphically from double log plots of cpm bound versus antiserum dilution by extrapolation of the straight line to a point corresponding to twice the control level of radioactivity binding. The assay proved to be a very reliable and simple procedure for the detection of IgG antibodies to gonococcal surface antigens. (Auth.)

  11. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ

    International Nuclear Information System (INIS)

    Zhang Benyue; Li Ping; Wang Exing; Brahmi, Zacharie; Dunn, Kenneth W.; Blum, Janice S.; Roman, Ann

    2003-01-01

    Major histocompatibility complex (MHC) class II antigens are expressed on human foreskin keratinocytes (HFKs) following exposure to interferon gamma. The expression of MHC class II proteins on the cell surface may allow keratinocytes to function as antigen-presenting cells and induce a subsequent immune response to virus infection. Invariant chain (Ii) is a chaperone protein which plays an important role in the maturation of MHC class II molecules. The sequential degradation of Ii within acidic endocytic compartments is a key process required for the successful loading of antigenic peptide onto MHC class II molecules. Since human papillomavirus (HPV) 16 E5 can inhibit the acidification of late endosomes in HFKs, the E5 protein may be able to affect proper peptide loading onto the MHC class II molecule. To test this hypothesis, HFKs were infected with either control virus or a recombinant virus expressing HPV16 E5 and the infected cells were subsequently treated with interferon-γ. ELISAs revealed a decrease of MHC class II expression on the surface of E5-expressing cells compared with control virus-infected cells after interferon treatment. Western blot analysis showed that, in cells treated with interferon gamma, E5 could prevent the breakdown of Ii and block the formation of peptide-loaded, SDS-stable mature MHC class II dimers, correlating with diminished surface MHC class II expression. These data suggest that HPV16 E5 may be able to decrease immune recognition of infected keratinocytes via disruption of MHC class II protein function

  12. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies.

    Science.gov (United States)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-11-15

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 °C without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies against Salmonella typhimurium and Salmonella dublin. The presented method was compared with a similar method for conjugation of Salmonella polysaccharide antigens to surfaces. Here, the new method showed higher antigen coupling efficiency by detecting low concentrations of antibodies. Furthermore, the polysaccharide-conjugated beads showed preserved bioactivity after 1 year of use. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Antibodies to variant antigens on the surfaces of infected erythrocytes are associated with protection from malaria in Ghanaian children

    DEFF Research Database (Denmark)

    Dodoo, D; Staalsoe, T; Giha, H

    2001-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of infected erythrocytes. Each parasite genome contains about 40 PfEMP1 genes, but only 1 PfEMP1 gene is expressed at a given time. PfEMP1 serves as a parasite-sequestering ligand to endoth...

  14. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...... was time- and dose-dependent. A brief treatment solely of the accessory cells with the drug compromised their ability to stimulate primed T cells in a subsequent culture provided the accessory cells were treated with chloroquine before their exposure to the antigen. These results suggest that chloroquine...... acts on an early event in the antigen handling by accessory cells. Chloroquine is a well known inhibitor of lysosomal proteolysis, and it is likely that its effect on antigen presentation is caused by an inhibition of antigen degradation....

  15. Role of Streptococcus mutans surface proteins for biofilm formation

    Directory of Open Access Journals (Sweden)

    Michiyo Matsumoto-Nakano

    2018-02-01

    Full Text Available Summary: Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. An important virulence property of the bacterium is its ability to form biofilm known as dental plaque on tooth surfaces. In addition, this organism also produces glucosyltransferases, multiple glucan-binding proteins, protein antigen c, and collagen-binding protein, surface proteins that coordinate to produce dental plaque, thus inducing dental caries. Bacteria utilize quorum-sensing systems to modulate environmental stress responses. A major mechanism of response to signals is represented by the so called two-component signal transduction system, which enables bacteria to regulate their gene expression and coordinate activities in response to environmental stress. As for S. mutans, a signal peptide-mediated quorum-sensing system encoded by comCDE has been found to be a regulatory system that responds to cell density and certain environmental stresses by excreting a peptide signal molecule termed CSP (competence-stimulating peptide. One of its principal virulence factors is production of bacteriocins (peptide antibiotics referred to as mutacins. Two-component signal transduction systems are commonly utilized by bacteria to regulate bacteriocin gene expression and are also related to biofilm formation by S. mutans. Keywords: Streptococcus mutans, Surface proteins, Biofilm, Signal transduction

  16. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1.

    Science.gov (United States)

    Crowdus, Carolyn A; Marsh, Antoinette E; Saville, Willliam J; Lindsay, David S; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2008-11-25

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.

  17. Protein antigenic structures recognized by T cells: potential applications to vaccine design.

    Science.gov (United States)

    Berzofsky, J A; Cease, K B; Cornette, J L; Spouge, J L; Margalit, H; Berkower, I J; Good, M F; Miller, L H; DeLisi, C

    1987-08-01

    In summary, our results using the model protein antigen myoglobin indicated, in concordance with others, that helper T lymphocytes recognize a limited number of immunodominant antigenic sites of any given protein. Such immunodominant sites are the focus of a polyclonal response of a number of different T cells specific for distinct but overlapping epitopes. Therefore, the immunodominance does not depend on the fine specificity of any given clone of T cells, but rather on other factors, either intrinsic or extrinsic to the structure of the antigen. A major extrinsic factor is the MHC of the responding individual, probably due to a requirement for the immunodominant peptides to bind to the MHC of presenting cells in that individual. In looking for intrinsic factors, we noted that both immunodominant sites of myoglobin were amphipathic helices, i.e., helices having hydrophilic and hydrophobic residues on opposite sides. Studies with synthetic peptides indicated that residues on the hydrophilic side were necessary for T-cell recognition. However, unfolding of the native protein was shown to be the apparent goal of processing of antigen, presumably to expose something not already exposed on the native molecule, such as the hydrophobic sides of these helices. We propose that such exposure is necessary to interact with something on the presenting cell, such as MHC or membrane, where we have demonstrated the presence of antigenic peptides by blocking of presentation of biotinylated peptide with avidin. The membrane may serve as a short-term memory of peptides from antigens encountered by the presenting cell, for dynamic sampling by MHC molecules to be available for presentation to T cells. These ideas, together with the knowledge that T-cell recognition required only short peptides and therefore had to be based only on primary or secondary structure, not tertiary folding of the native protein, led us to propose that T-cell immunodominant epitopes may tend to be amphipathic

  18. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    International Nuclear Information System (INIS)

    Holers, V.M.; Kotzin, B.L.

    1985-01-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases

  19. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form.

    Science.gov (United States)

    Smith, Mark L; Mason, Hugh S; Shuler, Michael L

    2002-12-30

    The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.

  20. Genomic Characterization of Variable Surface Antigens Reveals a Telomere Position Effect as a Prerequisite for RNA Interference-Mediated Silencing in Paramecium tetraurelia

    Science.gov (United States)

    Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut

    2014-01-01

    ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173

  1. Expression and Antigenic Evaluation of VacA Antigenic Fragment of Helicobacter Pylori

    Science.gov (United States)

    Hasanzadeh, Leila; Ghaznavi-Rad, Ehsanollah; Soufian, Safieh; Farjadi, Vahideh; Abtahi, Hamid

    2013-01-01

    Objective(s) : Helicobacter pylori, a human specific gastric pathogen is a causative agent of chronic active gastritis. The vacuolating cytotoxin (VacA) is an effective virulence factor involved in gastric injury. The aim of this study was to construct a recombinant protein containing antigenic region of VacA gene and determine its antigenicity. Materials and Methods: The antigenic region of VacA gene was detected by bioinformatics methods. The polymerase chain reaction method was used to amplify a highly antigenic region of VacA gene from chromosomal DNA of H. pylori. The eluted product was cloned into the prokaryotic expression vector pET32a. The target protein was expressed in the Escherichia coli BL21 (DE3) pLysS. The bacteria including pET32a-VacA plasmids were induced by IPTG. The antigenicity was finally studied by western blotting using sera of 15 H. pylori infected patients after purification. Results: Enzyme digestion analysis, PCR and DNA sequencing results showed that the target gene was inserted correctly into the recombinant vector. The expressed protein was purified successfully via affinity chromatography. Data indicated that antigenic region of VacA protein from Helicobacter pylori was recognized by all 15 patient’s sera. Conclusion : Our data showed that antigenic region of VacA protein can be expressed by in E. co.li. This protein was recognized by sera patients suffering from H. pylori infection. the recombinant protein has similar epitopes and close antigenic properties to the natural form of this antigen. Recombinant antigenic region of VacA protein also seems to be a promising antigen for protective and serologic diagnosis . PMID:23997913

  2. Expression and Antigenic Evaluation of VacA Antigenic Fragment of Helicobacter Pylori

    Directory of Open Access Journals (Sweden)

    Leila Hasanzadeh

    2013-07-01

    Full Text Available Objective(s: Helicobacter pylori, a human specific gastric pathogen is a causative agent of chronic active gastritis. The vacuolating cytotoxin (VacA is an effective virulence factor involved in gastric injury. The aim of this study was to construct a recombinant protein containing antigenic region of VacA gene and determine its antigenicity.   Materials and Methods: The antigenic region of VacA gene was detected by bioinformatics methods. The polymerase chain reaction method was used to amplify a highly antigenic region of VacA gene from chromosomal DNA of H. pylori. The eluted product was cloned into the prokaryotic expression vector pET32a. The target protein was expressed in the Escherichia coli BL21 (DE3 pLysS. The bacteria including pET32a-VacA plasmids were induced by IPTG. The antigenicity was finally studied by western blotting using sera of 15 H. pylori infected patients after purification. Results: Enzyme digestion analysis, PCR and DNA sequencing results showed that the target gene was inserted correctly into the recombinant vector. The expressed protein was purified successfully via affinity chromatography. Data indicated that antigenic region of VacA protein from Helicobacter pylori was recognized by all 15 patient’s sera. Conclusion : Our data showed that antigenic region of VacA protein can be expressed by in E. co.li. This protein was recognized by sera patients suffering from H. pylori infection. the recombinant protein has similar epitopes and close antigenic properties to the natural form of this antigen. Recombinant antigenic region of VacA protein also seems to be a promising antigen for protective and serologic diagnosis .

  3. Prevalence of Hepatitis B surface antigen among pregnant women ...

    African Journals Online (AJOL)

    Prevalence of Hepatitis B surface antigen among pregnant women attending antenatal ... Majigo Mtebe, Nyambura Moremi, Jeremiah Seni, Stephen E. Mshana. Abstract. In developing countries there is no routine screening of hepatitis B virus ...

  4. A Genetically Encoded pH Sensor for Tracking Surface Proteins through Endocytosis**

    OpenAIRE

    Grover, Anmol; Schmidt, Brigitte F.; Salter, Russell D.; Watkins, Simon C.; Waggoner, Alan S.; Bruchez, Marcel P.

    2012-01-01

    We have combined our fluorogen activating peptide[1] with a new tandem dye molecule to develop a biosensor that labels a cell-surface protein and displays an easily detectable pH dependent emission color change by efficient intramolecular Förster resonant energy transfer. This probe has demonstrated pH variations in β2-adrenergic receptor trafficking and revealed a process of surface to endosome inter-cellular transfer in dendritic cells with potential significance in antigen transfer.

  5. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  6. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable.

    Science.gov (United States)

    Poirier, Danielle; Renaud, Frédéric; Dewar, Vincent; Strodiot, Laurent; Wauters, Florence; Janimak, Jim; Shimada, Toshio; Nomura, Tatsuya; Kabata, Koki; Kuruma, Koji; Kusano, Takayuki; Sakai, Masaki; Nagasaki, Hideo; Oyamada, Takayoshi

    2017-11-01

    Alternatives to syringe-based administration are considered for vaccines. Intradermal vaccination with dissolvable microneedle arrays (MNA) appears promising in this respect, as an easy-to-use and painless method. In this work, we have developed an MNA patch (MNAP) made of hydroxyethyl starch (HES) and chondroitin sulphate (CS). In swines, hepatitis B surface antigen (HBsAg) formulated with the saponin QS-21 as adjuvant, both incorporated in HES-based MNAP, demonstrated the same level of immunogenicity as a commercially available aluminum-adjuvanted HBsAg vaccine, after two immunizations 28 days apart. MNAP application was associated with transient skin reactions (erythema, lump, scab), particularly evident when the antigen was delivered with the adjuvant. The thermostability of the adjuvanted antigen when incorporated in the HES-based matrix was also assessed by storing MNAP at 37, 45 or 50 °C for up to 6 months. We could demonstrate that antigenicity was retained at 37 and 45 °C and only a 10% loss was observed after 6 months at 50 °C. Our results are supportive of MNAP as an attractive alternative to classical syringe-based vaccination. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever.

    Science.gov (United States)

    Tran Vu Thieu, Nga; Trinh Van, Tan; Tran Tuan, Anh; Klemm, Elizabeth J; Nguyen Ngoc Minh, Chau; Voong Vinh, Phat; Pham Thanh, Duy; Ho Ngoc Dan, Thanh; Pham Duc, Trung; Langat, Pinky; Martin, Laura B; Galan, Jorge; Liang, Li; Felgner, Philip L; Davies, D Huw; de Jong, Hanna K; Maude, Rapeephan R; Fukushima, Masako; Wijedoru, Lalith; Ghose, Aniruddha; Samad, Rasheda; Dondorp, Arjen M; Faiz, Abul; Darton, Thomas C; Pollard, Andrew J; Thwaites, Guy E; Dougan, Gordon; Parry, Christopher M; Baker, Stephen

    2017-08-01

    The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. IgM against 12 purified antigens and the Vi polysaccharide was measured by ELISA in plasma from patients with confirmed typhoid fever (n = 32), other confirmed infections (n = 17), and healthy controls (n = 40). ELISAs with the most specific antigens were performed on plasma from 243 patients with undiagnosed febrile disease. IgM against the S. Typhi protein antigens correlated with each other (rho > 0.8), but not against Vi (rho Typhoid patients exhibited higher IgM against 11/12 protein antigens and Vi than healthy controls and those with other infections. Vi, PilL, and CdtB exhibited the greatest sensitivity and specificity. Specificity and sensitivity was improved when Vi was combined with a protein antigen, generating sensitivities and specificities of 0.80 and >0.85, respectively. Applying a dynamic cut-off to patients with undiagnosed febrile disease suggested that 34-58% had an IgM response indicative of typhoid. We evaluated the diagnostic potential of several S. Typhi antigens; our assays give good sensitivity and specificity, but require further assessment in differing patient populations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Simultaneous detection of Hepatitis B surface antigen and its antibody by radioimmunoassay

    International Nuclear Information System (INIS)

    Crouzat-Reynes, Gerard; Perigois, Francois; Lecureuil, Michel; Lejeune, Bernard

    1981-01-01

    The authors describe an original radioimmunoassay which allows the simultaneous detection of hepatitis B surface antigen and its antibody in a biological sample. Antigen and antibody are indiscriminately detected in a first step and then distinguished in a second step using the same reagents [fr

  9. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  10. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    International Nuclear Information System (INIS)

    Patters, M.R.; Landsberg, R.L.; Johansson, L.-A.; Trummel, C.L.; Robertson, P.R.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated 45 Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis. (author)

  11. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    Energy Technology Data Exchange (ETDEWEB)

    Patters, M R; Landsberg, R L; Johansson, L A; Trummel, C L; Robertson, P R [Department of Periodontology, University of Connecticut, School of Dental Medicine, Farmington, Connecticut, U.S.A.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated /sup 45/Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis.

  12. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  13. Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes.

    Science.gov (United States)

    Pajon, Rolando; Yero, Daniel; Niebla, Olivia; Climent, Yanet; Sardiñas, Gretel; García, Darién; Perera, Yasser; Llanes, Alejandro; Delgado, Maité; Cobas, Karem; Caballero, Evelin; Taylor, Stephen; Brookes, Charlotte; Gorringe, Andrew

    2009-12-11

    The difficulty of inducing an effective immune response against the Neisseria meningitidis serogroup B capsular polysaccharide has lead to the search for vaccines for this serogroup based on outer membrane proteins. The availability of the first meningococcal genome (MC58 strain) allowed the expansion of high-throughput methods to explore the protein profile displayed by N. meningitidis. By combining a pan-genome analysis with an extensive experimental validation to identify new potential vaccine candidates, genes coding for antigens likely to be exposed on the surface of the meningococcus were selected after a multistep comparative analysis of entire Neisseria genomes. Eleven novel putative ORF annotations were reported for serogroup B strain MC58. Furthermore, a total of 20 new predicted potential pan-neisserial vaccine candidates were produced as recombinant proteins and evaluated using immunological assays. Potential vaccine candidate coding genes were PCR-amplified from a panel of representative strains and their variability analyzed using maximum likelihood approaches for detecting positive selection. Finally, five proteins all capable of inducing a functional antibody response vs N. meningitidis strain CU385 were identified as new attractive vaccine candidates: NMB0606 a potential YajC orthologue, NMB0928 the neisserial NlpB (BamC), NMB0873 a LolB orthologue, NMB1163 a protein belonging to a curli-like assembly machinery, and NMB0938 (a neisserial specific antigen) with evidence of positive selection appreciated for NMB0928. The new set of vaccine candidates and the novel proposed functions will open a new wave of research in the search for the elusive neisserial vaccine.

  14. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  15. Antigenicity of envelop and non-structural proteins of dengue serotypes and their potentiality to elicit specifi antibody

    Directory of Open Access Journals (Sweden)

    Ramesh Venkatachalam

    2015-06-01

    Full Text Available Objective: To find out the antigenic nature of envelop (E and non-structural (NS proteins and their ability to induce specific antibodies, and to investigate specific antibody produced by specific dengue virus (DENV serotypes. Methods: Amino acid sequences of E and NS proteins of dengue serotypes were analysed by using VaxiJen antigen predicition server. The transmembrane of topology analyses were conducted by using transmembrane prediction using hidden markov models. The Hex dock server was used for docking. Results: The antigenicity score and exomembrane potentiality of E and NS proteins were calculated. All those proteins were antigenic; these antigens were made to interact with antibodies such as immunoglobulin A, immunoglobulin G and immunoglobulin M. Higher energy values of immunoglobulin M were found in DENV-1 and DENV-2, and more energy values were found in immunoglobulin G of DENV-3, DENV-4, NS-1, NS-3 and NS-5. Conclusions: In the present study, DENV-1 and DENV-2 are positive to immunoglobulin M and involved in the primary infection. DENV 3, DENV 4 and all the NS proteins (NS-1, NS-3, NS-5 which elicit immunoglobulin G are involved in the secondary infection.

  16. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  17. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  18. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...... molecules are the questions discussed in this review. To us, the entire concept of processing has appeal not only because it explains some hitherto well-established, but poorly understood, phenomena such as the fact that T lymphocytes focus their attention entirely upon antigens on other cells. It has...

  19. Characterization of the antigenicity of Cpl1, a surface protein of Cryptococcus neoformans var. neoformans.

    Science.gov (United States)

    Cai, Jian-Piao; Liu, Ling-Li; To, Kelvin K W; Lau, Candy C Y; Woo, Patrick C Y; Lau, Susanna K P; Guo, Yong-Hui; Ngan, Antonio H Y; Che, Xiao-Yan; Yuen, Kwok-Yung

    2015-01-01

    Cryptococcus neoformans var. neoformans is an important fungal pathogen. The capsule is a well established virulence factor and a target site for diagnostic tests. The CPL1 gene is required for capsular formation and virulence. The protein product Cpl1 has been proposed to be a secreted protein, but the characteristics of this protein have not been reported. Here we sought to characterize Cpl1. Phylogenetic analysis showed that the Cpl1 of C. neoformans var. neoformans and the Cpl1 orthologs identified in C. neoformans var. grubii and C. gattii formed a distinct cluster among related fungi; while the putative ortholog found in Trichosporon asahii was distantly related to the Cryptococcus cluster. We expressed Cpl1 abundantly as a secreted His-tagged protein in Pichia pastoris. The protein was used to immunize guinea pigs and rabbits for high titer mono-specific polyclonal antibody that was shown to be highly specific against the cell wall of C. neoformans var. neoformans and did not cross react with C. gattii, T. asahii, Aspergillus spp., Candida spp. and Penicillium spp. Using the anti-Cpl1 antibody, we detected Cpl1 protein in the fresh culture supernatant of C. neoformans var. neoformans and we showed by immunostaining that the Cpl1 protein was located on the surface. The Cpl1 protein is a specific surface protein of C. neoformans var. neoformans. © 2015 by The Mycological Society of America.

  20. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Aleksey Kubanov

    2017-01-01

    Full Text Available The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.

  1. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects.

    Science.gov (United States)

    Kubanov, Aleksey; Runina, Anastassia; Deryabin, Dmitry

    2017-01-01

    The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.

  2. On the localisation of antigenic determinants in a Bence Jones protein

    NARCIS (Netherlands)

    Eyk, H.G. van; Myszkowska, K.

    1967-01-01

    1. 1. The presence of a low molecular weight protein (1.2 S), having antigenic determinants in common with the homologous Bence Jones protein (3.4 S), has been observed in the urine of a patient with multiple myeloma. Its amino acid composition and α-NH2-terminal amino acid residue make it likely

  3. Heat shock proteins on the human sperm surface.

    Science.gov (United States)

    Naaby-Hansen, Soren; Herr, John C

    2010-01-01

    The sperm plasma membrane is known to be critical to fertilization and to be highly regionalized into domains of head, mid- and principal pieces. However, the molecular composition of the sperm plasma membrane and its alterations during genital tract passage, capacitation and the acrosome reaction remains to be fully dissected. A two-dimensional gel-based proteomic study previously identified 98 human sperm proteins which were accessible for surface labelling with both biotin and radioiodine. In this report twelve dually labelled protein spots were excised from stained gels or PDVF membranes and analysed by mass spectrometry (MS) and Edman degradation. Seven members from four different heat shock protein (HSP) families were identified including HYOU1 (ORP150), HSPC1 (HSP86), HSPA5 (Bip), HSPD1 (HSP60), and several isoforms of the two testis-specific HSP70 chaperones HSPA2 and HSPA1L. An antiserum raised against the testis-specific HSPA2 chaperone reacted with three 65kDa HSPA2 isoforms and three high molecular weight surface proteins (78-79kDa, 84kDa and 90-93kDa). These proteins, together with seven 65kDa HSP70 forms, reacted with human anti-sperm IgG antibodies that blocked in vitro fertilization in humans. Three of these surface biotinylated human sperm antigens were immunoprecipitated with a rabbit antiserum raised against a linear peptide epitope in Chlamydia trachomatis HSP70. The results indicate diverse HSP chaperones are accessible for surface labelling on human sperm. Some of these share epitopes with C. trachomatis HSP70, suggesting an association between genital tract infection, immunity to HSP70 and reproductive failure. 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Immunity to tumour antigens.

    Science.gov (United States)

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  5. Antigenic stability of pecan [Carya illinoinensis (Wangenh.) K. Koch] proteins: effects of thermal treatments and in vitro digestion.

    Science.gov (United States)

    Venkatachalam, Mahesh; Teuber, Suzanne S; Peterson, W Rich; Roux, Kenneth H; Sathe, Shridhar K

    2006-02-22

    Rabbit polyclonal antibody-based inhibition ELISA as well as immunoblotting analyses of proteins extracted from variously processed pecans (cv. Desirable) indicate that pecan proteins are antigenically stable. Pecan antigens were more sensitive to moist heat than dry heat processing treatments. SDS-PAGE and immunoblotting analysis of the native and heat-denatured proteins that were previously subjected to in vitro simulated gastric fluid digestions indicate that stable antigenic peptides were produced. Both enzyme-to-substrate ratio and digestion time were influential in determining the stability of pecan polypeptides. The stable antigenic polypeptides may serve as useful markers in developing assays suitable for the detection of trace amounts of pecans in foods.

  6. Antibody response to the lipopolysaccharide and protein antigens of Salmonella typhi during typhoid infection

    International Nuclear Information System (INIS)

    Tsang, R.S.W.; Chau, P.Y.; Lam, S.K.

    1981-01-01

    Serum antibody responses to the lipopolysaccharide and protein antigens of S. typhi in typhoid patients were studied using a solid-phase radioimmunoassay technique with 125 I labelled anti-immunoglobulin antibody. Sera from 24 adult typhoid patients and 20 non-typhoid adult controls were compared. As a group, sera from typhoid patients showed increased IgA, IgG and IgM immunoglobulin levels and gave significantly higher anti-LPS and anti-protein antibody titres in all three major immunoglobulin classes than did non-typhoid controls. Levels of antibodies against LPS or protein in sera of typhoid patients were highly variable with a skew distribution. A good correlation was found between antibody titres to the LPS antigen and those to a protein antigen. No correlation, however, was found between the anti-LPS antibody titres measured by radioimmunoassay and the anti-O antibody titres measured by the Widal agglutination test. Titration of anti-LPS or anti-protein antibodies by radioimmunoassay was found to be more sensitive and specific than Widal test for the serological diagnosis of typhoid fever. The advantages of measuring antibody response by radioimmunoassay over conventional Widal test are discussed. (author)

  7. Characterization of surface antigen protein 1 (SurA1) from Acinetobacter baumannii and its role in virulence and fitness.

    Science.gov (United States)

    Liu, Dong; Liu, Zeng-Shan; Hu, Pan; Cai, Ling; Fu, Bao-Quan; Li, Yan-Song; Lu, Shi-Ying; Liu, Nan-Nan; Ma, Xiao-Long; Chi, Dan; Chang, Jiang; Shui, Yi-Ming; Li, Zhao-Hui; Ahmad, Waqas; Zhou, Yu; Ren, Hong-Lin

    2016-04-15

    Acinetobacter baumannii is a Gram-negative bacillus that causes nosocomial infections, such as bacteremia, pneumonia, and meningitis and urinary tract and wound infections. In the present study, the surface antigen protein 1 (SurA1) gene of A. baumannii strain CCGGD201101 was identified, cloned and expressed, and then its roles in fitness and virulence were investigated. Virulence was observed in the human lung cancer cell lines A549 and HEp-2 at one week after treatment with recombinant SurA1. One isogenic SurA1 knock-out strain, GR0015, which was derived from the A. baumannii strain CCGGD201101 isolated from diseased chicks in a previous study, highlighted the effect of SurA1 on fitness and growth. Its growth rate in LB broth and killing activity in human sera were significantly decreased compared with strain CCGGD201101. In the Galleria mellonella insect model, the isogenic SurA1 knock-out strain exhibited a lower survival rate and decreased dissemination. These results suggest that SurA1 plays an important role in the fitness and virulence of A. baumannii. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis....... The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including...

  9. The SnSAG merozoite surface antigens of Sarcocystis neurona are expressed differentially during the bradyzoite and sporozoite life cycle stages.

    Science.gov (United States)

    Gautam, A; Dubey, J P; Saville, W J; Howe, D K

    2011-12-29

    Sarcocystis neurona is a two-host coccidian parasite whose complex life cycle progresses through multiple developmental stages differing at morphological and molecular levels. The S. neurona merozoite surface is covered by multiple, related glycosylphosphatidylinositol-linked proteins, which are orthologous to the surface antigen (SAG)/SAG1-related sequence (SRS) gene family of Toxoplasma gondii. Expression of the SAG/SRS proteins in T. gondii and another related parasite Neospora caninum is life-cycle stage specific and seems necessary for parasite transmission and persistence of infection. In the present study, the expression of S. neurona merozoite surface antigens (SnSAGs) was evaluated in the sporozoite and bradyzoite stages. Western blot analysis was used to compare SnSAG expression in merozoites versus sporozoites, while immunocytochemistry was performed to examine expression of the SnSAGs in merozoites versus bradyzoites. These analyses revealed that SnSAG2, SnSAG3 and SnSAG4 are expressed in sporozoites, while SnSAG5 was appeared to be downregulated in this life cycle stage. In S. neurona bradyzoites, it was found that SnSAG2, SnSAG3, SnSAG4 and SnSAG5 were either absent or expression was greatly reduced. As shown for T. gondii, stage-specific expression of the SnSAGs may be important for the parasite to progress through its developmental stages and complete its life cycle successfully. Thus, it is possible that the SAG switching mechanism by these parasites could be exploited as a point of intervention. As well, the alterations in surface antigen expression during different life cycle stages may need to be considered when designing prospective approaches for protective vaccination. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Characterization of a 14,000 dalton antigen of Dirofilaria immitis infective third stage larvae

    International Nuclear Information System (INIS)

    Fuller, S.A.; Cachia, P.J.; Wong, M.M.; Hurrell, J.G.R.

    1986-01-01

    Immunogenic proteins of Dirofilaria immitis (canine heartworm) were identified by probing extracts of adult worms or their excretory-secretory proteins (ESP) blotted to nitrocellulose following SDS-PAGE with control or infected dog sera. A 14,000 dalton antigen (a prominent component of ESP by protein staining) was consistently recognized both in extracts and ESP by dog sera as early as three months post infection. This indicates a larval origin for the antigen since no adult worms are present until approximately five months post infection. Monoclonal antibodies (MAbs) prepared against the 14,000 dalton antigen confirmed by immunoblotting that this antigen is expressed by infective third stage larvae, adults and microfilariae and is present intact in the sera of infected dogs. Surface-labelling of whole adult D. immitis with Na 125 I produced radiolabelled antigens closely corresponding to those of ESP. An anti-14,000 dalton MAb was able to immunoprecipitate radiolabelled antigen which strongly suggest a surface or membrane location in the intact organism. Gel filtration data suggests that the protein is a native monomer. A MAb-affinity column has been used to purify the 14,000 dalton antigen to at least 98% homogeneity in one step from crude worm extracts. Further fractionation by HPLC yields a homogeneous preparation. Amino acid analysis and the N-terminal amino acid sequence data will be presented

  11. Molecular analysis of Toxoplasma gondii Surface Antigen 1 (SAG1) gene cloned from Toxoplasma gondii DNA isolated from Javanese acute toxoplasmosis

    Science.gov (United States)

    Haryati, Sri; Agung Prasetyo, Afiono; Sari, Yulia; Dharmawan, Ruben

    2018-05-01

    Toxoplasma gondii Surface Antigen 1 (SAG1) is often used as a diagnostic tool due to its immunodominant-specific as antigen. However, data of the Toxoplasma gondii SAG1 protein from Indonesian isolate is limited. To study the protein, genomic DNA was isolated from a Javanese acute toxoplasmosis blood samples patient. A complete coding sequence of Toxoplasma gondii SAG1 was cloned and inserted into an Escherichia coli expression plasmid and sequenced. The sequencing results were subjected to bioinformatics analysis. The Toxoplasma gondii SAG1 complete coding sequences were successfully cloned. Physicochemical analysis revealed the 336 aa of SAG1 had 34.7 kDa of weight. The isoelectric point and aliphatic index were 8.4 and 78.4, respectively. The N-terminal methionine half-life in Escherichia coli was more than 10 hours. The antigenicity, secondary structure, and identification of the HLA binding motifs also had been discussed. The results of this study would contribute information about Toxoplasma gondii SAG1 and benefits for further works willing to develop diagnostic and therapeutic strategies against the parasite.

  12. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  13. Characterization of SeseC_01411 as a surface protective antigen of Streptococcus equi ssp. zooepidemicus.

    Science.gov (United States)

    Xie, Honglin; Wei, Zigong; Ma, Chunquan; Li, Shun; Liu, Xiaohong; Fu, Qiang

    2018-06-01

    Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is a commensal bacterium related to opportunistic infections of many species, including humans, dogs, cats, and pigs. SeseC_01411 has been proven to be immunogenic. However, its protective efficacy remained to be evaluated. In the present study, the purified recombinant SeseC_01411 could elicit a strong humoral antibody response and protect against lethal challenge with virulent SEZ in mice. Our finding confirmed that SeseC_01411 distributes on the surface of SEZ. In addition, the hyperimmune sera against SeseC_01411 could efficiently kill the bacteria in the phagocytosis test. The present study identified the immunogenic protein, SeseC_01411, as a novel surface protective antigen of SEZ. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen.

    Science.gov (United States)

    Donadei, Agnese; Gallorini, Simona; Berti, Francesco; O'Hagan, Derek T; Adamo, Roberto; Baudner, Barbara C

    2015-05-04

    The potential benefits of skin delivery of vaccines derive from the presence of a densely connected network of antigen presenting cells in the skin layer, most significantly represented by Langerhans cells and dermal dendritic cells. Targeting these cells by adjuvant conjugated to an antigen should result in enhanced immunogenicity of a vaccine. Since one of the most widely used adjuvants is an insoluble salt of aluminum (aluminum hydroxide) that cannot be used for skin delivery due to reactogenicity, we focused our attention on agonists of receptors present on skin dendritic cells, including the Dectin-1 receptor. β-(1-3)-glucans, which are the most abundant components of the fungal surface, are known to activate the innate immune response by interaction with the C-type lectin-like Dectin-1 receptor. In this work we identified by rational design a well-defined synthetic β-(1-3)-glucan hexasaccharide as a Dectin-1 agonist and chemically conjugated it to the genetically detoxified diphtheria toxin (CRM197) protein antigen, as a means to increase the binding to Dectin-1 receptor and to target to skin dendritic cells. We demonstrated that the in vitro activation of the receptor was significantly impacted by the presentation of the glucan on the protein carrier. In vivo results in mice showed that the conjugation of the synthetic β-(1-3)-glucan when delivered intradermally resulted in higher antibody titers in comparison to intramuscular (i.m.) immunization and was not different from subcutaneous (s.c.) delivery. These findings suggest that weak receptor binders can be turned into more potent agonists by the multivalent presentation of many ligands covalently conjugated to the protein core. Moreover, this approach is particularly valuable to increase the immunogenicity of antigens administered via skin delivery.

  15. Molecular Cloning and Sequence Analysis of the Sta58 Major Antigen Gene of Rickettsia tsutsugamushi: Sequence homology and Antigenic Comparison of Sta58 to the 60-Kilodalton Family of Stress Proteins

    Science.gov (United States)

    1990-05-01

    encoding the animals have shown that both cellular and humoral immune Sta58 protein antigen in E. coli. DNA sequence analysis of a responses occur after...infection, with the cellular immune 2.9-kilobase (kb) HindIl fragment carrying the Sta58 gene response being required for protection (16, 19, 25, 42...The first evidence of a 60-kDa common HtpB antigen) reacted strongly with protein antigens in the antigen family (Hsp6O) among procaryotes was based

  16. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Science.gov (United States)

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-03-01

    Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  17. Identification of a novel dendritic cell surface antigen defined by carbohydrate specific CD24 antibody cross-reactivity.

    Science.gov (United States)

    Williams, L A; McLellan, A D; Summers, K L; Sorg, R V; Fearnley, D B; Hart, D N

    1996-01-01

    Dendritic cells (DC) are characterized as leucocytes that lack mature lineage specific markers and stimulate naive T-lymphocyte proliferation in vitro and in vivo. The mouse heat stable antigen (HSA) participates in T lymphocyte co-stimulation and is expressed by DC isolated from thymus, skin and spleen. The human HSA homologue, CD24, is predominantly expressed by B lymphocytes and granulocytes, but its expression on DC has not been studied in detail. CD24 clearly participates in B-lymphocyte signalling but co-stimulatory activity for T lymphocytes has not yet been described. We have examined the expression of CD24 on human peripheral blood DC populations isolated directly or following in vitro culture. The CD24 antigen was absent from blood DC however, cross-reactive sialylated carbohydrate epitopes were detected on DC with some CD24 monoclonal antibodies (mAb). These CD24 mAb define a protein surface antigen, which is expressed by an immature or resting subpopulation of peripheral blood DC and is down-regulated following activation differentiation in vitro. PMID:8911149

  18. Exposure of the Plasmodium falciparum clonally variant STEVOR proteins on the merozoite surface

    Directory of Open Access Journals (Sweden)

    Meri Seppo

    2011-03-01

    Full Text Available Abstract Background Plasmodium falciparum merozoites are free invasive forms that invade host erythrocytes in iterative cycles in the presence of different arms of the immune system. Variant antigens are known to play a role in immune evasion and several gene families coding for variant antigens have been identified in P. falciparum. However, none of them have been reported to be expressed on the surface of merozoites. Methods Flow cytometry, immunofluorescence microscopy, and immunoblotting assays were performed to assess surface exposure, membrane association and stage specific expression of the STEVOR family of variants proteins, respectively. Results Using a polyclonal antibody (anti-PFL2610w with a broad specificity towards different STEVOR variants, the STEVOR proteins were identified on the surface of non-permeabilized/non-fixed merozoites in flow cytometry assays. Anti-PFL2610w antibody showed that several STEVORs were expressed in the trophozoite stage of the parasite but only one variant was integrated into the merozoite membrane. Moreover, this antibody failed to identify STEVORs on the surface of the parent schizont infected erythrocytes (IE although they were readily identified when schizont IE were permeabilized. Conclusions These data suggest for a role for STEVOR in immune evasion by P. falciparum merozoites to allow successful invasion of erythrocytes. Additionally, the expression of STEVORs in the schizont stage may only represent a step in the biogenesis process of the merozoite surface coat.

  19. Cell surface antigens of radiation leukemia virus-induced BALB/c leukemias defined by syngeneic cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Oettgen, H.F.; Obata, Yuichi; Nakayama, Eiichi.

    1989-01-01

    Two cell surface antigens of mouse leukemias were defined by BALB/c cytotoxic T lymphocytes (CTL) generated against syngeneic radiation leukemia virus (RadLV)-induced leukemia, BALBRV1 or BALBRVD. Hyperimmunization of BALB/c mice with irradiated leukemias followed by in vitro sensitization of primed spleen cells resulted in the generation of CTL with high killing activity. The specificity of CTL was examined by direct cytotoxicity assays and competitive inhibition assays. A shared cell surface antigen, designated as BALBRV1 antigen, was detected by BALB/c anti-BALBRV1 CTL. BALBRV1 antigen was expressed not only on RadLV-induced BALB/c leukemias except for BALBRVD, but also on spontaneous or X-ray-induced BALB/c leukemias, chemically-induced leukemias with the H-2 d haplotype and some chemically-induced BALB/c sarcomas. In contrast, a unique cell surface antigen, designated as BALBRVD antigen, was detected by BALB/c anti-BALBRVD CTL. BALBRVD antigen was expressed only on BALBRVD, but not on thirty-nine normal lymphoid or tumor cells. These two antigens could be distinguished from those previously defined on Friend, Moloney, Rauscher or Gross murine leukemia virus (MuLV) leukemias, or MuLV-related antigens. Both cytotoxic responses were blocked by antisera against H-2K d , but not H-2D d . The relationship of BALBRV1 antigen and BALBRVD antigen to endogenous MuLV is discussed with regard to the antigenic distribution on tumor cell lines. (author)

  20. Outer membrane proteins analysis of Shigella sonnei and evaluation of their antigenicity in Shigella infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemavathy Harikrishnan

    Full Text Available Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.

  1. Definition of purified enzyme-linked immunosorbent assay antigens from the culture filtrate protein of Mycobacterium bovis by proteomic analysis.

    Science.gov (United States)

    Cho, Yun Sang; Lee, Sang-Eun; Ko, Young Joon; Cho, Donghee; Lee, Hyang Shim; Hwang, Inyeong; Nam, Hyangmi; Heo, Eunjung; Kim, Jong Man; Jung, Sukchan

    2009-01-01

    Enzyme-linked immunosorbent assay (ELISA) has been developed as the ancillary diagnosis of bovine tuberculosis at ante-mortem to overcome the disadvantages of intradermal skin test. In this study, the antigenic proteins were purified, applied to bTB ELISA, and identified through proteomic analysis. Culture filtrate protein of Mycobacterium bovis was fractionated by MonoQ column chromatography, and examined the antigenicity by immunoblotting. The antigenic 20 kDa protein was in-gel digested and identified the antigenome by LTQ mass spectrometer and peptide match fingerprinting, which were MPB64, MPB70, MPB83, Fas, Smc, Nrp, RpoC, Transposase, LeuA, and MtbE. The 20 kDa protein exhibited the highest antigenicity to bTB positive cattle in ELISA and would be useful for bTB serological diagnosis.

  2. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma.

    Science.gov (United States)

    Thuring, Camilla; Follin, Elna; Geironson, Linda; Freyhult, Eva; Junghans, Victoria; Harndahl, Mikkel; Buus, Søren; Paulsson, Kajsa M

    2015-09-15

    Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.

  3. Improved detection of equine antibodies against Sarcocystis neurona using polyvalent ELISAs based on the parasite SnSAG surface antigens.

    Science.gov (United States)

    Yeargan, Michelle R; Howe, Daniel K

    2011-02-28

    Equine protozoal myeloencephalitis (EPM) is a common neurologic disease of horses that is caused by the apicomplexan pathogen Sarcocystis neurona. To help improve serologic diagnosis of S. neurona infection, we have modified existing enzyme-linked immunosorbent assays (ELISAs) based on the immunogenic parasite surface antigens SnSAG2, SnSAG3, and SnSAG4 to make the assays polyvalent, thereby circumventing difficulties associated with parasite antigenic variants and diversity in equine immune responses. Two approaches were utilized to achieve polyvalence: (1) mixtures of the individual recombinant SnSAGs (rSnSAGs) were included in single ELISAs; (2) a collection of unique SnSAG chimeras that fused protein domains from different SnSAG surface antigens into a single recombinant protein were generated for use in the ELISAs. These new assays were assessed using a defined sample set of equine sera and cerebrospinal fluids (CSFs) that had been characterized by Western blot and/or were from confirmed EPM horses. While all of the polyvalent ELISAs performed relatively well, the highest sensitivity and specificity (100%/100%) were achieved with assays containing the rSnSAG4/2 chimera (Domain 1 of SnSAG4 fused to SnSAG2) or using a mixture of rSnSAG3 and rSnSAG4. The rSnSAG4 antigen alone and the rSnSAG4/3 chimera (Domain 1 of SnSAG4 fused to Domain 2 of SnSAG3) exhibited the next best accuracy at 95.2% sensitivity and 100% specificity. Binding ratios and percent positivity (PP) ratios, determined by comparing the mean values for positive versus negative samples, showed that the most advantageous signal to noise ratios were provided by rSnSAG4 and the rSnSAG4/3 chimera. Collectively, our results imply that a polyvalent ELISA based on SnSAG4 and SnSAG3, whether as a cocktail of two proteins or as a single chimeric protein, can give optimal results in serologic testing of serum or CSF for the presence of antibodies against S. neurona. The use of polyvalent SnSAG ELISAs will

  4. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.

    Science.gov (United States)

    Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E

    2018-02-01

    Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.

  5. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Patrycja Anna Kobierecka

    2016-02-01

    Full Text Available Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered

  6. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  7. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    International Nuclear Information System (INIS)

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-01-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility

  8. [Expression, purification and protective antigen analysis of cell wall protein MRP of Streptococcus suis type 2].

    Science.gov (United States)

    Wang, Ping-ping; Pian, Ya-ya; Yuan, Yuan; Zheng, Yu-ling; Jiang, Yong-qiang; Xiong, Zheng-ying

    2012-02-01

    To amplify the mrp gene of Streptococcus suis type 2 05ZYH33, express it in E.coli BL21 in order to acquire high purity recombinant protein MRP, then evaluate the protective antigen of recombinant protein MRP. Using PCR technology to obtain the product of mrp gene of 05ZYH33, and then cloned it into the expression vector pET28a(+). The recombinant protein was purified by affinity chromatography, later immunized New Zealand rabbit to gain anti-serum, then test the anti-serum titer by ELISA. The opsonophagocytic killing test demonstrated the abilities of protective antigen of MRP. The truncated of MRP recombinant protein in E.coli BL21 expressed by inclusion bodies, and purified it in high purity. After immunoprotection, the survival condition of CD-1 was significantly elevated. The survival rate of wild-type strain 05ZYH33 in blood was apparently decreased after anti-serum opsonophagocyticed, but the mutant delta; MRP showed no differences. MRP represent an important protective antigen activity.

  9. Selective elution of HLA antigens and beta 2-microglobulin from human platelets by chloroquine diphosphate

    International Nuclear Information System (INIS)

    Kao, K.J.

    1988-01-01

    To determine whether chloroquine can specifically elute HLA antigens and beta 2-microglobulin (beta 2-M) from the platelet surface, quantitative immunofluorescence flow cytometry and monoclonal antibodies were used to show that HLA antigens and beta 2-M were proportionally eluted from the platelet surface without affecting the membrane glycoproteins IIb and IIIa. Second, an autoradiogram of electrophoresed I-125-labeled platelets showed that only beta 2-M but not other I-125-labeled membrane proteins could be eluted. Although HLA antigens were poorly labeled by I-125 and could not be detected on the autoradiogram, the eluted HLA antigens could be detected by anti-HLA monoclonal antibody and immunoblotting techniques. No loss of plasma membrane integrity was observed by transmission electron microscopy after chloroquine treatment of platelets. The results indicate that chloroquine selectively elutes HLA antigens and their noncovalently associated beta 2-M without affecting other integral platelet membrane proteins

  10. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs) such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive-determinants of clinical outcome of P. falciparum malaria. The evide...... of VSAs, and how vaccines based on this type of antigens fit into the current global strategy to reduce, eliminate and eventually eradicate the burden of malaria....

  11. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Science.gov (United States)

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  12. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia

    International Nuclear Information System (INIS)

    Epstein, L.M.; Forney, J.D.

    1984-01-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei

  13. Molecular characteristics of an immobilization antigen gene of the fish-parasitic protozoan Ichthyophthirius multifiliis strain ARS-6

    Science.gov (United States)

    Ichthyophthirius multifiliis, a ciliated protozoan parasite of fish, expresses surface antigens (i-antigens), which react with host antibodies that render them immobile. The nucleotide sequence of an i-antigen gene of Ichthyophthirius multifiliis strain ARS-6 was deduced. The predicted protein of 47...

  14. Prevalence of hepatitis b virus surface antigens (HBsag) and ...

    African Journals Online (AJOL)

    The prevalences of hepatitis B virus surface antigen (HBsAg) and hepatitis C virus (HCV) antibodies were determined in 560 blood donors sera using ELISA kits (DIALAB., Austria). Forty eight (8.57%) of these were positive for hepatitis B virus infection, while 33(5.89%) were positive to hepatitis C virus antibodies. The sex ...

  15. Fast and efficient detection of tuberculosis antigens using liposome encapsulated secretory proteins of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Dileep Tiwari

    2017-04-01

    Conclusion: Our study demonstrated that the newly developed liposome tuberculosis antigen card test detected antigens in our study population with approximately 97.48% sensitivity and 95.79% specificity. This is the first study to report the liposomal encapsulation of culture filtrate proteins from M. tuberculosis for diagnostic application.

  16. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins.

    Science.gov (United States)

    Venkatachalam, M; Teuber, S S; Roux, K H; Sathe, S K

    2002-06-05

    Whole, unprocessed Nonpareil almonds were subjected to a variety of heat processing methods that included roasting (280, 300, and 320 degrees F for 20 and 30 min each; and 335 and 350 degrees F for 8, 10, and 12 min each), autoclaving (121 degrees C, 15 psi, for 5, 10, 15, 20, 25, and 30 min), blanching (100 degrees C for 1, 2, 3, 4, 5, and 10 min), and microwave heating (1, 2, and 3 min). Proteins were extracted from defatted almond flour in borate saline buffer, and immunoreactivity of the soluble proteins (normalized to 1 mg protein/mL for all samples) was determined using enzyme linked immunosorbent assay (ELISA). Antigenic stability of the almond major protein (amandin) in the heat-processed samples was determined by competitive inhibition ELISA using rabbit polyclonal antibodies raised against amandin. Processed samples were also assessed for heat stability of total antigenic proteins by sandwich ELISA using goat and rabbit polyclonal antibodies raised against unprocessed Nonpareil almond total protein extract. ELISA assays and Western blotting experiments that used both rabbit polyclonal antibodies and human IgE from pooled sera indicated antigenic stability of almond proteins when compared with that of the unprocessed counterpart.

  17. Polyclonal cell activity of a repeat peptide derived from the sequence of an 85-kilodalton surface protein of Trypanosoma cruzi trypomastigotes.

    Science.gov (United States)

    Pestel, J; Defoort, J P; Gras-Masse, H; Afchain, D; Capron, A; Tartar, A; Ouaissi, A

    1992-01-01

    Some in vitro and in vivo biological activities of an octadecapeptide derived from an 85-kDa surface protein of Trypanosoma cruzi trypomastigote were studied. The peptide coupled to a carrier protein induced the proliferative response of lymph node cells from mice immunized with various antigens. Moreover, sera from mice immunized with the coupled peptide were found to contain antibodies against a number of self and nonself antigens: fibronectin, bovine serum albumin, myosin, tetanus toxoid, ovalbumin, keyhole limpet hemocyanin, and DNA. These results are discussed in the context of Chagas' disease immunopathology. PMID:1730508

  18. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  19. Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response

    Science.gov (United States)

    2014-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597

  20. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8(+) T cells in an epitope-specific manner.

    Science.gov (United States)

    Riedl, Petra; Reiser, Michael; Stifter, Katja; Krieger, Jana; Schirmbeck, Reinhold

    2014-07-01

    Little is known about whether presentation of endogenous and exogenous hepatitis B virus (HBV) surface antigens on APCs targeted by vaccination and/or virus-harboring hepatocytes influences de novo priming of CD8(+) T cells. We showed that surface antigen-expressing transfectants exclusively display a K(b) /S190 epitope, whereas cells pulsed with recombinant surface particles (rSPs) exclusively present a K(b) /S208 epitope to CD8(+) T cells. The differential presentation of these epitopes largely reflects the selective, but not exclusive, priming of K(b) /S190- and K(b) /S208-specific T cells in C57BL/6 mice by endogenous/DNA- or exogenous/protein-based vaccines, respectively. Silencing the K(b) /S190 epitope (K(b) /S190V194F ) in antigen-expressing vectors rescued the presentation of the K(b) /S208 epitope in stable transfectants and significantly enhanced priming of K(b) /S208-specific T cells in C57BL/6 mice. A K(b) /S190-mediated immunodominance operating in surface antigen-expressing cells, but not in rSP-pulsed cells, led to an efficient suppression in the presentation of the K(b) /S208 epitope and a consequent decrease in the priming of K(b) /S208-specific T cells. This K(b) /S190-mediated immunodominance also operated in 1.4HBV-S(mut) transgenic (tg) hepatocytes selectively expressing endogenous surface antigens and allowed priming of K(b) /S208- but not K(b) /S190-specific T cells in 1.4HBV-S(mut) tg mice. However, IFN-γ(+) K(b) /S208-specific T cells could not inhibit HBV replication in the liver of 1.4HBV-S(mut) tg mice. These results have practical implications for the design of T-cell-stimulating therapeutic vaccines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genetic and antigenic analysis of the G attachment protein of bovine respiratory syncytial virus strains

    DEFF Research Database (Denmark)

    Elvander, M.; Vilcek, S.; Baule, C.

    1998-01-01

    Antigenic and genetic studies of bovine respiratory syncytial virus (BRSV) were made on isolates obtained from three continents over 27 years. Antigenic variation between eight isolates was initially determined using protein G-specific monoclonal antibodies. Four distinct reaction patterns were...... of a 731 nucleotide fragment in the G protein gene. Nine of the BRSV strains were analysed by direct sequencing of RT-PCR amplicons whereas sequences of 18 BRSV and three human respiratory syncytial virus (HRSV) strains were obtained from GenBank. The analysis revealed similarities of 88-100% among BRSV...

  2. Relation between laboratory test results and histological hepatitis activity in individuals positive for hepatitis B surface antigen and antibodies to hepatitis B e antigen

    NARCIS (Netherlands)

    ter Borg, F.; ten Kate, F. J.; Cuypers, H. T.; Leentvaar-Kuijpers, A.; Oosting, J.; Wertheim-van Dillen, P. M.; Honkoop, P.; Rasch, M. C.; de Man, R. A.; van Hattum, J.; Chamuleau, R. A.; Reesink, H. W.; Jones, E. A.

    1998-01-01

    BACKGROUND: Hepatitis B surface antigen (HBsAg) and antibodies to hepatitis B e antigen (anti-HBe) commonly coexist, and laboratory tests are often requested to assess histological hepatitis activity. An optimum panel of tests has not been found and the usefulness of hepatitis B virus (HBV) DNA

  3. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  4. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  5. Shedding of the immunodominant P20 surface antigen of Eimeria bovis sporozoites.

    OpenAIRE

    Speer, C A; Whitmire, W M

    1989-01-01

    P20 is an immunodominant surface antigen of Eimeria bovis sporozoites. As parasites underwent merogony within cultured bovine monocytes and Madin-Darby bovine kidney (MDBK) cells, P20 appeared to be shed gradually by meronts and was absent in type 1 and 2 first-generation merozoites. Meronts of E. bovis appeared to shed P20 into the parasitophorous vacuole of bovine monocytes, whereas MDBK cells evidently released P20 into the culture medium or destroyed its antigenic determinant.

  6. An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever

    NARCIS (Netherlands)

    Tran Vu Thieu, Nga; Trinh van, Tan; Tran Tuan, Anh; Klemm, Elizabeth J.; Nguyen Ngoc Minh, Chau; Voong Vinh, Phat; Pham Thanh, Duy; Ho Ngoc Dan, Thanh; Pham Duc, Trung; Langat, Pinky; Martin, Laura B.; Galan, Jorge; Liang, Li; Felgner, Philip L.; Davies, D. Huw; de Jong, Hanna K.; Maude, Rapeephan R.; Fukushima, Masako; Wijedoru, Lalith; Ghose, Aniruddha; Samad, Rasheda; Dondorp, Arjen M.; Faiz, Abul; Darton, Thomas C.; Pollard, Andrew J.; Thwaites, Guy E.; Dougan, Gordon; Parry, Christopher M.; Baker, Stephen

    2017-01-01

    The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. IgM against 12 purified antigens and the Vi polysaccharide

  7. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    Science.gov (United States)

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony.

    Directory of Open Access Journals (Sweden)

    Anna Bachmann

    Full Text Available Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during

  9. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates.

    Directory of Open Access Journals (Sweden)

    Christy Catherine

    Full Text Available Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA.

  10. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  11. Radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    Energy Technology Data Exchange (ETDEWEB)

    Tax, A; Manson, L A [Wistar Inst. of Anatomy and Biology, Philadelphia, Pa. (USA)

    1976-07-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit /sup 125/I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface.

  12. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  13. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  14. Antigenicity and immunogenicity of a novel Plasmodium vivax circumsporozoite derived synthetic vaccine construct

    DEFF Research Database (Denmark)

    Céspedes, Nora; Jiménez, Eliécer; Lopez-Perez, Mary

    2014-01-01

    BACKGROUND: The circumsporozoite (CS) protein is a major malaria sporozoite surface antigen currently being considered as vaccine candidate. Plasmodium vivax CS (PvCS) protein comprises a dimorphic central repeat fragment flanked by conserved regions that contain functional domains involved in pa...

  15. Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Marleen eVan Coevorden-Hameete

    2016-05-01

    Full Text Available Autoimmune encephalitis (AIE is a group of disorders in which autoantibodies directed at antigens located on the plasma membrane of neurons induce severe neurological symptoms. In contrast to classical paraneoplastic disorders, AIE patients respond well to immunotherapy. The detection of neuronal surface autoantibodies in patients’ serum or CSF therefore has serious consequences for the patients’ treatment and follow-up and requires the availability of sensitive and specific diagnostic tests. This mini-review provides a guideline for both diagnostic and research laboratories that work on the detection of known surface autoantibodies and/or the identification of novel surface antigens. We discuss the strengths and pitfalls of different techniques for anti-neuronal antibody detection: 1 Immunohistochemistry and immunofluorescence on rat/ primate brain sections, 2 Immunocytochemistry of living cultured hippocampal neurons, 3 Cell Based Assay (CBA. In addition, we discuss the use of immunoprecipitation and mass spectrometry analysis for the detection of novel neuronal surface antigens, which is a crucial step in further disease classification and the development of novel CBAs.

  16. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Arnot David E

    2008-06-01

    Full Text Available Abstract Background The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM and a novel labelling and fixation method have been used to obtain high resolution immuno-fluorescent images of erythrocyte surface PfEMP1 and internal antigens which allow analysis of the accumulation of PfEMP1 on the erythrocyte membrane during asexual development. Methods A novel staining technique has been developed which permits distinction between erythrocyte surface PfEMP1 and intracellular PfEMP1, in parasites whose nuclear material is exceptionally well resolved. Primary antibody detection by fluorescence is carried out on the live parasitized erythrocyte. The surface labelled cells are then fixed using paraformaldehyde and permeabilized with a non-ionic detergent to permit access of antibodies to internal parasite antigens. Differentiation between surface and internal antigens is achieved using antibodies labelled with different fluorochromes and confocal microscopy Results Surface exposed PfEMP1 is first detectable by antibodies at the trophozoite stage of intracellular parasite development although the improved detection method indicates that there are differences between different laboratory isolates in the kinetics of accumulation of surface-exposed PfEMP1. Conclusion A sensitive method for labelling surface and internal PfEMP1 with up to three different fluorochromes has been developed for laser scanning confocal optical microscopy and the analysis of the developmental expression of malaria adhesion antigens.

  18. Prevalence of Hepatitis-B Surface Antigen among Blood Donors in ...

    African Journals Online (AJOL)

    Information is scarce on the prevalence of Hepatitis-B Virus (HBV) infection among blood donors in Taraba State. Hepatitis-B surface antigen (HBsAg) ELISA [Gudans Industrial Hong 2 Kou, China] was used to determine the prevalence of HBsAg among 804 blood donors aged between 11 and 65 years in Federal Medical ...

  19. Cloning of a cDNA encoding a surface antigen of Schistosoma mansoni schistosomula recognized by sera of vassinated mice

    International Nuclear Information System (INIS)

    Dalton, J.P.; Tom, T.D.; Strand, M.

    1987-01-01

    Spleen cells of mice vaccinated with radiation-attenuated Schistosoma mansoni cercariae were used to produce monoclonal antibodies directed against newly transformed schistosomular surface antigens. One of these monoclonal antibodies recognized a polypeptide of 18 kDa. Binding was measured by radioimmunoassay. This glycoprotein was purified by monoclonal antibody immunoaffinity chromatography and a polyclonal antiserum was prepared against it. Immunofluorescence assays showed that the polyclonal antiserum bound to the surface of newly transformed schistosomula and lung-stage organisms but not to the surface of liver-stage and adult worms. Using this polyclonal antiserum we isolated recombinant clones from an adult worm cDNA expression library constructed in λgt11. Clone 654.2 contained an insert of 0.52 kilobase and hybridized to a 1.2-kilobase mRNA species from adult worms. Most importantly, clone 654.2 produced a fusion protein of 125 kDa that was reactive with sera of vaccinated mice that are capable of transferring resistance. This result encourages future vaccination trials with the fusion protein

  20. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  1. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  2. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  3. Proteomic analysis of the excretory/secretory products and antigenic proteins of Echinococcus granulosus adult worms from infected dogs.

    Science.gov (United States)

    Wang, Ying; Xiao, Di; Shen, Yujuan; Han, Xiuming; Zhao, Fei; Li, Xiaohong; Wu, Weiping; Zhou, Hejun; Zhang, Jianzhong; Cao, Jianping

    2015-05-21

    Cystic echinococcosis, which is caused by Echinococcus granulosus, is one of the most widespread zoonotic helminth diseases that affects humans and livestock. Dogs, which harbor adult worms in their small intestines, are a pivotal source of E. granulosus infection in humans and domestic animals. Therefore, novel molecular approaches for the prevention and diagnosis of this parasite infection in dogs need to be developed. In this study, we performed proteomic analysis to identify excretory/secretory products (ES) and antigenic proteins of E. granulosus adult worms using two-dimensional electrophoresis, tandem matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF), and Western blotting of sera from infected dogs. This study identified 33 ES product spots corresponding to 9 different proteins and 21 antigenic protein spots corresponding to 13 different proteins. Six antigenic proteins were identified for the first time. The present study extended the existing proteomic data of E. granulosus and provides further information regarding host-parasite interactions and survival mechanisms. The results of this study contribute to vaccination and immunodiagnoses for E. granulosus infections.

  4. Immunization of dogs with a canine herpesvirus vector expressing Neospora caninum surface protein, NcSRS2.

    Science.gov (United States)

    Nishikawa, Y; Ikeda, H; Fukumoto, S; Xuan, X; Nagasawa, H; Otsuka, H; Mikami, T

    2000-10-01

    In order to develop a vaccine against Neospora caninum in dogs, we constructed recombinant canine herpesvirus (CHV) expressing N. caninum surface protein, NcSRS2. Indirect immunofluorescence indicated that the antigenic structure of the recombinant NcSRS2 was similar to the authentic parasite protein. The dogs immunised with recombinant virus produced IgG antibody to N. caninum, and their sera recognised the parasite protein on Western blot. The dogs inoculated with recombinant virus showed no clinical symptoms and infectious CHV was not recovered from the dogs, suggesting that recombinant CHV expressing N. caninum proteins may lead to a vaccine against neosporosis in dogs.

  5. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus.

    Science.gov (United States)

    Nhan, Nguyen Thanh; Gonzalez de Valdivia, Ernesto; Gustavsson, Martin; Hai, Truong Nam; Larsson, Gen

    2011-04-11

    Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein

  6. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  7. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  8. Surface antigen-negative hepatitis B virus infection in Dutch blood donors

    NARCIS (Netherlands)

    Lieshout-Krikke, R. W.; Molenaar-de Backer, M. W. A.; van Swieten, P.; Zaaijer, H. L.

    2014-01-01

    Hepatitis B virus (HBV) surface antigen (HBsAg) is a reliable marker for HBV infection, but HBsAg-negative forms of HBV infection occur. The introduction of HBV DNA screening of Dutch blood donors, which were not preselected for absence of HBV core antibodies, enabled the characterization of

  9. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  10. The characteristics exosporium antigens from different vaccine strains of bacillus antracis

    International Nuclear Information System (INIS)

    Baranova, E.; Biketov, S.; Dunaytsev, I.; Mironova, R.; Dyatlov, I.

    2009-01-01

    To develop of both test-systems for rapid detection and identification of B. anthracis spores and a new subunit vaccine the antigens on the spore surface should be characterized. Exosporium consists of two layers-basal and peripheral and has been form by protein, amino- and neutral polysaccharides, lipids and ash. Number of anthrax exosporium proteins was described and identified: glycoprotein BclA, BclB, alanine racemase, inosine hydrolase, glycosyl hydrolase, superoxid dismutase, ExsF, ExsY, ExsK,CotB,CotY and SoaA. So far no glycosylated proteins other then highly immunogenic glycoproteins BclA, BclB were detected in the B. anthracis spore extract although several exosporium-specific glycoprotein have been described in other members of the B.cereus family- B. thuringiensis and B. cereus. Although EA1 protein originally described as main component of S-layer from vegetative cells he can regular observed in different exosporium preparations and additionally some anti- EA1 monoclonal antibodies able to recognize spore surface. We have revealed that EA1 isolated from spore of Russians strain STI-1contain carbohydrate which determine immunogenicity of this antigen. Because some time ago we have found that exosporium protein's pattern variable among B. anthracis strains we investigated exosporium from spore of different strains of B. anthracis including STI-1, Ames, Stern and others. We have comparative characterized antigens by using Western Blotting, Two-Dimensional electrophoresis and Mass Spec analysis. The results of analysis will be presented and discussed.(author)

  11. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling

    Directory of Open Access Journals (Sweden)

    Johana A. Luna Coronell

    2018-02-01

    Full Text Available Characterization of the colon cancer immunome and its autoantibody signature from differentially-reactive antigens (DIRAGs could provide insights into aberrant cellular mechanisms or enriched networks associated with diseases. The purpose of this study was to characterize the antibody profile of plasma samples from 32 colorectal cancer (CRC patients and 32 controls using proteins isolated from 15,417 human cDNA expression clones on microarrays. 671 unique DIRAGs were identified and 632 were more highly reactive in CRC samples. Bioinformatics analyses reveal that compared to control samples, the immunoproteomic IgG profiling of CRC samples is mainly associated with cell death, survival, and proliferation pathways, especially proteins involved in EIF2 and mTOR signaling. Ribosomal proteins (e.g., RPL7, RPL22, and RPL27A and CRC-related genes such as APC, AXIN1, E2F4, MSH2, PMS2, and TP53 were highly enriched. In addition, differential pathways were observed between the CRC and control samples. Furthermore, 103 DIRAGs were reported in the SEREX antigen database, demonstrating our ability to identify known and new reactive antigens. We also found an overlap of 7 antigens with 48 “CRC genes.” These data indicate that immunomics profiling on protein microarrays is able to reveal the complexity of immune responses in cancerous diseases and faithfully reflects the underlying pathology. Keywords: Autoantibody tumor biomarker, Cancer immunology, Colorectal cancer, Immunomics, Protein microarray

  12. Identification of an antigenic domain on Mycobacterium leprae protein antigen 85B, which is specifically recognized by antibodies from patients with leprosy

    NARCIS (Netherlands)

    Filley, E.; Thole, J. E.; Rook, G. A.; Nagai, S.; Waters, M.; Drijfhout, J. W.; Rinke de Wit, T. F.; de Vries, R. R.; Abou-Zeid, C.

    1994-01-01

    Sixty-three overlapping 15-oligomer peptides covering the 30-kDa protein antigen 85B of Mycobacterium leprae were tested by ELISA to identify epitopes recognized by human antibodies. Serum samples from patients with lepromatous leprosy (LL) reacted mainly with peptides comprising amino acid regions

  13. The application of polythiol molecules for protein immobilisation on sensor surfaces.

    Science.gov (United States)

    Kyprianou, Dimitris; Guerreiro, Antonio R; Nirschl, Martin; Chianella, Iva; Subrahmanyam, Sreenath; Turner, Anthony P F; Piletsky, Sergey

    2010-01-15

    The immobilisation of bio-receptors on transducer surfaces is a key step in the development of biosensors. The immobilisation needs to be fast, cheap and most importantly should not affect the biorecognition activity of the immobilised receptor. The development of a protocol for biomolecule immobilisation onto a surface plasmon resonance (SPR) sensor surface using inexpensive polythiol compounds is presented here. The method used here is based on the reaction between primary amines and thioacetal groups, formed upon reaction of o-phthaldialdehyde (OPA) and thiol compounds. The self-assembled thiol monolayers were characterised using contact angle and XPS. The possibility to immobilise proteins on monolayers was assessed by employing BSA as a model protein. For the polythiol layers exhibiting the best performance, a general protocol was optimised suitable for the immobilisation of enzymes and antibodies such as anti-prostate specific antigen (anti-PSA) and anti Salmonella typhimurium. The kinetic data was obtained for PSA binding to anti-PSA and for S. typhimurium cells with a detection limit of 5x10(6) cells mL(-1) with minimal non-specific binding of other biomolecules. These findings make this technique a very promising alternative for amine coupling compared to peptide bond formation. Additionally, it offers opportunity for immobilising proteins (even those with low isoelectric point) on neutral polythiol layers without any activation step. Copyright 2009 Elsevier B.V. All rights reserved.

  14. A radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    International Nuclear Information System (INIS)

    Tax, A.; Manson, L.A.

    1976-01-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit 125 I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface

  15. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  16. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    International Nuclear Information System (INIS)

    Blokhina, Elena A.; Kuprianov, Victor V.; Stepanova, Ludmila A.; Tsybalova, Ludmila M.; Kiselev, Oleg I.; Ravin, Nikolai V.; Skryabin, Konstantin G.

    2013-01-01

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a “binding tag” allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  17. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Blokhina, Elena A.; Kuprianov, Victor V. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); Stepanova, Ludmila A.; Tsybalova, Ludmila M. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); Kiselev, Oleg I. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Ravin, Nikolai V., E-mail: nravin@biengi.ac.ru [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Skryabin, Konstantin G. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation)

    2013-01-20

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a 'binding tag' allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  18. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins

    International Nuclear Information System (INIS)

    Duchrow, M.; Schlueter, C.; Key, G.; Kubbutat, H.G.; Wohlenberg, C.; Flad, H.D.; Gerdes

    1995-01-01

    A decade of studies on the human nuclear antigen defined by monoclonal antibody Ki-67 (the 'Ki-67 proteins') has made it abundantly clear that this structure is strictly associated with human cell proliferation and the expression of this protein can be used to access the growth fraction of a given cell population. Until recently the Ki-67 protein was described as a nonhistone protein that is highly susceptible to protease treatment. We have isolated and sequenced cDNAs encoding for this antigen and found two isoforms of the full length cDNA of 11.5 and 12.5 kb, respectively, sequence and structure of which are thus far unique. The gene encoding the Ki-67 protein is organized in 15 exons and is localized on chromosome 10. The center of this gene is formed by an extraordinary 6845 bp exon containing 16 successively repeated homologous segments of 366 bp ('Ki-67 repeats'), each containing a highly conserved new motif of 66 bp ('Ki-67 motif'). The deduced peptide sequence of this central exon possesses 10 ProGluSerThr (PEST) motifs which are associated with high turnover proteins such as other cell cycle-related proteins, oncogenes and transcription factors, etc. Like the latter proteins the Ki-67 antigen plays a pivotal role in maintaining cell proliferation because Ki-67 protein antisense oligonucleotides significantly inhibit 3 H-thymidine incorporation in permanent human tumor cell lines in a dose-dependent manner. (author). 30 refs, 2 figs

  19. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    Directory of Open Access Journals (Sweden)

    Nan Zhong

    Full Text Available We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP protocols.

  20. [Evaluation of the Recombinant Protein Tp0965 of Treponema Pallidum as Perspective Antigen for the Improved Serological Diagnosis of Syphilis].

    Science.gov (United States)

    Runina, A V; Starovoitova, A S; Deryabin, D G; Kubanov, A A

    2016-01-01

    BACKGRAUND. Treponemal tests based on the detection of antibodies against the Treponema pallidum antigens are the most specific methods for serological diagnosis of syphilis. Due to the inability to cultivate this bacterium in vitro, the most promising sources of antigens for diagnostics are recombinant proteins of T. pallidum. Evaluation of the analytical value of certain T. pallidum proteins is the approach to improve sensitivity, specificity, and reproducibility of syphilis serological tests, including possibilities of differential diagnosis of various forms of the disease. The aim of the research was to evaluate the analytical values (sensitivity and specificity) of recombinant protein Tp0965 of T. pallidum as a candidate antigen for serological diagnosis of syphilis. tp0965 gene was cloned into the expression vector pET28a and the construct was used for the transformation of E. coli BL-21 (DE3) cells and further expression and purification of the recombinant protein. The collected protein was used as T. pallidum antigen for serum analysis (ELISA) of groups of patients with various forms of syphilis (n=84) and the group of healthy donors (n = 25). High frequency of positive ELISA results was shown with serum of patients with syphilis, compared to the group of healthy donors. The sensitivity of serological reactions using recombinant protein Tp0965 was 98.8%, specificity--87.5%. The highest sensitivity (100%) was detected in the groups of patients with primary, secondary and early latent syphilis while in the group of patients with late latent syphilis it decreased to 95.2%. We concluded that due to its specificity T. pallidum recombinant protein Tp0965 can be used as a novel perspective antigen for development of syphilis serological diagnostic assays (for primary and early latent forms).

  1. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Vestergaard, Lasse S; Lusingu, John

    2004-01-01

    The slow acquisition of protection against Plasmodium falciparum malaria probably reflects the extensive diversity of important antigens. The variant surface antigens (VSA) that mediate parasite adhesion to a range of host molecules are regarded as important targets of acquired protective immunity......, but their diversity makes them questionable vaccine candidates. We determined levels of VSA-specific immunoglobulin G (IgG) in human plasma collected at four geographically distant and epidemiologically distinct localities with specificity for VSA expressed by P. falciparum isolates from three African countries...

  3. Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion

    Directory of Open Access Journals (Sweden)

    Petter Michaela

    2008-07-01

    Full Text Available Abstract Background Plasmodium falciparum STEVOR proteins, encoded by the multicopy stevor gene family have no known biological functions. Their expression and unique locations in different parasite life cycle stages evoke multiple functionalities. Their abundance and hypervariability support a role in antigenic variation. Methods Immunoblotting of total parasite proteins with an anti-STEVOR antibody was used to identify variant antigens of this gene family and to follow changes in STEVOR expression in parasite populations panned on CSA or CD36 receptors. Immunofluorescence assays and immunoelectron microscopy were performed to study the subcellular localization of STEVOR proteins in different parasite stages. The capacity of the antibody to inhibit merozoite invasion of erythrocytes was assessed to determine whether STEVOR variants were involved in the invasion process. Results Antigenic variation of STEVORs at the protein level was observed in blood stage parasites. STEVOR variants were found to be present on the merozoite surface and in rhoptries. An insight into a participation in erythrocyte invasion was gained through an immunofluorescence analysis of a sequence of thin slides representing progressive steps in erythrocyte invasion. An interesting feature of the staining pattern was what appeared to be the release of STEVORs around the invading merozoites. Because the anti-STEVOR antibody did not inhibit invasion, the role of STEVORs in this process remains unknown. Conclusion The localization of STEVOR proteins to the merozoite surface and the rhoptries together with its prevalence as a released component in the invading merozoite suggest a role of these antigens in adhesion and/or immune evasion in the erythrocyte invasion process. These observations would also justify STEVORs for undergoing antigenic variation. Even though a role in erythrocyte invasion remains speculative, an association of members of the STEVOR protein family with

  4. Solution Structure, Membrane Interactions, and Protein Binding Partners of the Tetraspanin Sm-TSP-2, a Vaccine Antigen from the Human Blood Fluke Schistosoma mansoni*

    Science.gov (United States)

    Jia, Xinying; Schulte, Leigh; Loukas, Alex; Pickering, Darren; Pearson, Mark; Mobli, Mehdi; Jones, Alun; Rosengren, Karl J.; Daly, Norelle L.; Gobert, Geoffrey N.; Jones, Malcolm K.; Craik, David J.; Mulvenna, Jason

    2014-01-01

    The tetraspanins (TSPs) are a family of integral membrane proteins that are ubiquitously expressed at the surface of eukaryotic cells. TSPs mediate a range of processes at the surface of the plasma membrane by providing a scaffold for the assembly of protein complexes known as tetraspanin-enriched microdomains (TEMs). We report here the structure of the surface-exposed EC2 domain from Sm-TSP-2, a TSP from Schistosoma mansoni and one of the better prospects for the development of a vaccine against schistosomiasis. This is the first solution structure of this domain, and our investigations of its interactions with lipid micelles provide a general model for interactions between TSPs, membranes, and other proteins. Using chemical cross-linking, eight potential protein constituents of Sm-TSP-2-mediated TEMs were also identified. These include proteins important for membrane maintenance and repair, providing further evidence for the functional role of Sm-TSP-2- and Sm-TSP-2-mediated TEMs. The identification of calpain, Sm29, and fructose-bisphosphate aldolase, themselves potential vaccine antigens, suggests that the Sm-TSP-2-mediated TEMs could be disrupted via multiple targets. The identification of further Sm-TSP-2-mediated TEM proteins increases the available candidates for multiplex vaccines and/or novel drugs targeting TEMs in the schistosome tegument. PMID:24429291

  5. Solution structure, membrane interactions, and protein binding partners of the tetraspanin Sm-TSP-2, a vaccine antigen from the human blood fluke Schistosoma mansoni.

    Science.gov (United States)

    Jia, Xinying; Schulte, Leigh; Loukas, Alex; Pickering, Darren; Pearson, Mark; Mobli, Mehdi; Jones, Alun; Rosengren, Karl J; Daly, Norelle L; Gobert, Geoffrey N; Jones, Malcolm K; Craik, David J; Mulvenna, Jason

    2014-03-07

    The tetraspanins (TSPs) are a family of integral membrane proteins that are ubiquitously expressed at the surface of eukaryotic cells. TSPs mediate a range of processes at the surface of the plasma membrane by providing a scaffold for the assembly of protein complexes known as tetraspanin-enriched microdomains (TEMs). We report here the structure of the surface-exposed EC2 domain from Sm-TSP-2, a TSP from Schistosoma mansoni and one of the better prospects for the development of a vaccine against schistosomiasis. This is the first solution structure of this domain, and our investigations of its interactions with lipid micelles provide a general model for interactions between TSPs, membranes, and other proteins. Using chemical cross-linking, eight potential protein constituents of Sm-TSP-2-mediated TEMs were also identified. These include proteins important for membrane maintenance and repair, providing further evidence for the functional role of Sm-TSP-2- and Sm-TSP-2-mediated TEMs. The identification of calpain, Sm29, and fructose-bisphosphate aldolase, themselves potential vaccine antigens, suggests that the Sm-TSP-2-mediated TEMs could be disrupted via multiple targets. The identification of further Sm-TSP-2-mediated TEM proteins increases the available candidates for multiplex vaccines and/or novel drugs targeting TEMs in the schistosome tegument.

  6. Tracking by flow cytometry antigen-specific follicular helper T cells in wild-type animals after protein vaccination.

    Science.gov (United States)

    Chakarov, Svetoslav; Fazilleau, Nicolas

    2015-01-01

    Flow cytometry is a valuable technology used in immunology to characterize and enumerate the different cell subpopulations specific for a nonself-antigen in the context of an ongoing immune response. Among them, follicular helper T cells are the cognate regulators of B cells in secondary lymphoid tissues. Thus, tracking them is of high interest especially in the context of protein vaccination. For this purpose, transgenic antigen-receptor mouse models have been largely used. It is now clear that transgenic models are not always the best means to study the dynamics of the immune response since they can modify the response. In this chapter, we describe how to track endogenous antigen-specific follicular helper T cells by flow cytometry after protein vaccination in nonmodified wild-type animals, which ultimately provides a comprehensive way to enumerate, characterize, and isolate these particular cells in vivo.

  7. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    Science.gov (United States)

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  8. The Role of Multiscale Protein Dynamics in Antigen Presentation and T Lymphocyte Recognition

    Directory of Open Access Journals (Sweden)

    R. Charlotte Eccleston

    2017-07-01

    Full Text Available T lymphocytes are stimulated when they recognize short peptides bound to class I proteins of the major histocompatibility complex (MHC protein, as peptide–MHC complexes. Due to the diversity in T-cell receptor (TCR molecules together with both the peptides and MHC proteins they bind to, it has been difficult to design vaccines and treatments based on these interactions. Machine learning has made some progress in trying to predict the immunogenicity of peptide sequences in the context of specific MHC class I alleles but, as such approaches cannot integrate temporal information and lack explanatory power, their scope will always be limited. Here, we advocate a mechanistic description of antigen presentation and TCR activation which is explanatory, predictive, and quantitative, drawing on modeling approaches that collectively span several length and time scales, being capable of furnishing reliable biological descriptions that are difficult for experimentalists to provide. It is a form of multiscale systems biology. We propose the use of chemical rate equations to describe the time evolution of the foreign and host proteins to explain how the original proteins end up being presented on the cell surface as peptide fragments, while we invoke molecular dynamics to describe the key binding processes on the molecular level, including those of peptide–MHC complexes with TCRs which lie at the heart of the immune response. On each level, complementary methods based on machine learning are available, and we discuss the relationship between these divergent approaches. The pursuit of predictive mechanistic modeling approaches requires experimentalists to adapt their work so as to acquire, store, and expose data that can be used to verify and validate such models.

  9. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  10. A Molecular-Level Account of the Antigenic Hantaviral Surface

    Directory of Open Access Journals (Sweden)

    Sai Li

    2016-05-01

    Full Text Available Hantaviruses, a geographically diverse group of zoonotic pathogens, initiate cell infection through the concerted action of Gn and Gc viral surface glycoproteins. Here, we describe the high-resolution crystal structure of the antigenic ectodomain of Gn from Puumala hantavirus (PUUV, a causative agent of hemorrhagic fever with renal syndrome. Fitting of PUUV Gn into an electron cryomicroscopy reconstruction of intact Gn-Gc spike complexes from the closely related but non-pathogenic Tula hantavirus localized Gn tetramers to the membrane-distal surface of the virion. The accuracy of the fitting was corroborated by epitope mapping and genetic analysis of available PUUV sequences. Interestingly, Gn exhibits greater non-synonymous sequence diversity than the less accessible Gc, supporting a role of the host humoral immune response in exerting selective pressure on the virus surface. The fold of PUUV Gn is likely to be widely conserved across hantaviruses.

  11. A Survey about Protective Effect of Echinococcus Granulosus Protoscolices Surface Antigens in Preventing Secondary Hydatid Cyst

    Directory of Open Access Journals (Sweden)

    H Yousofi

    2006-10-01

    Full Text Available ABSTRACT: Introduction & Objective: Hydatid cyst is located in human and some animal visceral organs such as liver and lung. The disease is considered as a medical, veterinary and economical problem in endemic area. When the hydatid cyst is ruptured, protoscolices from inside the cyst may spread out to other parts of the body and develops a new cyst named secondary hydatid cyst. In this research in an attempt to prevent secondary hydatid cyst, protective potential of protoscolices surface antigens extracted with different detergents has been investigated in animal model. Materials & Methods: In this experimental study, groups of Balb/c mice were immunized intra-peritoneally with protoscolices homogenate and three detergent (SDS, Tween and Triton x–100 extracted protoscolices surface antigens and alum as adjuvant. These mice were then boosted two times with the same antigens fortnightly. Control mice were simultaneously injected with alum alone. Two weeks following the last injection all the mice in cases and control groups were challenged with live protoscolices. Three months afterward all the mice in case and control groups were sacrificed and their peritoneal cavities were explored for hydatid cysts. Results: The mean of developed cyst number in mice injected with protoscolices homogenate was 3±2, while in control group the mean of developed cysts number was 5.8 ± 1.7 (p< 0.02. The mean of developed cyst number in mice injected with SDS, Tween and Triton x–100 extracted protoscolices surface antigens was 3, 3.6 and 3.4, respectively, while the mean of developed cyst number in control group was 5.8. Conclusion: The mean of cyst number in cases and control groups was different and this difference was statistically significant. Results of this investigation revealed that protoscolices homogenate antigens and some detergent extracted antigens are protective against secondary hydatid cyst infection

  12. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral-Antigen Pathway.

    Science.gov (United States)

    Hewitt, Rachel E; Robertson, Jack; Haas, Carolin T; Pele, Laetitia C; Powell, Jonathan J

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer's patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4 + T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4 + T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen-PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer's patch T cell responses.

  13. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  14. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    Melanoma antigen recognized by T cell 1 (MART-1) is regarded as a candidate peptide for vaccination against malignant melanoma, and it is of importance to develop strategies to improve the vaccine-elicited T-cell activation towards MART-1. T-cell activation is, among other determinants, dependent...... on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...... to non-proteasomal targeting of the epitope to increase its cell-surface presentation. Furthermore, we explored the potential of incorporating multiple minigenes instead of one to increase cell-surface presentation. We show that both proteasomal targeting and repetition of the minigene increase cell...

  15. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    Science.gov (United States)

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  16. Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens.

    Science.gov (United States)

    Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng

    2018-02-06

    Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.

  17. Identification of a virulence-related surface protein XF in piscine Streptococcus agalactiae by pre-absorbed immunoproteomics.

    Science.gov (United States)

    Liu, Guangjin; Zhang, Wei; Liu, Yongjie; Yao, Huochun; Lu, Chengping; Xu, Pao

    2014-10-26

    Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins. A serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model. The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.

  18. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools

    Science.gov (United States)

    Zhang, Cathy X. Y.; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    traditionally divided into at least 12 serotypes. Currently, there are no monoclonal antibodies (MAbs) available that are capable of binding to the surface of L. monocytogenes strains representing all 12 serotypes. Such antibodies would be useful and are needed for the development of methods to detect and isolate L. monocytogenes from food samples. In our study, we aimed to identify surface proteins that possess regions of well-conserved amino acid sequences among various serotypes and then to employ them as antigen targets (biomarkers) for the development of MAbs. Through bioinformatics and protein expression analysis, we identified one of the four putative surface protein candidates, LMOf2365_0639, encoded by the genome of the L. monocytogenes serotype 4b strain F2365, as a useful surface biomarker. Extensive assessment of 35 MAbs raised against LMOf2365_0639 in our study revealed three MAbs (M3643, M3644, and M3651) that recognized a wide range of L. monocytogenes isolates. PMID:27342549

  19. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  20. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping

    the synthesis of antigenic C. jejuni proteins upon cultivation with chicken cells. Two strains of C. jejuni (the human isolate NCTC11168 and the chicken isolate DVI-SC11) were incubated with primary intestinal chicken cells and subsequently used to raise antisera in rabbits. Negative controls were carried out...... to the environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required...... for internalization into host cells. However, the pathogenic lifestyle of C. jejuni in the human intestine is different from the commensal colonization of the chicken gut, and it was therefore hypothesized that different proteins are secreted during chicken colonization. This hypothesis was tested by analyzing...

  1. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice.

    Directory of Open Access Journals (Sweden)

    Christopher Weber

    2015-04-01

    Full Text Available The mosquito-borne Chikungunya virus (CHIKV causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses.E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L and surface-exposed parts of the E2 domain A (sA alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+ was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+ induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA, MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice.The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.

  2. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  3. Stem Cell Physics. Laser Manipulation of Blood Types: Laser-Stripping-Away of Red Blood Cell Surface Antigens

    Science.gov (United States)

    Stefan, V. Alexander

    2014-03-01

    A novel mechanism of importance for the transfusion medicine[2] is proposed. The interaction of ultrashort wavelength multilaser beams with the flowing blood thin films can lead to a conversion of blood types A, B, and AB into O type.[3] The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation),[4] upon the antigen protein molecule must exceed its weight. Supported by Nikola Tesla Labs, La Jolla, CA.

  4. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  5. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    Science.gov (United States)

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  6. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies

    DEFF Research Database (Denmark)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-01-01

    microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 oC without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies...

  7. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform

    International Nuclear Information System (INIS)

    Gallagher, John R.; Torian, Udana; McCraw, Dustin M.; Harris, Audray K.

    2017-01-01

    While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.

  8. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, John R.; Torian, Udana; McCraw, Dustin M.; Harris, Audray K., E-mail: harrisau@mail.nih.gov

    2017-02-15

    While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.

  9. Application of recombinant hemagglutinin proteins as alternative antigen standards for pandemic influenza vaccines.

    Science.gov (United States)

    Choi, Yejin; Kwon, Seong Yi; Oh, Ho Jung; Shim, Sunbo; Chang, Seokkee; Chung, Hye Joo; Kim, Do Keun; Park, Younsang; Lee, Younghee

    2017-09-01

    The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed. We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months. The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.

  10. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    Science.gov (United States)

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  11. Synthesis and structural insight into ESX-1 Substrate Protein C, an immunodominant Mycobacterium tuberculosis-secreted antigen.

    Science.gov (United States)

    Son, Soo Jung; Harris, Paul W R; Squire, Chris J; Baker, Edward N; Brimble, Margaret A

    2016-05-01

    Tuberculosis, the second leading cause of death from a single infectious agent, is recognized as a major threat to human health due to a lack of practicable vaccines against the disease and the widespread occurrence of drug resistance. With a pressing need for a novel protein target as a platform for new vaccine development, ESX-1 Substrate Protein C (EspC) was recently identified as a novel Mycobacterium tuberculosis-secreted antigen that is as immunodominant as the two specific immunodiagnostic T-cell antigens, CFP-10 and ESAT-6. Here, we present the first chemical total synthesis, folding conditions, and circular dichroism data of EspC. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 267-274, 2016. © 2016 Wiley Periodicals, Inc.

  12. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.

    Science.gov (United States)

    Knapp, W; Strobl, H; Majdic, O

    1994-12-15

    New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).

  13. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase

    CSIR Research Space (South Africa)

    James, ER

    2012-10-01

    Full Text Available Microbiology and Biotechnology October 2012/ Vol. 96, No.2 Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase ER James a,c & WH van Zyl b & PJ van Zyl c & JF Görgens..., Pretoria 0001, South Africa Abstract This study demonstrates the potential of Aspergillus niger as a candidate expression system for virus- like particle production using gene fusion. Hepatitis B surface antigen (HBsAg) production, targeted...

  14. Surface peptide mapping of protein I and protein III of four strains of Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Judd, R.C.

    1982-01-01

    Whole cells and isolated outer membranes (OMs) of four strains of gonococci were surface radioiodinated with either lactoperoxidase or Iodogen (Pierce Chemical Co., Rockford, Ill.). These preparations were solubilized in sodium dodecyl sulfate and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Surface-radioiodinated protein I (PI) and PIII bands were excised from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and digested with alpha-chymotrypsin, and the resultant 125 I-peptide fragments were resolved by high-voltage electrophoresis and thin-layer chromatography (i.e., surface peptide mapping). Radioemitting peptidic fragments were visualized by autoradiography. Results demonstrated that the PI molecule of each gonococcal strain studied had unique iodinatable peptides exposed on the surface of whole cells and OMs, whereas PIIIs appeared to have the same portion of the molecule exposed on the surface of bacteria or OMs, regardless of the gonococcal strain from which they were isolated. Many more radiolabeled peptides were seen in surface peptide maps of PIs from radiolabeled OMs than in those from radioiodinated whole cells, whereas different peptidic fragments were seen in the surface peptide maps of PIIIs from radiolabeled OMs than were seen in those from radiolabeled whole cells. These data suggest that PI may contribute strain-specific antigenic determinants and PIII may contribute cross-reactive determinants and that the surface exposure of PI and PIII is different in isolated OMs than in the OM of intact gonococci

  15. Crystallization and preliminary X-ray diffraction analysis of PsaA, the adhesive pilin subunit that forms the pH 6 antigen on the surface of Yersinia pestis

    International Nuclear Information System (INIS)

    Bao, Rui; Esser, Lothar; Sadhukhan, Annapurna; Nair, Manoj K. M.; Schifferli, Dieter M.; Xia, Di

    2012-01-01

    The pH 6 antigen Psa displayed on the surface of Yersinia pestis, the bacterium that causes plague in humans, consists of polymers of a single protein subunit termed PsaA. Donor-strand complemented PsaA was purified and crystallized. Yersinia pestis has been responsible for a number of high-mortality epidemics throughout human history. Like all other bacterial infections, the pathogenesis of Y. pestis begins with the attachment of bacteria to the surface of host cells. At least five surface proteins from Y. pestis have been shown to interact with host cells. Psa, the pH 6 antigen, is one of them and is deployed on the surface of bacteria as thin flexible fibrils that are the result of the polymerization of a single PsaA pilin subunit. Here, the crystallization of recombinant donor-strand complemented PsaA by the hanging-drop vapor-diffusion method is reported. X-ray diffraction data sets were collected to 1.9 Å resolution from a native crystal and to 1.5 Å resolution from a bromide-derivatized crystal. These crystals displayed the symmetry of the orthorhombic space group P222 1 , with unit-cell parameters a = 26.3, b = 54.6, c = 102.1 Å. Initial phases were derived from single isomorphous replacement with anomalous scattering experiments, resulting in an electron-density map that showed a single molecule in the crystallographic asymmetric unit. Sequence assignment was aided by residues binding to bromide ions of the heavy-atom derivative

  16. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral–Antigen Pathway

    Science.gov (United States)

    Hewitt, Rachel E.; Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Powell, Jonathan J.

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer’s patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4+ T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4+ T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen–PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer’s patch T cell responses. PMID:28367148

  17. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  18. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  19. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  20. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein

    International Nuclear Information System (INIS)

    Shipp, M.A.; Richardson, N.E.; Sayre, P.H.; Brown, N.R.; Masteller, E.L.; Clayton, L.K.; Ritz, J.; Reinherz, E.L.

    1988-01-01

    Common acute lymphoblastic leukemia antigen (CALLA) is a 100-kDa cell-surface glycoprotein expressed on most acute lymphoblastic leukemias and certain other immature lymphoid malignancies and on normal lymphoid progenitors. The latter are either uncommitted to B- or T-cell lineage or committed to only the earliest stages of B- or T-lymphocyte maturation. To elucidate the primary structure of CALLA, the authors purified the protein to homogeneity, obtained the NH 2 -terminal sequence from both the intact protein and derived tryptic and V8 protease peptides and isolated CALLA cDNAs from a Nalm-6 cell line λgt10 library using redundant oligonucleotide probes. The CALLA cDNA sequence predicts a 750-amino acid integral membrane protein with a single 24-amino acid hydrophobic segment that could function as both a transmembrane region and a signal peptide. The COOH-terminal 700 amino acids, including six potential N-linked glycosylation sites compose the extracellular protein segment, whereas the 25 NM 2 -terminal amino acids remaining after cleavage of the initiation methionine form the cytoplasmic tail. CALLA + cells contain CALLA transcripts of 2.7 to 5.7 kilobases with the major 5.7- and 3.7-kilobase mRNAs being preferentially expressed in specific cell types

  1. Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp.

    OpenAIRE

    Oaks, E V; Hale, T L; Formal, S B

    1986-01-01

    The serum antibody response to proteins encoded by the virulence-associated plasmid of Shigella flexneri was determined in monkeys challenged with virulent S. flexneri serotype 2a. With water-extractable antigen in an enzyme-linked immunosorbent assay, a significant increase in antibody titer against proteins from a plasmid-carrying, virulent strain of S. flexneri serotype 5 could be demonstrated in convalescent sera. There were minimal antibody titers against proteins from an avirulent (plas...

  2. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Directory of Open Access Journals (Sweden)

    Vera eRocha-Perugini

    2016-01-01

    Full Text Available Tetraspanin-enriched microdomains (TEMs are specialized membrane platforms driven by protein-protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen presenting cells (APCs through the organization of pattern recognition receptors (PRRs and their downstream induced-signaling, as well as the regulation of MHC-II-peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation, and in the dynamics of IS architectural organization.

  3. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins.

    Directory of Open Access Journals (Sweden)

    Hadrien Peyret

    Full Text Available The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody.

  4. Some problems associated with radiolabeling surface antigens on helminth parasites: a brief review

    Energy Technology Data Exchange (ETDEWEB)

    Hayunga, E.G. (Division of Tropical Public Health, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD (USA)); Murrell, K.D. (Agricultural Research Service, Beltsville, MD (USA))

    1982-06-01

    Recent developments in technology have facilitated substantial advances in the characterization of surface antigens from a wide variety of both normal and neoplastic cells. However, the immunochemistry of parasites has lagged behind. Efforts to apply conventional radiolabeling methods to helminths have not always been successful. Experimental work with Schistosoma mansoni is reviewed to illustrate common problems encountered in surface labeling studies. These findings should provide insight for the future investigation of other helminth species.

  5. Some problems associated with radiolabeling surface antigens on helminth parasites: a brief review

    International Nuclear Information System (INIS)

    Hayunga, E.G.; Murrell, K.D.

    1982-01-01

    Recent developments in technology have facilitated substantial advances in the characterization of surface antigens from a wide variety of both normal and neoplastic cells. However, the immunochemistry of parasites has lagged behind. Efforts to apply conventional radiolabeling methods to helminths have not always been successful. Experimental work with Schistosoma mansoni is reviewed to illustrate common problems encountered in surface labeling studies. These findings should provide insight for the future investigation of other helminth species. (Auth.)

  6. Analysis of Humoral Immune Responses to Surface and Virulence-Associated Chlamydia abortus Proteins in Ovine and Human Abortions by Use of a Newly Developed Line Immunoassay.

    Science.gov (United States)

    Hagemann, Jürgen Benjamin; Simnacher, Ulrike; Longbottom, David; Livingstone, Morag; Maile, Julia; Soutschek, Erwin; Walder, Gernot; Boden, Katharina; Sachse, Konrad; Essig, Andreas

    2016-07-01

    The obligate intracellular bacterium Chlamydia abortus is the causative agent of enzootic abortion of ewes and poses a significant zoonotic risk for pregnant women. Using proteomic analysis and gene expression library screening in a previous project, we identified potential virulence factors and candidates for serodiagnosis, of which nine were scrutinized here with a strip immunoassay. We have shown that aborting sheep exhibited a strong antibody response to surface (MOMP, MIP, Pmp13G) and virulence-associated (CPAF, TARP, SINC) antigens. While the latter disappeared within 18 weeks following abortion in a majority of the animals, antibodies to surface proteins persisted beyond the duration of the study. In contrast, nonaborting experimentally infected sheep developed mainly antibodies to surface antigens (MOMP, MIP, Pmp13G), all of which did not persist. We were also able to detect antibodies to these surface antigens in C abortus-infected women who had undergone septic abortion, whereas a group of shepherds and veterinarians with occupational exposure to C abortus-infected sheep revealed only sporadic immune responses to the antigens selected. The most specific antigen for the serodiagnosis of human C abortus infections was Pmp13G, which showed no cross-reactivity with other chlamydiae infecting humans. We suggest that Pmp13G-based serodiagnosis accomplished by the detection of antibodies to virulence-associated antigens such as CPAF, TARP, and SINC may improve the laboratory diagnosis of human and animal C abortus infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    International Nuclear Information System (INIS)

    Omer-ali, P.; Magee, A.I.; Kelly, C.; Simpson, A.J.G.

    1986-01-01

    A radioimmunoassay that makes use of whole Schistosomula and 125 I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000

  8. A sensitive immunoradiometric assay for the detection of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Cameron, C.H.; Combridge, B.S.; Howell, D.R.; Barbara, J.A.J.

    1980-01-01

    A solid-phase immunoradiometric assay for hepatitis B surface antigen is described which has been in use since 1972. Initially it was used for reference laboratory work, but from 1974 it has also been used for screening blood and blood products. Methods for the production of reagents and their use in blood transfusion and reference work, are outlined. (Auth.)

  9. Evidence that a glycolipid tail anchors antigen 117 to the plasma membrane of Dictyostelium discoideum cells

    International Nuclear Information System (INIS)

    Sadeghi, H.; Da Silva, A.M.; Klein, C.

    1988-01-01

    The authors describe the biochemical features of the putative cell cohesion molecule antigen 117, indicating that it is anchored to the plasma membrane by a glycolipid tail. Antigen 117 can be radiolabeled with [ 3 H]myristate, [ 3 H]palmitate, and [ 14 C]ethanolamine. The fatty acid label is removed by periodate oxidation and nitrous acid deamination, indicating that the fatty acid is attached to the protein by a structure containing carbohydrate and an unsubstituted glucosamine. As cells develop aggregation competence, the antigen is released from the cell surface in a soluble form that can still be radiolabeled with [ 14 C]ethanolamine but not with [ 3 H]myristate of [ 3 H]-palmitate. The molecular weight of the released antigen is similar to that found in the plasma membrane, but it preferentially partitions in Triton X-114 as a hydrophilic, as opposed to a hydrophobic, protein. Plasma membranes contain the enzyme activity responsible for the release of the antigen in a soluble form

  10. Identification of the antigenic region of Neospora caninum dense granule protein 7 using ELISA.

    Science.gov (United States)

    Abdelbaky, Hanan H; Fereig, Ragab M; Nishikawa, Yoshifumi

    2018-06-26

    Dense granule protein 7 (NcGRA7) is a potent diagnostic antigen of Neospora caninum. Some studies have reported on the difficult expression, low yield, and variable degree of solubility of recombinant NcGRA7. We aimed to unravel the possible causes for these issues and tested NcGRA7 antigenicity in enzyme linked immunosorbent assays (ELISAs). The NcGRA7 coding sequence (217 amino acids) was split into five amino acid regions: NcGRA7m (27-217), NcGRA7m3 (27-160), NcGRA7m4 (27-135), NcGRA7m5 (161-190), and NcGRA7m6 (188-217). Three fragments, NcGRA7m, NcGRA7m3 and NcGRA7m4, exhibited high antigenic properties when tested against experimentally-infected mice and dog sera by ELISA. High levels of IgG2 antibodies against NcGRA7m were observed in field dog sera. In experimentally and naturally-infected cattle, the N. caninum-specific sera only reacted with NcGRA7m, indicating that this antigenic region differs among the three animal species. This study presents valuable information about the antigenic properties and topology of NcGRA7, and highlights its suitability for diagnostic purposes. Copyright © 2018. Published by Elsevier B.V.

  11. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Angela Liao

    Full Text Available Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.

  12. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Science.gov (United States)

    Liao, Ting-Yu Angela; Lau, Alice; Joseph, Sunil; Hytönen, Vesa; Hmama, Zakaria

    2015-01-01

    Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.

  13. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs induce inflammatory responses in avian macrophages.

    Directory of Open Access Journals (Sweden)

    Yock-Ping Chow

    Full Text Available At least 19 glycosylphosphatidylinositol (GPI-anchored surface antigens (SAGs are expressed specifically by second-generation merozoites of Eimeria tenella, but the ability of these proteins to stimulate immune responses in the chicken is unknown.Ten SAGs, belonging to two previously defined multigene families (A and B, were expressed as soluble recombinant (r fusion proteins in E. coli. Chicken macrophages were treated with purified rSAGs and changes in macrophage nitrite production, and in mRNA expression profiles of inducible nitric oxide synthase (iNOS and of a panel of cytokines were measured. Treatment with rSAGs 4, 5, and 12 induced high levels of macrophage nitric oxide production and IL-1β mRNA transcription that may contribute to the inflammatory response observed during E. tenella infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity.In summary, some E. tenella SAGs appear to differentially modulate chicken innate and humoral immune responses and those derived from multigene family A (especially rSAG 12 may be more strongly linked with E. tenella pathogenicity associated with the endogenous second generation stages.

  14. Induction of Boosted Immune Response in Mice by Leptospiral Surface Proteins Expressed in Fusion with DnaK

    Directory of Open Access Journals (Sweden)

    Marina V. Atzingen

    2014-01-01

    Full Text Available Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21, rLIC10494, rLIC12690 (Lp95, and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.

  15. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Directory of Open Access Journals (Sweden)

    Morroll Shaun

    2009-08-01

    Full Text Available Abstract Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins. HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as

  16. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Science.gov (United States)

    Winter, Jody A; Christofi, Panayiotis; Morroll, Shaun; Bunting, Karen A

    2009-01-01

    Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA) to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins). HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as opposed to simply surviving in

  17. Conserved epitope on several human vitamin K-dependent proteins: location of the antigenic site and influence of metal ions on antibody binding

    International Nuclear Information System (INIS)

    Church, W.R.; Messier, T.; Howard, P.R.; Amiral, J.; Meyer, D.; Mann, K.G.

    1988-01-01

    A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125 I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 x 10 -8 to 1 x 10 -6 M. Chemical treatment of prothrombin with a variety of agents did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. Increasing concentrations of Ca 2+ , Mg 2+ , or Mn 2+ partially inhibited binding of 125 I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively. The antigenic site thus recognized by monoclonal antibody H-11 is located at the amino-terminal region in the highly conserved γ-carboxyglutamic acid-containing domains of several, but not all, vitamin K-dependent proteins

  18. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    Science.gov (United States)

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252

  19. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics.

    Directory of Open Access Journals (Sweden)

    Wenping Gong

    Full Text Available Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs, which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.

  20. Indirect Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Reactive with a Recombinant Protein Expressed from the Gene Encoding the 116-Kilodalton Protein of Mycoplasma pneumoniae

    OpenAIRE

    Duffy, Michael F.; Whithear, Kevin G.; Noormohammadi, Amir H.; Markham, Philip F.; Catton, Michael; Leydon, Jennie; Browning, Glenn F.

    1999-01-01

    Serology remains the method of choice for laboratory diagnosis of Mycoplasma pneumoniae infection. Currently available serological tests employ complex cellular fractions of M. pneumoniae as antigen. To improve the specificity of M. pneumoniae diagnosis, a recombinant protein was assessed as a serodiagnostic reagent. A panel of recombinant proteins were expressed from a cloned M. pneumoniae gene that encodes a 116-kDa surface protein antigen. The recombinant proteins were assessed for reactiv...

  1. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

    Science.gov (United States)

    Min, Yuanzeng; Roche, Kyle C.; Tian, Shaomin; Eblan, Michael J.; McKinnon, Karen P.; Caster, Joseph M.; Chai, Shengjie; Herring, Laura E.; Zhang, Longzhen; Zhang, Tian; Desimone, Joseph M.; Tepper, Joel E.; Vincent, Benjamin G.; Serody, Jonathan S.; Wang, Andrew Z.

    2017-09-01

    Immunotherapy holds tremendous promise for improving cancer treatment. To administer radiotherapy with immunotherapy has been shown to improve immune responses and can elicit the 'abscopal effect'. Unfortunately, response rates for this strategy remain low. Herein we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NP formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent on the NP surface properties. We showed that AC-NPs deliver tumour-specific proteins to antigen-presenting cells (APCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment using the B16F10 melanoma model, generating up to a 20% cure rate compared with 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+T/Treg and CD8+T/Treg ratios (Treg, regulatory T cells). Our work presents a novel strategy to improve cancer immunotherapy with nanotechnology.

  2. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  3. Analysis of antigenic cross-reactivity between subgroup C avian pneumovirus and human metapneumovirus by using recombinant fusion proteins.

    Science.gov (United States)

    Luo, L; Sabara, M I; Li, Y

    2009-10-01

    Avian pneumovirus subgroup C (APV/C) has recently been reported to be more closely related to human metapneumovirus (hMPV) as determined by sequence analysis. To examine the antigenic relationship between APV/C and hMPV, the APV/C fusion (F) gene was cloned and expressed as an uncleaved glycoprotein in a baculovirus system. The reactivity of the APV/C F protein with antibodies against APV subgroups A, B, C, and hMPV was examined by Western blot analysis. The results showed that the expressed APV/C F protein was not only recognized by APV/C-specific antibodies but also by antibodies raised against hMPV. Previously expressed recombinant hMPV F protein also reacted with APV/C-specific antibodies, suggesting that there was significant antigenic cross-reactivity and a potential evolutionary relationship between hMPV and APV/C. Interestingly, the recombinant F proteins from APV/C and hMPV were not recognized by polyclonal antibodies specific to APV subgroups A and B.

  4. Antibody response to the lipopolysaccharide and protein antigens of Salmonella typhi during typhoid infection. I. Measurement of serum antibodies by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, R S.W.; Chau, P Y; Lam, S K [Hong Kong Univ.; La Brooy, J T; Rowley, D [Adelaide Univ. (Australia)

    1981-12-01

    Serum antibody responses to the lipopolysaccharide and protein antigens of S. typhi in typhoid patients were studied using a solid-phase radioimmunoassay technique with /sup 125/I labelled anti-immunoglobulin antibody. Sera from 24 adult typhoid patients and 20 non-typhoid adult controls were compared. As a group, sera from typhoid patients showed increased IgA, IgG and IgM immunoglobulin levels and gave significantly higher anti-LPS and anti-protein antibody titres in all three major immunoglobulin classes than did non-typhoid controls. Levels of antibodies against LPS or protein in sera of typhoid patients were highly variable with a skew distribution. A good correlation was found between antibody titres to the LPS antigen and those to a protein antigen. No correlation, however, was found between the anti-LPS antibody titres measured by radioimmunoassay and the anti-O antibody titres measured by the Widal agglutination test. Titration of anti-LPS or anti-protein antibodies by radioimmunoassay was found to be more sensitive and specific than Widal test for the serological diagnosis of typhoid fever. The advantages of measuring antibody response by radioimmunoassay over conventional Widal test are discussed.

  5. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens

    International Nuclear Information System (INIS)

    Szala, S.; Kasai, Yasushi; Steplewski, Z.; Rodeck, U.; Koprowski, H.; Linnenbach, A.J.

    1990-01-01

    The human tumor-associated antigen CO-029 is a monoclonal antibody-defined cell surface glycoprotein of 27-34 kDa. By using the high-efficiency COS cell expression system, a full-length cDNA clone for CO-029 was isolated. When transiently expressed in COS cells, the cDNA clone directed the synthesis of an antigen reactive to monoclonal antibody CO-029 in mixed hemadsorption and immunoblot assays. Sequence analysis revealed that CO-029 belongs to a family of cell surface antigens that includes the melanoma-associated antigen ME491, the leukocyte cell surface antigen CD37, and the Sm23 antigen of the parasitic helminth Schistosoma mansoni. CO-029 and ME491 antigen expression and the effect of their corresponding monoclonal antibodies on cell growth were compared in human tumor cell lines of various histologic origins

  6. Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites.

    Science.gov (United States)

    Zhang, Deqing; Howe, Daniel K

    2008-04-15

    An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.

  7. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  8. The hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity

    DEFF Research Database (Denmark)

    Lannergård, Jonas; Gustafsson, Caj Ulrik Mattias; Waldemarsson, Johan

    2011-01-01

    Sequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion...

  9. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists.

    Science.gov (United States)

    Kollmann, Christopher S; Bai, Xiaopeng; Tsai, Ching-Hsuan; Yang, Hongfang; Lind, Kenneth E; Skinner, Steven R; Zhu, Zhengrong; Israel, David I; Cuozzo, John W; Morgan, Barry A; Yuki, Koichi; Xie, Can; Springer, Timothy A; Shimaoka, Motomu; Evindar, Ghotas

    2014-04-01

    The inhibition of protein-protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.

    Science.gov (United States)

    Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine

    2016-08-11

    Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.

  11. [Blood groups - minuses and pluses. Do the blood group antigens protect us from infectious diseases?].

    Science.gov (United States)

    Czerwiński, Marcin

    2015-06-25

    Human blood can be divided into groups, which is a method of blood classification based on the presence or absence of inherited erythrocyte surface antigens that can elicit immune response. According to the International Society of Blood Transfusion, there are 341 blood group antigens collected in 35 blood group systems. These antigens can be proteins, glycoproteins or glycosphingolipids, and function as transmembrane transporters, ion channels, adhesion molecules or receptors for other proteins. The majority of blood group antigens is present also on another types of cells. Due to their localization on the surface of cells, blood group antigens can act as receptors for various pathogens or their toxins, such as protozoa (malaria parasites), bacteria (Helicobacter pylori, Vibrio cholerae and Shigella dysenteriae) and viruses (Noroviruses, Parvoviruses, HIV). If the presence of group antigen (or its variant which arised due to mutation) is beneficial for the host (e.g. because pathogens are not able to bind to the cells), the blood group may become a selection trait, leading to its dissemination in the population exposed to that pathogen. There are thirteen blood group systems that can be related to pathogen resistance, and it seems that the particular influence was elicit by malaria parasites. It is generally thought that the high incidence of blood groups such as O in the Amazon region, Fy(a-b-) in Africa and Ge(-) in Papua-New Guinea is the result of selective pressure from malaria parasite. This review summarizes the data about relationship between blood groups and resistance to pathogens.

  12. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  13. Comparison of Colorimetric Assays with Quantitative Amino Acid Analysis for Protein Quantification of Generalized Modules for Membrane Antigens (GMMA)

    OpenAIRE

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A.; Saul, Allan; Gerke, Christiane

    2014-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Int...

  14. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    Science.gov (United States)

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by

  15. Abnormal antigens in breast cancer tissues and production of monoclonal antibodies against one of these antigens

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M E. A. [University of Khartoum, Khartoum (Sudan)

    2010-02-15

    Breast cancer is associated with up regulation, down regulation of normal antigens or abnormal antigens. These antigens are very useful candidates as targets for the different breast cancer therapies and for vaccination trials. This study was done to characterize abnormal antigens, extract one of them and to produce monoclonal antibodies against the extracted antigen. One hundred and twenty Sudanese female patients were included in this study after informed consent. The mean age was 47. 2 years (16-80). Two tissue samples were obtained from each patient and they were confirmed as normal and cancerous breast tissues microscopically. 2D PAGE was used to analyze the protein content of samples. LC/MS and nr. fast a database search were used for separation and indentification of the abnormal proteins. Three different patterns of 2D Page results were obtained, the first pattern involved detection of four abnormal proteins in 26.7% of the patient cancerous tissues while they were undetected in the normal tissues of the same patients. In the second 2D PAGE result pattern the cancerous and the normal tissues of 67.5% patients were identical and they did not contain the four abnormal proteins while the third 2D PAGE pattern involved the presence of two abnormal antigens (from the four) in the cancerous tissues of 5.8% of the patients and they were absent from the normal tissues of the same patients. The four abnormal proteins were identified as, human Thioredoxin (D60nmutant), x-ray crystal structure of human galectin-1, retrocopy of tropomyosin 3(rc TPM3) and beta-tropomyosin (isoform 2). The primary and the secondary structures were obtained from the SWISSPROT and the PDB databases. Beta tropomyosin spot was extracted and used as antigen for monoclonal antibody production. Monoclonal antibody against beta- tropomyosin with a concentration of 0.35 mg/ml and a G11 anti beta-tropomyosin hybridoma cell line were produced. The monoclonal antibody was with single bad and

  16. Abnormal antigens in breast cancer tissues and production of monoclonal antibodies against one of these antigens

    International Nuclear Information System (INIS)

    Mohammed, M. E. A.

    2010-02-01

    Breast cancer is associated with up regulation, down regulation of normal antigens or abnormal antigens. These antigens are very useful candidates as targets for the different breast cancer therapies and for vaccination trials. This study was done to characterize abnormal antigens, extract one of them and to produce monoclonal antibodies against the extracted antigen. One hundred and twenty Sudanese female patients were included in this study after informed consent. The mean age was 47. 2 years (16-80). Two tissue samples were obtained from each patient and they were confirmed as normal and cancerous breast tissues microscopically. 2D PAGE was used to analyze the protein content of samples. LC/MS and nr. fast a database search were used for separation and indentification of the abnormal proteins. Three different patterns of 2D Page results were obtained, the first pattern involved detection of four abnormal proteins in 26.7% of the patient cancerous tissues while they were undetected in the normal tissues of the same patients. In the second 2D PAGE result pattern the cancerous and the normal tissues of 67.5% patients were identical and they did not contain the four abnormal proteins while the third 2D PAGE pattern involved the presence of two abnormal antigens (from the four) in the cancerous tissues of 5.8% of the patients and they were absent from the normal tissues of the same patients. The four abnormal proteins were identified as, human Thioredoxin (D60nmutant), x-ray crystal structure of human galectin-1, retrocopy of tropomyosin 3(rc TPM3) and beta-tropomyosin (isoform 2). The primary and the secondary structures were obtained from the SWISSPROT and the PDB databases. Beta tropomyosin spot was extracted and used as antigen for monoclonal antibody production. Monoclonal antibody against beta- tropomyosin with a concentration of 0.35 mg/ml and a G11 anti beta-tropomyosin hybridoma cell line were produced. The monoclonal antibody was with single bad and

  17. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion.

    Science.gov (United States)

    Chuan, Yap Pang; Zeng, Bi Yun; O'Sullivan, Brendan; Thomas, Ranjeny; Middelberg, Anton P J

    2012-02-15

    Nanotechnology promises new drug carriers that can be tailored to specific applications. Here we report a new approach to drug delivery based on tailorable nanocarrier emulsions (TNEs), motivated by a need to co-deliver a protein antigen and a lipophilic drug for specific inhibition of nuclear factor kappa B (NF-κB) in antigen presenting cells (APCs). Co-delivery for NF-κB inhibition holds promise as a strategy for the treatment of rheumatoid arthritis. We used a highly surface-active peptide (SAP) to prepare a nanosized emulsion having defined surface properties predictable from the SAP sequence. Incorporating the lipophilic drug into the oil phase at the time of emulsion formation enabled its facile packaging. The SAP is depleted from bulk during emulsification, allowing simple subsequent addition of the drug-loaded oil-in-water emulsion to a solution of protein antigen. Decoration of emulsion surface with antigen was achieved via electrostatic deposition. In vitro data showed that the TNE prepared this way was internalized and well-tolerated by model APCs, and that good suppression of NF-κB expression was achieved. This work reports a new type of nanotechnology-based carrier, a TNE, which can potentially be tailored for co-delivery of multiple therapeutic components, and can be made using simple methods using only biocompatible materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Induction of the nuclear IκB protein IκB-ζ upon stimulation of B cell antigen receptor

    International Nuclear Information System (INIS)

    Hijioka, Kuniaki; Matsuo, Susumu; Eto-Kimura, Akiko; Takeshige, Koichiro; Muta, Tatsushi

    2007-01-01

    The nuclear IκB protein IκB-ζ is barely detectable in resting cells and is induced in macrophages and fibroblasts following stimulation of innate immunity via Toll-like receptors. The induced IκB-ζ associates with nuclear factor (NF)-κB in the nucleus and plays crucial roles in its transcriptional regulation. Here, we examined the induction of IκB-ζ in B lymphocytes, one of the major players in adaptive immunity. Upon crosslinking of the surface immunoglobulin complex, IκB-ζ mRNA was robustly induced in murine B-lymphoma cell line A20 cells. While the crosslinking activated NF-κB and induced its target gene, IκB-α, co-crosslinking of Fcγ receptor IIB to the surface immunoglobulin complex inhibited NF-κB activation and the induction of IκB-ζ and IκB-α, suggesting critical roles for NF-κB in the induction. These results indicate that IκB-ζ is also induced by stimulation of B cell antigen receptor, suggesting that IκB-ζ is involved in the regulation of adaptive immune responses

  19. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  20. Computational Identification of Antigenicity-Associated Sites in the Hemagglutinin Protein of A/H1N1 Seasonal Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ren

    Full Text Available The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein of A/H1N1 seasonal influenza virus using computational approaches. Random Forest Regression (RFR and Support Vector Regression based on Recursive Feature Elimination (SVR-RFE were applied to H1N1 seasonal influenza viruses and used to analyze the associations between amino acid changes in the HA1 polypeptide and antigenic variation based on hemagglutination-inhibition (HI assay data. Twenty-three and twenty antigenicity-associated sites were identified by RFR and SVR-RFE, respectively, by considering the joint effects of amino acid residues on antigenic drift. Our proposed approaches were further validated with the H3N2 dataset. The prediction models developed in this study can quantitatively predict antigenic differences with high prediction accuracy based only on HA1 sequences. Application of the study results can increase understanding of H1N1 seasonal influenza virus antigenic evolution and accelerate the selection of vaccine strains.

  1. Screening of random peptide library of hemagglutinin from pandemic 2009 A(H1N1 influenza virus reveals unexpected antigenically important regions.

    Directory of Open Access Journals (Sweden)

    Wanghui Xu

    Full Text Available The antigenic structure of the membrane protein hemagglutinin (HA from the 2009 A(H1N1 influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.

  2. Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses.

    Science.gov (United States)

    Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei

    2016-01-01

    The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.

  3. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    Science.gov (United States)

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  4. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1.

    Science.gov (United States)

    Tetteh, Kevin K A; Conway, David J

    2011-10-13

    Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23

    International Nuclear Information System (INIS)

    Wang, F.; Gregory, C.D.; Rowe, M.; Rickinson, A.B.; Wang, D.; Birkenbach, M.; Kikutani, H.; Kishimoto, T.; Kieff, E.

    1987-01-01

    Epstein-Barr virus (EBV) infection of EBV-negative Burkitt lymphoma (BL) cells includes some changes similar to those seen in normal B lymphocytes that have been growth transformed by EBV. The role of individual EBV genes in this process was evaluated by introducing each of the viral genes that are normally expressed in EBV growth-transformed and latently infected lymphoblasts into an EBV-negative BL cell line, using recombinant retrovirus-mediated transfer. Clones of cells were derived that stably express the EBV nuclear antigen 1 (EBNA-1), EBNA-2, EBNA-3, EBNA-leader protein, or EBV latent membrane protein (LMP). These were compared with control clones infected with the retrovirus vector. All 10 clones converted to EBNA-2 expression differed from control clones or clones expressing other EBV proteins by growth in tight clumps and by markedly increased expression of one particular surface marker of B-cell activation, CD23. Other activation antigens were unaffected by EBNA-2 expression, as were markers already expressed on the parent BL cell line. The results indicate that EBNA-2 is a specific direct or indirect trans-activator of CD23. This establishes a link between an EBV gene and cell gene expression. Since CD23 has been implicated in the transduction of B-cell growth signals, its specific induction by EBNA-2 could be important in EBV induction of B-lymphocyte transformation

  6. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  7. Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target

    Science.gov (United States)

    Raff, Adam B.; Gray, Andrew; Kast, W. Martin

    2009-01-01

    The development of novel clinical tools to combat cancer is an intense field of research and recent efforts have been directed at the identification of proteins that may provide diagnostic, prognostic and/or therapeutic applications due to their restricted expression. To date, a number of protein candidates have emerged as potential clinical tools in the treatment of prostate cancer. Discovered over ten year ago, prostate stem cell antigen (PSCA) is a cell surface antigen that belongs to the Ly-6/Thy-1 family of glycosylphosphatidylinositol-anchored proteins. PSCA is highly overexpressed in human prostate cancer, with limited expression in normal tissues, making it an ideal target for both diagnosis and therapy. Several studies have now clearly correlated the expression of PSCA with relevant clinical benchmarks, such as Gleason score and metastasis, while others have demonstrated the efficacy of PSCA targeting in treatment through various modalities. The purpose of this review is to present the current body of knowledge about PSCA and its potential role in the treatment of human prostate cancer. PMID:18838214

  8. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Directory of Open Access Journals (Sweden)

    Christopher D Johnston

    2014-09-01

    Full Text Available It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of two MAP genes (MAP2121c and MAP3733c can enhance the heterologous expression of two antigens (MMP and MptD respectively, analogous to the form to which they are produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, codon optimised MptD displayed the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adhered with the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne’s disease.

  9. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling

    NARCIS (Netherlands)

    Chu, D. H.; Spits, H.; Peyron, J. F.; Rowley, R. B.; Bolen, J. B.; Weiss, A.

    1996-01-01

    The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs.

  10. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    Science.gov (United States)

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  11. Antigenic analysis of the major structural protein of the Mason-Pfizer monkey virus

    International Nuclear Information System (INIS)

    Schochetman, G.; Boehm-Truitt, M.; Schlom, J.

    1976-01-01

    The major internal protein, p27 (m.w. 27,000 daltons) of the Mason-Pfizer monkey virus (MPMV) was purified by gel filtration and ion-exchange chromatography and then used to develop a radioimmunoassay (RIA). This RIA was specific for MPMV because no immunologic cross-reactivity was observed between p27 of MPMV and 13 different RNA tumor viruses of mammalian and avian origin. However, the p27 of MPMV grown in three different primate cells exhibited identical antigenic cross-reactivity. In addition, significant levels of p27 were found only in MPMV-infected cells. These results indicate that synthesis of p27 is induced after virus infection and that p27 represents a viral-coded protein

  12. Multiple surface antigen mutations in five blood donors with occult hepatitis B virus infection

    NARCIS (Netherlands)

    Zaaijer, H. L.; Torres, P.; Ontañón, A.; Ponte, L. González; Koppelman, M. H. G. M.; Lelie, P. N.; Hemert, F. J. van; Boot, H. J.

    2008-01-01

    Occult hepatitis B virus (HBV) infection is characterized by the presence of HBV DNA while the HBV surface antigen (HBsAg) remains undetectable. The HBV genomes in five asymptomatic blood donors with occult HBV infection and low viremia ( <10 to 1,000 HBV DNA copies/mL, genotype D) were studied. An

  13. Venom allergen-like protein 28 in Clonorchis sinensis: four epitopes on its surface and the potential role of Cys124 for its conformational stability.

    Science.gov (United States)

    Lee, Myoung-Ro; Yoo, Won Gi; Kim, Yu Jung; Chung, Eun Ju; Cho, Shin-Hyeong; Ju, Jung-Won

    2018-06-06

    Venom allergen-like (VAL) proteins are important to host-parasite interactions. We previously demonstrated that a Clonorchis sinensis VAL (CsVAL) protein-derived synthetic peptide suppresses allergic and inflammatory responses. However, little is known regarding the physicochemical and antigenic properties of CsVAL proteins. Here, we identified a novel 194 amino acid VAL protein, named C. sinensis VAL 28 (CsVAL28), and characterized its functional motifs and structural details as a new member of the CAP superfamily. Unlike members of the Schistosoma mansoni VAL (SmVAL) family, CsVAL28 has a single CAP1 motif and six highly conserved disulfide bond-forming cysteines. Tertiary models of wild-type CsVAL28 and mutants were built using SmVAL4 as template via homology modeling. Normal mode analysis predicted that disulfide bond breaking by mutation of cysteine 124 to serine would greatly affect protein mobility. Four major immunoreactive linear epitopes were identified in the surface-exposed region or its vicinity via epitope mapping, using sera from clonorchiasis patients and healthy controls. Our findings provide in-depth knowledge on the structure-function properties of VAL proteins and may help determine highly antigenic regions for developing new diagnostic approaches.

  14. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Science.gov (United States)

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  15. Topographic study of the ADP/ATP transport protein. Localization of ADP and atractyloside fixation sites. Identification of the antigenic domains

    International Nuclear Information System (INIS)

    Boulay, Francois

    1983-01-01

    The objectives of this research thesis were: to determine the intramolecular localisation of binding sites of atractyloside and adenine-nucleotides; to determine whether antibodies obtained against the ADP/ATP carrier protein and isolated from beef heart mitochondria possess a reactivity specific to the organ or the species, where antigenic determinants are localized and whether there is conservation of the antigenic structure from one species to the other; to study how to follow and interpret conformational changes of the protein under the effect of ADP and inhibitors (carboxy-atractyloside or bongkrekic acid), and where the SH group unmasked by ADP and bongkrekic acid is localized [fr

  16. Studies on antigenic cross-reactivity of Trichuris ovis with host mucosal antigens in goat

    Directory of Open Access Journals (Sweden)

    Gautam Patra

    2015-12-01

    Full Text Available Objective: To ascertain whether immunodominant antigens of Trichuris ovis might share and cross react with host molecule. Methods: Two crude protein preparations from anterior and posterior parts of Trichuris ovis were characterized along with host mucosal antigen by double immunodiffusion, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting technique. Conventional scanning electron microscopy was performed as per standard procedure. Results: Sharp and distinct bands of three antigens have been found in double immunodiffusion using hyperimmune serum raised in rabbit indicating the presence of specific antibody against each antigen. All three antigens have shown major and minor bands with molecular weight ranging from 15 to 110 kDa during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Conclusions: The antigenic cross-reactivity was thought to result from shared antigens. The existence of paracloacal papillae found in the anterior part of the male was not a unique feature for species differentiation.

  17. The non-structural protein 5 and matrix protein are antigenic targets of T cell immunity to genotype 1 porcine reproductive and respiratory syndrome viruses

    Directory of Open Access Journals (Sweden)

    Helen eMokhtar

    2016-02-01

    Full Text Available The porcine reproductive and respiratory syndrome virus (PRRSV is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focussed on envelope glycoproteins to target virus-neutralising antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress towards market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralising antibodies, it has been proposed that T cell mediated immunity plays a key role. We therefore hypothesised that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely-related (subtype 1 or divergent (subtype 3 PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5, and to a lesser extent, the matrix (M protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by co-expression of TNF-α and mobilisation of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved amongst strains of both PRRSV genotypes. Thus M and NSP5 represent attractive vaccine candidate T cell antigens which should be evaluated further in the context of PRRSV vaccine development.

  18. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  19. Glycosylation of Recombinant Antigenic Proteins from Mycobacterium tuberculosis: In Silico Prediction of Protein Epitopes and Ex Vivo Biological Evaluation of New Semi-Synthetic Glycoconjugates.

    Science.gov (United States)

    Bavaro, Teodora; Tengattini, Sara; Piubelli, Luciano; Mangione, Francesca; Bernardini, Roberta; Monzillo, Vincenzina; Calarota, Sandra; Marone, Piero; Amicosante, Massimo; Pollegioni, Loredano; Temporini, Caterina; Terreni, Marco

    2017-06-29

    Tuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from Mycobacterium tuberculosis (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in E. coli with an additional seven-amino acid tag (recombinant Ag85B and TB10.4). Different semi-synthetic glycoconjugated derivatives were prepared, starting from mannose and two disaccharide analogs. The glycans were activated at the anomeric position with a thiocyanomethyl group, as required for protein glycosylation by selective reaction with lysines. The glycosylation sites and the ex vivo evaluation of the immunogenic activity of the different neo- glycoproteins were investigated. Glycosylation does not modify the immunological activity of the TB10.4 protein. Similarly, Ag85B maintains its B-cell activity after glycosylation while showing a significant reduction in the T-cell response. The results were correlated with the putative B- and T-cell epitopes, predicted using a combination of in silico systems. In the recombinant TB10.4, the unique lysine is not included in any T-cell epitope. Lys30 of Ag85B, identified as the main glycosylation site, proved to be the most important site involved in the formation of T-cell epitopes, reasonably explaining why its glycosylation strongly influenced the T-cell activity. Furthermore, additional lysines included in different epitopes (Lys103, -123 and -282) are also glycosylated. In contrast, B-cell epitopic lysines of Ag85B were found to be poorly glycosylated and, thus, the antibody interaction of Ag85B was only marginally affected after coupling with mono- or disaccharides.

  20. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, B. M.; Søndergaard, Ib

    2010-01-01

    Background: Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast...... were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS) after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained...... their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating...

  1. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  2. Surface Passivation for Single-molecule Protein Studies

    Science.gov (United States)

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  3. A new technique to detect antibody-antigen reaction (biological interactions) on a localized surface plasmon resonance (LSPR) based nano ripple gold chip

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Iram, E-mail: iiram.qau@gmail.com [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Widger, William, E-mail: widger@uh.edu [Department of Biology and Biochemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Chu, Wei-Kan, E-mail: wkchu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2017-07-31

    Highlights: • The nano ripple LSPR chip has monolayer molecule-coating sensitivity and specific selectivity. • Gold nano-ripple sensing chip is a low cost, and a label-free method for detecting the antibody-antigen reaction. • The plasmonic resonance shift depends upon the concentration of the biomolecules attached on the surface of the nano ripple pattern. - Abstract: We demonstrate that the gold nano-ripple localized surface plasmon resonance (LSPR) chip is a low cost and a label-free method for detecting the presence of an antigen. A uniform stable layer of an antibody was coated on the surface of a nano-ripple gold pattern chip followed by the addition of different concentrations of the antigen. A red shift was observed in the LSPR spectral peak caused by the change in the local refractive index in the vicinity of the nanostructure. The LSPR chip was fabricated using oblique gas cluster ion beam (GCIB) irradiation. The plasmon-resonance intensity of the scattered light was measured by a simple optical spectroscope. The gold nano ripple chip shows monolayer scale sensitivity and high selectivity. The LSPR substrate was used to detect antibody-antigen reaction of rabbit X-DENTT antibody and DENTT blocking peptide (antigen).

  4. Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display

    NARCIS (Netherlands)

    Schuijt, T.J.; Narasimhan, S.; Daffre, S.; Deponte, K.; Hovius, J.W.R.; van 't Veer, C.; van der Poll, T.; Bakhtiari, K.; Meijers, J.C.M.; Boder, E.T.; van Dam, A.P.; Fikrig, E.

    2011-01-01

    Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary

  5. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  6. Isocyanate test antigens

    International Nuclear Information System (INIS)

    Karol, M.H.; Alarie, Y.C.

    1980-01-01

    A test antigen for detecting antibodies to a diisocyanate comprises the reaction product of a protein and a monoisocyanate derived from the same radical as the diisocyanate. The diisocyanates most usually encountered and therefore calling for antibody detection are those of toluene, hexamethylene, methylene, isophorone and naphthylene. The preferred protein is human serum albumin. (author)

  7. Molecular characterisation and the protective immunity evaluation of Eimeria maxima surface antigen gene.

    Science.gov (United States)

    Liu, Tingqi; Huang, Jingwei; Li, Yanlin; Ehsan, Muhammad; Wang, Shuai; Zhou, Zhouyang; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2018-05-30

    Coccidiosis is recognised as a major parasitic disease in chickens. Eimeria maxima is considered as a highly immunoprotective species within the Eimeria spp. family that infects chickens. In the present research, the surface antigen gene of E. maxima (EmSAG) was cloned, and the ability of EmSAG to stimulate protection against E. maxima was evaluated. Prokaryotic and eukaryotic plasmids expressing EmSAG were constructed. The EmSAG transcription and expression in vivo was performed based on the RT-PCR and immunoblot analysis. The expression of EmSAG in sporozoites and merozoites was detected through immunofluorescence analyses. The immune protection was assessed based on challenge experiments. Flow cytometry assays were used to determine the T cell subpopulations. The serum antibody and cytokine levels were evaluated by ELISA. The open reading frame (ORF) of EmSAG gene contained 645 bp encoding 214 amino acid residues. The immunoblot and RT-PCR analyses indicated that the EmSAG gene were transcribed and expressed in vivo. The EmSAG proteins were expressed in sporozoite and merozoite stages of E. maxima by the immunofluorescence assay. Challenge experiments showed that both pVAX1-SAG and the recombinant EmSAG (rEmSAG) proteins were successful in alleviating jejunal lesions, decreasing loss of body weight and the oocyst ratio. Additionally, these experiments possessed anticoccidial indices (ACI) of more than 170. Higher percentages of CD4 + and CD8 + T cells were detected in both EmSAG-inoculated birds than those of the negative control groups (P maxima.

  8. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    Science.gov (United States)

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection.

  9. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.

    Directory of Open Access Journals (Sweden)

    Sean A Gray

    Full Text Available The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.

  10. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    Science.gov (United States)

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, R L; Oettinger, T; Rosenkrands, I

    2000-01-01

    Culture filtrate from Mycobacterium tuberculosis contains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtrate....... The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  12. Binding of monoclonal antibody to protein antigen in fluid phase or bound to solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S J

    1982-01-01

    Rat monoclonal antibody (MoAb) to fragment D (FgD) of human fibrinogen was used to characterize the direct binding of antibody to protein in solution or bound to solid supports. Purified IgG, F(ab')/sub 2/ and Fab' were prepared from ascites fluid of hybridoma 104-14B which is a fusion product of spleen cells from a rat immunized with FgD and the mouse myeloma cell line, P3-X63-Ag8. Two-dimensional electrophoresis of radioiodinated antibody preparations demonstrated the presence of hybrid immunoglobulin molecules, but only structures having rat heavy and rat light chains had active antibody combinig sites. The affinity constant for IgG as well as F(ab')/sub 2/ and Fab', 6x10/sup 9/ M/sup -1/, was identical when tested using fluid phase antigen (/sup 125/I-labeled FgD). Affinity constants determined for direct binding of iodinated IgG using FgD immobilized on solid supports showed a slight dependence on the antigen concentration used in the measurement. These values ranged from 0.5x10/sup 9/ M/sup -1/ at high antigen concentrations (1.3x10/sup -7/ M) to 9x10/sup 9/ M/sup -1/ at low antigen concentration (1.3x10/sup -10/ M). Binding constants for F(ab')/sub 2/ and Fab' gave similar results indicating that binding was homogeneous and univalent. The capacity of solid state antigen to bind antibody varied with the method used to bind FgD to the solid support. FgD bound directly to polystyrene plates was least efficient at binding labeled antibody; FgD bound to plates through intermediate carriers poly(L-lysine) was only slightly more efficient, while antigen bound to Sepharose beads by cyanogen bromide activation was the most active.

  13. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta).

    NARCIS (Netherlands)

    Drake, P.G.; Peters, G.H.; Andersen, H.S.; Hendriks, W.J.A.J.; Moller, N.P.

    2003-01-01

    Islet-cell antigen 512 (IA-2) and phogrin (IA-2beta) are atypical members of the receptor protein tyrosine phosphatase (PTP) family that are characterized by a lack of activity against conventional PTP substrates. The physiological role(s) of these proteins remain poorly defined, although recent

  14. A molecular approach to immunoscintigraphy: A study of the T-antigen conformation on the surface of tumors

    International Nuclear Information System (INIS)

    Noujaim, A.; Selvaraj, S.; Suresh, M.R.; Turner, C.; McLean, G.; Willans, D.; Longenecker, B.M.; Haines, D.M.

    1987-01-01

    The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both α and β configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models. (orig.) [de

  15. Leukemia-associated antigens in man.

    Science.gov (United States)

    Brown, G; Capellaro, D; Greaves, M

    1975-12-01

    Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.

  16. Expression and characterization of highly antigenic domains of chicken anemia virus viral VP2 and VP3 subunit proteins in a recombinant E. coli for sero-diagnostic applications

    Science.gov (United States)

    2013-01-01

    Background Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. Generally, CAV infection occurs via vertical transmission in young chicks that are less than two weeks old, which are very susceptible to the disease. Therefore, epidemiological investigations of CAV infection and/or the evaluation of the immunization status of chickens is necessary for disease control. Up to the present, systematically assessing viral protein antigenicity and/or determining the immunorelevant domain(s) of viral proteins during serological testing for CAV infection has never been performed. The expression, production and antigenic characterization of CAV viral proteins such as VP1, VP2 and VP3, and their use in the development of diagnostic kit would be useful for CAV infection prevention. Results Three CAV viral proteins VP1, VP2 and VP3 was separately cloned and expressed in recombinant E. coli. The purified recombinant CAV VP1, VP2 and VP3 proteins were then used as antigens in order to evaluate their reactivity against chicken sera using indirect ELISA. The results indicated that VP2 and VP3 show good immunoreactivity with CAV-positive chicken sera, whereas VP1 was found to show less immunoreactivity than VP2 and VP3. To carry out the further antigenic characterization of the immunorelevant domains of the VP2 and VP3 proteins, five recombinant VP2 subunit proteins (VP2-435N, VP2-396N, VP2-345N, VP2-171C and VP2-318C) and three recombinant VP3 subunit proteins (VP3-123N, VP3-246M, VP3-366C), spanning the defined regions of VP2 and VP3 were separately produced by an E. coli expression system. These peptides were then used as antigens in indirect ELISAs against chicken sera. The results of these ELISAs using truncated recombinant VP2 and VP3 subunit proteins as coating antigen showed that VP2-345N, VP2-396N and VP3-246M gave good immunoreactivity with CAV-positive chicken sera compared to the other

  17. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  18. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Science.gov (United States)

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  19. Use of radio-immuno-inhibition assay for the study of the y, d and w determinants of hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Donea-Debroise, B; Brocteur, J; Andre, A; Remacle, M B [Liege Univ. (Belgium)

    1979-01-01

    A radioimmunoassay determination of the HBs antigen subtypes is discussed, this simple but effective technique was used in association with the use of the Austria II kit (Abbott Laboratories). This method consists of an inhibition reaction of the Austria II test, by previous incubation of the antigen to be subtyped with a monospecific antibody. With this method we were able to distinguish the y and the d antigens as well as the w1, w3, w4 determinants of hepatitis B surface antigen. We have included a frequency table of the various HBs subtypes found among donor and patient populations in Liege.

  20. A simple assay for the detection of antibodies to endocrine islet cell surface antigens

    International Nuclear Information System (INIS)

    Contreas, G.; Madsen, O.D.; Vissing, H.; Lernmark, Aa.

    1986-01-01

    A simple and sensitive immunoradiometric assay for the detection of islet cell surface antibodies (CIRMA) has been developed. Live, transformed islet cells derived from a liver metastasis of a transplantable islet cell tumor were grown in removable microtiter wells and incubated with antibody. Cell-bound antibodies were quantitated using 125 I-labelled second antibodies. The assay was used to detect islet cell antibodies present in sera from non-diabetic and diabetic BB rats and proved to be particularly effective for screening hybridoma supernatants in order to identify monoclonal antibodies recognizing islet cell surface antigens. (Auth.)

  1. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface.

    Directory of Open Access Journals (Sweden)

    Blaise Ndjamen

    2014-03-01

    Full Text Available The Herpes Simplex Virus 1 (HSV-1 glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG. gE-gI can also participate in antibody bipolar bridging (ABB, a process by which the antigen-binding fragments (Fabs of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.

  2. Carbamylated albumin is one of the target antigens of anti-carbamylated protein antibodies.

    Science.gov (United States)

    Nakabo, Shuichiro; Hashimoto, Motomu; Ito, Shinji; Furu, Moritoshi; Ito, Hiromu; Fujii, Takao; Yoshifuji, Hajime; Imura, Yoshitaka; Nakashima, Ran; Murakami, Kosaku; Kuramoto, Nobuo; Tanaka, Masao; Satoh, Junko; Ishigami, Akihito; Morita, Satoshi; Mimori, Tsuneyo; Ohmura, Koichiro

    2017-07-01

    Anti-carbamylated protein (anti-CarP) antibodies are detected in RA patients. Fetal calf serum is used as an antigen source in anti-CarP ELISA, and the precise target antigens have not been found. We aimed to identify the target antigens of anti-CarP antibodies. Western blotting of anti-CarP antibodies was conducted. Anti-carbamylated human albumin (CarALB) antibody was detected by in-house ELISA for 493 RA patients and 144 healthy controls (HCs). An inhibition ELISA of anti-CarP antibodies by CarALB and citrullinated albumin (citALB) was performed using eight RA patients' sera. Serum CarALB was detected by liquid chromatography-tandem mass spectroscopy (LC/MS/MS), and the serum MPO concentration was measured by ELISA. We focused on carbamylated albumin because it corresponded to the size of the thickest band detected by western blotting of anti-CarP antibodies. Anti-CarALB antibody was detected in 31.4% of RA patients, and the correlation of the titres between anti-CarALB and anti-CarP was much closer than that between anti-citALB and anti-CCP antibodies (ρ = 0.59 and ρ = 0.16, respectively). The inhibition ELISA showed that anti-CarP antibodies were inhibited by CarALB, but not by citALB. CarALB was detected in sera from RA patients by LC/MS/MS. The serum MPO concentration was correlated with disease activity and was higher in RA patients with anti-CarALB antibody than in those without. We found that carbamylated albumin is a novel target antigen of anti-CarP antibodies, and it is the first reported target antigen that has not been reported as the target of ACPA. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of

  4. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections

    Directory of Open Access Journals (Sweden)

    Gargouri Jalel

    2008-12-01

    Full Text Available Abstract Background The OmcB protein is one of the most immunogenic proteins in C. trachomatis and C. pneumoniae infections. This protein is highly conserved leading to serum cross reactivity between the various chlamydial species. Since previous studies based on recombinant proteins failed to identify a species specific immune response against the OmcB protein, this study evaluated an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of C. trachomatis infections. Results Using the ClustalW and Antigenic programs, we have selected two predicted specific and immunogenic regions in the OmcB protein: the N-terminal (Nt region containing three epitopes and the C-terminal (Ct region containing two epitopes with high scores. These regions were cloned into the PinPoint Xa-1 and pGEX-6P-1 expression vectors, incorporating a biotin purification tag and a glutathione-S-transferase tag, respectively. These regions were then expressed in E. coli. Only the pGEX-6P-1 has been found suitable for serological studies as its tag showed less cross reactivity with human sera and was retained for the evaluation of the selected antigens. Only the Ct region of the protein has been found to be well expressed in E. coli and was evaluated for its ability to be recognized by human sera. 384 sera were tested for the presence of IgG antibodies to C. trachomatis by our in house microimmunofluorescence (MIF and the developed ELISA test. Using the MIF as the reference method, the developed OmcB Ct ELISA has a high specificity (94.3% but a low sensitivity (23.9. Our results indicate that the use of the sequence alignment tool might be useful for identifying specific regions in an immunodominant antigen. However, the two epitopes, located in the selected Ct region, of the 24 predicted in the full length OmcB protein account for approximately 25% of the serological response detected by MIF, which limits the use of the developed ELISA

  5. Enhanced Expression of Interferon-γ-Induced Antigen-Processing Machinery Components in a Spontaneously Occurring Cancer

    Directory of Open Access Journals (Sweden)

    Fulvia Cerruti

    2007-11-01

    Full Text Available In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM. Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informative model for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction.

  6. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai

    2006-01-01

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  7. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  8. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts.

    Directory of Open Access Journals (Sweden)

    Stacey A Lapp

    Full Text Available Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1 antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+, and a related progeny clone, Pk1(B+1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera.We have investigated SICAvar RNA and protein expression in Pk1(A+, Pk1(B+1+, and SICA[-] parasites. The Pk1(A+ and Pk1(B+1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry.SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+ to Pk1(B+1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying

  9. Postvaccination seroconversion against the surface antigen of Hepatitis B virus, in nursing students

    Directory of Open Access Journals (Sweden)

    Gladys Amanda Mera-Urbano

    2013-09-01

    Full Text Available Objective: To determine the status of seroconversion after vaccination against the surface antigen of hepatitis B virus in nursing students, University of Cauca. Methods: Cross sectional study in students of V and VI semester. The sample was taken from 37 students, 15 of V and 22 of VI semester. The instrument used was a survey that included 11 questions of multiple selections. Records for weight, height and laboratory results were collected; blood samples for antibody titers were performed with informed consent. The data were tabulated and analyzed using SPSS, version 17.0. Results: 89.2% of students had levels of antibodies to the surface antigen. This value was greater than 10 mUI/ml, considered by the scientific community as a protector value of Hepatitis B. 10.8% of had lesser values. Regarding vaccination scheme, 24% had a dose, 19% two, 48% three and 8% had a one dose. The population with 3 doses and reinforcement seroconverted by 100%. Conclusion: This study demonstrated failings in the scheme of vaccination of the students of nursing and that 10.8 % presented lower values than 10 mIU/ml. It is necessary to apply the institutional rules with more strength as a preventive measure for hepatitis B.

  10. The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein

    International Nuclear Information System (INIS)

    Krauer, Kenia G.; Buck, Marion; Belzer, Deanna K.; Flanagan, James; Chojnowski, Grace M.; Sculley, Tom B.

    2004-01-01

    The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6

  11. Studies on antigenic cross-reactivity of Trichuris ovis with host mucosal antigens in goat

    OpenAIRE

    Gautam Patra; Seikh Sahanawaz Alam; Sonjoy Kumar Borthakur; Hridayesh Prasad

    2015-01-01

    Objective: To ascertain whether immunodominant antigens of Trichuris ovis might share and cross react with host molecule. Methods: Two crude protein preparations from anterior and posterior parts of Trichuris ovis were characterized along with host mucosal antigen by double immunodiffusion, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting technique. Conventional scanning electron microscopy was performed as per standard procedure. Results: Sharp...

  12. Immunogenicity and antigenicity of the recombinant EMA-1 protein of Theileria equi expressed in the yeast Pichia pastoris Imunogenicidade e antigenicidade da proteína recombinante EMA-1 de Theileria equi expressa em Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Leandro Q. Nizoli

    2009-06-01

    Full Text Available The equine piroplasmosis caused by Theileria equi is one of the most important parasitic diseases of the equine, causing damage to animal health and economic losses. In T. equi, 2 merozoite surface proteins, equi merozoite antigen EMA-1 and EMA-2, have been identified as the most immunodominant antigens. This suggests that these antigens might be used as immunobiological tools. The EMA-1 of Theileria equi was cloned and expressed in the yeast Pichia pastoris. The transformed yeast was grown at high cell density, expressing up to 389 mg.L-1 of recombinant protein. The protein was concentrated and detected in Dot blot. The recombinant product was antigenically similar to the native protein as determined using monoclonal antibodies, and polyclonal antibodies obtained from equines naturally infected with T. equi. The immunogenicity of rEMA-1 protein was demonstrated by IFAT using sera from recombinant-protein-immunized mice using aluminum hydroxide as adjuvant. All animals vaccinated with rEMA-1 developed a high specific antibody response. This results suggest that rEMA-1expressed in P. pastoris might be a strong candidate to be used as an antigen for immune diagnostics as well as a vaccine antigen.A piroplasmose equina causada por Theileria equi é uma das mais importantes doenças parasitárias de equídeos, causando danos a saúde animal e perdas econômicas. Em T. equi, 2 proteínas de superfície de merozoítos, equi merozoite antigen EMA-1 e EMA-2, têm sido identificadas como antígenos imunodominantes. Sugerindo que estes antígenos possam ser usados como produtos imunobiológicos. O gene EMA-1 de T. equi foi clonado e expressado na levedura Pichia pastoris. As leveduras transformadas foram cultivadas a altas densidades celulares expressando 389 mg.L-1 de proteína recombinante. A proteína foi concentrada e detectada em Dot blot. O produto recombinante foi antigenicamente similar à proteína nativa quando determinado usando anticorpo

  13. Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Vivian T Martins

    Full Text Available The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1, previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL.The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1 was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL, but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin, showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed.The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL.

  14. Effect of antigen shedding on targeted delivery of immunotoxins in solid tumors from a mathematical model.

    Directory of Open Access Journals (Sweden)

    Youngshang Pak

    Full Text Available Most cancer-specific antigens used as targets of antibody-drug conjugates and immunotoxins are shed from the cell surface (Zhang & Pastan (2008 Clin. Cancer Res. 14: 7981-7986, although at widely varying rates and by different mechanisms (Dello Sbarba & Rovida (2002 Biol. Chem. 383: 69-83. Why many cancer-specific antigens are shed and how the shedding affects delivery efficiency of antibody-based protein drugs are poorly understood questions at present. Before a detailed numerical study, it was assumed that antigen shedding would reduce the efficacy of antibody-drug conjugates and immunotoxins. However, our previous study using a comprehensive mathematical model showed that antigen shedding can significantly improve the efficacy of the mesothelin-binding immunotoxin, SS1P (anti-mesothelin-Fv-PE38, and suggested that receptor shedding can be a general mechanism for enhancing the effect of inter-cellular signaling molecules. Here, we improved this model and applied it to both SS1P and another recombinant immunotoxin, LMB-2, which targets CD25. We show that the effect of antigen shedding is influenced by a number of factors including the number of antigen molecules on the cell surface and the endocytosis rate. The high shedding rate of mesothelin is beneficial for SS1P, for which the antigen is large in number and endocytosed rapidly. On the other hand, the slow shedding of CD25 is beneficial for LMB-2, for which the antigen is small in number and endocytosed slowly.

  15. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  16. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.

    2014-05-05

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  17. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  18. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction

    Science.gov (United States)

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432

  19. Immunophenotyping of Waldenstroms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Aneel Paulus

    Full Text Available Waldenströms macroglobulinemia (WM is a subtype of Non-Hodgkin's lymphoma in which the tumor cell population is markedly heterogeneous, consisting of immunoglobulin-M secreting B-lymphocytes, plasmacytoid lymphocytes and plasma cells. Due to rarity of disease and scarcity of reliable preclinical models, many facets of WM molecular and phenotypic architecture remain incompletely understood. Currently, there are 3 human WM cell lines that are routinely used in experimental studies, namely, BCWM.1, MWCL-1 and RPCI-WM1. During establishment of RPCI-WM1, we observed loss of the CD19 and CD20 antigens, which are typically present on WM cells. Intrigued by this observation and in an effort to better define the immunophenotypic makeup of this cell line, we conducted a more comprehensive analysis for the presence or absence of other cell surface antigens that are present on the RPCI-WM1 model, as well as those on the two other WM cell lines, BCWM.1 and MWCL-1. We examined expression of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers by flow cytometry analysis. RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells. Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers. Overall, differences in surface antigen expression across the 3 cell lines may reflect the tumor clone population predominant in the index patients, from whom the cell lines were developed. Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for

  20. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Tomasz Łęga

    Full Text Available Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.

  1. Identification of Schistosoma mansoni candidate antigens for diagnosis of schistosomiasis

    Directory of Open Access Journals (Sweden)

    Gardenia Braz Figueiredo Carvalho

    2011-11-01

    Full Text Available The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.

  2. A new application of scanning electrochemical microscopy for the label-free interrogation of antibody-antigen interactions

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Joanne L.; Davis, Frank; Collyer, Stuart D. [Cranfield Health, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Higson, Seamus P.J., E-mail: s.p.j.higson@cranfield.ac.uk [Cranfield Health, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-03-18

    Within this work we present a 'proof of principle' study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL{sup -1} to 200 pg mL{sup -1} NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.

  3. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics

    Science.gov (United States)

    Rocco, Christopher J.; Davey, Mary Ellen; Bakaletz, Lauren O.; Goodman, Steven D.

    2016-01-01

    SUMMARY Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that while antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. PMID:26988714

  4. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  5. Identification of surface proteins in Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Eijsink Vincent GH

    2011-03-01

    Full Text Available Abstract Background Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design. Results Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31 or to be secreted (5. Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species. Conclusions The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5 and surface (31 proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

  6. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  7. Protein array profiling of tic patient sera reveals a broad range and enhanced immune response against Group A Streptococcus antigens.

    Directory of Open Access Journals (Sweden)

    Mauro Bombaci

    Full Text Available The human pathogen Group A Streptococcus (Streptococcus pyogenes, GAS is widely recognized as a major cause of common pharyngitis as well as of severe invasive diseases and non-suppurative sequelae associated with the existence of GAS antigens eliciting host autoantibodies. It has been proposed that a subset of paediatric disorders characterized by tics and obsessive-compulsive symptoms would exacerbate in association with relapses of GAS-associated pharyngitis. This hypothesis is however still controversial. In the attempt to shed light on the contribution of GAS infections to the onset of neuropsychiatric or behavioral disorders affecting as many as 3% of children and adolescents, we tested the antibody response of tic patient sera to a representative panel of GAS antigens. In particular, 102 recombinant proteins were spotted on nitrocellulose-coated glass slides and probed against 61 sera collected from young patients with typical tic neuropsychiatric symptoms but with no overt GAS infection. Sera from 35 children with neither tic disorder nor overt GAS infection were also analyzed. The protein recognition patterns of these two sera groups were compared with those obtained using 239 sera from children with GAS-associated pharyngitis. This comparative analysis identified 25 antigens recognized by sera of the three patient groups and 21 antigens recognized by tic and pharyngitis sera, but poorly or not recognized by sera from children without tic. Interestingly, these antigens appeared to be, in quantitative terms, more immunogenic in tic than in pharyngitis patients. Additionally, a third group of antigens appeared to be preferentially and specifically recognized by tic sera. These findings provide the first evidence that tic patient sera exhibit immunological profiles typical of individuals who elicited a broad, specific and strong immune response against GAS. This may be relevant in the context of one of the hypothesis proposing that GAS

  8. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing......, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo...

  9. The use of radio-immuno-inhibition assay for the study of the y, d and w determinants of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Donea-Debroise, B.; Brocteur, J.; Andre, A.; Remacle, M.B.

    1979-01-01

    A radioimmunoassay determination of the HBs antigen subtypes is discussed, this simple but effective technique was used in association with the use of the Austria II kit (Abbott Laboratories). This method consists of an inhibition reaction of the Austria II test, by previous incubation of the antigen to be subtyped with a monospecific antibody. With this method we were able to distinguish the y and the d antigens as well as the w1, w3, w4 determinants of hepatitis B surface antigen. We have included a frequency table of the various HBs subtypes found among donor and patient populations in Liege

  10. Structural Studies on Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Malaria Antigens Using Small Angle X-Ray Scattering (SAXS)

    DEFF Research Database (Denmark)

    Christoffersen, Stig

    Chemistry (App I) [1]. VAR2CSA binds specifically to CSA in the placental tissue of pregnant women hereby causing severe malaria symptoms endangering both mother and child. The minimal VAR2CSA region required to effectively bind CSA was determined to be the N-terminal DBL domain, DBL2X which we locate......Infection with the pathogenic Plasmodium falciparum parasite causes the potentially deadly Malaria disease which leads to over 1 million fatalities each year according to the WHO (World Health Organization). Individuals subjected to multiple infections gradually become immune to the disease...... symptoms and vaccine research is focused on trying to mimic or advance this immune acquisition. Immunity is primarily caused by acquisition of antibodies directed against a family of Plasmodium protein antigens called PfEMP1s located on the surface of infected erythrocytes. The PfEMP1 proteins are adhesive...

  11. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    Science.gov (United States)

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  13. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  14. Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction

    International Nuclear Information System (INIS)

    Rebelo, Tânia S.C.R.; Santos, C.; Costa-Rodrigues, J.; Fernandes, M.H.; Noronha, João P.; Sales, M. Goreti F.

    2014-01-01

    Graphical abstract: EF13-201, Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. - Abstract: This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomers around the binding site enhances protein binding. These charged receptor sites are placed over a neutral polymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed by preparing control materials with neutral monomers and also with non-imprinted template. This concept has been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate cancer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associated cancer. Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surface imprinting over graphene layers to which the protein was first covalently attached. Vinylbenzyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labelling the binding site and were allowed to self-organize around the protein. The subsequent polymerization was made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without oriented charges and non imprinted materials (NIM) obtained without template were used as controls. These materials were used to develop simple and inexpensive potentiometric sensor for PSA. They were included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liquid conductive contacts, made of conductive carbon over a syringe or of inner reference solution over micropipette tips. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10 −11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed lower

  15. Levels of antibody to conserved parts of Plasmodium falciparum merozoite surface protein 1 in Ghanaian children are not associated with protection from clinical malaria

    DEFF Research Database (Denmark)

    Dodoo, D; Theander, T G; Kurtzhals, J A

    1999-01-01

    malaria season in April and after the season in November. Using enzyme-linked immunosorbent assay, we measured antibody responses to recombinant gluthathione S-transferase-PfMSP119 fusion proteins corresponding to the Wellcome and MAD20 allelic variants in these samples. Prevalence of antibodies......The 19-kDa conserved C-terminal part of the Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is a malaria vaccine candidate antigen, and human antibody responses to PfMSP119 have been associated with protection against clinical malaria. In this longitudinal study carried out in an area...

  16. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    Science.gov (United States)

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The B7-1 cytoplasmic tail enhances intracellular transport and mammalian cell surface display of chimeric proteins in the absence of a linear ER export motif.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Lin

    Full Text Available Membrane-tethered proteins (mammalian surface display are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells.

  18. Interactions between whey proteins and kaolinite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barral, S. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Villa-Garcia, M.A. [Department of Organic and Inorganic Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: mavg@uniovi.es; Rendueles, M. [Project Management Area, University of Oviedo, Independencia 13, 33004 Oviedo (Spain); Diaz, M. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2008-07-15

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered.

  19. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    Barral, S.; Villa-Garcia, M.A.; Rendueles, M.; Diaz, M.

    2008-01-01

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  20. Expression and immunological characterisation of Eimeria tenella glycosylphosphatidylinositol-anchored surface antigen-5

    Science.gov (United States)

    Ho, Sue-Kim; Nathan, Sheila; Wan, Kiew-Lian

    2016-11-01

    Eimeria tenella is the most pathogenic of the Eimeria species that infect chickens and causes huge economic losses to the poultry industry. The glycosylphosphatidylinositol-anchored surface antigen-5 (SAG5) found on the surface of the parasite has been shown to activate the chicken's immune system. In this study, recombinant SAG5 was expressed, purified and used to investigate the immune-inducing characteristics of the molecule. Chickens were immunized with purified recombinant SAG5 and sera were subjected to Enzyme-linked Immunosorbant Assay (ELISA). Results indicated that specific antibodies against rSAG5 were produced, with IgG detected at a higher level compared to IgA and IgM. Information on the immunological responses elicited by SAG5 provides essential knowledge that will contribute towards the effort to develop more effective strategies against coccidiosis.

  1. Metabolic behavior of cell surface biotinylated proteins

    International Nuclear Information System (INIS)

    Hare, J.F.; Lee, E.

    1989-01-01

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  2. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36.

    Science.gov (United States)

    Bywaters, Stephanie M; Brendle, Sarah A; Tossi, Kerstin P; Biryukov, Jennifer; Meyers, Craig; Christensen, Neil D

    2017-11-10

    The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs) (H16.V5, H16.U4 and H16.7E) and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17-36). The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  3. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    Science.gov (United States)

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. A novel mitochondrial protein of Neurospora crassa immunoprecipitates with known enzyme subunits but is not antigenic

    International Nuclear Information System (INIS)

    Nixon, E.

    1989-01-01

    14 C labeled 4'-phosphopantetheine (PAN) is detectable as 2 bands after SDS-PAGE of mitochondrial proteins. The bands comigrate with subunit 6 of cytochrome oxidase (COX) and a small ATPase subunit in tube gel slices of immunoprecipitates. However, other work demonstrated these bands to be due to modification of a novel protein, related to acyl carrier protein (ACP) of spinach and E. coli, that exists in two forms. To resolve this discrepancy, 1-dimensional (1D) slab and 2-dimensional (2D) SDS-PAGE was used for increased resolution over tube gels. Total mitochondrial protein gels from PAN labeled cells were western blotted, probed for COX, and autoradiographed. In 1D there is exact migration of PAN with COX6. In 2D PAN overlaps a protein distinct from and not antigenically related to COX subunits. These data suggest it is the ACP-like protein that in PAN-modified. Its possible association with COX during assembly will be discussed

  5. VASCo: computation and visualization of annotated protein surface contacts

    Directory of Open Access Journals (Sweden)

    Thallinger Gerhard G

    2009-01-01

    Full Text Available Abstract Background Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. Results VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. Conclusion VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.

  6. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  7. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic but is a c......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic...... but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  8. Effect of radiation on the expression of carcinoembryonic antigen of human gastric adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hareyama, M.; Imai, K.; Kubo, K.; Takahashi, H.; Koshiba, H.; Hinoda, Y.; Shidou, M.; Oouchi, A.; Yachi, A.; Morita, K. (Sapporo Medical College (Japan))

    1991-05-01

    The changes of antigenic expression of cultured human gastric adenocarcinoma MKN45 cells caused by irradiation were investigated to elucidate the immune responses to localized irradiation. The expression of carcinoembryonic antigen (CEA) showed remarkable increases in the culture supernatant and on the surface of the membrane of irradiated cells. The expression of major histocompatibility complex Class I antigen on the membrane also was enhanced by irradiation. In addition, the irradiated cell groups, when analyzed using a CEA-specific probe, showed remarkable increases in the CEA mRNA. These enhancements increased in the 10-Gy and 15-Gy irradiated populations compared with the 5-Gy irradiated population. These results suggest that the enhancement of expression of CEA by radiation takes place at the CEA gene expression (mRNA) level but not at the protein level.

  9. Immunochemical identification of human trophoblast membrane antigens using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P J; Molloy, C M; Johnson, P M [Liverpool Univ. (UK). Dept. of Immunology

    1983-11-01

    Human trophoblast membrane antigens recognised by monoclonal antibodies (H310, H315, H316 and H317) have been identified using combinations of radioimmunoprecipitation, SDS-PAGE, electroblotting, chromatographic and ELISA-type techniques. H317 is known to identify heat-stable placental-type alkaline phosphatase and accordingly was shown to react with a protein of subunit Msub(r) of 68000. H310 and H316 both recognise an antigen with a subunit Msub(r) of 34000 under reducing conditions. In non-reducing conditions, the H310/316 antigen gave oligomers of a component of Msub(r) 62000. It is unknown whether this 62000 dalton component is a dimer of the 34000 dalton protein with either itself or a second protein chain of presumed Msub(r) around 28000. H315 recognises an antigen with subunit Msub(r) of 36000; in non-reducing conditions this component readily associates to oligomeric structures. The epitope recognised by H315 may be sensitive to SDS. The two proteins recognised by H310/316 and H315 have been termed the p34 and p36 trophoblast membrane proteins, respectively.

  10. Guinea pig Ia antigens are not derivatised on trinitrophenyl-modified cells

    Energy Technology Data Exchange (ETDEWEB)

    Clement, L T; Thomas, D W; Kask, A M; Shevach, E M [National Inst. of Allergy and Infectious Diseases, Bethesda, MD (USA)

    1978-08-10

    In an effort to clarify the nature of the trinitrophenyl (TNP) specific immunogen recognised by hapten-reactive guinea pig T lymphocytes, the membrane proteins of TNP-modified guinea pig macrophages have been analysed by chemical methods using nitrobenzene sulphonic acid surface labelled with /sup 125/I. The experiments provided strong evidence that the TNP specific immunogen which T lymphocytes recognise on guinea pig macrophages does not consist of directly haptenated Ia antigens.

  11. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Science.gov (United States)

    Rocha-Perugini, Vera; Sánchez-Madrid, Francisco; Martínez del Hoyo, Gloria

    2016-01-01

    Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-­presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization. PMID:26793193

  12. Expression, biosynthesis and release of preadipocyte factor-1/ delta-like protein/fetal antigen-1 in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, B N; Carlsson, C; Møldrup, Annette

    2003-01-01

    Preadipocyte factor-1 (Pref-1)/delta-like protein/fetal antigen-1 (FA1) is a member of the epidermal growth factor-like family. It is widely expressed in embryonic tissues, whereas in adults it is confined to the adrenal gland, the anterior pituitary, the endocrine pancreas, the testis...

  13. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  14. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  15. Simultaneous identification of Trypanosoma cruzi surface and internal antigens reactive to different immunoglobulin classes (radio-immunoblotting)

    International Nuclear Information System (INIS)

    Stolf, A.M.S.; Umezawa, E.S.; Zingales, B.

    1990-01-01

    A radioactive Western blotting technique was developed by which the reactivity of Immunoglobulins (IGs) from different classes to both membrane radiolabelled and internal parasite antigens is simultaneously identified. The method includes radioiodination of parasites, polypeptide fractionation by SDS-PAGE, Western-blot transfer and autoradiography of the immunoblots developed with anti-Igs conjugates labelled with enzymes. The analysis is then performed by the comparison of common bands on the autoradiograms and the respective substrate stained nitrocellulose blots. This technique was used to analyse. T.cruzi trypomastigote surface labelled antigens reactive to IgM, IgA and IgC specific antibodies. A different pattern of reactivity with acute Chagas disease patients sera was thus obtained. (author)

  16. Effective antigen presentation to helper T cells by human eosinophils.

    Science.gov (United States)

    Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M

    2016-12-01

    Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.

  17. Fetal- and uterine-specific antigens in human amniotic fluid.

    Science.gov (United States)

    Sutcliffe, R G; Brock, D J; Nicholson, L V; Dunn, E

    1978-09-01

    Removal of the major maternal serum proteins from second trimester amniotic fluid by antibody affinity chromatography revealed various soluble tissue antigens, of which two were fetal-specific skin proteins and another, of alpha2-mobility, was specific to the uterus, and was therefore designated alpha-uterine protein (AUP). These proteins could not be detected in maternal serum by antibody-antigen crossed electrophoresis. The concentration of AUP in amniotic fluid reached a maximum between 10 and 20 weeks of gestation, suggesting that there is an influx of uterine protein into the amniotic fluid at this stage of pregnancy.

  18. Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease

    NARCIS (Netherlands)

    S.U. de Willige; Keane, F.M. (Fiona M.); Bowen, D.G. (David G.); J.J.M.C. Malfliet (Joyce); Zhang, H.E. (H. Emma); Maneck, B. (Bharvi); G. McCaughan (Geoff); F.W.G. Leebeek (Frank); D.C. Rijken (Dingeman); Gorrell, M.D. (Mark D.)

    2017-01-01

    textabstractBackground and aim: Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to

  19. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    Science.gov (United States)

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  20. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  1. New reactive polymer for protein immobilisation on sensor surfaces.

    Science.gov (United States)

    Kyprianou, Dimitris; Guerreiro, Antonio R; Chianella, Iva; Piletska, Elena V; Fowler, Steven A; Karim, Kal; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2009-01-01

    Immobilisation of biorecognition elements on transducer surfaces is a key step in the development of biosensors. The immobilisation needs to be fast, cheap and most importantly should not affect the biorecognition activity of the immobilised receptor. A novel protocol for the covalent immobilisation of biomolecules containing primary amines using an inexpensive and simple polymer is presented. This tri-dimensional (3D) network leads to a random immobilisation of antibodies on the polymer and ensures the availability of a high percentage of antibody binding sites. The reactivity of the polymer is based on the reaction between primary amines and thioacetal groups included in the polymer network. These functional groups (thioacetal) do not need any further activation in order to react with proteins, making it attractive for sensor fabrication. The novel polymer also contains thiol derivative groups (disulphide groups or thioethers) that promote self-assembling on a metal transducer surface. For demonstration purposes the polymer was immobilised on Au Biacore chips. The resulting polymer layer was characterised using contact angle meter, atomic force microscopy (AFM) and ellipsometry. A general protocol suitable for the immobilisation of bovine serum albumin (BSA), enzymes and antibodies such as polyclonal anti-microcystin-LR antibody and monoclonal anti-prostate specific antigen (anti-PSA) antibody was then optimised. The affinity characteristics of developed immunosensors were investigated in reaction with microcystin-LR, and PSA. The calculated detection limit for analytes depended on the properties of antibodies. The detection limit for microcystin-LR was 10 ngmL(-1) and for PSA 0.01 ngmL(-1). The non-specific binding of analytes to synthesised polymers was very low. The polymer-coated chips were stored for up to 2 months without any noticeable deterioration in their ability to react with proteins. These findings make this new polymer very promising for the

  2. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus

    International Nuclear Information System (INIS)

    Salfeld, J.; Pfaff, E.; Noah, M.; Schaller, H.

    1989-01-01

    The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen [HBcAg]) and a secreted processed protein (p17e, serologically defined as HBe antigen [HBeAg]). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis virus nucleocapsid

  3. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  4. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8α+ dendritic cells.

    Science.gov (United States)

    Parekh, Vrajesh V; Pabbisetty, Sudheer K; Wu, Lan; Sebzda, Eric; Martinez, Jennifer; Zhang, Jianhua; Van Kaer, Luc

    2017-08-01

    The class III PI3K Vacuolar protein sorting 34 (Vps34) plays a role in both canonical and noncanonical autophagy, key processes that control the presentation of antigens by dendritic cells (DCs) to naive T lymphocytes. We generated DC-specific Vps34 -deficient mice to assess the contribution of Vps34 to DC functions. We found that DCs from these animals have a partially activated phenotype, spontaneously produce cytokines, and exhibit enhanced activity of the classic MHC class I and class II antigen-presentation pathways. Surprisingly, these animals displayed a defect in the homeostatic maintenance of splenic CD8α + DCs and in the capacity of these cells to cross-present cell corpse-associated antigens to MHC class I-restricted T cells, a property that was associated with defective expression of the T-cell Ig mucin (TIM)-4 receptor. Importantly, mice deficient in the Vps34-associated protein Rubicon, which is critical for a noncanonical form of autophagy called "Light-chain 3 (LC3)-associated phagocytosis" (LAP), lacked such defects. Finally, consistent with their defect in the cross-presentation of apoptotic cells, DC-specific Vps34 -deficient animals developed increased metastases in response to challenge with B16 melanoma cells. Collectively, our studies have revealed a critical role of Vps34 in the regulation of CD8α + DC homeostasis and in the capacity of these cells to process and present antigens associated with apoptotic cells to MHC class I-restricted T cells. Our findings also have important implications for the development of small-molecule inhibitors of Vps34 for therapeutic purposes.

  5. Varicellovirus UL49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP

    NARCIS (Netherlands)

    Koppers-Lalic, D.; Verweij, M.C.; Lipinska, A.D.; Wang, Y.; Quinten, E.; Reits, E.A.; Koch, J.; Loch, S.; Rezende, M.M.; Daus, F.J.; Bienkowska-Szewczyk, K.; Osterrieder, N.; Mettenleiter, T.C.; Heemskerk, M.H.M.; Tampe, R.; Neefjes, J.J.; Chowdhury, S.I.; Ressing, M.E.; Rijsewijk, F.A.M.; Wiertz, E.J.H.J.

    2008-01-01

    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing

  6. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  7. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    Science.gov (United States)

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Identification and characterization of the surface proteins of Clostridium difficile

    International Nuclear Information System (INIS)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated

  9. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  11. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  12. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  13. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Directory of Open Access Journals (Sweden)

    Isabel Correa

    2018-03-01

    Full Text Available Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1 specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  14. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells.

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F; Tutt, Andrew N J; Nestle, Frank O; Karagiannis, Panagiotis; Lacy, Katie E; Karagiannis, Sophia N

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  15. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M.; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F.; Tutt, Andrew N. J.; Nestle, Frank O.; Karagiannis, Panagiotis; Lacy, Katie E.; Karagiannis, Sophia N.

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires. PMID:29628923

  16. A New Approach for Designing A Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lacto-bacillus Surface

    Directory of Open Access Journals (Sweden)

    Jalil Fallah Mehrabadi

    2013-07-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at­tachment inhibition has an applied strategy. FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate antigen. Methods: The sequences of fimH and acmA genes were used for designing a synthetic gene. It was cloned to pET23a expression vector and transformed to E. coli (DE3 Origami. To confirm the expression of recombinant protein, SDS-PAGE and western blotting methods were used. Subsequently, recombinant protein was purified. On the other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant protein. The rate of protein localization on lactobacillus surface was assessed using ELISA method. Results: It was showed that the recombinant protein was expressed in E. coli (DE3 Origami and purified by affinity chromatography. Moreover, this protein could be localized on lactobacillus surface by 5 days. Conclusion: In current study, a fusion recombinant protein was pre­pared and displayed on L. reuteri surface. This strain could be used for animal experiment as a competitor against Uropathogenic E. coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther­apy could decrease the antibiotic consumption and reduce multi-drug resistant strains.

  17. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Doores, Katie J.; Fulton, Zara; Hong, Vu; Patel, Mitul K.; Scanlan, Christopher N.; Wormald, Mark R.; Finn, M.G.; Burton, Dennis R.; Wilson, Ian A.; Davis, Benjamin G. (Scripps); (Oxford)

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

  18. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nalapalli, Samson; Verma, Dheeraj; Singh, Nameirakpam D; Banks, Robert K; Chakrabarti, Debopam; Daniell, Henry

    2010-02-01

    Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.

  19. Enhanced specificity in immunoscreening of expression cDNA clones using radiolabeled antigen overlay

    International Nuclear Information System (INIS)

    Chao, S.; Chao, L.; Chao, J.

    1989-01-01

    A highly sensitive and specific method has been developed for immunoscreening clones from an expression cDNA library. The procedures utilize a radiolabeled antigen detection method described originally for the immunoblotting of plasma proteins. Screening of rat alpha 1-antitrypsin clones was used. Comparison between Western blots of alpha 1-antitrypsin using both labeled antigen and protein A detection methods showed that the former yielded lower background and greater sensitivity than the latter. Further, this technique was shown to have a lower detection limit of less than 20 ng through Western blot analysis of varying concentrations of alpha 1-antitrypsin. The procedures are based on the expression of the protein by cDNA clones containing the DNA inserts in the correct reading frame. Following the transfer of phage proteins to nitrocellulose membranes, the bivalent antibodies bind monovalently to both nitrocellulose-bound-antigen in the phage lysates and radiolabeled antigen. The radiolabeled antigen overlay method is superior to the protein A detection method in sensitivity, specificity and reproducibility. This improved method can be applied in general for screening expression cDNA libraries, provided that the specific antiserum and radiolabeled antigen are available

  20. Expression of a hantavirus N protein and its efficacy as antigen in immune assays

    Directory of Open Access Journals (Sweden)

    L.T.M. Figueiredo

    2008-07-01

    Full Text Available Hantavirus cardiopulmonary syndrome (HCPS has been recognized as an important public heath problem. Five hantaviruses associated with HCPS are currently known in Brazil: Juquitiba, Araraquara, Laguna Negra-like, Castelo dos Sonhos, and Anajatuba viruses. The laboratory diagnosis of HCPS is routinely carried out by the detection of anti-hantavirus IgM and/or IgG antibodies. The present study describes the expression of the N protein of a hantavirus detected in the blood sample of an HCPS patient. The entire S segment of the virus was amplified and found to be 1858 nucleotides long, with an open reading frame of 1287 nucleotides that encodes a protein of 429 amino acids. The nucleotide sequence described here showed a high identity with the N protein gene of Araraquara virus. The entire N protein was expressed using the vector pET200D and the Escherichia coli BL21 strain. The expression of the recombinant protein was confirmed by the detection of a 52-kDa protein by Western blot using a pool of human sera obtained from HCPS patients, and by specific IgG detection in five serum samples of HCPS patients tested by ELISA. These results suggest that the recombinant N protein could be used as an antigen for the serological screening of hantavirus infection.

  1. Involvement of T- and B-lymphocytes in the immune response to the protein exotoxin and the lipopolysaccharide antigens of Vibrio cholerae

    International Nuclear Information System (INIS)

    Kateley, J.R.; Patel, C.B.; Friedman, H.

    1975-01-01

    The immune response at the level of individual immunocytes to the somatic lipopolysaccharide antigen derived from whole Vibrio cholerae and to the purified protein exotoxin from this organism were studied in terms of the role of T- and B-lymphocytes. By adoptive cell transfer studies with irradiated recipient mice, it was shown that normal spleen cells from normal syngeneic mice could readily transfer the capability of responding to both types of cholera antigens. However, when the spleen cells were depleted of T-cells with anti-theta serum and complement, antibody responsiveness to the LPS antigen, but not the exotoxin, could be achieved in recipients. Furthermore, by appropriate transfer of either bone marrow, thymus, or thymus-marrow cell mixtures to irradiated mice, it was shown that the response to the cholera somatic antigen was relatively independent of thymus cells, whereas the response to exotoxin required ''helper'' T-cells

  2. Enzyme-linked immunosorbent assays for detection of equine antibodies specific to Sarcocystis neurona surface antigens.

    Science.gov (United States)

    Hoane, Jessica S; Morrow, Jennifer K; Saville, William J; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2005-09-01

    Sarcocystis neurona is the primary causative agent of equine protozoal myeloencephalitis (EPM), a common neurologic disease of horses in the Americas. We have developed a set of enzyme-linked immunosorbent assays (ELISAs) based on the four major surface antigens of S. neurona (SnSAGs) to analyze the equine antibody response to S. neurona. The SnSAG ELISAs were optimized and standardized with a sample set of 36 equine sera that had been characterized by Western blotting against total S. neurona parasite antigen, the current gold standard for S. neurona serology. The recombinant SnSAG2 (rSnSAG2) ELISA showed the highest sensitivity and specificity at 95.5% and 92.9%, respectively. In contrast, only 68.2% sensitivity and 71.4% specificity were achieved with the rSnSAG1 ELISA, indicating that this antigen may not be a reliable serological marker for analyzing antibodies against S. neurona in horses. Importantly, the ELISA antigens did not show cross-reactivity with antisera to Sarcocystis fayeri or Neospora hughesi, two other equine parasites. The accuracy and reliability exhibited by the SnSAG ELISAs suggest that these assays will be valuable tools for examining the equine immune response against S. neurona infection, which may help in understanding the pathobiology of this accidental parasite-host interaction. Moreover, with modification and further investigation, the SnSAG ELISAs have potential for use as immunodiagnostic tests to aid in the identification of horses affected by EPM.

  3. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17–36

    Directory of Open Access Journals (Sweden)

    Stephanie M. Bywaters

    2017-11-01

    Full Text Available The currently available nonavalent human papillomavirus (HPV vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs (H16.V5, H16.U4 and H16.7E and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17–36. The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  4. Comparison of two solid-phase radioimmunoassay systems and a reverse passive haemagglutination test for the detection of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Hui, Z.; Coulepis, A.G.; Gust, I.D.

    1982-01-01

    The sensitivity and specificity of two commercially available radioimmunosay tests (Austria II-125, Abbott Laboratories; and International CIS, Commissariat Alenergie Atomique-Oris Laboratoire des Produits Biomedicaux) and a reverse passive haemagglutination test (Hepatest, Wellcome) for detection of hepatitis B surface antigen were evaluated using the Australian hepatitis B reference panel of 25 sera, and a panel of 257 sera collected from patients with acute hepatitis B, chronic carriers of hepatitis B surface antigen and two populations in which hepatitis B virus infection is known to be endemic. The three techniques were found to be generally comparable in sensitivity and specificity. The advantages and disadvantages of each method are discussed

  5. Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer's patches.

    Science.gov (United States)

    Akande, Janet; Yeboah, Kwame G; Addo, Richard T; Siddig, Aladin; Oettinger, Carl W; D'Souza, Martin J

    2010-01-01

    The purpose of this study was to evaluate the possibility of lectin-coupled microspheres to improve the targeted delivery of protein antigens to the lymphoid tissues of mucosal surfaces. Bovine serum albumin containing acid phosphatase model protein and polystyrene microspheres were coupled with mouse M-cell-specific Ulex europaeus lectin. The coupling efficiency, physical characteristics and the binding capabilities of the microspheres to the follicle associated epithelium of the Peyer's patches were evaluated in vitro and ex vivo in mice intestine. The results showed that coupling of lectin to albumin microspheres did not significantly affect the bioactivity of the encapsulated acid phosphatase model protein. It was also shown that there was preferential binding of the lectin-coupled microspheres to the follicle-associated epithelium. It was concluded from the results of the study that coupling of ligands such as lectin specific to cells of the follicle associated epithelium can increase the targeting of encapsulated candidate antigens for delivery to the Peyer's patches of the intestine for improved oral delivery.

  6. Expression of Tac antigen component of bovine interleukin-2 receptor in different leukocyte populations infected with Theileria parva or Theileria annulata.

    Science.gov (United States)

    Dobbelaere, D A; Prospero, T D; Roditi, I J; Kelke, C; Baumann, I; Eichhorn, M; Williams, R O; Ahmed, J S; Baldwin, C L; Clevers, H

    1990-01-01

    The Tac antigen component of the bovine interleukin-2 receptor was expressed as a Cro-beta-galactosidase fusion protein in Escherichia coli and used to raise antibodies in rabbits. These antibodies were used for flow cytofluorimetric analysis to investigate the expression of Tac antigen in a variety of Theileria parva-infected cell lines and also in three Theileria annulata-infected cell lines. Cells expressing Tac antigen on their surface were found in all T. parva-infected cell lines tested whether these were of T- or B-cell origin. T cells expressing Tac antigen could be CD4- CD8-, CD4+ CD8-, CD4- CD8+, or CD4+ CD8+. Tac antigen expression was observed both in cultures which had been maintained in the laboratory for several years and in transformed cell lines which had recently been established by infection of lymphocytes in vitro with T. parva. Northern (RNA) blot analysis demonstrated Tac antigen transcripts in RNA isolated from all T. parva-infected cell lines. Three T. annulata-infected cell lines which were not of T-cell origin were also tested. Two of them expressed Tac antigen on their surface. Abundant Tac antigen mRNA was detected in these T. annulata-infected cell lines, but only trace amounts were demonstrated in the third cell line, which contained very few Tac antigen-expressing cells. In all cell lines tested, whether cloned or uncloned, a proportion of the cells did not express detectable levels of Tac antigen on their surface. This was also the case for a number of other leukocyte surface markers. In addition, we showed that the interleukin-2 receptors were biologically functional, because addition of recombinant interleukin-2 to cultures stimulated cell proliferation. Recombinant interleukin-2 treatment also resulted in increased amounts of steady-state Tac antigen mRNA. The relevance of interleukin-2 receptor expression on Theileria-infected cells is discussed. Images PMID:1979317

  7. Virosomes for antigen and DNA delivery

    NARCIS (Netherlands)

    Daemen, T; de Mare, A; Bungener, L; de Jonge, J; Huckriede, A; Wilschut, J

    2005-01-01

    Specific targeting and delivery as well as the display of antigens on the surface of professional antigen-presenting cells (APCs) are key issues in the design and development of new-generation vaccines aimed at the induction of both humoral and cell-mediated immunity. Prophylactic vaccination

  8. UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lenci, S., E-mail: silvia.lenci@iet.unipi.it [Dipartimento di Ingegneria dell' Informazione, via G.Caruso 16, Pisa I-56122 (Italy); Tedeschi, L. [Istituto di Fisiologia Clinica - CNR, via G. Moruzzi 1, Pisa I-56124 (Italy); Pieri, F. [Dipartimento di Ingegneria dell' Informazione, via G.Caruso 16, Pisa I-56122 (Italy); Domenici, C. [Istituto di Fisiologia Clinica - CNR, via G. Moruzzi 1, Pisa I-56124 (Italy)

    2011-08-01

    A simple and fast methodology for protein patterning on silicon substrates is presented, providing an insight into possible issues related to the interaction between biological and microelectronic technologies. The method makes use of standard photoresist lithography and is oriented towards the implementation of biosensors containing Complementary Metal-Oxide-Semiconductor (CMOS) conditioning circuitry. Silicon surfaces with photoresist patterns were prepared and hydroxylated by means of resist- and CMOS backend-compatible solutions. Subsequent aminosilane deposition and resist lift-off in organic solvents resulted into well-controlled amino-terminated geometries. The discussion is focused on resist- and CMOS-compatibility problems related to the used chemicals. Some samples underwent gold nanoparticle (Au NP) labeling and Scanning Electron Microscopy (SEM) observation, in order to investigate the quality of the silane layer. Antibodies were immobilized on other samples, which were subsequently exposed to a fluorescently labeled antigen. Fluorescence microscopy observation showed that this method provides spatially selective immobilization of protein layers onto APTES-patterned silicon samples, while preserving protein reactivity inside the desired areas and low non-specific adsorption elsewhere. Strong covalent biomolecule binding was achieved, giving stable protein layers, which allows stringent binding conditions and a good binding specificity, really useful for biosensing.

  9. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    Directory of Open Access Journals (Sweden)

    Fillipe L. R. do Carmo

    2018-04-01

    Full Text Available Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp, this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs, and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.

  10. Protein modeling of apical membrane antigen-1(AMA-1) of ...

    African Journals Online (AJOL)

    Apical membrane Antigen-1(AMA-1), an asexual blood stage antigen of Plasmodium cynomolgi, is an important candidate for testing as a component of malarial vaccine. The degree of conservation of. AMA-1 sequences implies a conserved function for this molecule across different species of Plasmodium. Since the AMA-1 ...

  11. Light-chain residue 95 is critical for antigen binding and multispecificity of monoclonal antibody G2.

    Science.gov (United States)

    Usui, Daiki; Inaba, Satomi; Kamatari, Yuji O; Ishiguro, Naotaka; Oda, Masayuki

    2017-09-02

    The monoclonal antibody, G2, specifically binds to the immunogen peptide derived from the chicken prion protein, Pep18mer, and two chicken proteins derived peptides, Pep8 and Pep395; G2 binds with equal affinity to Pep18mer. The amino acid sequences of the three peptides are completely different, and so the recognition mechanism of G2 is unique and interesting. We generated a single-chain Fv (scFv) antibody of G2, and demonstrated its correct folding with an antigen binding function similar to intact G2 antibody. We also generated a Pro containing mutant of G2 scFv at residue 95 of the light chain, and analyzed its antigen binding using a surface plasmon biosensor. The mutant lost its binding ability to Pep18mer, but remained those to Pep8 and Pep395. The results clearly indicate residue 95 as being critical for multispecific antigen binding of G2 at the site generated from the junctional diversity introduced at the joints between the V and J gene segments. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Radioimmunoassay in the detection of the hepatitis Be antigen/antibody system in asymptomatic carriers of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Pastore, G.; Dentico, P.; Angarano, G.; Schiraldi, O.; Zanetti, A.R.; Ferroni, P.

    1980-01-01

    A radioimmunoassay for hepatitis e antigen (HBeAg) and antibody to e (anti-HBe) was developed and sera of 71 asymptomatic chronic carriers of hepatitis B surface antigen (HBsAg), in 44 of whom liver biopsy was obtained, were tested. In addition, testing for Dane particle associated DNA polymerase activity was performed in all sera. HBeAg was detected in 14 subjects (19.7%) and anti-HBe in 46 (64.8%). The highest proportion of HBeAg positivity (40%) was found among carriers with histological evidence of chronic hepatitis, whereas anti-HBe was present in 80% of carriers with normal liver histology, in 58% of carriers with non-specific reactive hepatitis and in 60% of carriers with chronic liver lesions. DNA polymerase activity was present in 92.8% of sera positive for HBeAg, in 13% of sera positive for anti HBe, and in 9% of sera negative for both markers. Our results demonstrate that not all HBsAg carriers reactive to HBeAg show evidence of chronic hepatitis nor, conversely, that anti-HBe is invariably associated with the healthy carrier state of HBsAg. Finally, circulating Dane particles, as revealed by the presence of serum specific DNA polymerase activity, may also be present in anti-HBe positive sera other than those of some HBsAg carriers lacking both HBeAg and anti-HBe. (orig.) [de

  13. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  14. Overview of Plant-Made Vaccine Antigens against Malaria

    Directory of Open Access Journals (Sweden)

    Marina Clemente

    2012-01-01

    Full Text Available This paper is an overview of vaccine antigens against malaria produced in plants. Plant-based expression systems represent an interesting production platform due to their reduced manufacturing costs and high scalability. At present, different Plasmodium antigens and expression strategies have been optimized in plants. Furthermore, malaria antigens are one of the few examples of eukaryotic proteins with vaccine value expressed in plants, making plant-derived malaria antigens an interesting model to analyze. Up to now, malaria antigen expression in plants has allowed the complete synthesis of these vaccine antigens, which have been able to induce an active immune response in mice. Therefore, plant production platforms offer wonderful prospects for improving the access to malaria vaccines.

  15. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius.

    Science.gov (United States)

    Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.

  16. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.

    Science.gov (United States)

    Chapanian, Rafi; Constantinescu, Iren; Rossi, Nicholas A A; Medvedev, Nadia; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-11-01

    Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic

  17. Isolation, purification, and radiolabeling of a novel 120-kD surface protein on Blastomyces dermatitidis yeasts to detect antibody in infected patients

    International Nuclear Information System (INIS)

    Klein, B.S.; Jones, J.M.

    1990-01-01

    No well-defined Blastomyces-specific antigens are currently available. We used sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting to identify immunologically active molecules in the cell wall of B. dermatitidis. A major immunoreactive 120-kD protein (WI-1) was present in all five strains studied and comprised 5% of the protein in the cell wall extract obtained after freezing and thawing yeast cells. WI-1 was recognized by serum from all 10 patients with blastomycosis but by none of those from 5 patients with histoplasmosis. It was purified by electroelution, radiolabeled with 125I, and incorporated into a radioimmunoassay (RIA) for serodiagnosis of blastomycosis. Antibody to WI-1 was detected in 58 (85%) of 68 patients with blastomycosis (geometric mean titer, 1:2,981), in two (3%) of 73 patients with histoplasmosis, coccidioidomycosis, sporotrichosis, or candidiasis (titers, 1:86 and 1:91) and in none of 44 healthy persons. WI-1 was shown to be a surface molecule abundant on B. dermatitidis yeasts that were indirectly stained with serum from a rabbit immunized with WI-1. Approximately 0.93 pg of WI-1 or 4.7 x 10(6) WI-1 molecules were found on the surface of an individual yeast using an antigen-inhibition RIA; none was found on Histoplasma capsulatum or Candida albicans yeasts. We conclude that WI-1 is a novel, immunologically active surface molecule on the invasive form of B. dermatitidis and that WI-1 can be used to reliably detect antibody and study the immunopathogenesis of blastomycosis

  18. Isolation, purification, and radiolabeling of a novel 120-kD surface protein on Blastomyces dermatitidis yeasts to detect antibody in infected patients

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.S.; Jones, J.M.

    1990-01-01

    No well-defined Blastomyces-specific antigens are currently available. We used sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting to identify immunologically active molecules in the cell wall of B. dermatitidis. A major immunoreactive 120-kD protein (WI-1) was present in all five strains studied and comprised 5% of the protein in the cell wall extract obtained after freezing and thawing yeast cells. WI-1 was recognized by serum from all 10 patients with blastomycosis but by none of those from 5 patients with histoplasmosis. It was purified by electroelution, radiolabeled with 125I, and incorporated into a radioimmunoassay (RIA) for serodiagnosis of blastomycosis. Antibody to WI-1 was detected in 58 (85%) of 68 patients with blastomycosis (geometric mean titer, 1:2,981), in two (3%) of 73 patients with histoplasmosis, coccidioidomycosis, sporotrichosis, or candidiasis (titers, 1:86 and 1:91) and in none of 44 healthy persons. WI-1 was shown to be a surface molecule abundant on B. dermatitidis yeasts that were indirectly stained with serum from a rabbit immunized with WI-1. Approximately 0.93 pg of WI-1 or 4.7 x 10(6) WI-1 molecules were found on the surface of an individual yeast using an antigen-inhibition RIA; none was found on Histoplasma capsulatum or Candida albicans yeasts. We conclude that WI-1 is a novel, immunologically active surface molecule on the invasive form of B. dermatitidis and that WI-1 can be used to reliably detect antibody and study the immunopathogenesis of blastomycosis.

  19. IgM response to a human Pneumocystis carinii surface antigen in HIV-infected patients with pulmonary symptoms

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Kovacs, J A; Mathiesen, Lars Reinhardt

    1993-01-01

    We have developed an ELISA to detect IgM antibodies to a major human Pneumocystis carinii surface antigen (gp95), and investigated the IgM response in 128 HIV-infected patients who underwent bronchoscopy for evaluation of pulmonary symptoms. Only 5 (4%) patients had IgM antibodies to P. carinii g...

  20. Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis.

    Science.gov (United States)

    Andrews, T Daniel; Gojobori, Takashi

    2004-01-01

    The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.

  1. Proteins in solution: Fractal surfaces in solutions

    Directory of Open Access Journals (Sweden)

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  2. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen.

    Science.gov (United States)

    Ponomarenko, Natalia A; Durova, Oxana M; Vorobiev, Ivan I; Belogurov, Alexey A; Kurkova, Inna N; Petrenko, Alexander G; Telegin, Georgy B; Suchkov, Sergey V; Kiselev, Sergey L; Lagarkova, Maria A; Govorun, Vadim M; Serebryakova, Marina V; Avalle, Bérangère; Tornatore, Pete; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    Autoantibody-mediated tissue destruction is among the main features of organ-specific autoimmunity. This report describes "an antibody enzyme" (abzyme) contribution to the site-specific degradation of a neural antigen. We detected proteolytic activity toward myelin basic protein (MBP) in the fraction of antibodies purified from the sera of humans with multiple sclerosis (MS) and mice with induced experimental allergic encephalomyelitis. Chromatography and zymography data demonstrated that the proteolytic activity of this preparation was exclusively associated with the antibodies. No activity was found in the IgG fraction of healthy donors. The human and murine abzymes efficiently cleaved MBP but not other protein substrates tested. The sites of MBP cleavage determined by mass spectrometry were localized within immunodominant regions of MBP. The abzymes could also cleave recombinant substrates containing encephalytogenic MBP(85-101) peptide. An established MS therapeutic Copaxone appeared to be a specific abzyme inhibitor. Thus, the discovered epitope-specific antibody-mediated degradation of MBP suggests a mechanistic explanation of the slow development of neurodegeneration associated with MS.

  3. Seroprevalence of Hepatitis B Surface Antigen and Occupational Risk Factors Among Health Care Workers in Ekiti State, Nigeria.

    Science.gov (United States)

    Alese, Oluwole Ojo; Alese, Margaret Olutayo; Ohunakin, Afolabi; Oluyide, Peter Olumuyiwa

    2016-02-01

    Hepatitis B virus (HBV) infection is contracted from blood and other body fluid making healthcare workers (HCW) prone to the infection especially in the developing world. Though it is a vaccine preventable disease, the level of awareness and universal precaution among HCW is low in sub-Saharan African and Asia. The study was aimed at determining the seroprevalence of hepatitis B surface antigen and occupational risk factors among health care workers at Ekiti State University Teaching Hospital, Ado Ekiti. One hundred and eighty-seven (187) blood samples were collected from volunteer subjects who comprised of medical doctors, nurses, health attendants, and porters who are in regular contact with blood, body fluids and patients after informed consent. Well detailed and structured questionnaires were used to obtain demographic and other relevant data from the subjects. Blood samples were tested by Enzyme Linked Immunosorbent assay (ELISA) for hepatitis B surface antigen. Out of the 187 HCWs there were 91 males (48.7%) and 96 (51.3%) females. Only 2 participants tested positive to hepatitis B surface antigen with a prevalence of 1.1%. Also, only 30 (16.0%) of the participants had been fully vaccinated against the infection while the remaining 157(84.0%) had no adult vaccination. It is obvious that the awareness of the infection is low among the HCWs studied thus the need to incorporate screening for HbsAg and vaccination against HBV into the periodic/pre-employment health intervention programmes by employers to help in the protection of HCWs and control the spread of the virus.

  4. IgG responses to Pneumococcal and Haemophilus influenzae protein antigens are not impaired in children with a history of recurrent acute otitis media.

    Science.gov (United States)

    Wiertsema, Selma P; Corscadden, Karli J; Mowe, Eva N; Zhang, Guicheng; Vijayasekaran, Shyan; Coates, Harvey L; Mitchell, Timothy J; Thomas, Wayne R; Richmond, Peter C; Kirkham, Lea-Ann S

    2012-01-01

    Vaccines including conserved antigens from Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) have the potential to reduce the burden of acute otitis media. Little is known about the antibody response to such antigens in young children with recurrent acute otitis media, however, it has been suggested antibody production may be impaired in these children. We measured serum IgG levels against 4 pneumococcal (PspA1, PspA 2, CbpA and Ply) and 3 NTHi (P4, P6 and PD) proteins in a cross-sectional study of 172 children under 3 years of age with a history of recurrent acute otitis media (median 7 episodes, requiring ventilation tube insertion) and 63 healthy age-matched controls, using a newly developed multiplex bead assay. Children with a history of recurrent acute otitis media had significantly higher geometric mean serum IgG levels against NTHi proteins P4, P6 and PD compared with healthy controls, whereas there was no difference in antibody levels against pneumococcal protein antigens. In both children with and without a history of acute otitis media, antibody levels increased with age and were significantly higher in children colonised with S. pneumoniae or NTHi compared with children that were not colonised. Proteins from S. pneumoniae and NTHi induce serum IgG in children with a history of acute otitis media. The mechanisms in which proteins induce immunity and potential protection requires further investigation but the dogma of impaired antibody responses in children with recurrent acute otitis media should be reconsidered.

  5. IgG responses to Pneumococcal and Haemophilus influenzae protein antigens are not impaired in children with a history of recurrent acute otitis media.

    Directory of Open Access Journals (Sweden)

    Selma P Wiertsema

    Full Text Available BACKGROUND: Vaccines including conserved antigens from Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi have the potential to reduce the burden of acute otitis media. Little is known about the antibody response to such antigens in young children with recurrent acute otitis media, however, it has been suggested antibody production may be impaired in these children. METHODS: We measured serum IgG levels against 4 pneumococcal (PspA1, PspA 2, CbpA and Ply and 3 NTHi (P4, P6 and PD proteins in a cross-sectional study of 172 children under 3 years of age with a history of recurrent acute otitis media (median 7 episodes, requiring ventilation tube insertion and 63 healthy age-matched controls, using a newly developed multiplex bead assay. RESULTS: Children with a history of recurrent acute otitis media had significantly higher geometric mean serum IgG levels against NTHi proteins P4, P6 and PD compared with healthy controls, whereas there was no difference in antibody levels against pneumococcal protein antigens. In both children with and without a history of acute otitis media, antibody levels increased with age and were significantly higher in children colonised with S. pneumoniae or NTHi compared with children that were not colonised. CONCLUSIONS: Proteins from S. pneumoniae and NTHi induce serum IgG in children with a history of acute otitis media. The mechanisms in which proteins induce immunity and potential protection requires further investigation but the dogma of impaired antibody responses in children with recurrent acute otitis media should be reconsidered.

  6. Analysis of a cDNA clone expressing a human autoimmune antigen: full-length sequence of the U2 small nuclear RNA-associated B antigen

    International Nuclear Information System (INIS)

    Habets, W.J.; Sillekens, P.T.G.; Hoet, M.H.; Schalken, J.A.; Roebroek, A.J.M.; Leunissen, J.A.M.; Van de Ven, W.J.M.; Van Venrooij, W.J.

    1987-01-01

    A U2 small nuclear RNA-associated protein, designated B'', was recently identified as the target antigen for autoimmune sera from certain patients with systemic lupus erythematosus and other rheumatic diseases. Such antibodies enabled them to isolate cDNA clone λHB''-1 from a phage λgt11 expression library. This clone appeared to code for the B'' protein as established by in vitro translation of hybrid-selected mRNA. The identity of clone λHB''-1 was further confirmed by partial peptide mapping and analysis of the reactivity of the recombinant antigen with monospecific and monoclonal antibodies. Analysis of the nucleotide sequence of the 1015-base-pair cDNA insert of clone λHB''-1 revealed a large open reading frame of 800 nucleotides containing the coding sequence for a polypeptide of 25,457 daltons. In vitro transcription of the λHB''-1 cDNA insert and subsequent translation resulted in a protein product with the molecular size of the B'' protein. These data demonstrate that clone λHB''-1 contains the complete coding sequence of this antigen. The deduced polypeptide sequence contains three very hydrophilic regions that might constitute RNA binding sites and/or antigenic determinants. These findings might have implications both for the understanding of the pathogenesis of rheumatic diseases as well as for the elucidation of the biological function of autoimmune antigens

  7. THE SEARCH OF OPTIMAL COMBINATION OF ANTIGENS FOR SEROLOGICAL DIAGNOSTICS OF TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    E. V. Vasilyeva

    2013-01-01

    Full Text Available Abstract. The four chimeric recombinant antigens CBD-CFP10, CBD-ESAT6, ESAT6-CFP10 and CBD-P38 contained aminoacid sequences of full-size proteins ESAT6, CFP10 and matured protein P38 of M. tuberculosis, joined with aminoacid sequences of cellulose bind domain of endogluconase A (CBD from Cellumonas fimi have been obtained by gene engineering methods. Recombinant proteins were purified by affine chromatography in column with Ni-NTA-sepharose 6В-CL and as PPDN-3 were used for detection of their antigenic activity in indirect ELISA for TB serological diagnostics. The sera from patients with lung tuberculosis (n = 321, from persons who had professional contacts with TB patients (n = 42, from healthy blood donors (n = 366 and from patients with lung diseases of non-TB etiology were tested. It was detected that there was positive correlation between antibodies level for all studied antigens compared by pair. It has been demonstrated that although antigens were different by antigenic and immunobiological characteristics they add each other in the content of antigenic diagnostics compositions. Thus, all these antigens can be used in the test kits for serological diagnostics of TB. Using of these antigens will allow to detect persons infected by TB and patients with active tuberculosis. 

  8. Design and synthesis of an antigenic mimic of the Ebola glycoprotein

    OpenAIRE

    Rutledge, Ryan D.; Huffman, Brian J.; Cliffel, David E.; Wright, David W.

    2008-01-01

    An antigenic mimic of the Ebola glycoprotein was synthesized and tested for its ability to be recognized by an anti-Ebola glycoprotein antibody. Epitope-mapping procedures yielded a suitable epitope that, when presented on the surface of a nanoparticle, forms a structure that is recognized by an antibody specific for the native protein. This mimic-antibody interaction has been quantitated through ELISA and QCM-based methods and yielded an affinity (Kd = 12 × 10−6 M) within two orders of magni...

  9. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  10. Plant bioreactors for the antigenic hook-associated flgK protein expression

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2014-01-01

    Full Text Available Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especially to prevent infection by enteric pathogens. The aim of this study was to evaluate tobacco plants as a seedspecific expression system for the production of the flgK flagellar hook-associated protein from a wild type Salmonella typhimurium strain, as a model of an edible vaccine. The flgK gene is the principal component of bacterial flagella and is recognised as virulence factor by the innate immune system. It was isolated from the Salmonella typhimurium strain by PCR. The encoding sequence of flgK was transferred into a pBI binary vector, under control of soybean basic 7S globulin promoter for the seed-specific. Plant transformation was carried out using recombinant EHA 105 Agrobacterium tumefaciens. A transgenic population was obtained made up of independently kanamycin-resistant transgenic plants, which had a similar morphological appearance to the wild-type plants. Molecular analyses of seeds confirmed the integration of the gene and the average expression level of flgK was estimated to be about 0.6 mg per gram of seeds, corresponding to 0.33% of the total amount of soluble protein in tobacco seeds. This study showed that the foreign flgK gene could be stably incorporated into the tobacco plant genome by transcription through the nuclear apparatus of the plant, and that these genes are inherited by the next generation.

  11. Improved protein surface comparison and application to low-resolution protein structure data

    Directory of Open Access Journals (Sweden)

    Kihara Daisuke

    2010-12-01

    Full Text Available Abstract Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM, which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs. The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  12. Improved protein surface comparison and application to low-resolution protein structure data.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2010-12-14

    Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  13. Application of 125I-labelled soluble proteins in the histoautoradiographic detection of antigen and antibodies in the spleen of rabbits during primary immune response

    International Nuclear Information System (INIS)

    Rodak, L.

    1975-01-01

    An autoradiographic method for detecting soluble antigen (chicken serum albumin, CSA) and specific antibodies in the spleen of rabbits during a primary immune response is described. The method consists of incubating sections from the spleen with 125 I-labelled IgG 2 anti CSA (for demonstration of antigen) or with 125 I-labelled antigen (for demonstration of specific antibodies). This treatment of histological sections combines the advantages and principles of the immunofluorescence technique with the possibility of evaluating the exact localization of the proteins by light microscopy in preparations stained with haematoxylin or methyl green-pyronin. The sensitivity of detection is very high: both antigen and antibodies could be demonstrated in the spleen follicles for as long as 42 days after the primary intravenous injection

  14. Spontaneous release of soluble HL-A antigens from platelets during conservation.

    Science.gov (United States)

    Dautigny, A; Bernier, I; Colombani, J; Jollès, P

    1975-01-01

    Experiments with the aim of studying the solubilisation of HL-A antigens from blood platelets by methods which do not involve any biologically active processes (moderate, discontinuous agitation of a low concentration of platelets suspended in a saline medium, in the presence of an antiseptic; supernatants collected at frequent intervals) have shown that platelets release membrane proteins, including HL-A antigens, spontaneously. Optimal conditions for the treatment of membrane proteins have been perfected. The great stability of HL-A antigens under these conditions permits prolonged treatment. The products extracted are soluble and extremely complex. The molecular weight of the HL-A antigens is between 40,000 and 70,000.

  15. A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties

    Czech Academy of Sciences Publication Activity Database

    Bukin, Y. S.; Dzhioev, Y.; Tkachev, S. E.; Kozlova, I.; Paramonov, A. I.; Růžek, Daniel; Qu, Z.; Zlobin, V. I.

    2017-01-01

    Roč. 238, JUN 15 (2017), s. 124-132 ISSN 0168-1702 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis virus * E protein * physicochemical properties amino acid residue * antigen * antibody Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.628, year: 2016

  16. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    Science.gov (United States)

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  17. Application of fluorescent monocytes for probing immune complexes on antigen microarrays.

    Directory of Open Access Journals (Sweden)

    Zoltán Szittner

    Full Text Available Microarrayed antigens are used for identifying serum antibodies with given specificities and for generating binding profiles. Antibodies bind to these arrayed antigens forming immune complexes and are conventionally identified by secondary labelled antibodies.In the body immune complexes are identified by bone marrow derived phagocytic cells, such as monocytes. In our work we were looking into the possibility of replacing secondary antibodies with monocytoid cells for the generation of antibody profiles. Using the human monocytoid cell line U937, which expresses cell surface receptors for immune complex components, we show that cell adhesion is completely dependent on the interaction of IgG heavy chains and Fcγ receptors, and this recognition is susceptible to differences between heavy chain structures and their glycosylation. We also report data on a possible application of this system in autoimmune diagnostics.Compared to secondary antibodies, fluorescent monocytesas biosensors are superior in reflecting biological functions of microarray-bound antibodies and represent an easy and robust alternative for profiling interactions between serum proteins and antigens.

  18. Antigen Loss Variants: Catching Hold of Escaping Foes.

    Science.gov (United States)

    Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke

    2017-01-01

    Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.

  19. Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance

    Science.gov (United States)

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar

    2017-01-01

    Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method. PMID:28761820

  20. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  1. Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery.

    Directory of Open Access Journals (Sweden)

    Claude Nogues

    Full Text Available BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65 and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody-antigen

  2. Simultaneous cytoplasmic and nuclear protein expression of melanoma antigen-A family and NY-ESO-1 cancer-testis antigens represents an independent marker for poor survival in head and neck cancer.

    Science.gov (United States)

    Laban, Simon; Atanackovic, Djordje; Luetkens, Tim; Knecht, Rainald; Busch, Chia-Jung; Freytag, Marcus; Spagnoli, Giulio; Ritter, Gerd; Hoffmann, Thomas K; Knuth, Alexander; Sauter, Guido; Wilczak, Waldemar; Blessmann, Marco; Borgmann, Kerstin; Muenscher, Adrian; Clauditz, Till S

    2014-09-01

    The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. The identification of high-risk subgroups is needed for the development of custom-tailored therapies. The expression of cancer-testis antigens (CTAs) has been linked to a worse prognosis in other cancer types; however, their prognostic value in HNSCC is unclear because only few patients have been examined and data on CTA protein expression are sparse. A tissue microarray consisting of tumor samples from 453 HNSCC patients was evaluated for the expression of CTA proteins using immunohistochemistry. Frequency of expression and the subcellular expression pattern (nuclear, cytoplasmic, or both) was recorded. Protein expression of melanoma antigen (MAGE)-A family CTA, MAGE-C family CTA and NY-ESO-1 was found in approximately 30, 7 and 4% of tumors, respectively. The subcellular expression pattern in particular had a marked impact on the patients' prognosis. Median overall survival (OS) of patients with (i) simultaneous cytoplasmic and nuclear expression compared to (ii) either cytoplasmic or nuclear expression and (iii) negative patients was 23.0 versus 109.0 versus 102.5 months, for pan-MAGE (p family members or NY-ESO-1 represent a subgroup with an extraordinarily poor survival. The development of immunotherapeutic strategies targeting these CTA may, therefore, be a promising approach to improve the outcome of HNSCC patients. © 2014 UICC.

  3. Antigenic variation and the genetics and epigenetics of the PfEMP1 erythrocyte surface antigens in Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Arnot, David E; Jensen, Anja T R

    2011-01-01

    . Sterile immunity is not achieved and chronic parasitization of apparently healthy adults is the norm. In this article, we analyse the best understood malaria "antigenic variation" system, that based on Plasmodium falciparum's PfEMP1-type cytoadhesion antigens, and critically review recent literature...

  4. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-07-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the (/sup 3/H)thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced (/sup 3/H)thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% (SD)) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition.

  5. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    International Nuclear Information System (INIS)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-01-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the [ 3 H]thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced [ 3 H]thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% [SD]) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition

  6. Self-assembling triblock proteins for biofunctional surface modification

    Science.gov (United States)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility

  7. Induction of protective immunity to Theileria annulata using two major merozoite surface antigens presented by different delivery systems

    NARCIS (Netherlands)

    C. D'Oliveira; A. Feenstra; H.W. Vos (Helma); A.D.M.E. Osterhaus (Albert); B.R. Shiels; A.W.C.A. Cornelissen; F. Jongejan

    1997-01-01

    textabstractAllelic forms (Tams1-1 and Tams1-2) of the major merozoite surface antigen gene of Theileria annulata have recently been expressed in Escherichia coli and in Salmonella typhimurium aroA vaccine strain SL3261. To test the potential of subunit vaccines against T. annulata infection, we

  8. Functional dynamics of cell surface membrane proteins.

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Prevalence of Hepatitis B Surface Antigen in US-Born and Foreign-Born Asian/Pacific Islander College Students

    Science.gov (United States)

    Quang, Yen N.; Vu, Joanne; Yuk, Jihey; Li, Chin-Shang; Chen, Moon; Bowlus, Christopher L.

    2010-01-01

    The prevalence of chronic hepatitis B (HBV) among college-age US-born Asian and Pacific Islanders (A/PI) is not well known. Objectives: To compare the prevalence of hepatitis B surface antigen (HBsAg) seropositivity in US-born to A/PI-born students at a public university. Participants: Undergraduate who self-identified themselves as A/PI. Results:…

  10. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon.

    Science.gov (United States)

    Kwenti, Tebit Emmanuel; Moye, Adzemye Linus; Wiylanyuy, Adzemye Basil; Njunda, Longdoh Anna; Nkuo-Akenji, Theresa

    2017-11-09

    Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-1 19 ) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-1 19 and AMA-1 vaccine candidate antigens using standard ELISA technique. A majority of the participants were IgG responders 72.1% (95% CI 68.3-75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p malaria (p malaria parasites. The immune responses varied considerably across the different strata: the highest levels observed in the C strata and the lowest in the HIP strata. Furthermore, malaria transmission in Cameroon could be categorized into two major groups based on the serological reaction of the children: the southern (comprising C and SCEF strata) and northern (comprising HWP, HIP and SS strata) groups. These findings may have significant implications in the design of future trials for evaluating malaria vaccine candidates in Cameroon.

  11. Seroprevalence of Hepatitis B Surface Antigen and Occupational Risk Factors Among Health Care Workers in Ekiti State, Nigeria

    Science.gov (United States)

    Alese, Oluwole Ojo; Ohunakin, Afolabi; Oluyide, Peter Olumuyiwa

    2016-01-01

    Introduction Hepatitis B virus (HBV) infection is contracted from blood and other body fluid making healthcare workers (HCW) prone to the infection especially in the developing world. Though it is a vaccine preventable disease, the level of awareness and universal precaution among HCW is low in sub-Saharan African and Asia. Aim The study was aimed at determining the seroprevalence of hepatitis B surface antigen and occupational risk factors among health care workers at Ekiti State University Teaching Hospital, Ado Ekiti. Materials and Methods One hundred and eighty-seven (187) blood samples were collected from volunteer subjects who comprised of medical doctors, nurses, health attendants, and porters who are in regular contact with blood, body fluids and patients after informed consent. Well detailed and structured questionnaires were used to obtain demographic and other relevant data from the subjects. Blood samples were tested by Enzyme Linked Immunosorbent assay (ELISA) for hepatitis B surface antigen. Results Out of the 187 HCWs there were 91 males (48.7%) and 96 (51.3%) females. Only 2 participants tested positive to hepatitis B surface antigen with a prevalence of 1.1%. Also, only 30 (16.0%) of the participants had been fully vaccinated against the infection while the remaining 157(84.0%) had no adult vaccination. Conclusion It is obvious that the awareness of the infection is low among the HCWs studied thus the need to incorporate screening for HbsAg and vaccination against HBV into the periodic/pre-employment health intervention programmes by employers to help in the protection of HCWs and control the spread of the virus. PMID:27042489

  12. Immunization against HTLV-I with chitosan and tri-methylchitosan nanoparticles loaded with recombinant env23 and env13 antigens of envelope protein gp46.

    Science.gov (United States)

    Amirnasr, Maryam; Fallah Tafti, Tannan; Sankian, Mojtaba; Rezaei, Abdorrahim; Tafaghodi, Mohsen

    2016-08-01

    To prevent the spread of HTLV-I (Human T-lymphotropic virus type 1), a safe and effective vaccine is required. To increase immune responses against the peptide antigens can be potentiated with polymer-based nanoparticles, like chitosan (CHT) and trimethylchitosan (TMC), as delivery system/adjuvant. CHT and TMC nanoparticles loaded with recombinant proteins (env23 & env13) of gp46 were prepared by direct coating of antigens with positively charged polymers. The size of CHT and TMC nanoparticles (NPs) loaded with each antigen was about 400 nm. The physical stability of NPs was followed for 4 weeks. Both formulations showed to be stable for about 15 days. The immunogenicity of NPs loaded with antigens was studied after nasal and subcutaneous immunization in mice. Three immunizations (7.5 μg antigen) were performed with 2 weeks intervals. Two weeks after the last booster dose, sera IgG subtypes were measured. After subcutaneous administration, for both nanoparticulate antigens, serum IgG1 and IgGtotal levels were higher than antigen solution (P nanoparticles showed good immunoadjuvant potential. Env23 antigen was a better candidate for vaccination against HTLV-I, as it induced higher cellular immune responses, compared with env13. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    Science.gov (United States)

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  14. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen.

    Science.gov (United States)

    Elgaied, Lamiaa; Salem, Reda; Elmenofy, Wael

    2017-08-01

    DNA encoding the coat protein (CP) of an Egyptian isolate of tomato yellow leaf curl virus (TYLCV) was inserted into the genome of Autographa californica nucleopolyhedrovirus (AcNPV) under the control of polyhedrin promoter. The generated recombinant baculovirus construct harboring the coat protein gene was characterized using PCR analysis. The recombinant coat protein expressed in infected insect cells was used as a coating antigen in an indirect Enzyme-linked immunosorbent assay (ELISA) and dot blot to test its utility for the detection of antibody generated against TYLCV virus particles. The results of ELISA and dot blot showed that the TYLCV-antibodies reacted positively with extracts of infected cells using the recombinant virus as a coating antigen with strong signals as well as the TYLCV infected tomato and beat plant extracts as positive samples. Scanning electron microscope examination showed that the expressed TYLCV coat protein was self-assembled into virus-like particles (VLPs) similar in size and morphology to TYLCV virus particles. These results concluded that, the expressed coat protein of TYLCV using baculovirus vector system is a reliable candidate for generation of anti-CP antibody for inexpensive detection of TYLCV-infected plants using indirect CP-ELISA or dot blot with high specificity.

  15. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  16. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen

    Directory of Open Access Journals (Sweden)

    Anita Verma

    2018-02-01

    Full Text Available Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA, the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses.

  17. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells.

    Science.gov (United States)

    Herce, Henry D; Schumacher, Dominik; Schneider, Anselm F L; Ludwig, Anne K; Mann, Florian A; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M Cristina; Hackenberger, Christian P R

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  18. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    Science.gov (United States)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  19. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    Science.gov (United States)

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  20. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    International Nuclear Information System (INIS)

    Gupta, S.K.; Woda, B.

    1986-01-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin [(Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA]. Immunoprecipitation of SIg from the detergent soluble fraction of 35 S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal

  1. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype.

    Science.gov (United States)

    Folle, Ana Maite; Kitano, Eduardo S; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K; Rosenzvit, Mara; Batthyány, Carlos; Ferreira, Ana María

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  2. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype

    Science.gov (United States)

    Folle, Ana Maite; Kitano, Eduardo S.; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K.; Rosenzvit, Mara; Batthyány, Carlos

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  3. Evaluation of two reverse passive haemagglutination techniques and a solid-phase radioimmunoassay for detection of hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, H [Beijing Medical College (China); Coulepis, A G; Gust, I D [Fairfield Hospital for Communicable Diseases, Melbourne (Australia)

    1972-08-01

    The sensitivity and specificity of two commercially available reverse passive haemagglutination tests (Hepatest and Raphadex B) for the detection of hepatitis B surface antigen, were compared with the most widely used radioimmunoassay (Ausria II-125). A selected group of 282 sera were tested: these included the Australian hepatitis B reference panel, and a batch of 257 sera collected from patients with acute hepatitis B, chronic carriers of hepatitis B surface antigen and two populations in which hepatitis B virus infection is known to be endemic. The two reverse passive haemagglutination techniques were of comparable sensitivity but slightly less sensitive than radioimmunoassay. While radioimmunoassay still remains the test of choice for blood transfusion services, the reverse passive haemagglutination techniques are of great value for smaller laboratories and for field studies because of their longer shelf life, the absence of radioactive reagents and the lack of need to acquire a gammacounter.

  4. The Mycobacterium leprae antigen 85 complex gene family: identification of the genes for the 85A, 85C, and related MPT51 proteins

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Bekelie, S.; Osland, A.; Wieles, B.; Janson, A. A.; Thole, J. E.

    1993-01-01

    The genes for two novel members (designated 85A and 85C) of the Mycobacterium leprae antigen 85 complex family of proteins and the gene for the closely related M. leprae MPT51 protein were isolated. The complete DNA sequence of the M. leprae 85C gene and partial sequences of the 85A and MPT51 genes

  5. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  6. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins.

    Science.gov (United States)

    Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-01-01

    Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 6 to approximately 10 8 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.

  7. Increasing vaccine potency through exosome antigen targeting.

    Science.gov (United States)

    Hartman, Zachary C; Wei, Junping; Glass, Oliver K; Guo, Hongtao; Lei, Gangjun; Yang, Xiao-Yi; Osada, Takuya; Hobeika, Amy; Delcayre, Alain; Le Pecq, Jean-Bernard; Morse, Michael A; Clay, Timothy M; Lyerly, Herbert K

    2011-11-21

    While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: Characterization of T- and B-Cell responses to liver-stage antigen 1

    NARCIS (Netherlands)

    Rodriguez, Ariane; Goudsmit, Jaap; Companjen, Arjen; Mintardjo, Ratna; Gillissen, Gert; Tax, Dennis; Sijtsma, Jeroen; Weverling, Gerrit Jan; Holterman, Lennart; Lanar, David E.; Havenga, Menzo J. E.; Radosevic, Katarina

    2008-01-01

    Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus

  9. Antigenicity analysis of human parvovirus B19-VP1u protein in the induction of anti-phospholipid syndrome.

    Science.gov (United States)

    Lin, Chun-Yu; Chiu, Chun-Ching; Cheng, Ju; Lin, Chia-Yun; Shi, Ya-Fang; Tsai, Chun-Chou; Tzang, Bor-Show; Hsu, Tsai-Ching

    2018-01-01

    Mounting evidence suggests a connection between human parvovirus B19 (B19) and autoimmune diseases, and especially an association between the B19-VP1 unique region (VP1u) and anti-phospholipid syndrome (APS). However, little is known about the antigenicity of B19-VP1u in the induction of APS-like syndrome. To elucidate the antigenicity of B19-VP1u in the induction of APS, N-terminal truncated B19-VP1u (tVP1u) proteins were prepared to immunize Balb/c mice to generate antibodies against B19-tVP1u proteins. The secreted phospholipase A2 (sPLA2) activities and binding specificity of mice anti-B19-tVP1u antibodies with cardiolipin (CL) and beta-2-glycoprotein I (β2GPI) were evaluated by performing immunoblot, ELISA and absorption experiments. A mice model of passively induced APS was adopted. Although sPLA2 activities were identified in all B19-tVP1u proteins, only amino acid residues 61-227 B19-tVP1u exhibited a higher sPLA2 activity. Autoantibodies against CL and β2GPI exhibited binding activities with all B19-tVP1u proteins. IgG that was purified from mice that had been immunized with amino acid residues 21-227 to 121-227 B19-tVP1u proteins exhibited significantly higher binding activity with CL. IgG that was purified from mice that had been immunized with amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u proteins exhibited significantly higher binding activity with β2GPI. Accordingly, significantly higher binding inhibition of CL was detected in the presence of amino acid residues 61-227 and 101-227 B19-tVP1u. Significantly higher binding inhibition of β2GPI was detected in the presence of amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u. The mice that received amino acid residues 31-227 or 61-227 anti-tB19-VP1u IgG revealed significant thrombocytopenia and those that received amino acid residues 21-227, 31-227, 61-227, 71-227, 82-227, 91-227, 101-227 or 114-227 anti-tB19-VP1u IgG exhibited significantly prolonged aPTT. These

  10. STUDIES IN DYNAMICS OF APOPTOSIS-RELATED SURFACE ANTIGEN (CD95 EXPRESSION ON NEUTROPHILS FROM CERVICAL AND VAGINAL SECRETIONS IN WOMEN WITH CHLAMIDIA INFECTION

    Directory of Open Access Journals (Sweden)

    O. A. Giesinger

    2010-01-01

    Full Text Available CD95 (Fas/APO-1 antigen expression was studied on the surface of neutrophil granulocytes from cervical secretions. Sixty-five female patients with established Chlamydia infection were found to have an increased CD95+ antigen expression following basic therapy. CD95+ receptors on neutrophils in the patients with Chlamydia infection have been shown to return to normal levels following a combined magnetic laser treatment.

  11. Mapping the antigenicity of the parasites in Leishmania donovani infection by proteome serology.

    Directory of Open Access Journals (Sweden)

    Michael Forgber

    Full Text Available BACKGROUND: Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. METHODOLOGY/PRINCIPLE FINDINGS: Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330 different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift in the parasites. Six antigens were identified by mass spectrometry. CONCLUSIONS/SIGNIFICANCE: Proteomics-based dissection of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be instrumental in the development of vaccines and new immune monitoring and diagnostic devices.

  12. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  13. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  14. Radio-iodinated surface proteins of electrophoretically separated rat lymphocytes

    International Nuclear Information System (INIS)

    Jilg, W.; Hannig, K.; Zeiller, K.

    1980-01-01

    Rat thymocytes and lymph node cells were separated into three T and one B subpopulation by means of free flow electrophoresis. The surface proteins of the separated cells were labelled by lactoperoxidase catalysed radioiodination. Most of the label was demonstrated to be at the cell surface. Although the surface protein patterns of the four lamphocyte subpopulations were rather similar, distinctive differences could be found. B cells had six labelled proteins which seemed to be absent in the other cells. In the T cell group three protein bands were identified, each with specificity for peripheral T cells, thymocytes and all T cells respectively. Four other proteins were found which showed quantitative differences between the four cell groups. (orig.) [de

  15. Three-dimensional structure of a glycosylated cell surface antigen from D. discoideum: a primordial adhesion motif

    International Nuclear Information System (INIS)

    Mabbutt, B.C.; Swarbrick, J.; Cubeddu, L.; Hill, A.

    1999-01-01

    Full text: We have determined the solution structure of pre-spore specific antigen (PsA), a predominant cell surface glycoprotein from the slime mould Dictyostelium discoideum. The structure and function of this protein suggests that it serves as a molecular signal for multicellular organisation, and that it may also be an adhesion motif mediating direct cell-cell contact. PsA consists of a 90-residue N-terminal globular domain tethered to the cell membrane via a heavily O-glycosylated stalk and a GPI anchor. No homologous sequences have been identified for the N-terminal domain. At Macquarie University, the D. discoideum organism has been well developed as a eukaryotic expression host for glycosylated proteins. For NMR, we have engineered a soluble form of PsA (residues 1-122) containing the globular 'head' and the glycopeptide linker. 15 N- and 15 N/ 13 C-labelled PsA was generated in this organism via a protocol that is readily adaptable for the cost-effective production of milligram quantities of other isotopically labelled recombinant proteins. Using 3D heteronuclear NMR, we have solved the three-dimensional structure of the PsA glycoprotein. It defines an eight stranded β-sandwich of five-on-three topology in a unique arrangement. A long loop is constrained by a cis proline residue and a disulphide bond to form an opening across one end of the sandwich, exposing portions of the hydrophobic interior. We postulate that this distortion of the sandwich fold structures a binding site. Structural and dynamics information was also obtained concerning the intact glycopeptide linker of the protein, which comprises a repeating P-T-V-T motif. In our recombinant form, each Thr residue is modified by a single GlcNAc sugar. This simple structure yields interpretable NMR spectra, which show the glycosylated linker to be in extended conformation, and undergoing distinctly different mobility from the globular domain. These same sugar residues provide an ideal attachment

  16. Detection and purification of rat and goat immunoglobulin G antibodies using protein G-based solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Nilson, B.; Aakerstroem, B.; Bjoerck, L.

    1986-01-01

    Using the newly described streptococcal surface protein, protein G, which has powerful immunoglobulin G binding properties, solid-phase radioimmunoassays were developed for the quantitation of goat and rat immunoglobulin G bound to the plastic surface of microtiter plates. The binding of goat immunoglobulin G to the surface via a specific antigen (guinea pig alpha 1 -microglobulin) permitted the determination of antigen-specific antibodies with a detection limit of 50-100 ng. Optimum assay conditions were established and the whole assay procedure could be brought to completion at room temperature in less than a working day. The value of the assays was illustrated by monitoring rat and goat immunoglobulin G antibodies during their purification from whole sera by classical chromatographic procedures. (Auth.)

  17. New developments for the site-specific attachment of protein to surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2005-05-12

    Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.

  18. Identification of protective antigens for vaccination against systemic salmonellosis

    Directory of Open Access Journals (Sweden)

    Dirk eBumann

    2014-08-01

    Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.

  19. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection

    Directory of Open Access Journals (Sweden)

    Marinela Contreras

    2017-07-01

    Full Text Available Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4 and Heat shock protein 70 (HSP70 were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.

  20. [Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism].

    Science.gov (United States)

    Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie

    2013-03-01

    To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.