WorldWideScience

Sample records for surface properties wettability

  1. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  2. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.

    Science.gov (United States)

    Xu, Qian Feng; Liu, Yang; Lin, Fang-Ju; Mondal, Bikash; Lyons, Alan M

    2013-09-25

    Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated.

  3. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  4. Pool boiling of nanoparticle-modified surface with interlaced wettability

    KAUST Repository

    Hsu, Chin-Chi; Su, Tsung-Wen; Chen, Ping-Hei

    2012-01-01

    This study investigated the pool boiling heat transfer under heating surfaces with various interlaced wettability. Nano-silica particles were used as the coating element to vary the interlaced wettability of the surface. The experimental results revealed that when the wettability of a surface is uniform, the critical heat flux increases with the more wettable surface; however, when the wettability of a surface is modified interlacedly, regardless of whether the modified region becomes more hydrophilic or hydrophobic, the critical heat flux is consistently higher than that of the isotropic surface. In addition, this study observed that critical heat flux was higher when the contact angle difference between the plain surface and the modified region was smaller. © 2012 Hsu et al.

  5. Impact of roughness, wettability and hydrodynamic conditions on the incrustation on stainless steel surfaces

    International Nuclear Information System (INIS)

    Bogacz, Wojciech; Lemanowicz, Marcin; Al-Rashed, Mohsen H.; Nakonieczny, Damian; Piotrowski, Tomasz; Wójcik, Janusz

    2017-01-01

    Highlights: • Steel plates (X5CrNi18-10) with different roughness and wettability were prepared. • Incrustation of MgSO 4 ·7H 2 O under laminar flow (Re = 59–178) was investigated. • Influence of surface properties and fluid velocity on incrustation was found. • Wettability and surface roughness cannot be considered separately. • Analysis of heat transfer and incrustation time-lapse videos are presented. - Abstract: The goal of this work was to investigate the influence of the stainless steel surface roughness and wettability on incrustation of MgSO 4 ·7H 2 O from aqueous solutions and resulting heat transfer resistance. The experiments were done for laminar flow (Re = 59–178) which is characteristic for regions of apparatus where fouling usually begin. A series of steel plates (X5CrNi18-10) were prepared and used as a heat transfer surfaces. Their properties, i.e. roughness, wettability and elementary composition of surfaces were determined. The experiments were done using specially designed flow cell equipped with Peltier element. Each incrustation measurement lasted for two hours, during which heat transfer resistance was measured as a function of time. After the experiments the mass of crystalline deposit was weighted. It was proved that wettability as well as surface roughness cannot be considered separately in the case of incrustation phenomenon. The knowledge of surface roughness is insufficient due to the fact, that it is possible to obtain surfaces with similar roughness but substantially different wettability for the same material.

  6. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    International Nuclear Information System (INIS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K.L.; Morelle, J.M.; Etcheberry, A.; Chalumeau, L.

    2013-01-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  7. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  8. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  9. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions

    Science.gov (United States)

    Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze

    2015-03-01

    In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.

  10. Light-responsive smart surface with controllable wettability and excellent stability.

    Science.gov (United States)

    Zhou, Yin-Ning; Li, Jin-Jin; Zhang, Qing; Luo, Zheng-Hong

    2014-10-21

    Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.

  11. Wettability transition of laser textured brass surfaces inside different mediums

    Science.gov (United States)

    Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui

    2018-01-01

    Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.

  12. Biomedical devices engineered based on the control of the surface wettability

    OpenAIRE

    Oliveira, Nuno Miguel Ribeiro de

    2017-01-01

    Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais The wettability control has been showed as an important parameter for several systems and applications on the biomedical field. Once the surface wettability has crucial influence in protein adsorption and cell adhesion. Here, the focus was on the technology development based on the advanced control of wettability in surfaces, tuning directly the surface characteristics or modifying surface...

  13. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Binyan; Lu, Shixiang, E-mail: shixianglu@bit.edu.cn; Xu, Wenguo, E-mail: wenguoxu60@bit.edu.cn; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH{sub 3}COO){sub 2} concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH{sub 3}COO){sub 2} concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and

  14. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    International Nuclear Information System (INIS)

    Zhang, Binyan; Lu, Shixiang; Xu, Wenguo; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH_3COO)_2 concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH_3COO)_2 concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and reversibly switched

  15. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K.; Mishima, K.; Furuya, M.

    2003-01-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by γ-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by γ-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co γ-ray irradiation

  16. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  17. Atomic force microscopy characterization of the surface wettability of natural fibres

    International Nuclear Information System (INIS)

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics

  18. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer

    Science.gov (United States)

    El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.

    2018-06-01

    In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.

  19. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  20. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control

    Science.gov (United States)

    Razi, Sepehr; Mollabashi, Mahmoud; Madanipour, Khosro

    2015-12-01

    Q -switched Nd:YAG laser is used to manipulate the surface morphology and wettability characteristic of 316L stainless steel (SS) and titanium biomaterials. Water and glycerol are selected as wettability testing liquids and the sessile drop method is used for the contact angle measurements. Results indicate that on both of the metals, wettability toward water improves significantly after the laser treatment. Different analyses including the study of the surface morphology, free energy and oxidation are assessed in correlation with wettability. Beside the important role of the laser-induced surface patterns, the increase in the surface roughness, oxygen content and the polar component of the surface energy, are detected as the most important physical and chemical phenomena controlling the improvement in the wettability. However, all the processed hydrophilic surfaces that are exposed to air become hydrophobic over time. The time dependency of the surface wettability is related to the chemical activities on the treated surfaces and the reduction of oxygen/carbon (O/C) ratio on them. The behavior is further studied with investigating the effect of the keeping environment and changes of the components of the surface tension. Results show that the pulsed laser treatment is a versatile approach to create either hydrophobic or super hydrophilic surfaces for industrial and medical applications.

  1. Influence of Bulk PDMS Network Properties on Water Wettability

    Science.gov (United States)

    Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.

  2. Numerical investigation of the droplet condensation on the horizontal surface with patterned wettability

    Science.gov (United States)

    Cho, Jaeyong; Lee, Joonsang

    2017-11-01

    The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  3. Smart Polymers with Special Wettability.

    Science.gov (United States)

    Chang, Baisong; Zhang, Bei; Sun, Taolei

    2017-01-01

    Surface wettability plays a key role in addressing issues ranging from basic life activities to our daily life, and thus being able to control it is an attractive goal. Learning from nature, both of its structure and function, brings us much inspiration in designing smart polymers to tackle this major challenge. Life functions particularly depend on biomolecular recognition-induced interfacial properties from the aqueous phase onto either "soft" cell and tissue or "hard" inorganic bone and tooth surfaces. The driving force is noncovalent weak interactions rather than strong covalent combinations. An overview is provided of the weak interactions that perform vital actions in mediating biological processes, which serve as a basis for elaborating multi-component polymers with special wettabilities. The role of smart polymers from molecular recognitions to macroscopic properties are highlighted. The rationale is that highly selective weak interactions are capable of creating a dynamic synergetic communication in the building components of polymers. Biomolecules could selectively induce conformational transitions of polymer chains, and then drive a switching of physicochemical properties, e.g., roughness, stiffness and compositions, which are an integrated embodiment of macroscopic surface wettabilities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of Lignosulfonate Structure on the Surface Activity and Wettability to a Hydrophobic Powder

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ge

    2014-10-01

    Full Text Available The wettability of a solid material is very important in many applications, such as food, agrochemical formulations, and cosmetics. Wettability can be improved by adding surface active agents, especially biocompatible surfactants derived from biomass. In this work, the surface activity (ability to lower the surface tension of an aqueous solution and wettability toward a hydrophobic powder by a series of sodium lignosulfonates (NaLS synthesized with different degree of sulfonation (QS and weight-average molecular weights (Mw were investigated by measuring the surface tension and contact angle. The results demonstrated NaLS with a larger Mw or lower QS had higher surface activity. Conversely, the wettability of the NaLS aqueous solution toward difenoconazole powder showed a reverse trend, i.e., NaLS with a smaller Mw or higher Qs improved the wettability to difenoconazole. The surface activity and wettability was controlled by the varying densities of the NaLS molecules at the water to air interface or the solid/liquid interface, which was dependent on the molecular structure of NaLS.

  5. Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Directory of Open Access Journals (Sweden)

    Torchinsky I

    2009-01-01

    Full Text Available Abstract Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc. of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials.

  6. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma

    Energy Technology Data Exchange (ETDEWEB)

    Syromotina, D.S. [Department of Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Surmenev, R.A., E-mail: rsurmenev@gmail.com [Department of Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmeneva, M.A. [Department of Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Boyandin, A.N.; Nikolaeva, E.D. [Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk (Russian Federation); Prymak, O.; Epple, M. [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany); Ulbricht, M. [Technical Chemistry II and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen (Germany); Oehr, C. [Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Volova, T.G. [Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk (Russian Federation)

    2016-05-01

    The surface properties of poly-3-hydroxybutyrate (P3HB) membranes were modified using oxygen and an ammonia radio-frequency (RF, 13.56 MHz) plasma. The plasma treatment procedures used in the study only affected the surface properties, including surface topography, without inducing any significant changes in the crystalline structure of the polymer, with the exception being a power level of 250 W. The wettability of the modified P3HB surfaces was significantly increased after the plasma treatment, irrespective of the treatment procedure used. It was revealed that both surface chemistry and surface roughness changes caused by the plasma treatment affected surface wettability. A treatment-induced surface aging effect was observed and resulted in an increase in the water contact angle and a decrease in the surface free energy. However, the difference in the water contact angle between the polymers that had been treated for 4 weeks and the untreated polymer surfaces was still significant. A dependence between cell adhesion and proliferation and the polar component of the surface energy was revealed. The increase in the polar component after the ammonia plasma modification significantly increased cell adhesion and proliferation on biodegradable polymer surfaces compared to the untreated P3HB and the P3HB modified using an oxygen plasma. - Highlights: • Plasma treatment affected the topography of poly(3-hydroxybutyrate) (P3HB). • Plasma treatment resulted in improvement of the surface wettability. • No alteration of the bulk properties of the polymers was observed. • The ammonia plasma treatment at 150 W improved the cell adhesion and proliferation.

  7. Wettability and friction coefficient of micro-magnet arrayed surface

    Science.gov (United States)

    Huang, Wei; Liao, Sijie; Wang, Xiaolei

    2012-01-01

    Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.

  8. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity

    Science.gov (United States)

    Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang

    2017-11-01

    We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.

  9. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    International Nuclear Information System (INIS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-01-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future. (paper)

  10. Creation of wettability contrast patterns on metallic surfaces via pen drawn masks

    Science.gov (United States)

    Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.

    2017-12-01

    Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.

  11. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    Science.gov (United States)

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi; Chen, Ping-Hei

    2012-01-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography

  13. Thermal Stability and Surface Wettability Studies of Polylactic Acid/Halloysite Nanotube Nanocomposite Scaffold for Tissue Engineering Studies

    Science.gov (United States)

    Nizar, M. Mohd; Hamzah, M. S. A.; Razak, S. I. Abd; Mat Nayan, N. H.

    2018-03-01

    This paper reports the preliminary study about the incorporation of halloysite nanotubes (HNT) into polylactic acid (PLA) scaffold to improve the thermal resistance and surface wettability properties. The fabrication of the porous scaffold requires a simple yet effective technique with low-cost materials within freeze extraction method. The thermal stability of PLA/HNT scaffold compared to neat PLA scaffold achieved with increased content of HNT by 5 wt%. Moreover, the surface wettability of the scaffold also shows a positive impact with high content of HNT by 5 wt%. This new nanocomposite scaffold may have high potential as a suitable template for tissue regeneration.

  14. Influence of desiccation procedures on the surface wettability and corrosion resistance of porous aluminium anodic oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Meng, E-mail: ZhengMeng@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan); Sakairi, Masatoshi [Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan); Jha, Himendra [Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Simple desiccation treatment without coating or etching produces hydrophobicity of porous anodic oxide film. Black-Right-Pointing-Pointer Treatment time can be shortened by controlling desiccation condition. Black-Right-Pointing-Pointer Surface microstructure is the key point to determine the wettability. Black-Right-Pointing-Pointer The hydrophobic surfaces show better corrosion resistance than oxide aluminium. - Abstract: A hydrophobic oxide film was formed on aluminium by anodizing followed by desiccation treatment. Films subjected to gradual heating and cooling exhibit larger water contact angles than samples exposed to fast heating and cooling at the same temperature. From SEM and Auger Electron Spectroscopic observations, the low wettability surface shows a regular porous morphology with no significant chemical composition differences due to the different treatments. The desiccation process improves the corrosion resistance, shown by immersion in NaCl. The change in morphology by the desiccation processes is considered a main reason to lower the wettability, which further affects the corrosion properties.

  15. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  16. Drop splashing: the role of surface wettability and liquid viscosity

    Science.gov (United States)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  17. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    International Nuclear Information System (INIS)

    El-Sayed, D.; El-Saftawy, A.A.; Abd El Aal, S.A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N.A.; Seddik, U.

    2017-01-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way. - Highlights: • Neutrons radiation used to modify Hostaphan and Makrofol polymer wetting behavior. • Tailoring surface structure, topography and chemistry control its wettability. • Bulk etching rate and activation energy improved after neutrons irradiation.

  18. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of Surface Wettability on the Porosity and Wickability of Frost

    Science.gov (United States)

    Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan

    2017-11-01

    The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).

  20. Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport.

    Science.gov (United States)

    Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan

    2018-02-22

    We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.

  1. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment

    International Nuclear Information System (INIS)

    Bizi-Bandoki, P.; Benayoun, S.; Valette, S.; Beaugiraud, B.; Audouard, E.

    2011-01-01

    Topographic and wetting properties of AISI 316L stainless steel and Ti-6Al-V alloys were modified via linearly polarized femtosecond laser pulse irradiation. In order to induce a gradual evolution of the surface topography and wettability, four samples of each alloy were irradiated with different number of pulses. From the topographic point of view, a multi-scale morphology made of nano- and micro-periodic ripples was induced. The increase in the number of pulses led to the appearance of a third scale structure of waviness that is due to the laser scanning. The wettability of alloys was changed from a hydrophilic behavior to a hydrophobic one without lowering surface energies by chemical coatings. The apparent contact angle (CA) increased with increasing the number of pulses. A rise of about 50 deg. of the apparent CA of the Ti-6Al-V was noticed.

  2. Motion of Drops on Surfaces with Wettability Gradients

    Science.gov (United States)

    Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying

    2002-11-01

    A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a

  3. Morphing and vectoring impacting droplets by means of wettability-engineered surfaces.

    Science.gov (United States)

    Schutzius, Thomas M; Graeber, Gustav; Elsharkawy, Mohamed; Oreluk, James; Megaridis, Constantine M

    2014-11-13

    Driven by its importance in nature and technology, droplet impact on solid surfaces has been studied for decades. To date, research on control of droplet impact outcome has focused on optimizing pre-impact parameters, e.g., droplet size and velocity. Here we follow a different, post-impact, surface engineering approach yielding controlled vectoring and morphing of droplets during and after impact. Surfaces with patterned domains of extreme wettability (high or low) are fabricated and implemented for controlling the impact process during and even after rebound--a previously neglected aspect of impact studies on non-wetting surfaces. For non-rebound cases, droplets can be morphed from spheres to complex shapes--without unwanted loss of liquid. The procedure relies on competition between surface tension and fluid inertial forces, and harnesses the naturally occurring contact-line pinning mechanisms at sharp wettability changes to create viable dry regions in the spread liquid volume. Utilizing the same forces central to morphing, we demonstrate the ability to rebound orthogonally-impacting droplets with an additional non-orthogonal velocity component. We theoretically analyze this capability and derive a We(-.25) dependence of the lateral restitution coefficient. This study offers wettability-engineered surfaces as a new approach to manipulate impacting droplet microvolumes, with ramifications for surface microfluidics and fluid-assisted templating applications.

  4. Improving surface wettability and lubrication of polyetheretherketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel.

    Science.gov (United States)

    Zhao, Xiaoduo; Xiong, Dangsheng; Liu, Yuntong

    2018-06-01

    Poor surface wettability and relative high friction coefficients of pristine polyetheretherketone (PEEK) have limited its application in orthopedic implants. In this study, inspired by the structure of natural articular cartilage, we presented a novel method to fabricate a "soft-on-hard" structure on the surface of pristine PEEK specimens, which combined a soft polyvinyl alcohol (PVA) hydrogel layer and a three-dimensional porous layer with PEEK substrates. A variety of analytical methods were used to evaluate their properties, our results demonstrated that the hydrogel layer could be seamlessly connected with substrate, and the hydrogel-covered PEEK owned a highly hydrophilic surface, a very low water contact angle of 7° could be obtained. The friction coefficients of untreated and hydrogel-covered PEEK surfaces were measured using a tribometer under water lubrication, due to the presence of the top hydrogel layer and the hard substrate could provide excellent aqueous lubrication and bearing capacity, respectively, the friction coefficient could be reduced from 0.292 to 0.021. In addition, the porous layer under PVA hydrogel layer could work as gel reservoirs, the reserved hydrogel would be released after the surface layer was sheared off, and a regenerable lubrication status was obtained. This work provides a new route for the design of improving the surface wettability and tribological properties of PEEK. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  6. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrinia, Kazem; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu

    2016-05-15

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  7. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  8. Inherent wettability of different rock surfaces at nanoscale: a theoretical study

    Science.gov (United States)

    Chang, Xiao; Xue, Qingzhong; Li, Xiaofang; Zhang, Jianqiang; Zhu, Lei; He, Daliang; Zheng, Haixia; Lu, Shuangfang; Liu, Zilong

    2018-03-01

    Investigating the inherent wettability of rock surfaces at nanoscale is of great importance in ore floatation and oil recovery field. Using molecular dynamics simulations, we systematically study the wetting behavior of water on different rock surfaces (silica, calcite, gypsum, halite and graphite) at nanoscale. It is demonstrated that the inherent rock wettability follows the order of gypsum > calcite > halite > silica > graphite. Remarkably, we also manifest that the polarity of oil molecules can affect the water contact angles on silica surface. For example, the water contact angles on silica surface in hexane, dodecane, thiophene and toluene are 58 ± 2°, 63 ± 3°, 90 ± 1°, 118 ± 1°, respectively. Furthermore, we investigate the wetting behavior of water on heterogeneous rock surfaces and find that water molecules can move from hydrophobic surface to hydrophilic surface.

  9. Wettability control of micropore-array films by altering the surface nanostructures.

    Science.gov (United States)

    Chang, Chi-Jung; Hung, Shao-Tsu

    2010-07-01

    By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.

  10. A numerical investigation of the effect of surface wettability on the boiling curve.

    Directory of Open Access Journals (Sweden)

    Hua-Yi Hsu

    Full Text Available Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180° has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.

  11. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    International Nuclear Information System (INIS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-01-01

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O_2−CF_4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO_2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  12. Morphology modulating the wettability of a diamond film.

    Science.gov (United States)

    Tian, Shibing; Sun, Weijie; Hu, Zhaosheng; Quan, Baogang; Xia, Xiaoxiang; Li, Yunlong; Han, Dong; Li, Junjie; Gu, Changzhi

    2014-10-28

    Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.

  13. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Science.gov (United States)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  14. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  15. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  16. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    International Nuclear Information System (INIS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-01-01

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to provide better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability

  17. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  18. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Maleki, E. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Banihashemian, S.M. [Low Dimensional Materials Research Center, Department of Physics, Science Faculty, University Malaya, 50603 Kuala Lumpur (Malaysia); Park, J.W. [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Y.B. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Sarraf, M.; Sarhan, A.A.D.M.; Ramesh, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolyte containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.

  19. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    Science.gov (United States)

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  20. Improvement of Surface Wettability and Hydrophilization of Poly-paraphenylene benzobisoxazole Fiber with Fibrillation Combined Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xiwen Wang

    2012-01-01

    Full Text Available A new surface modification method fibrillation combined with oxygen plasma treatment to improve the wettability and hydrophily of PBO fiber was studied in this paper. The surface chemical structure and morphology of PBO fiber were characterized by the methods of FTIR, XPS and SEM. The wettability and hydrophlic characters changes on the surface were evaluated by the dynamic contact angle system and image analysis. The results show that the increase surface roughness by fibrillation could improve the wettability. Fibrillation combined oxygen plasma treatment has a better effect than oxygen plasma treatment to improve the wettability and hdyrophlization of PBO fiber. The specific area of PBO fiber increased to 10.7 m2/g from 0.7 m2/g, contact angle decreased to 43.2° from 84.4° and WRV increased to 208.4% from 13.7%. The modified fibers have a good dispersion in water for hydrophilization improvement.

  1. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    International Nuclear Information System (INIS)

    Anitha, V C; Narayan Banerjee, Arghya; Woo Joo, Sang; Lee, Jin-Hyung; Lee, Jintae; Ki Min, Bong

    2015-01-01

    Titania (TiO 2 ) nanotube arrays (TNAs) with different pore diameters (140 − 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO 2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO 2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ∼17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells. (paper)

  2. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  3. Tunable surface wettability and water adhesion of Sb2S3 micro-/nanorod films

    International Nuclear Information System (INIS)

    Zhong, Xin; Zhao, Huiping; Yang, Hao; Liu, Yunling; Yan, Guoping; Chen, Rong

    2014-01-01

    Antimony sulfide (Sb 2 S 3 ) films were successfully prepared by spin coating Sb 2 S 3 micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb 2 S 3 micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb 2 S 3 films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb 2 S 3 micro-/nanorod. Sb 2 S 3 film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb 2 S 3 film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb 2 S 3 films.

  4. Modeling Wettability Variation during Long-Term Water Flooding

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2015-01-01

    Full Text Available Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.

  5. Reversible tuning of the wettability on a silver mesodendritic surface by the formation and disruption of lipid-like bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuanji; Xia, Bing; Liu, Jie; Ding, Lisheng; Li, Bangjing; Zhou, Yan, E-mail: zhouyan@cib.ac.cn

    2015-02-28

    Graphical abstract: - Highlights: • We report a reversible solvent-induced transition from superhydrophobicity to hydrophilicity. • We tuned reversibly the wettability based on the silver mesodendritic structure. • The lipid-like bilayers are formed via non-covalent bond. • Wettability switching on liquid/solid interfaces was achieved by tuning the surface chemical composition. - Abstract: This study reported a smart, easy to apply, flexible and green strategy for obtaining a biomimic micro-nanostructures. 1-Mercapto-12-(p-nitrophenoxy) dodecane (MPND) and n-dodecanethiol were used to form low surface energy film on a silver mesodendritic structure coated zinc substrate. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology and mesocrystal structures. Noncovalently linked sodium nonanoyloxy benzene sulfonate (NOBS) was used to form “lipid-like bilayers” on the surface, making it possible for the surface to switch its surface wettability reversibly. The water contact angle (CA) on the constructed surface varies from 168 ± 2° (before processed by NOBS) to 55 ± 2° (after processed by NOBS). This phenomenon can be explained by the formation and disruption of “lipid-like bilayers” to affect the wettability of the surface. This work is of great scientific interests and may provide insights into the design of novel functional devices that are relevant to surface wettability, such as microfluidic devices and sensors.

  6. Reversible tuning of the wettability on a silver mesodendritic surface by the formation and disruption of lipid-like bilayers

    International Nuclear Information System (INIS)

    Gao, Yuanji; Xia, Bing; Liu, Jie; Ding, Lisheng; Li, Bangjing; Zhou, Yan

    2015-01-01

    Graphical abstract: - Highlights: • We report a reversible solvent-induced transition from superhydrophobicity to hydrophilicity. • We tuned reversibly the wettability based on the silver mesodendritic structure. • The lipid-like bilayers are formed via non-covalent bond. • Wettability switching on liquid/solid interfaces was achieved by tuning the surface chemical composition. - Abstract: This study reported a smart, easy to apply, flexible and green strategy for obtaining a biomimic micro-nanostructures. 1-Mercapto-12-(p-nitrophenoxy) dodecane (MPND) and n-dodecanethiol were used to form low surface energy film on a silver mesodendritic structure coated zinc substrate. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology and mesocrystal structures. Noncovalently linked sodium nonanoyloxy benzene sulfonate (NOBS) was used to form “lipid-like bilayers” on the surface, making it possible for the surface to switch its surface wettability reversibly. The water contact angle (CA) on the constructed surface varies from 168 ± 2° (before processed by NOBS) to 55 ± 2° (after processed by NOBS). This phenomenon can be explained by the formation and disruption of “lipid-like bilayers” to affect the wettability of the surface. This work is of great scientific interests and may provide insights into the design of novel functional devices that are relevant to surface wettability, such as microfluidic devices and sensors

  7. Control the wettability of poly(n-isopropylacrylamide-co-1-adamantan-1-ylmethyl acrylate) modified surfaces: the more Ada, the bigger impact?

    Science.gov (United States)

    Shi, Xiu-Juan; Chen, Gao-Jian; Wang, Yan-Wei; Yuan, Lin; Zhang, Qiang; Haddleton, David M; Chen, Hong

    2013-11-19

    Surface-initiated SET-LRP was used to synthesize polymer brush containing N-isopropylacrylamide and adamantyl acrylate using Cu(I)Cl/Me6-TREN as precursor catalyst and isopropanol/H2O as solvent. Different reaction conditions were explored to investigate the influence of different parameters (reaction time, catalyst concentration, monomer concentration) on the polymerization. Copolymers with variable 1-adamantan-1-ylmethyl acrylate (Ada) content and comparable thickness were synthesized onto silicon surfaces. Furthermore, the hydrophilic and bioactive molecule β-cyclodextrin-(mannose)7 (CDm) was synthesized and complexed with adamantane via host-guest interaction. The effect of adamantane alone and the effect of CDm together with adamantane on the wettability and thermoresponsive property of surface were investigated in detail. Experimental and molecular structure analysis showed that Ada at certain content together with CDm has the greatest impact on surface wettability. When Ada content was high (20%), copolymer-CDm surfaces showed almost no CDm complexed with Ada as the result of steric hindrance.

  8. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-01-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25–200°C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface...... different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cosθ values. Studies of the effect of roughness and surface flaws on wettability...... contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability....

  9. Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

    DEFF Research Database (Denmark)

    Tristan Djajadi, Demi; Hansen, Aleksander R.; Jensen, Anders

    2017-01-01

    physical and chemical features of the biomass surfaces, specifically contact angle measurements (wettability) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (surfacebiopolymer composition) produced data correlating pretreatment severity and enzymatic digestibility......, and they also revealed differences that correlated to enzymatic glucose yield responses among the three different biomass types. Conclusion: The study revealed that to a large extent, factors related to physico-chemical surface properties, namely surface wettability as assessed by contact angle measurements...

  10. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    International Nuclear Information System (INIS)

    Tiznado-Orozco, Gaby E.; Reyes-Gasga, José; Elefterie, Florina; Beyens, Christophe; Maschke, Ulrich; Brès, Etienne F.

    2015-01-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time

  11. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  12. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  14. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    Science.gov (United States)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-08-01

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ˜68° to ˜90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).

  15. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    International Nuclear Information System (INIS)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-01-01

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)

  16. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo, E-mail: mchiesa@masdar.ac.ae [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates)

    2014-08-28

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)

  17. Fog collecting biomimetic surfaces: Influence of microstructure and wettability.

    Science.gov (United States)

    Azad, M A K; Ellerbrok, D; Barthlott, W; Koch, K

    2015-01-19

    We analyzed the fog collection efficiency of three different sets of samples: replica (with and without microstructures), copper wire (smooth and microgrooved) and polyolefin mesh (hydrophilic, superhydrophilic and hydrophobic). The collection efficiency of the samples was compared in each set separately to investigate the influence of microstructures and/or the wettability of the surfaces on fog collection. Based on the controlled experimental conditions chosen here large differences in the efficiency were found. We found that microstructured plant replica samples collected 2-3 times higher amounts of water than that of unstructured (smooth) samples. Copper wire samples showed similar results. Moreover, microgrooved wires had a faster dripping of water droplets than that of smooth wires. The superhydrophilic mesh tested here was proved more efficient than any other mesh samples with different wettability. The amount of collected fog by superhydrophilic mesh was about 5 times higher than that of hydrophilic (untreated) mesh and was about 2 times higher than that of hydrophobic mesh.

  18. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

    Science.gov (United States)

    Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.

    2017-12-01

    This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser ( λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

  19. Surface morphology effects on the light-controlled wettability of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khranovskyy, V., E-mail: volkh@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden); Ekblad, T.; Yakimova, R.; Hultman, L. [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden)

    2012-08-01

    ZnO nanostructures of diverse morphology with shapes of corrals and cabbages as well as open and filled hexagons and sheaves prepared by APMOCVD technique, are investigated with water contact angle (CA) analysis. The as-grown ZnO nanostructures exhibit pure hydrophobic behavior, which is enhanced with the increase of the nanostructure's surface area. The most hydrophobic structures (CA = 124 Degree-Sign ) were found to be the complex nanosheaf, containing both the macro-and nanoscale features. It is concluded that the nanoscale roughness contributes significantly to the hydrophobicity increase. The character of wettability was possible to switch from hydrophobic-to-superhydrophilic state upon ultra violet irradiation. Both the rate and amplitude of the contact angle depend on the characteristic size of nanostructure. The observed effect is explained due to the semiconductor properties of zinc oxide enhanced by increased surface chemistry effect in nanostructures.

  20. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    Science.gov (United States)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  1. Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate–butyl acrylate) films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong, E-mail: Yong.Z@mail.scut.edu.cn [Guangzhou Panyu Polytechnic, Guangzhou 511483 (China); Cheng, Jiang; Yang, Zhuo-ru [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-10-01

    We report a gradient wettability surface on copper slide prepared by a simple controlled ester group hydrolysis procedure of poly(methyl methacrylate–butyl acrylate) [P (MMA-BA)] films coated on the copper substrate. In the method, sodium hydroxide solutions are selected to prepare surface gradient wettability on P (MMA-BA) films. The P (MMA-BA) copolymers with different MMA contents are first synthesized by a conventional free atom radical solution polymerization method. The transfer of surface chemical composition from the ester group to acid salt is achieved by hydrolysis in NaOH solution. The effects of different concentrations of NaOH solution and reaction times on the physicochemical properties of the resulting surfaces are studied. The field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) results show that the varying concentration along the substrate length is only attributed to the hydrolysis reaction of ester groups. The hydrolysis causes insignificant change on the morphology of the original film on the copper substrate. In addition, it is found that the MMA copolymer content has a significant influence on the concentration of ester groups on the outermost surface and thus important for forming the slope gradients.

  2. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  3. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  4. Designer-Wet Micromodels for Studying Potential Changes in Wettability during Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Armstrong, R. T.; Wildenschild, D.

    2010-12-01

    Microbial Enhanced Oil Recovery (MEOR) is a process where microorganisms are used for tertiary recovery of oil. Some bacteria can facilitate the mobilization of oil through the production of amphiphilic compounds called biosurfactants that reduce the interfacial tension (IFT) between immiscible phases. Additionally, most bacteria have an inclination to colonize surfaces and form biofilm, which can change a reservoir's wetting properties or clog preferential flow paths. Herein, we aim to understand changes in wettability during MEOR under mixed wettability conditions within silicon etched micromodels and to identify the type of oil field (i.e. based on wettability) in which MEOR is likely to be most profitable. To quantify porous media wettability, macro-scale indexes (obtained with techniques such as the Carter or Amott methods) are used regularly. However, these measurements lack the capability for characterization of changes in wettability during MEOR treatment, and only provide macro-scale information. In an effort to understand micro-scale temporal and spatial changes in wettability we measure interfacial curvature from stereo microscope images using level set methods. Curvature, from the perspective of the oil phase, is positive for a concave interface (i.e. water-wet surface) and negative for a convex interface (i.e. oil-wet surface). Thus, shifts in the radius of curvature distribution (i.e. from positive to negative or conversely) are indicative of wettability changes. Both curvature distributions using level-set methods and the Carter method are used to characterize wettability before and after microbial treatment. In preliminary studies aimed at understanding wettability changes due to microbial surface interactions by Bacillus mojavensis JF-2, oil droplets were placed on glass slides suspended in growth media and the resulting contact angle was measured over time. Results showed that a water-wet surface will become more water wet as JF-2 accumulated in

  5. Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.

    Science.gov (United States)

    Lai, Yuekun; Huang, Jianying; Cui, Zequn; Ge, Mingzheng; Zhang, Ke-Qin; Chen, Zhong; Chi, Lifeng

    2016-04-27

    Bioinspired surfaces with special wettability and adhesion have attracted great interest in both fundamental research and industry applications. Various kinds of special wetting surfaces have been constructed by adjusting the topographical structure and chemical composition. Here, recent progress of the artificial superhydrophobic surfaces with high contrast in solid/liquid adhesion has been reviewed, with a focus on the bioinspired construction and applications of one-dimensional (1D) TiO2-based surfaces. In addition, the significant applications related to artificial super-wetting/antiwetting TiO2-based structure surfaces with controllable adhesion are summarized, e.g., self-cleaning, friction reduction, anti-fogging/icing, microfluidic manipulation, fog/water collection, oil/water separation, anti-bioadhesion, and micro-templates for patterning. Finally, the current challenges and future prospects of this renascent and rapidly developing field, especially with regard to 1D TiO2-based surfaces with special wettability and adhesion, are proposed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  7. Wettability of nano-epoxies to UHMWPE fibers.

    Science.gov (United States)

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  8. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  9. Investigation of the wettability of ammonium nitrate prills

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Jones, D.E.G.; Kruus, P.

    2003-03-01

    The wetting characteristics of a variety of powders or porous materials can be determined through capillary penetration methods. Wettability of ammonium nitrate (AN) prills determines, in large part, the physical stability and detonation behaviour of ANFO (admixtures of AN prills with fuel oil). This study compared the wettabilities of a variety of AN prills with alkanes and fuel oil. Complementary characterization studies using scanning electron microscopy and thermogravimetry were also performed to justify the differences in wettability. Several factors affected wettability, including surface tension, viscosity, density, purity, polarity and polarizability of the liquid used. Surface composition, porosity, bulk density, particle size and moisture content of the AN samples were also contributing factors to wettability. The explosive-grade (porous) AN prill demonstrated a better wettability due the combined effects of these factors. Thermodesorption of octane from various AN prills was examined using high-resolution thermogravimetry. The adsorption capacity, porosity and specific surface area of 3 different AN prills were evaluated from the mass-loss curves to reflect the evaporation of the excess liquid and the thermodesorption of octane from the pores and the surface of the AN prills. The amount of octane desorbed in these steps was correlated with the volume in the pores and the quantity adsorbed on the surface. The porosity and surface area adsorption capacity of an AN prill was then estimated. 15 refs., 5 tabs., 10 figs.

  10. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-01-01

    Full Text Available Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.

  11. Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition

    Science.gov (United States)

    Stepien, Milena; Saarinen, Jarkko J.; Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Kuusipalo, Jurkka; Mäkelä, Jyrki M.; Toivakka, Martti

    2011-01-01

    Liquid flame spray process (LFS) was used for depositing TiO x and SiO x nanoparticles on paperboard to control wetting properties of the surface. By the LFS process it is possible to create either superhydrophobic or superhydrophilic surfaces. Changes in the wettability are related to structural properties of the surface, which were characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The surface properties can be ascribed as a correlation between wetting properties of the paperboard and the surface texture created by nanoparticles. Surfaces can be produced inline in a one step roll-to-roll process without need for additional modifications. Furthermore, functional surfaces with adjustable hydrophilicity or hydrophobicity can be fabricated simply by choosing appropriate liquid precursors.

  12. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness

    Directory of Open Access Journals (Sweden)

    Meina Xiao

    2018-06-01

    Full Text Available Pickering emulsions are water or oil droplets that are stabilized by colloidal particles and have been intensely studied since the late 90s. The surfactant-free nature of these emulsions has little adverse effects such as irritancy and contamination of environment and typically exhibit enhanced stability compared to surfactant-stabilized emulsions. Therefore, they offer promising applications in cosmetics, food science, controlled release, and the manufacturing of microcapsules and porous materials. The wettability of the colloidal particles is the main parameter determining the formation and stability of Pickering emulsions. Tailoring the wettability by surface chemistry or surface roughness offers considerable scope for the design of a variety of hybrid nanoparticles that may serve as novel efficient Pickering emulsion stabilizers. In this review, we will discuss the recent advances in the development of surface modification of nanoparticles.

  13. Reversible tuning of the wettability on a silver mesodendritic surface by the formation and disruption of lipid-like bilayers

    Science.gov (United States)

    Gao, Yuanji; Xia, Bing; Liu, Jie; Ding, Lisheng; Li, Bangjing; Zhou, Yan

    2015-02-01

    This study reported a smart, easy to apply, flexible and green strategy for obtaining a biomimic micro-nanostructures. 1-Mercapto-12-(p-nitrophenoxy) dodecane (MPND) and n-dodecanethiol were used to form low surface energy film on a silver mesodendritic structure coated zinc substrate. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology and mesocrystal structures. Noncovalently linked sodium nonanoyloxy benzene sulfonate (NOBS) was used to form "lipid-like bilayers" on the surface, making it possible for the surface to switch its surface wettability reversibly. The water contact angle (CA) on the constructed surface varies from 168 ± 2° (before processed by NOBS) to 55 ± 2° (after processed by NOBS). This phenomenon can be explained by the formation and disruption of "lipid-like bilayers" to affect the wettability of the surface. This work is of great scientific interests and may provide insights into the design of novel functional devices that are relevant to surface wettability, such as microfluidic devices and sensors.

  14. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    Science.gov (United States)

    Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

  15. Surface wettability control by titanium dioxide photo-induced reaction. Super-hydrophilic properties; Sanka chitan ni yoru hikari reiki shinsuika gijutsu. Hikari shokubai chosinsuisei

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-05-01

    Hydrophilicity results when the surface of titanium dioxide is reduced for the specified oxygen to be replaced by hydroxyl groups. The ease with which such a structural change occurs is subject to variation between titanium dioxide crystal surfaces, and is dependent greatly on the atmosphere. No hydrophilic trend is observed in an atmosphere of oxygen only without moisture and, in darkness without light, hydrophobicity occurs early. Although the contacta angle titanium dioxide with water with stability is not known, yet it is presumed, on the analogy of the case of strontium titanate, that it is in the range of 20-40 degrees. A hydrophilic trend below the range is attrributed to structural changes. The control of surface wettability is one of the basic tasks to fulfill in various kinds of mechanisms and manufacturing processes. The technology of wettability control using a titanium dioxide coating which is quite durable will be applied not only to functions involving defogging, dripproof, and self-cleaning, but also to the control of heat transmission in the mechanism and to the bonding process. (NEDO)

  16. Surface wettability control by titanium dioxide photo-induced reaction. Super-hydrophilic properties. Sanka chitan ni yoru hikari reiki shinsuika gijutsu. Hikari shokubai chosinsuisei

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology)

    1999-05-01

    Hydrophilicity results when the surface of titanium dioxide is reduced for the specified oxygen to be replaced by hydroxyl groups. The ease with which such a structural change occurs is subject to variation between titanium dioxide crystal surfaces, and is dependent greatly on the atmosphere. No hydrophilic trend is observed in an atmosphere of oxygen only without moisture and, in darkness without light, hydrophobicity occurs early. Although the contacta angle titanium dioxide with water with stability is not known, yet it is presumed, on the analogy of the case of strontium titanate, that it is in the range of 20-40 degrees. A hydrophilic trend below the range is attrributed to structural changes. The control of surface wettability is one of the basic tasks to fulfill in various kinds of mechanisms and manufacturing processes. The technology of wettability control using a titanium dioxide coating which is quite durable will be applied not only to functions involving defogging, dripproof, and self-cleaning, but also to the control of heat transmission in the mechanism and to the bonding process. (NEDO)

  17. Tunable surface wettability and water adhesion of Sb{sub 2}S{sub 3} micro-/nanorod films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xin; Zhao, Huiping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Yang, Hao, E-mail: hyangwit@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Liu, Yunling [State Key laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yan, Guoping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China)

    2014-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) films were successfully prepared by spin coating Sb{sub 2}S{sub 3} micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb{sub 2}S{sub 3} micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb{sub 2}S{sub 3} films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb{sub 2}S{sub 3} micro-/nanorod. Sb{sub 2}S{sub 3} film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb{sub 2}S{sub 3} film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb{sub 2}S{sub 3} films.

  18. Block Copolymer Patterns as Templates for the Electrocatalyzed Deposition of Nanostructures on Electrodes and for the Generation of Surfaces of Controlled Wettability.

    Science.gov (United States)

    Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar

    2016-01-20

    ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.

  19. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  20. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces

    Science.gov (United States)

    Velayi, Elmira; Norouzbeigi, Reza

    2018-05-01

    Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.

  1. Surface wettability and subcooling on nucleate pool boiling heat transfer

    Science.gov (United States)

    Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki

    2018-02-01

    The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.

  2. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge

    NARCIS (Netherlands)

    van Wachem, P.B.; Hogt, A.H.; Beugeling, T.; Feijen, Jan; Bantjes, A.; Detmers, J.P.; van Aken, W.G.

    1987-01-01

    The adhesion of human endothelial cells (HEC) onto a series of well-characterized methacrylate polymer surfaces with varying wettabilities and surface charges was studied either in serum-containing (CMS) or in serum-free (CM) culture medium. HEC adhesion in CMS onto (co)polymers * of hydroxyethyl

  3. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  4. Fabrication and anisotropic wettability of titanium-coated microgrooves

    Science.gov (United States)

    Gui, N.; Xu, W.; Tian, J.; Rosengarten, G.; Brandt, M.; Qian, M.

    2018-03-01

    Surface wettability plays a critical role in a variety of key areas including orthopaedic implants and chemical engineering. Anisotropy in wettability can arise from surface grooves, which are of particular relevance to orthopaedic implants because they can mimic collagen fibrils that are the basic components of the extracellular matrix. Titanium (Ti) and its alloys have been widely used for orthopaedic and dental implant applications. This study is concerned with the fabrication of Ti-coated microgrooves with different groove widths and the characterisation of the anisotropy in wettability through measuring water contact angles, compared with both the Wenzel and Cassie models. Experimental results revealed that there existed significant anisotropy in the wettability of Ti-coated microgrooves, and the degree of anisotropy (Δθ) increased with an increasing groove width from 5 μm to 20 μm. On average, the contact angle measured parallel to the groove direction (θ//) was about 50°-60° smaller than that measured perpendicular to the groove direction (θ⊥). In general, the Wenzel model predicted the contact angles along the surface groove direction reasonably, and so did the Cassie model for the contact angles perpendicular to the groove direction. Osteoblast spreading was affected by the anisotropy in wettability, which occurred preferably along, rather than perpendicular to, the groove direction. These findings are informative for the design of Ti implant surfaces when anisotropy in wettability matters.

  5. Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization.

    Science.gov (United States)

    Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T

    2015-12-29

    The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.

  6. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  7. Study of wettability and cell viability of H implanted stainless steel

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  8. Surface properties and color stability of an acrylic resin combined with an antimicrobial polymer

    Directory of Open Access Journals (Sweden)

    Ana Carolina Pero

    Full Text Available INTRODUCTION: The occurrence of stomatitis is common since the surface characteristics of the dentures may act as reservoirs for microorganisms and have the potential to support biofilm formation. PURPOSE: To assess the surface properties (wettability/roughness and color stability of an acrylic resin combined with the antimicrobial polymer poly (2-tert-butylaminoethyl methacrylate (PTBAEMA. MATERIAL AND METHOD: Thirty disc-shaped specimens of an acrylic resin (Lucitone 550 were divided into three groups: 0% (control; 5% and 10% PTBAEMA. Surface roughness values (Ra were measured using a profilometer and wettability was determined through contact angle measurements using a goniometer and deionized water as a test liquid. Color data were measured with a spectrophotometer. Kruskal-Wallis and Dunn's test were used to compare roughness values. Wettability data were analyzed using ANOVA and Tukey's test. Color data were compared using the Student's t-test and ∆E values were classified according to the National Bureau of Standards (NBS. All statistical analyses were performed considering α=.05. RESULT: Significant differences (p<.05 were detected among the groups for roughness, wettability and color stability. According to the NBS, the color changes obtained in the 5% and 10% PTBAEMA groups were "appreciable" and "much appreciable", respectively. CONCLUSION: It could be concluded that PTBAEMA incorporation in an acrylic resin increased the roughness and wettability of surfaces and produced color changes with clinical relevance.

  9. A statistical model for the wettability of surfaces with heterogeneous pore geometries

    Science.gov (United States)

    Brockway, Lance; Taylor, Hayden

    2016-10-01

    We describe a new approach to modeling the wetting behavior of micro- and nano-textured surfaces with varying degrees of geometrical heterogeneity. Surfaces are modeled as pore arrays with a Gaussian distribution of sidewall reentrant angles and a characteristic wall roughness. Unlike conventional wettability models, our model considers the fraction of a surface’s pores that are filled at any time, allowing us to capture more subtle dependences of a liquid’s apparent contact angle on its surface tension. The model has four fitting parameters and is calibrated for a particular surface by measuring the apparent contact angles between the surface and at least four probe liquids. We have calibrated the model for three heterogeneous nanoporous surfaces that we have fabricated: a hydrothermally grown zinc oxide, a film of polyvinylidene fluoride (PVDF) microspheres formed by spinodal decomposition, and a polytetrafluoroethylene (PTFE) film with pores defined by sacrificial polystyrene microspheres. These three surfaces show markedly different dependences of a liquid’s apparent contact angle on the liquid’s surface tension, and the results can be explained by considering geometric variability. The highly variable PTFE pores yield the most gradual variation of apparent contact angle with probe liquid surface tension. The PVDF microspheres are more regular in diameter and, although connected in an irregular manner, result in a much sharper transition from non-wetting to wetting behavior as surface tension reduces. We also demonstrate, by terminating porous zinc oxide with three alternative hydrophobic molecules, that a single geometrical model can capture a structure’s wetting behavior for multiple surface chemistries and liquids. Finally, we contrast our results with those from a highly regular, lithographically-produced structure which shows an extremely sharp dependence of wettability on surface tension. This new model could be valuable in designing and

  10. Texture and wettability of metallic lotus leaves

    Science.gov (United States)

    Frankiewicz, C.; Attinger, D.

    2016-02-01

    Superhydrophobic surfaces with the self-cleaning behavior of lotus leaves are sought for drag reduction and phase change heat transfer applications. These superrepellent surfaces have traditionally been fabricated by random or deterministic texturing of a hydrophobic material. Recently, superrepellent surfaces have also been made from hydrophilic materials, by deterministic texturing using photolithography, without low-surface energy coating. Here, we show that hydrophilic materials can also be made superrepellent to water by chemical texturing, a stochastic rather than deterministic process. These metallic surfaces are the first analog of lotus leaves, in terms of wettability, texture and repellency. A mechanistic model is also proposed to describe the influence of multiple tiers of roughness on wettability and repellency. This demonstrated ability to make hydrophilic materials superrepellent without deterministic structuring or additional coatings opens the way to large scale and robust manufacturing of superrepellent surfaces.Superhydrophobic surfaces with the self-cleaning behavior of lotus leaves are sought for drag reduction and phase change heat transfer applications. These superrepellent surfaces have traditionally been fabricated by random or deterministic texturing of a hydrophobic material. Recently, superrepellent surfaces have also been made from hydrophilic materials, by deterministic texturing using photolithography, without low-surface energy coating. Here, we show that hydrophilic materials can also be made superrepellent to water by chemical texturing, a stochastic rather than deterministic process. These metallic surfaces are the first analog of lotus leaves, in terms of wettability, texture and repellency. A mechanistic model is also proposed to describe the influence of multiple tiers of roughness on wettability and repellency. This demonstrated ability to make hydrophilic materials superrepellent without deterministic structuring or additional

  11. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    International Nuclear Information System (INIS)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  12. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  13. Effects of Engineered Wettability on the Efficiency of Dew Collection.

    Science.gov (United States)

    Gerasopoulos, Konstantinos; Luedeman, William L; Ölçeroglu, Emre; McCarthy, Matthew; Benkoski, Jason J

    2018-01-31

    Surface wettability plays an important role in dew collection. Nucleation is faster on hydrophilic surfaces, while droplets slide more readily on hydrophobic surfaces. Plants and animals in coastal desert environments appear to overcome this trade-off through biphilic surfaces with patterned wettability. In this study, we investigate the effects of millimeter-scale wettability patterns, mimicking those of the Stenocara beetle, on the rate of water collection from humid air. The rate of water collection per unit area is measured as a function of subcooling (ΔT = 1, 7, and 27 °C) and angle of inclination (from 10° to 90°). It is then compared for superbiphilic, hydrophilic, hydrophobic, and surperhydrophobic surfaces. For large subcooling, neither wettability nor tilt angle has a significant effect because the rate of condensation is so great. For 1 °C subcooling and large angles, hydrophilic surfaces perform best because condensation is the rate-limiting step. For low angles of inclination, superhydrophobic samples are best because droplet sliding is the rate-limiting step. Superbiphilic surfaces, in contrast to their superior fog collecting capabilities, generally collected dew at the slowest rate due to their inherent contact angle hysteresis. Theoretical considerations suggest that this finding may apply more generally to surfaces with patterned wettability.

  14. Topography printing to locally control wettability.

    Science.gov (United States)

    Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S

    2006-06-21

    This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.

  15. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    Energy Technology Data Exchange (ETDEWEB)

    Ashokkumar, Saranya, E-mail: saras@food.dtu.dk [Accoat A/S, Munkegardsvej 16, 3490 Kvistgard (Denmark); Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Adler-Nissen, Jens [Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Moller, Per [Department of Materials Science and Engineering, DTU Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2012-12-15

    Graphical abstract: Plot of cos {theta} versus temperature for metal and ceramic surfaces where cos {theta} rises linearly with increase in temperature. Highlights: Black-Right-Pointing-Pointer cos {theta} of olive oil on different surface materials rises linearly with increase in temperature. Black-Right-Pointing-Pointer Slopes are much higher for quasicrystalline and polymers than for ceramics. Black-Right-Pointing-Pointer Increase in surface roughness and surface flaws increases surface wettability. Black-Right-Pointing-Pointer Contact angle values gave information for grouping easy-clean polymers from other materials. Black-Right-Pointing-Pointer Contact angle measurements cannot directly estimate the cleanability of a surface. - Abstract: The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 Degree-Sign C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO{sub 2}), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos {theta} values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos {theta} values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between

  16. The research about the time-effect of the wettability on the wool surface treated by the Ar plasma jet in the atmospheric pressure

    International Nuclear Information System (INIS)

    Wu Yu; Wang Shouguo

    2009-01-01

    A facility which is called atmospheric pressure and normal temperature plasma jet was introduced in this paper. After the wool surface was treated by this kind of facility with Ar in different irradiating times, the time-effect of the fabric wettability has been weakened, and if the parameters of the irradiating time and the voltage of the facility are appropriate, the time-effect of wettability can be effectively inhibited. With the stable wettability, the fabric can be dressed without PVA (polyvinyl alcohol) which can cause lager pollution in the textile field, so the method without the time-effect of the textile wettability will be useful in the field of clean textile production. Undoubtedly, the stable wettability of textile surface was caused by the stable hydrophilic molecules on the textile surface. Thus, the reaction process and results on the textile surface treated by plasma needs to be studied to optimize the parameters of the irradiating time and the voltage of the plasma jet. So the initial experimental studies on the optimization of the parameters of the plasma jet were discussed in this paper, and the authors believe that the method without the time-effect also can be used in other fields of plasma application.

  17. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  18. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  19. Effects of Oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Nitheanandan, T.; Bullock, C.D.; Slater, L.F.; McRae, G.A.

    2003-05-01

    Glass-bead peening the outside surfaces of zirconium alloy tubes has been shown to increase the Critical Heat Flux (CHF) in pool boiling of water. The CHF is found to correlate with the fractal roughness of the metal tube surfaces. In this study on the effect of oxidation on glass-peened surfaces, test measurements for CHF, surface wettability and roughness have been evaluated using various glass-peened and oxidized zirconium alloy tubes. The results show that oxidation changes the solid-liquid contact angle (i.e., decreases wettability of the metal-oxide surface), but does not change the fractal surface roughness, appreciably. Thus, oxidation of the glass-peened surfaces of zirconium alloy tubes is not expected to degrade the CHF enhancement obtained by glass-bead peening. (author)

  20. The effect of fluoroalkylsilanes on tribological properties and wettability of Si-DLC coatings

    Science.gov (United States)

    Bystrzycka, E.; Prowizor, M.; Piwoński, I.; Kisielewska, A.; Batory, D.; Jędrzejczak, A.; Dudek, M.; Kozłowski, W.; Cichomski, M.

    2018-03-01

    Silicon-containing diamond-like carbon (Si-DLC) coatings were prepared on silicon wafers by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) method using methane/hexamethyl-disiloxane atmosphere. Herein, we report that Si-DLC coatings can be effectively modified by fluoroalkylsilanes which results in significant enhancement of frictional and wettability properties. Two types of fluoroalkylsilanes differing in the length of fluorocarbon chains were deposited on Si-DLC coatings with the use of Vapor Phase Deposition (VPD) method. The chemical composition of Si-DLC coatings and effectiveness of modification with fluoroalkylsilanes were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray Photoelectron Spectroscopy (XPS). Frictional properties in microscale were investigated with the use of ball-on-flat apparatus operating at millinewton (mN) load range. It was found that the presence of silicon enhances the chemisorption of fluoroalkylsilanes on Si-DLC coatings by creating adsorption anchoring centers. In consequence, a decrease of adhesion and an increase of hydrophobicity along with a decrease of coefficient of friction were observed. Experimental results indicate, that tribological properties are correlated with dispersive and acid-base components of the surface free energy as well as with the work of adhesion.

  1. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Uges, DRA; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2000-01-01

    In this study, the release of gentamicin as a function of time was measured for six different gentamicin-loaded bone cements and related with the surface roughness, porosity and wettability of the cements. Initial release rates varied little between the six bone cements (CMW1, CMW3, CMW Endurance,

  2. Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method

    International Nuclear Information System (INIS)

    Guan, Y.C.; Luo, F.F.; Lim, G.C.; Hong, M.H.; Zheng, H.Y.; Qi, Bojin

    2015-01-01

    Highlights: • One-stop laser method is presented to fabricate superhydrophilic surface on metals. • Wettability study shows the longest superhydrophilic duration as more than 1 month. • Water-soluble compounds, polar functional groups and dual-scale structures were formed. • Surface roughness shows an amplification effect of the wetting behavior. - Abstract: A simple method for fabricating stable superhydrophilic surface at metallic substrates is reported. This technique comprises irradiating the surface with multiple laser pulses. Surface wettability can be taylored through controlling laser parameters and processing conditions. The substrates were selected as aluminum alloy and stainless steel. Physical morphology and chemical composition of laser-textured surfaces were characterized by SEM, XPS, and 3D profiler measurements. Results showed that the longest wettability duration was achieved as more than 1 month for stainless steel and more than 200 h for Al alloy, respectively. The possible mechanism of hydrophilic behavior of laser-textured surfaces was discussed. The effect of surface topography on superhydrophilicity property was also evaluated. This study presents a promising method in fabricating long-term superhydrophilic surfaces, which is useful for improving adhesion or achieving water-assisted flow in industrial applications as well as developing cell-based technologies in biomedical applications

  3. Influence of surface wettability on cathode electroluminescence of porous silicon

    International Nuclear Information System (INIS)

    Goryachev, D.N.; Sreseli, O.M.; Belyakov, L.V.

    1997-01-01

    Influence of porous silicon wettability on efficiency of its cathode electroluminescence in electrolytes was investigated. It was revealed that increase of porous silicon wettability by electrolyte improved contact with a sublayer and provided generation of sufficient quantity of charge carriers. Diffusion - ionic, not electronic mechanism of charge transfer to the centers of micro crystallite electroluminescence is observed in porous silicon - electrolyte systems

  4. Wettability of Oil-Producing Reservoir Rocks as Determined from X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Toledo; Araujo; Leon

    1996-11-10

    Wettability has a dominant effect in oil recovery by waterflooding and in many other processes of industrial and environmental interest. Recently, the suggestion has been made that surface science analytical techniques (SSAT) could be used to rapidly determine the wettability of reservoir materials. Here, we bring the capability of X-ray photoelectron spectroscopy (XPS) to bear on the wettability evaluation of producing reservoir rocks. For a suite of freshly exposed fracture surfaces of rocks we investigate the relationship between wettability and surface composition as determined from XPS. The classical wettability index as measured with the Amott-Harvey test is used here as an indicator of the wettability of natural sandstones. The XPS spectra of oil-wet surfaces of rocks reveal the existence of organic carbon and also of an "organic" silicon species, of the kind Si-CH relevant to silanes, having a well-defined binding energy which differs from that of the Si-O species of mineral grains. We provide quantifiable evidence that chemisorbed organic material on the pore surfaces defines the oil-wetting character of various reservoir sandstones studied here which on a mineralogic basis are expected to be water-wet. This view is supported by a strong correlation between C content of pore surfaces and rock wettability. The results also suggest a correlation between organic silicon content on the pore surfaces and rock hydrophobicity.

  5. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  6. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  7. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    International Nuclear Information System (INIS)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-01-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF 4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF 4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic

  8. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Eung-Sam [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Jeon, Gumhye [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Choi, Kwan Yong, E-mail: kchoi@postech.ac.kr [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Jin Kon, E-mail: jkkim@postech.ac.kr [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF{sub 4} and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF{sub 4} plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic.

  9. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Hibiki, T.

    2008-01-01

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions

  10. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  11. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-01-01

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  12. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022 (China); Li, Shuyi; Niu, Shichao [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Cao, Xiaowen [Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2016-08-30

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  13. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  14. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  15. A Percolation Study of Wettability Effect on the Electrical Properties of Reservoir Rocks

    DEFF Research Database (Denmark)

    Zhou, Dengen; Arbabi, Sepehr; Stenby, Erling Halfdan

    1997-01-01

    Measurements of the electrical resistivity of oil reservoirs are commonly used to estimate other properties of reservoirs, such as porosity and hydrocarbon reserves. However, the interpretation of the measurements is based on empirical correlations, because the underlying mechanisms that control...... the electrical properties of oil bearing rocks have not been well understood. In this paper, we employ percolation concepts to investigate the effect of wettability on the electrical conductivity of a reservoir formation. A three-dimensional simple cubic network is used to represent an ideal reservoir formation...

  16. Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment

    Science.gov (United States)

    Polini, W.; Sorrentino, L.

    2003-05-01

    Aluminium alloys are heavily used to manufacture structural parts in the aeronautic industry because of its lightness and its corrosion resistance. These alloys are successfully used in other industrial fields too, such as railway, automotive and naval industries. The need to contrast the severe use conditions and the heavy stresses developing in aeronautic field implies to protect the surfaces of the structures in aluminium alloy by any deterioration. To preserve by deterioration, it is necessary to make aluminium more suitable to be coated by protective paint. In the aeronautic industry, a complex and critical process is used in order to enhance both wettability and adhesive properties of aluminium alloy surfaces. Cold plasma treatment represents an efficient, clean and economic alternative to activate aluminium surfaces. The present work deals with air cold plasma treatment of 2024 aluminium alloy surfaces. The influence of dc electrical discharge cold plasma parameters on wettability of 2024 aluminium alloy surfaces has been studied. A set of process variables (voltage, time and air flow rate) has been identified and used to conduct some experimental tests on the basis of design of experiment (DOE) techniques. The experimental results show that the proposed plasma process may considerably increase aluminium alloy wettability. These results represent the first step in trying to optimise the aluminium adhesion by means of this non-conventional manufacturing process.

  17. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    Science.gov (United States)

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  18. Wettability Studies Using Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2015-01-01

    Full Text Available Wettability studies have been carried out on reservoir rocks using different techniques such as the Amott-Harvey method, the USBM method, and the contact angle method, all with limitations. In this study, the wettability is studied by discussing the surface charge using zeta potential measurements. The study relies on the finding that carbonated reservoir rocks, consisting of CaCO3 mainly, are positively charged and their surface has the potential to adsorb significant quantities of anions. Moreover, heavy fractions such as asphaltenes are reported to remain afloat depending on dispersive forces present in the oil and its various fractions. Experiments are carried out on aqueous limestone suspension with the addition of crude oil. The experiment is repeated with the use of polymeric inhibitors, A and B. The zeta potential is found to alter depending on the sequence of polymeric inhibitor in oil/water addition. The inhibitor is found to adsorb on the limestone surface, with a net negative charge, causing repulsion between crude oil and the inhibitor and, hence, preventing the deposition of heavy fractions and particularly asphaltenes. This study gives a comprehensive insight on the mechanism of polymeric inhibitor interaction with the surface and the effect of wettability on its performance.

  19. Fast and low-cost method to fabricate large-area superhydrophobic surface on steel substrate with anticorrosion and anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe; Zhu, Wei [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-07-15

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property compared to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.

  20. Effects of CO2 laser irradiation on the wettability and human skin fibroblast cell response of magnesia partially stabilised zirconia

    International Nuclear Information System (INIS)

    Hao, L.; Lawrence, J.

    2003-01-01

    Human skin fibroblast cells in vitro responses on the surface of a bioinert zirconia ceramic partially stabilised with magnesia partially stabilised zirconia (MgO-PSZ) bioinert ceramic before and after CO 2 laser treatment were investigated to find the interrelationship between the cell adhesion, wettability and laser parameters. Contact angle, θ, measurements of a set of test liquids were a clear indication that surface treatment of the MgO-PSZ with a CO 2 laser brought about a reduction in θ, indicating that the wettability of the MgO-PSZ had been enhanced. A relationship was found between the wettability and the microstructure of the MgO-PSZ surface and laser processing parameters. It was subsequently deduced that the factors active in causing the observed modification in the wettability of the MgO-PSZ were the increases in the surface O 2 content and the polar component of the surface energy, γ sv p , the latter resulting from surface melting and resolidification. Moreover, the investigation into the human skin fibroblast cell response revealed that the CO 2 laser treatment of the MgO-PSZ had resulted in a surface favourable for cell adhesion, as the extent of cell attachment and adhesion on the MgO-PSZ surface was enhanced depending on laser parameters. Such an improvement in cell adhesion, which could be greatly beneficial to developing enhanced bonding at the tissue and implant interface, was influenced by the surface properties of the modified MgO-PSZ, particular wettability

  1. Wettability contrasts between fresh and weathered diesel fuels.

    Science.gov (United States)

    Drake, Stephanie S; O'Carroll, Denis M; Gerhard, Jason I

    2013-01-01

    The remediation of non-aqueous phase liquid (NAPL) contaminated sites is impeded due to subsurface complexities, including wettability. Wettability quantifies which of two immiscible fluids preferentially coats a solid. At most contaminated sites water-wetting conditions are typically assumed despite mounting evidence that this is not always the case. In this study, wettability was examined for two NAPL samples of contrasting origin: a fresh and a field sample. Wettability was assessed through (i) cyclical, 'cumulative elapsed contact time' intrinsic contact angle measurements, (ii) interface jar tests, and (iii) cyclical, pseudo-static capillary pressure-saturation curves. The work as a whole demonstrated that while the fresh diesel sample was consistently water-wet, the field diesel sample exhibited repeatable cycles of wettability reversal between water drainage and imbibition. And while wettability hysteresis increased with contact time for the field diesel, the occurrence of wettability reversal at each change of saturation direction was independent of contact time. Such behavior is not easily assessed by standard wettability indices. Moreover, it contrasts with the permanent wettability alteration observed for complex organics (e.g., coal tar) observed in most studies. It is hypothesized that the cyclical wettability reversal is related to cyclical changes in intermediate pore wettability due to sorption of surface active compounds (causing NAPL-wetting imbibition) and rupturing of the soil grain water film (causing water-wet drainage). The wettability differences between the two NAPLs may be due to additives (i.e., a surfactant) in the original formulation and/or byproducts from subsurface weathering. These results support better characterization of site-specific wettability, improved model development and more realistic site conceptual models for improved remediation efforts. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability

    Directory of Open Access Journals (Sweden)

    Alba Dieguez-Alonso

    2018-02-01

    Full Text Available The impact of conversion process parameters in pyrolysis (maximum temperature, inert gas flow rate and hydrothermal carbonization (maximum temperature, residence time and post-washing on biochar and hydrochar properties is investigated. Pine wood (PW and corn digestate (CD, with low and high inorganic species content respectively, are used as feedstock. CD biochars show lower H/C ratios, thermal recalcitrance and total specific surface area than PW biochars, but higher mesoporosity. CD and PW biochars present higher naphthalene and phenanthrene contents, respectively, which may indicate different reaction pathways. High temperatures (>500 °C lead to lower PAH (polycyclic aromatic hydrocarbons content (<12 mg/kg and higher specific surface area. With increasing process severity the biochars carbon content is also enhanced, as well as the thermal stability. High inert gas flow rates increase the microporosity and wettability of biochars. In hydrochars the high inorganic content favor decarboxylation over dehydration reactions. Hydrochars show mainly mesoporosity, with a higher pore volume but generally lower specific surface area than biochars. Biochars present negligible availability of NO 3 − and NH 4 + , irrespective of the nitrogen content of the feedstock. For hydrochars, a potential increase in availability of NO 3 − , NH 4 + , PO 4 3 − , and K + with respect to the feedstock is possible. The results from this work can be applied to “engineer” appropriate biochars with respect to soil demands and certification requirements.

  3. Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action, and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition

    Energy Technology Data Exchange (ETDEWEB)

    Norman Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Zhengxin Tong; Evren Unsal; Siluni Wickramathilaka; Shaochang Wo; Peigui Yin

    2008-06-30

    The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed

  4. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    Energy Technology Data Exchange (ETDEWEB)

    Norman R. Morrow

    2004-05-01

    The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed

  5. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    Energy Technology Data Exchange (ETDEWEB)

    Norman R. Morrow

    2004-07-01

    The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed

  6. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  7. Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition

    International Nuclear Information System (INIS)

    Zhang, Miao; Xu, Kai; Jiang, Xishun; Yang, Lei; He, Gang; Song, Xueping; Sun, Zhaoqi; Lv, Jianguo

    2014-01-01

    Highlights: • Different surface morphologies of ZnO films were prepared by cathodic electrodeposition. • The surface morphologies are controlled through add different ratio methanol to electrolyte. • The morphology changes from nanorods with hexagonal structure to net-like nanostructure. • The wettability of films shows obvious change with increasing methanol ratio. • The maximum light-induced CA change has been observed with the methanol ratio of 0.8. - Abstract: ZnO thin films were prepared in the electrolyte with different methanol ratio by cathodic electrodeposition method. Microstructure, surface morphology, optical properties and wettability of the thin films were investigated by X-ray diffractometer, field-emission scanning electron microscope, ultraviolet–visible spectroscope, fluorescence spectrometer and water contact angle apparatus. Increase of methanol ratio in the solvents may restrain the (0 0 2) plane preferential orientation in some extent. Change of current density curves with the ratio of methanol in the solution play a vital role on electrochemical reaction kinetics, microstructure and/or surface morphology of ZnO thin films. With the methanol ratio increase from 0 to 0.8, the surface morphology changes from nanorods to net-like nanostructure. The adsorbed NO 3 − ions on the polar planes hinder the crystal growth along the c-axis and redirect the growth direction along the nonpolar planes. The maximum and minimum band gaps have been obtained in the ZnO thin films with the methanol ratio of 0.4 and 0.6, respectively. Change of contact angle before UV irradiation may be related to surface morphology and oxygen vacancies. The maximum light-induced water contact angle change has been observed in the sample with the methanol ratio of 0.8. The results may be attributed to the higher surface roughness and net-like morphology

  8. Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Kai; Jiang, Xishun; Yang, Lei; He, Gang; Song, Xueping [School of Physics and Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo, E-mail: lvjg1@163.com [School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601 (China)

    2014-12-05

    Highlights: • Different surface morphologies of ZnO films were prepared by cathodic electrodeposition. • The surface morphologies are controlled through add different ratio methanol to electrolyte. • The morphology changes from nanorods with hexagonal structure to net-like nanostructure. • The wettability of films shows obvious change with increasing methanol ratio. • The maximum light-induced CA change has been observed with the methanol ratio of 0.8. - Abstract: ZnO thin films were prepared in the electrolyte with different methanol ratio by cathodic electrodeposition method. Microstructure, surface morphology, optical properties and wettability of the thin films were investigated by X-ray diffractometer, field-emission scanning electron microscope, ultraviolet–visible spectroscope, fluorescence spectrometer and water contact angle apparatus. Increase of methanol ratio in the solvents may restrain the (0 0 2) plane preferential orientation in some extent. Change of current density curves with the ratio of methanol in the solution play a vital role on electrochemical reaction kinetics, microstructure and/or surface morphology of ZnO thin films. With the methanol ratio increase from 0 to 0.8, the surface morphology changes from nanorods to net-like nanostructure. The adsorbed NO{sub 3}{sup −} ions on the polar planes hinder the crystal growth along the c-axis and redirect the growth direction along the nonpolar planes. The maximum and minimum band gaps have been obtained in the ZnO thin films with the methanol ratio of 0.4 and 0.6, respectively. Change of contact angle before UV irradiation may be related to surface morphology and oxygen vacancies. The maximum light-induced water contact angle change has been observed in the sample with the methanol ratio of 0.8. The results may be attributed to the higher surface roughness and net-like morphology.

  9. Effect of surface wettability on microfluidic EDGE emulsification

    NARCIS (Netherlands)

    Maan, A.A.; Sahin, S.; Mujawar, L.H.; Boom, R.M.; Schroen, C.G.P.H.

    2013-01-01

    The effect of wettability on microfluidic EDGE emulsification was investigated at dispersed phase contact angles between 90 and 160. The highest contact angle (160) produced monodispersed emulsions with droplet size 5.0 lm and coefficient of variation

  10. Effects of CO{sub 2} laser irradiation on the wettability and human skin fibroblast cell response of magnesia partially stabilised zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Lawrence, J

    2003-10-15

    Human skin fibroblast cells in vitro responses on the surface of a bioinert zirconia ceramic partially stabilised with magnesia partially stabilised zirconia (MgO-PSZ) bioinert ceramic before and after CO{sub 2} laser treatment were investigated to find the interrelationship between the cell adhesion, wettability and laser parameters. Contact angle, {theta}, measurements of a set of test liquids were a clear indication that surface treatment of the MgO-PSZ with a CO{sub 2} laser brought about a reduction in {theta}, indicating that the wettability of the MgO-PSZ had been enhanced. A relationship was found between the wettability and the microstructure of the MgO-PSZ surface and laser processing parameters. It was subsequently deduced that the factors active in causing the observed modification in the wettability of the MgO-PSZ were the increases in the surface O{sub 2} content and the polar component of the surface energy, {gamma}{sub sv}{sup p}, the latter resulting from surface melting and resolidification. Moreover, the investigation into the human skin fibroblast cell response revealed that the CO{sub 2} laser treatment of the MgO-PSZ had resulted in a surface favourable for cell adhesion, as the extent of cell attachment and adhesion on the MgO-PSZ surface was enhanced depending on laser parameters. Such an improvement in cell adhesion, which could be greatly beneficial to developing enhanced bonding at the tissue and implant interface, was influenced by the surface properties of the modified MgO-PSZ, particular wettability.

  11. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    Science.gov (United States)

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  12. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  13. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  14. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  15. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    Science.gov (United States)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  16. Pinus sylvestris L. needle surface wettability parameters as indicators of atmospheric environment pollution impacts: Novel contact angle hysteresis methodology

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz

    2014-02-01

    An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.

  17. How important are scaffolds and their surface properties in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Idaszek, J.; Kijeńska, E.; Łojkowski, M.; Swieszkowski, W., E-mail: wojciech.swieszkowski@inmat.pw.edu.pl

    2016-12-01

    Highlights: • Cell performance on AM scaffolds can be controlled by modification of surface chemistry as well as their architecture. • Introduction of chemical groups/particles increasing surface wettability and surface energy has a positive effect on cell retention and adhesion. • The properties of nanofiber scaffold like fibers orientation, wettability, roughness and chemical composition direct spreading, proliferation, maturation and differentiation of the cells promoting tissue re-growth. - Abstract: The ability of cells to sense various cues present within their natural habitat gives a tremendous opportunity to steer their fate in vitro within artificial matrices (scaffolds). However, the variety of signals and their chemical and physical origin makes engineering of the scaffolds quite challenging and requires careful design in order to obtained the desired outcome. Herein, we discuss the effect of architecture and surface of scaffolds fabricated by means of additive manufacturing and electrospinning on cell retention, spreading, proliferation and differentiation. Additionally, we present some of the reported surface and bulk modifications of the scaffolds, which positively affected cell performance. Finally, in the last part we discuss application of multicellular spheroids as a useful tool to study cell performance within three-dimensional and porous structures.

  18. How important are scaffolds and their surface properties in regenerative medicine

    International Nuclear Information System (INIS)

    Idaszek, J.; Kijeńska, E.; Łojkowski, M.; Swieszkowski, W.

    2016-01-01

    Highlights: • Cell performance on AM scaffolds can be controlled by modification of surface chemistry as well as their architecture. • Introduction of chemical groups/particles increasing surface wettability and surface energy has a positive effect on cell retention and adhesion. • The properties of nanofiber scaffold like fibers orientation, wettability, roughness and chemical composition direct spreading, proliferation, maturation and differentiation of the cells promoting tissue re-growth. - Abstract: The ability of cells to sense various cues present within their natural habitat gives a tremendous opportunity to steer their fate in vitro within artificial matrices (scaffolds). However, the variety of signals and their chemical and physical origin makes engineering of the scaffolds quite challenging and requires careful design in order to obtained the desired outcome. Herein, we discuss the effect of architecture and surface of scaffolds fabricated by means of additive manufacturing and electrospinning on cell retention, spreading, proliferation and differentiation. Additionally, we present some of the reported surface and bulk modifications of the scaffolds, which positively affected cell performance. Finally, in the last part we discuss application of multicellular spheroids as a useful tool to study cell performance within three-dimensional and porous structures.

  19. A Combinatorial Library of Micro-Topographies and Chemical Compositions for Tailored Surface Wettability

    DEFF Research Database (Denmark)

    Kolind, Kristian; Bennetsen, Dines Tilsted; Arpanaei, Ayyoob

    2011-01-01

    than surfaces modified with ODS, while the unmodified silicon surfaces were hydrophilic. For the PFS modified surfaces the largest CAs were achieved with a small pillar size of X = 1 µm and an intermediate inter-pillar gap size of Y = 4 µm with superhydrophobic CAs over 170°. Surface analysis with X......-ray photoelectron spectroscopy (XPS) revealed that CF3 groups were present at the surface, contributing to the superhydrophobic effect. The ODS modified surfaces had intermediate wettabilities with CAs between 100 and 150°, which were dependent on the pillar size, the inter-pillar gap size, and the specific pillar...... different applications. The measured CAs did not follow the simple Wenzel model. Furthermore, the adaptation of the Cassie model introduces Φs, the fraction of solid surface in contact with the liquid, which is difficult to estimate, thereby emphasizing the need for an experimental determination...

  20. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  1. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    International Nuclear Information System (INIS)

    Xu, Jihai; Zhao, Wenjie; Peng, Shusen; Zeng, Zhixiang; Zhang, Xin; Wu, Xuedong; Xue, Qunji

    2014-01-01

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features

  2. A terahertz transmission imaging based approach for liquid alcohol wettability investigation

    Science.gov (United States)

    Huang, Hui; Zhao, Hongwei; Zhang, Bo; Su, Yunyun; Jiang, Weixiang; Cai, Bin; You, Guanjun; Ma, Yan

    2018-03-01

    By using terahertz time-domain spectroscopy (THz-TDS), the transmission spectral images of a series of aliphatic monohydric liquid alcohols were investigated in this work. The image gray value indicated the non-uniform distribution of the liquid. After noise reduction, the depth distribution was computed from the image content, which depended on the wettability of the container surface by the liquid. Then the volume of the liquid crept up to the container surface was compared quantitatively. Our result showed that the surface wettability of the PS container surface by the liquids increased with the alcohol alkyl chain increasing, which was verified by the contact angle of the liquid and the surface. The study indicated that the THz image might offer a potential technique for detecting the wettability of liquid directly without an additional contact angle experiment.

  3. Effect of Extreme Wettability on Platelet Adhesion on Metallic Implants: From Superhydrophilicity to Superhydrophobicity.

    Science.gov (United States)

    Moradi, Sona; Hadjesfandiari, Narges; Toosi, Salma Fallah; Kizhakkedathu, Jayachandran N; Hatzikiriakos, Savvas G

    2016-07-13

    In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.

  4. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    Science.gov (United States)

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting

  5. Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands

    Directory of Open Access Journals (Sweden)

    Dae Hyun Kim

    2015-05-01

    Full Text Available This study presents experimental results on evaporation and drainage in both wettable and water-repellent sands whose surface wettability was artificially modified by silanization. The 2D optical and 3D X-ray computed tomographic imaging was performed during evaporation and the water retention during cyclic drainage and infiltration was measured to assess effects of wettability and initial wetting conditions. The evaporation gradually induces its front at the early stage advance regardless of the wettability and sand types, while its rate becomes higher in water-repellent Ottawa sand than the wettable one. Jumunjin sand which has a smaller particle size and irregular particle shape than Ottawa sand exhibits a similar evaporation rate independent of wettability. Water-repellent sand can facilitate the evaporation when both wettable and water-repellent sands are naturally in contact with each other. The 3D X-ray imaging reveals that the hydraulically connected water films in wettable sands facilitate the propagation of the evaporation front into the soil such that the drying front deeply advances into the soil. For cyclic drainage-infiltration testing, the evolution of water retention is similar in both wettable and water-repellent sands when both are initially wet. However, when conditions are initially dry, water-repellent sands exhibit low residual saturation values. The experimental observations made from this study propose that the surface wettability may not be a sole factor while the degree of water-repellency, type of sands, and initial wetting condition are predominant when assessing evaporation and drainage behaviors.

  6. Effects of the shape properties of talc and quartz particles on the wettability based separation processes

    International Nuclear Information System (INIS)

    Hicyilmaz, C.; Ulusoy, U.; Yekeler, M.

    2004-01-01

    Shape properties of talc and quartz particles ground by a laboratory size ball, rod, and autogenous mills were studied using scanning electron microscope (SEM). More than 100 particles were measured to do the shape analysis of each mill product. The wettability behavior of (γ c ) a highly hydrophobic of talc mineral was determined by contact angle measurements and micro-flotation tests using a contact angle goniometer and EMDEE MicroFLOT test tube, respectively. On the other hand, wettability (γ c ) of quartz, which is a highly hydrophilic mineral, was determined by the micro-flotation method only. The results showed that the particles ground by rod mill gave higher flatness and elongation ratio, which meant higher hydrophobicity with lower γ c values in the separations by flotation method

  7. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    International Nuclear Information System (INIS)

    Liu Chaozong; Cui Naiyi; Osbeck, Susan; Liang He

    2012-01-01

    Highlights: ► PMMA micro-beads were processed using a rotary air plasma reactor. ► Surface chemistry and surface texture of PMMA micro-beads were characterised. ► Surface wettability was evaluated using “floating” water contact angle method. ► Surface oxidation and texture changes induced by air plasma attributed to the improvement of surface wettability. - Abstract: This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  8. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  9. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    International Nuclear Information System (INIS)

    Song Wei; Gu Aijuan; Liang Guozheng; Yuan Li

    2011-01-01

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  10. Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity

    International Nuclear Information System (INIS)

    Bayat, A.; Ebrahimi, M.; Nourmohammadi, A.; Moshfegh, A.Z.

    2015-01-01

    Highlights: • Thin layer of Teflon was deposited on ZnO nanorods using RF sputtering technique. • Water contact angle was measured from 3° for ZnO to 160° for the PTFE/ZnO. • Very low contact angle hysteresis of ∼2° and sliding angle of ∼1° was measured. • Excellent stability under UV illumination was observed for the PTFE/ZnO sample. • We have proposed a model to describe wettability property supporting our data. - Abstract: In this research, initially anodization process was used to fabricate ZnO nanorods on Zn substrate and then RF sputtering technique was applied to grow a thin layer of polytetrafluoroethylene (PTFE, Teflon) on the coated ZnO nanorods for producing a superhydrophobic surface. According to scanning electron microscopy (SEM) observations, ZnO nanorods were formed with average diameter and length of about ∼180 nm and 14 μm, respectively. Superhydrophilic property of ZnO nanorods and superhydrophobic property of PTFE/ZnO nanorods was investigated by water contact angle (WCA) measurements. It was found that the contact angle varied with the PTFE deposition time. The highest contact angle measurement was obtained at 160° for the PTFE (60 min coating)/ZnO as optimum sample which indicates its superhydrophobic property. X-ray photoelectron spectroscopy (XPS) determined surface chemical composition and F/C ratio of about 1.27 for this sample. A change of water contact angle from 3° to 160° indicates transition from superhydrophilic to superhydrophobic state. Very low contact angle hysteresis (CAH) of ∼2° and sliding angle (SA) of ∼1° as well as unchanged contact angle under UV illumination was observed for the synthesized optimum PTFE/ZnO sample exhibits an excellent superhydrophobic property. Based on our data analysis, the ZnO nanorods and the PTFE/ZnO nanorods obey Wenzel and Cassie–Baxter model, respectively

  11. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    Science.gov (United States)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  12. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    Science.gov (United States)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  13. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  14. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  15. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst

    2015-01-01

    and adhesion behaviour tests. Comparative studies with a surfactant, protein, purified enzyme, enzyme stabiliser using n-decane (as a model for the oil) have also been carried out in order to verify experimental results. The enzymes that have the highest effect on the wettability have been identified. Those...... action has been found to be replacement of oil at the solid surface by the enzyme. Other mechanisms (modification of the surface tension or catalytic modification of hydrocarbons resulting in reducing the oil viscosity) have shown to be much less pronounced from the measurements reported here....

  16. Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation.

    Science.gov (United States)

    Sobac, B; Brutin, D

    2011-12-20

    In this article, we investigate the influence of the surface properties of substrates on the evaporation process. Using various nanocoatings, it is possible to modify the surface properties of substrates, such as the roughness and the surface energy, while maintaining constant thermal properties. Experiments are conducted under atmospheric conditions with five fluids (methanol, ethanol, propanol, toluene and water) and four coatings (PFC, PTFE, SiOC, and SiO(x)). The various combinations of these fluids and coatings allow for a wide range of drop evaporation properties to be studied: the dynamics of the triple line, the volatility of fluids, and a large range of wettabilities (from 17 to 135°). The experimental data are in very good quantitative agreement with existing models of quasi-steady, diffusion-driven evaporation. The experimental results show that the dynamics of the evaporative rate are proportional to the dynamics of the wetting radius. Thus, the models succeed in describing the evaporative dynamics throughout the evaporation process regardless of the behavior of the triple line. Moreover, the use of various liquids reveals the validity of the models regardless of their volatility. The results also confirm the recent finding of a universal relation for the time evolution of the drop mass, independent of the drop size and initial contact angle. Finally, this study highlights the separate and coupled roles of the triple line and the wettability on the sessile drop evaporation process. Data reveal that the more wet and pinned a drop, the shorter the evaporation time. © 2011 American Chemical Society

  17. Laser surface modification of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de Espana 2, 36920 Marin (Spain); Soto, R.; Comesana, R.; Boutinguiza, M.; Val, J. del; Quintero, F.; Lusquinos, F.; Pou, J. [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Role of laser irradiation wavelength on the surface modification of PEEK (polyether-ether-ketone) was investigated. Black-Right-Pointing-Pointer Adequate processing conditions to improve wettability, roughness, and cell adhesion characteristics are determined. Black-Right-Pointing-Pointer A design of experiments (DOE) methodology was performed. Black-Right-Pointing-Pointer UV (355 nm) radiation is the most promising laser radiation for improving the adhesive surface properties of PEEK. - Abstract: Polyether-ether-ketone (PEEK) is a synthetic thermoplastic polymer with excellent mechanical and chemical properties, which make it attractive for the field of reconstructive surgery. Nevertheless, this material has a poor interfacial biocompatibility due to its large chemical stability which induces poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by laser treatments have been explored in the past. This paper presents a systematic approach to discern the role of laser irradiation wavelength on the surface modification of PEEK under three laser wavelengths ({lambda} = 1064, 532, and 355 nm) with the aim to determine the most adequate processing conditions to increase the roughness and wettability, the main parameters affecting cell adhesion characteristics of implants. Overall results show that the ultraviolet ({lambda} = 355 nm) laser radiation is the most suitable one to enhance surface wettability of PEEK.

  18. Bioinspired Functional Surfaces for Technological Applications

    Science.gov (United States)

    Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata

    2016-08-01

    Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.

  19. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  20. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu, E-mail: ren.y@ntu.edu.cn [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textile and Clothing Engineering, Soochow University, Jiangsu 215021 (China); Kuangda Fibre Technology Co., Ltd., Jiangsu 213161 (China); Ding, Zhirong [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Wang, Chunxia [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Zang, Chuanfeng; Zhang, Yin; Xu, Lin [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China)

    2017-02-28

    Highlights: • The DBD plasma and chitosan combined treatment were performed on UHMWPE fibers. • The SEM and XPS analysis confirmed that chitosan was adsorbed on the UHMWPE fiber surfaces after the combined treatment. • The IFSS between the UHMWPE fiber and the epoxy resin reached 2.25 MPa with 100 s plasma pretreatment. • The dyeability of the UHMWPE fibers after the combined treatment was significantly improved. - Abstract: The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  1. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  2. Wettability modification of porous PET by atmospheric femtosecond PLD

    Science.gov (United States)

    Assaf, Youssef; Forstmann, Guillaume; Kietzig, Anne-Marie

    2018-04-01

    In this study, porous structures were created on poly(ethylene terephthalate) (PET) by femtosecond (fs) laser micromachining. While such structures offer a texture that is desirable for several applications, their wettability does not always match the application in question. The aim of this investigation is to tune the wettability of such surfaces by incorporating a controlled amount of nanoparticles into the structure. The machined PET samples were thus used as substrates for fs pulsed laser deposition (PLD) of titanium under ambient conditions. The nanoparticles were deposited as nanochain clusters due to the formation of an oxide layer between individual nanoparticles. The stability of nanoparticle incorporation was tested by placing the samples in an ultrasonic ethanol bath. Results indicated that nanoparticles were still successfully incorporated into the microstructure after sonication. Nanoparticle surface coverage was observed to be controllable through the operating fluence. The dynamic contact angles of the resulting composite surface were observed to decrease with increasing titanium incorporation. Therefore, this work highlights atmospheric fs PLD as a method for wettability modification of high surface area microstructures without undermining their topology. In addition, this technique uses almost the same equipment as the machining process by which the microstructures are initially created, further highlighting its practicality.

  3. Improvement of wettability and absorbancy of textile using atmospheric pressure dielectric barrier discharge

    Science.gov (United States)

    Ghimire, Bhagirath; Subedi, Deepak Prasad; Khanal, Raju

    2017-08-01

    In this study, cotton textile samples, commonly used in making quilt covers were subjected to atmospheric pressure dielectric barrier discharge treatment to study their surface wettability and absorbancy. Samples were treated in the discharge using a rotatory mechanism and the effects of plasma treatment were examined by contact angle measurement and weight measurement. Air plasma treatment was successful in incorporating hydrophilic functional groups on the textile surface due to which wettability as well as absorbancy immediately after the treatment were highly improved. Effects of plasma treatment started to appear only after 20 cycles (9 mins) and got saturated after 24 cycles (10.8 mins) of treatment. The contact angle reduced from 137 ° (untreated sample) to a value less than 30 ° while absorbancy increased by more than two times as compared to untreated sample. Also, the aging behavior of the plasma treated samples were studied for about a week after plasma treatment. It was observed that the induced oxygen containing groups re-oriented into the bulk of the material during their storage in the environment due to which initial properties of the samples recovered gradually. Our results indicate that low temperature plasma can be successfully applied to modify the properties of textiles and textile industries could utilize this by standardization.

  4. Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Abbasi-Firouzjah, Marzieh; Shokri, Babak

    2014-01-01

    The main objective of this research is the experimental investigation of the surface properties of polymethyl methacrylate (PMMA) such as wettability and the roughness effect on Escherichia coli (gram negative) cell adhesion. Radio frequency (RF; 13.56 MHz) oxygen plasma was used to enhance the antibacterial and wettability properties of this polymer for biomedical applications, especially ophthalmology. The surface was activated by O 2 plasma to produce hydrophilic functional groups. Samples were treated with various RF powers from 10 to 80 W and different gas flow rates from 20 to 120 sccm. Optical emission spectroscopy was used to monitor the plasma process. The modified surface hydrophilicity, morphology and transparency characteristics were studied by water contact angle measurements, atomic force microscopy and UV–vis spectroscopy, respectively. Based on the contact angle measurements of three liquids, surface free energy variations were investigated. Moreover, the antibacterial properties were evaluated utilizing the method of plate counting of Escherichia coli. Also, in order to investigate stability of the plasma treatment, an ageing study was carried out by water contact angle measurements repeated in the days after the treatment. For biomedical applications, especially eye lenses, highly efficient antibacterial surfaces with appropriate hydrophilicity and transparency are of great importance. In this study, it is shown that the plasma process is a reliable and convenient method to achieve these purposes. A significant alteration in the hydrophilicity of a pristine PMMA surface was observed after treatment. Also, our results indicated that the plasma-modified PMMAs exhibit appropriate antibacterial performance. Moreover, surface hydrophilicity and surface charge have more influence on bacterial adhesion rate than surface roughness. UV–vis analysis results do not show a considerable difference for transparency of samples after plasma treatment

  5. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

    International Nuclear Information System (INIS)

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-01-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90 at.% of Cu and 10 at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu–Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10–15 nm and 25–35 nm size were present. High surface active area with a roughness of 8.9 nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. - Graphical abstract: Bactericidal and fungicidal effects of time contact with surface of Cu–Ti thin films. - Highlights: • Antimicrobial activity and cytotoxic effect (viability of L929 cell line) of metallic Cu–Ti films • Thin films were prepared by co-sputtering of Cu and Ti. • As-deposited Cu–Ti films were amorphous and homogenous. • Bactericidal and fungicidal effects even in short term-contact were observed

  6. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, Damian, E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Kaczmarek, Danuta [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Antosiak, Aleksandra [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław (Poland); Mazur, Michal [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata [Department for Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Poniatowskiego 2, 50-326 Wroclaw (Poland); Poniedzialek, Agata [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Gamian, Andrzej; Szponar, Bogumila [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław (Poland)

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90 at.% of Cu and 10 at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu–Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10–15 nm and 25–35 nm size were present. High surface active area with a roughness of 8.9 nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. - Graphical abstract: Bactericidal and fungicidal effects of time contact with surface of Cu–Ti thin films. - Highlights: • Antimicrobial activity and cytotoxic effect (viability of L929 cell line) of metallic Cu–Ti films • Thin films were prepared by co-sputtering of Cu and Ti. • As-deposited Cu–Ti films were amorphous and homogenous. • Bactericidal and fungicidal effects even in short term-contact were observed.

  7. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    Science.gov (United States)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  8. Electrokinetic mechanism of wettability alternation at oil-water-rock interface

    Science.gov (United States)

    Tian, Huanhuan; Wang, Moran

    2017-12-01

    Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.

  9. The effect of micro nano multi-scale structures on the surface wettability

    International Nuclear Information System (INIS)

    Lee, Sang Min; Jung, Im Deok; Ko, Jong Soo

    2008-01-01

    Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: square-pillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by Deep Reactive Ion Etching (DRIE) and Reactive Ion Etching (RIE) processes, respectively. And Plasma Polymerized FluoroCarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nano-protrusions was 6.37 .deg. higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle

  10. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface

    Science.gov (United States)

    Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail

    2018-06-01

    Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.

  11. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  12. Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation

    International Nuclear Information System (INIS)

    Antonijevic, Djordje; Milovanovic, Petar; Brajkovic, Denis; Ilic, Dragan; Hahn, Michael; Amling, Michael; Rakocevic, Zlatko; Djuric, Marija; Busse, Björn

    2015-01-01

    Graphical abstract: - Highlights: • Different irrigation solutions and disinfectants were used for treatment of root canal dentine and gutta-percha points. • Materials surface characteristics were assessed using quantitative backscattered electron imaging, reference point indentation, and contact angle analyzer. • The most significant differences in mineralization, indentation, and adhesive outcomes were observed after ethylenediaminetetraacetic acid treatment. • Irrigation solutions confer to superior sealing ability of endodontic filling materials. • Micromechanical characteristics of dentine after irrigation are considerable reduced. - Abstract: The objective of this study was to determine the effects of various irrigation solutions on root canal dentine and gutta-percha surface properties. In addition, the effects of disinfectant chemicals on the wettability and surface morphological properties of the filling materials were evaluated. Ethylenediaminetetraacetic acid (EDTA), citric acid, and ozone were employed as irrigation solutions for dentine and gutta-percha treatment. Thereafter, the samples’ microstructure, degree of mineralization, and mechanical properties were assessed by means of quantitative backscattered electron imaging (qBEI) and reference point indentation (RPI). A contact angle analyzer was used to measure adhesion on the tested materials. Here, EDTA had the most significant affect on both the mechanical properties and the adhesive behavior of dentine. Citric acid did not affect dentine wettability, whereas the indentation properties and the mineralization were reduced. Similar effects were observed when ozone was used. The dentinal tubules were significantly widened in citric acid compared to the ozone group. EDTA causes considerable micromechanical surface alteration of dentine and gutta-percha, but represents the best option in clinical cases where a high adhesiveness of the filling materials is desired.

  13. Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Brajkovic, Denis [Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac (Serbia); Ilic, Dragan [Department of Restorative Medicine, School of Dental Medicine, University of Belgrade, Belgrade (Serbia); Hahn, Michael; Amling, Michael [Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Lottestr. 55A, 22529 Hamburg (Germany); Rakocevic, Zlatko [Laboratory for Atomic Physics, Institute for Nuclear Science “Vinca”, University of Belgrade, Belgrade (Serbia); Djuric, Marija [Laboratory for Anthropology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Busse, Björn, E-mail: b.busse@uke.uni-hamburg.de [Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Lottestr. 55A, 22529 Hamburg (Germany)

    2015-11-15

    Graphical abstract: - Highlights: • Different irrigation solutions and disinfectants were used for treatment of root canal dentine and gutta-percha points. • Materials surface characteristics were assessed using quantitative backscattered electron imaging, reference point indentation, and contact angle analyzer. • The most significant differences in mineralization, indentation, and adhesive outcomes were observed after ethylenediaminetetraacetic acid treatment. • Irrigation solutions confer to superior sealing ability of endodontic filling materials. • Micromechanical characteristics of dentine after irrigation are considerable reduced. - Abstract: The objective of this study was to determine the effects of various irrigation solutions on root canal dentine and gutta-percha surface properties. In addition, the effects of disinfectant chemicals on the wettability and surface morphological properties of the filling materials were evaluated. Ethylenediaminetetraacetic acid (EDTA), citric acid, and ozone were employed as irrigation solutions for dentine and gutta-percha treatment. Thereafter, the samples’ microstructure, degree of mineralization, and mechanical properties were assessed by means of quantitative backscattered electron imaging (qBEI) and reference point indentation (RPI). A contact angle analyzer was used to measure adhesion on the tested materials. Here, EDTA had the most significant affect on both the mechanical properties and the adhesive behavior of dentine. Citric acid did not affect dentine wettability, whereas the indentation properties and the mineralization were reduced. Similar effects were observed when ozone was used. The dentinal tubules were significantly widened in citric acid compared to the ozone group. EDTA causes considerable micromechanical surface alteration of dentine and gutta-percha, but represents the best option in clinical cases where a high adhesiveness of the filling materials is desired.

  14. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  15. Relation between crystallinity and chemical nature of surface on wettability: A study on pulsed laser deposited TiO2 thin films

    International Nuclear Information System (INIS)

    Shirolkar, Mandar M.; Phase, Deodatta; Sathe, Vasant; Choudhary, Ram Janay; Rodriguez-Carvajal, J.; Kulkarni, Sulabha K.

    2011-01-01

    Pure titania (TiO 2 ) polycrystalline thin films in rutile, anatase and mixed phase have been grown on amorphous glass substrates by pulsed laser deposition method at various oxygen gas pressure. Wettability investigations have been carried out on these films. Consistent with our previous report [J. Phys. D: Appl. Phys. 41, 155308 (2008)] it has been observed that for nearly same surface roughness large contact angle or superhydrophobicity is present when sample has a pure single phase and lower contact angle or hydrophobicity when mixed phases were present. Structural characterizations suggest that in addition to roughness, pure phase film surface associated with hydrophobic sites and mixed phase film surface show association of both hydrophobic and hydrophilic sites, which might be inducing specific wetting character. UV treatment induces superhydrophilicity in the films. It was observed that UV irradiation causes nonequilibrium state on the TiO 2 surface, leading to changes in the electron density, which in turn produces decrement in the crystallinity and lattice expansion. Reversible changes in the wetting state on the pure phase surfaces were observed to be faster than those on the mixed phase surfaces. We tried to establish the possible relation between crystalline phases, chemical nature of surface on reversible wettability besides the main governing parameter viz. surface roughness.

  16. Change of wettability of PTFE surface by sputter etching and excimer laser. Sputter etching oyobi excimer laser ni yoru PTFE hyomen no shinsuika

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S. (Nitto Denko Corp., Osaka (Japan)); Kubo, U. (Kinki University, Osaka (Japan))

    1994-06-20

    The wettability of PTFE (polytetrafluoroethylene) surfaces was improved by sputter etching and excimer laser irradiation. In sputter etching, the PTFE surface was treated by reactive sputter etching with H2O gas to give active groups on the surface. In laser irradiation, the surface was irradiated in pure water by high-energy KrF excimer laser. As the surface wettability was evaluated with a contact angle to water, the contact angle decreased remarkably in both treatments resulting in a good improvement effect. In sputter etching, various new chemical bonds such as F-C=O, F2C-FC-O, F2C-C-O and C-O were observed because of a decrease in F and incorporation of oxygen. Such chemical bonds could be eliminated by ultraviolet ray irradiation, and the treated surface condition approached the initial condition after irradiation of 200 hours. In laser irradiation, it was suggested that C-F bonds were broken, and OH groups were added to the surface by dissociation of H2O to H and OH. 7 refs., 8 figs., 1 tab.

  17. Effective Wettability of Heterogenous Fracture Surfaces Using the Lattice-Boltzmann Method

    Science.gov (United States)

    E Santos, J.; Prodanovic, M.; Landry, C. J.

    2017-12-01

    Fracture walls in the subsurface are often structured by minerals of different composition (potentially further altered in contact with fluids during hydrocarbon extraction or CO2 sequestration), this yields in a heterogeneous wettability of the surface in contact with the fluids. The focus of our work is to study how surfaces presenting different mineralogy and roughness affect multiphase flow in fractures. Using the Shan-Chen model of the lattice-Boltzmann method (LBM) we define fluid interaction and surface attraction parameters to simulate a system of a wetting and a non-wetting fluid. In this work, we use synthetically created fractures presenting different arrangements of wetting and non-wetting patches, and with or without roughness; representative of different mineralogy, similar workflow can be applied to fractures extracted from X-ray microtomography images of fractures porous media. The results from the LBM simulations provide an insight on how the distribution of mineralogy and surface roughness are related with the observed macroscopic contact angle. We present a comparison between the published analytical models, and our results based on surface areas, spatial distribution and local fracture aperture. The understanding of the variables that affect the contact angle is useful for the comprehension of multiphase processes in naturally fractured reservoirs like primary oil production, enhanced oil recovery and CO2 sequestration. The macroscopic contact angle analytical equations for heterogeneous surfaces with variable roughness are no longer valid in highly heterogeneous systems; we quantify the difference thus offering an alternative to analytical models.

  18. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    Science.gov (United States)

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-10-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.

  19. Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Yanru; Wei Zhiyang; Zhang Junyan

    2013-01-01

    Highlights: ► Oxygen vacancy is the key factor in accounting for the change in morphology of the ZnO nanorod arrays. ► We firstly investigated the wettability alteration of ZnO nanorod arrays annealed in vacuum at different temperature. ► The hydrophilicity of the ZnO nanorod arrays annealed in air is not related to the oxygen vacancy but ascribed to the O adatom on the nanorod surface. - Abstract: The ZnO nanorod arrays were synthesized via a simple hydrothermal process followed by annealing in vacuum and air respectively at different temperature. The wettability of samples was controlled by adjusting the annealing atmosphere and temperature. To investigate the mechanism of wettability alteration, the chemical composition and surface morphology of nanorod arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM), respectively. Increasing oxygen vacancy concentration by increasing annealing temperature in vacuum resulted in a great change of surface morphology, which played the major role in wettability change. Under annealing in air, oxygen vacancy concentration reduced and the surface morphology of nanorod arrays showed little change with increasing annealing temperature. The wettability alteration is ascribed to the O adatom on the nanorods surface.

  20. Control of Surface Wettability Using Tripodal Light-Activated Molecular Motors

    NARCIS (Netherlands)

    Chen, Kuang-Yen; Ivashenko, Oleksii; Carroll, Gregory T.; Robertus, Jort; Kistemaker, Jos C. M.; London, Gabor; Browne, Wesley R.; Rudolf, Petra; Feringa, Ben L.

    2014-01-01

    Monolayers of fluorinated light-driven molecular motors were synthesized and immobilized on gold films in an altitudinal orientation via tripodal stators. In this design the fimctionalized molecular motors are not interfering and preserve their rotary function on gold. The wettability of the

  1. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.

    Science.gov (United States)

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Sotoodeh, Shahnaz

    2017-11-01

    Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The wettability modification of bio-grade stainless steel in contact with simulated physiological liquids by the means of laser irradiation

    International Nuclear Information System (INIS)

    Hao, L.; Lawrence, J.; Li, L.

    2005-01-01

    Early surface events that occur rapidly upon implantation of a biomaterial into biological fluids determine the subsequent response. These involve wetting by physiological liquids followed by adsorption of proteins and cells to the biomaterials surface. A CO 2 laser and high power diode laser (HPDL) were used to modify the surface properties of the material and thus manipulate the wettability of the material and its interaction with physiological liquids. The contact angles, θ, of selected test liquids including simulated physiological liquids shows that the wettability of the stainless steel improved after CO 2 and HPDL treatment. The determined adhesion work of stainless steel towards stimulated physiological fluid enhanced after laser treatment, implying better interaction with the biological liquids. It is demonstrated that the laser could be a novel and controllable technique for enhancing the biocompatibility of bio-grade stainless steel

  3. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  4. Self-assembly of fatty acids on hydroxylated Al surface and effects of their stability on wettability and nanoscale organization.

    Science.gov (United States)

    Liascukiene, Irma; Steffenhagen, Marie; Asadauskas, Svajus J; Lambert, Jean-François; Landoulsi, Jessem

    2014-05-27

    The self-assembly of fatty acids (FA) on the surfaces of inorganic materials is a relevant way to control their wetting properties. While the mechanism of adsorption on model flat substrate is well described in the literature, interfacial processes remain poorly documented on nanostructured surfaces. In this study, we report the self-assembly of a variety of FA on a hydroxylated Al surface which exhibits a random nanoscale organization. Our results revealed a peculiar fingerprint due to the FA self-assembly which consists in the formation of aligned nanopatterns in a state of hierarchical nanostructuration, regardless of the molecular structure of the FA (chain length, level of unsaturation). After a significant removal of adsorbed FA using UV/O3 treatment, a complete wetting was reached, and a noticeable disturbance of the surface morphology was observed, evidencing the pivotal role of FA molecules to maintain these nanostructures. The origin of wetting properties was investigated prior to and after conditioning of FA-modified samples taking into account key parameters, namely the surface roughness and its composition. For this purpose, the Wenzel roughness, defined as the third moment of power spectral density, was used, as it is sensitive to high spatial frequency and thus to the obtained hierarchical level of nanostructuration. Our results revealed that no correlation can be made between water contact angles (θ(w)) and the Wenzel roughness. By contrast, θ(w) strongly increased with the amount of -CHx- groups exhibited by adsorbed FA. These findings suggest that the main origin of hydrophobization is the presence of self-assembled molecules and that the surface roughness has only a small contribution to the wettability.

  5. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    Science.gov (United States)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  6. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  7. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    Science.gov (United States)

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  8. A study on the effects of heated surface wettability on nucleation characteristics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio

    2014-01-01

    Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)

  9. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    Science.gov (United States)

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  10. Influence of biochar and terra preta substrates on wettability and erodibility of soils

    Science.gov (United States)

    Smetanova, A.; Dotterweich, M.; Diehl, D.; Ulrich, U.; Fohrer, N.

    2012-04-01

    Biochar (BC) and terra preta substrates (TPS) have recently been promoted as soil amendments suitable for soil stabilization, soil amelioration and long-term carbon sequestration. BC is a carbon-enriched substance produced by thermal decomposition of organic material. TPS is composed of liquid and solid organic matter, including BC, altered by acid-lactic fermentation. Their effect on wettability, soil erodibility and nutrient discharge through overland flow was studied by laboratory experiments. At water contents between 0 and 100% BC is water repellent, while TPS changes from a wettable into a repellent state. The 5 and 10 vol % mixtures of BC and 10 and 20 vol% mixtures of TPS with sand remain mainly wettable during drying but repellency maxima are shifted to higher water contents with respect to pure sand and are mainly of subcritical nature. The runoff response was dominated by infiltration properties of the substrates rather than their wettability.Only one mixtures (20% TPS) produced more runoff than sandy-loamy soil on a 15% slope at an intensity of 25 mm•h-1. The 10% BC decreased runoff by up to 40%. At higher rainfall intensities (45 and 55 mm•h-1) the 10% TPS7 was up to 35% less erodible than 10% BC. Despite the TPS containing more nutrients, nutrient discharge varied between types of nutrients, slopes, rainfall intensities and mixtures. The application of a 1 cm layer onto the soil surface instead of 10% mixtures is not recommended due to high nutrient concentrations in the runoff and the wettability of pure substrates. The usage of 10% BC in lowland areas with low frequency and low-intensity precipitation and 10% TPS7 in areas with higher rainfall intensities appears to be appropriate and commendable according to current results. However, together with reversibility of repellency, it needs to undergo further examination in the field under different environmental and land use conditions Key words: biochar, terra preta substrate, wettability

  11. Wettability of natural superhydrophobic surfaces.

    Science.gov (United States)

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Diagenetic and compositional controls of wettability in siliceous sedimentary rocks, Monterey Formation, California

    Science.gov (United States)

    Hill, Kristina M.

    Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster

  13. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    Science.gov (United States)

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  14. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  16. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  17. THE INFLUENCE OF SURFACE-MORPHOLOGY AND WETTABILITY ON THE INFLAMMATORY RESPONSE AGAINST POLY(L-LACTIC ACID) - A SEMIQUANTITATIVE STUDY WITH MONOCLONAL-ANTIBODIES

    NARCIS (Netherlands)

    LAM, KH; SCHAKENRAAD, JM; GROEN, H; ESSELBRUGGE, H; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    In this study, the influence of surface morphology and wettability of both degradable and nondegradable polymer films on the inflammatory response after subcutaneous implantation in the rat was investigated. Degradable nonporous, porous, and ''combi'' (porous with a nonporous layer on one side)

  18. Improved Oil Recovery in Chalk. Spontaneous Imbibition affected by Wettability, Rock Framework and Interfacial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Milter, J.

    1996-12-31

    The author of this doctoral thesis aims to improve the oil recovery from fractured chalk reservoirs, i.e., maximize the area of swept zones and their displacement efficiencies. In order to identify an improved oil recovery method in chalk, it is necessary to study wettability of calcium carbonate and spontaneous imbibition potential. The thesis contains an investigation of thin films and wettability of single calcite surfaces. The results of thin film experiments are used to evaluate spontaneous imbibition experiments in different chalk types. The chalk types were described detailed enough to permit considering the influence of texture, pore size and pore throat size distributions, pore geometry, and surface roughness on wettability and spontaneous imbibition. Finally, impacts of interfacial tension by adding anionic and cationic surfactants to the imbibing water phase are studied at different wettabilities of a well known chalk material. 232 refs., 97 figs., 13 tabs.

  19. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Directory of Open Access Journals (Sweden)

    Yuqi Teng

    2015-04-01

    Full Text Available A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene (P3HT and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA of 144.7° could be transferred into a hydrophilic surface with CA of 25° by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

  20. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  1. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  2. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  3. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  4. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response

    Science.gov (United States)

    Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping

    2018-05-01

    To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.

  5. Wettability control by DLC coated nanowire topography

    Science.gov (United States)

    Li, Zihui; Meng, Fanhao; Liu, Xuanyong

    2011-04-01

    Here we have developed a convenient method to fabricate wettability controllable surfaces that can be applied to various nanostructured surfaces with complex shapes for different industrial needs. Diamond-like carbon (DLC) films were synthesized on titanium substrate with a nanowire structured surface using plasma immersion ion implantation and deposition (PIII&D). The nanostructure of the DLC films was characterized by field emission scanning electron microscopy and found to grow in a rippling layer-by-layer manner. Raman spectroscopy was used to investigate the different bonding presented in the DLC films. To determine the wettability of the samples, water contact angles were measured and found to vary in the range of 50°-141°. The results indicated that it was critical to construct a proper surface topography for high hydrophobicity, while suitable ID/IG and sp2/sp3 ratios of the DLC films had a minor contribution. Superhydrophobicity could be achieved by further CF4 implantation on suitably structured DLC films and was attributed to the existence of fluorine. In order to maintain the nanostructure during CF4 implantation, it was favorable to pre-deposit an appropriate carbon content on the nanostructure, as a nanostructure with low carbon content would be deformed during CF4 implantation due to local accumulation of surface charge and the following discharge resulting from the low conductivity.

  6. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    Science.gov (United States)

    Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures. PMID:26892169

  7. An investigation of selected factors that influence hardwood wettability

    Science.gov (United States)

    Todd F. Shupe; Chung-Yun Hse; Wan H. Wang

    2001-01-01

    Wettability of sanded and non-sanded transverse and tangential sections of 22 southern hardwoods species was judged by measurement of contact angles using phenol formaldehyde resins. As expected, contact angle values on transverse sections were higher than those on tangential sections for both sanded and non-sanded surfaces. On sanded surfaces, hackberry had the...

  8. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  9. Dip-in Indicators for Visual Differentiation of Fuel Mixtures Based on Wettability of Fluoroalkylchlorosilane-Coated Inverse Opal Films.

    Science.gov (United States)

    Sedighi, Abootaleb; Qiu, Shuang; Wong, Michael C K; Li, Paul C H

    2015-12-30

    We have developed the dip-in indicator based on the inverse opal film (IOF) for visual differentiation of organic liquid mixtures, such as oil/gasoline or ethanol/gasoline fuel mixtures. The IOF consists of a three-dimensional porous structure with a highly ordered periodic arrangement of nanopores. The specularly reflected light at the interface of the nanopores and silica walls contributes to the structural color of the IOF film. This color disappears when the nanopores are infiltrated by a liquid with a similar refractive index to silica. The disappearance of the structural color provides a means to differentiate various liquid fuel mixtures based on their wettability of the nanopores in the IOF-based indicators. For differentiation of various liquid mixtures, we tune the wettability threshold of the indicator in such a way that it is wetted (color disappears) by one liquid but is not wetted by the other (color remains). Although colorimetric differentiation of liquids based on IOF wettability has been reported, differentiation of highly similar liquid mixtures require complicated readout approaches. It is known that the IOF wettability is controlled by multiple surface properties (e.g., oleophobicity) and structural properties (e.g., neck angle and film thickness) of the nanostructure. Therefore, we aim to exploit the combined tuning of these properties for differentiation of fuel mixtures with close compositions. In this study, we have demonstrated that, for the first time, the IOF-based dip-in indicator is able to detect a slight difference in the fuel mixture composition (i.e., 0.4% of oil content). Moreover, the color/no-color differentiation platform is simple, powerful, and easy-to-read. This platform makes the dip-in indicator a promising tool for authentication and determination of fuel composition at the point-of-purchase or point-of-use.

  10. Influence of composite processing on the properties of CNT grown on carbon surfaces

    Science.gov (United States)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2018-01-01

    Carbon nanotubes (CNT) grafted on carbon fibres (CF) are the subject of more and more studies on the reinforcement of composite materials thanks to the CNT' mechanical properties. This study concerns the growth of CNT directly on CF by the flame method, which is an assembly-line process. However the industrial-scale use of this method and of the composite processing leads to stresses on the CNT-grafted fabrics, such as friction and pulling-out. The aim of this study is to determine the behaviour of the CNT under these kinds of stresses and to study theirs consequences in composite processing. For this purpose, adhesion tests and friction tests were performed as well as analysis of the surface by Scanning Electron Microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). In friction tests, CNT formed a transfer film, and its effect on the wettability of the fabric with epoxy resin is determined. Finally, the wear of the CNT does not influence the wettability of the fabric. Furthermore, it is proven that the nature of the catalyst needed to grow the CNT modifies the behaviour of the surface.

  11. Molecular dynamics simulation of continuous nanoflow transport through the uneven wettability channel

    Science.gov (United States)

    Zhang, Kai; Wang, Feng-hui; Lu, Yong-jun

    2018-01-01

    It is necessary to understand and predict the behavior of continuous nanoflow, especially inside the nanochannel with uneven wettability. Because the properties of fluid confined in the nanochannel are different from the macroscopic fluid, molecular level understanding is critical for future applications. In this work, a series of molecular dynamics simulations were executed to investigate the effect of the wettability gradient on the continuous nanofluid. In the simulations, different osmotic pressures were applied to make the water transport through different nanochannels. Simulation data was analyzed to obtain water flow rate, shear viscosity, capillary force, density distributions along the height directions of channel and apparent friction factor. Results show that the uneven wettability has a significant effect on the transportation of confined water only under the proper applied osmotic pressure and the height of channel. Under the appropriate conditions, the uneven wettability has a promotion on the transportation of water when it is at the exit of channel. When the uneven wettability locates in the entrance and middle of the channel, the uneven wettability will hinder the transportation of water. Especially, it is worth mentioning that there is a special phenomenon when the height of the nanochannel becomes 0.8 nm. Depending on the applied osmotic pressure, the uneven wettability has a double-sided effect on the confined fluid inside the channel with H = 0.8 nm. Our work may contribute to the design of nanochannels.

  12. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques

  13. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability.

    Science.gov (United States)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The influence of surface morphology and wettability on the inflammatory response against poly(L-lactic acid): A semi-quantitative study with monoclonal antibodies

    NARCIS (Netherlands)

    Lam, K.H.; Schakenraad, J.M.; Esselbrugge, H.; Groen, H.; Dijkstra, Pieter J.; Esselbrugge, H.; Feijen, Jan; Nieuwenhuis, P.

    1995-01-01

    In this study, the influence of surface morphology and wettability of both degradable and nondegradable polymer films on the inflammatory response after subcutaneous implantation in the rat was investigated. Degradable nonporous, porous, and combi (porous with a nonporous layer on one side)

  15. Wettability, soil organic matter and structure-properties of typical chernozems under the forest and under the arable land

    Science.gov (United States)

    Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2017-04-01

    Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water

  16. Use of modern methods of fibre surface modification to obtain the multifunctional properties of textile materials

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2003-01-01

    Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.

  17. Tuning and predicting the wetting of nanoengineered material surface

    Science.gov (United States)

    Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.

    2016-02-01

    The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the

  18. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    Science.gov (United States)

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  20. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil

  1. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride.

    Science.gov (United States)

    Knapp, Marius; Hoffmann, René; Cimalla, Volker; Ambacher, Oliver

    2017-08-18

    The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects . We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO₂). Investigations on AlN substrates reveal highly different surface properties compared to SiO₂ regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm²) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices.

  2. Superhydrophobic properties induced by sol-gel routes on copper surfaces

    Science.gov (United States)

    Raimondo, M.; Veronesi, F.; Boveri, G.; Guarini, G.; Motta, A.; Zanoni, R.

    2017-11-01

    Superhydrophobic surfaces are attracting increasing attention in different fields such as energy, transportation, building industry and electronics, as they exhibit many interesting properties such as high water repellence, anti-fogging, anti-corrosion, anti-fouling and self-cleaning abilities. Here, superhydrophobic nanostructured hybrid materials obtained by depositing alumina nanoparticles on copper surfaces via dip coating in Al2O3 sol are presented. Two different preparation routes were explored, based on either an alcoholic or an aqueous Al2O3 sol, and the resulting wetting properties were compared. Wettability measurements showed that when the alcoholic sol is used superhydrophobicity is attained, with values of water contact angle very close to the upper limit of 180°, while highly hydrophobic coatings are obtained with the aqueous sol. These findings were further supported by electron microscopy and X-ray photoelectron spectroscopy, which revealed that the surface layer deposited on Cu is more homogenous and richer in alumina nanoparticles when the alcoholic sol was used. Durability of the superhydrophobic coating was assessed by performing ageing tests in chemically aggressive environments. A remarkable resistance is displayed by the superhydrophobic coating in acid environment, while alkaline conditions severely affect its properties. Such behaviors were investigated by XPS and FE-SEM measurements, which disclosed the nature of the surface reactions under the different conditions tested. The present results underline that a thorough investigation of surface morphology, chemical composition and wetting properties reveals their strongly connection and helps optimizing the combination of substrate nanostructuring and suitable chemical coating for an improved durability in different aggressive environments.

  3. Wettability and Impact Performance of Wood Veneer/Polyester Composites

    Directory of Open Access Journals (Sweden)

    Shayesteh Haghdan

    2015-07-01

    Full Text Available Fiber-reinforced thermosetting composites have been of interest since the 1940s due to their ease of use in processing, fast curing times, and high specific stiffness and strength. While the use of plant fibers in a polyester matrix has been thoroughly studied, only limited information is available regarding using wood as reinforcement. In this study, composites of thin wood veneer and a polyester matrix were made and the difficulties in the lamination and curing processes were investigated. Sheets of Douglas fir, maple, and oak veneers using a catalyzed polyester resin were assembled as unidirectional, balanced, and unbalanced cross-ply laminates. These were compared to control specimens using glass fiber as reinforcement. The impact properties of the samples, with respect to the laminate thicknesses, were characterized using a drop-weight impact tester. The wettability and surface roughness of unsanded and sanded wood veneers were also investigated. Results showed that Douglas fir cross-ply laminates had an impact energy equivalent to glass fiber laminates, making them an interesting alternative to synthetic fiber composites. Wood/polyester laminates absorbed a considerable amount of energy through a higher number of fracture modes. The balanced lay-up limited twisting of the wood/polyester composites. The lowest contact angle and highest wettability were observed in unsanded Douglas fir veneers.

  4. Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network

    Science.gov (United States)

    Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser

    2018-02-01

    The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.

  5. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir

    2016-01-01

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  6. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  7. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-

    DEFF Research Database (Denmark)

    Generosi, Johanna; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules...... bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2...... with calcite even after rinsing with CaCO3-saturated deionized water, suggesting sorption on or in calcite. When the calcite-saturated solution of MgSO4 was replaced by calcite-saturated NaCl at the same ionic strength, adhesion force increased again, indicating that the effect is reversible and suggesting Mg...

  8. Tuning of wettability of PANI-GNP composites using keV energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, G.B.V.S., E-mail: lakshmigbvs@gmail.com [Inter University Accelerator Centre, New Delhi 67 (India); Avasthi, D.K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Polyaniline nanofiber composites with various nanomaterials have several applications in electrochemical biosensors. The surface properties of these composites coated electrodes play crucial role in enzyme absorption and analyte detection process. In the present study, Polyaniline-Graphene nanopowder (PANI-GNP) composites were prepared by rapid-mixing polymerization method. The films were prepared on ITO coated glass substrates and irradiated with 42 keV He{sup +} ions produced by indigenously fabricated accelerator at IUAC, New Delhi. The films were characterized before and after irradiation by SEM, Raman spectroscopy and contact angle measurements. The as-prepared films show superhydrophilic nature and after irradiation the films show highly hydrophobic nature with water contact angle (135°). The surface morphology was studied by SEM and structural changes were studied by Raman spectra. The surface morphological modifications induced by keV energy ions helps in tuning the wettability at different ion fluences.

  9. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    Science.gov (United States)

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  11. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  12. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modifying surface properties of diamond-like carbon films via nanotexturing

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Portal-Marco, S; Rubio-Roy, M; Bertran, E; Andujar, J L [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain); Oncins, G [Serveis CientIfico-Tecnics, Universitat de Barcelona, c/ Marti i Franques s/n, 08028 Barcelona (Spain); Vallve, M A; Ignes-Mullol, J, E-mail: corberoc@hotmail.com [SOC and SAM Group, IN2UB, Departament de Quimica Fisica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain)

    2011-10-05

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres ({approx}300 nm) on monocrystalline silicon ({approx}5 cm{sup 2}) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  14. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    DEFF Research Database (Denmark)

    Sun, Ling; Laustsen, Milan; Mandsberg, Nikolaj

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano-and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll......-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic...

  15. Improving the wettability of aluminum on carbon nanotubes

    International Nuclear Information System (INIS)

    So, Kang Pyo; Lee, Il Ha; Duong, Dinh Loc; Kim, Tae Hyung; Lim, Seong Chu; An, Kay Hyeok; Lee, Young Hee

    2011-01-01

    Research highlights: → The wettability of CNT in Al metal was improved by electroplating method. → This involves two steps: (i) Al electroplating and (ii) additional Al wetting. → The large surface tension difference was overcome by forming Al-C covalent bonds. → Al-C covalent bond was verified by Raman spectroscopy and XPS. → Density functional calculations confirmed structural model of CNT-vacancy-O-Al. - Abstract: The wetting of a metal on carbon nanotubes is fundamentally difficult due to the unusually large difference between their surface tensions and is a bottleneck for making metal-carbon nanotube (CNT) composites. Here, we report a simple method to enhance the wettability of metal particles on the CNT surface by applying aluminum, which is the material with the largest surface tension. This method involves two steps: (i) Al nanoparticles are decorated on multiwalled carbon nanotubes by electroplating and (ii) Al powder is further spread on Al-electroplated CNTs, followed by high-temperature annealing to accommodate complete wetting of the aluminum. The large surface tension difference is overcome by forming strong Al-C covalent bonds initiated by defects of the CNTs. The decrease in the D-band intensity, the G-band shift in the Raman spectroscopy and the formation of Al-C covalent bonds, as confirmed by X-ray photoelectron spectroscopy, were in agreement with our structural model of CNT-vacancy-O-Al determined by density functional calculations.

  16. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  17. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  18. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  19. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    Science.gov (United States)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  20. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  1. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  2. The dynamics of liquid drops and their interaction with solids of varying wettabilities

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    Microdrop impact and spreading phenomena are explored as an interface formation process using a recently developed computational framework. The accuracy of the results obtained from this framework for the simulation of high deformation free-surface flows is confirmed by a comparison with previous numerical studies for the large amplitude oscillations of free liquid drops. Our code\\'s ability to produce high resolution benchmark calculations for dynamic wetting flows is then demonstrated by simulating microdrop impact and spreading on surfaces of greatly differing wettability. The simulations allow one to see features of the process which go beyond the resolution available to experimental analysis. Strong interfacial effects which are observed at the microfluidic scale are then harnessed by designing surfaces of varying wettability that allow new methods of flow control to be developed. © 2012 American Institute of Physics.

  3. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics

    Science.gov (United States)

    Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue

    2017-12-01

    Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.

  4. Assessing the wettability of unconsolidated porous media using low-field nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Manalo, Florence Pabalan

    2002-01-01

    Methods such as the molarity of ethanol droplet (MED) test and water drop penetration test (WDPT) are commonly used to measure soil wettability because these tests are quick and easy to perform. However, they are not without limitations. This thesis proposes using a low-field NMR relaxometer as an alternative method of assessing soil wettability. This instrument is able to discriminate surface bound fluid from bulk fluid Fluid bound to the surface relaxes quickly and produces signal amplitude peaks at low transverse relaxation time (T 2 ) values. Bulk fluid , on the other hand, relaxes much more slowly and signal amplitude peaks consequently appear at higher T 2 values. An extensive experimental program was designed to test the above hypothesis. Hundreds of NMR measurements were performed on clays, humic acids, fulvic acids, clean sands, sands coated with organic matter, wettable soils and water-repellent soils exposed to distilled water and kerosene. The results confirm the hypothesis and show clearly that NMR does detect preferentially water-wet and water-repellent samples. The differences in the solid-fluid interactions between water and unconsolidated porous media with varying wetting preferences also allow for the use of low-field NMR to detect wettability alteration and to monitor fluid uptake in unconsolidated porous media. The advantages of using this tool include obtaining reproducible results quickly, using only small amounts of sample for analysis, and calculating the mass of water without performing a mass balance calculation. (author)

  5. Transport and retention of strontium in surface-modified quartz sand with different wettability

    International Nuclear Information System (INIS)

    Yifei Li; Shuaihui Tian; Tianwei Qian

    2011-01-01

    Instead of radioactive 90 Sr, common strontium chloride was used to simulate the migration of radioactive strontium chloride in surface hydroxylated, silanized, and common quartz sand. The sorption and retardation characteristics of strontium (Sr 2+ ) in these surface modified quartz sands were studied by batch tests and column experiments. The equilibrium sorption data for Sr 2+ on different wettability sands were described by the Langmuir and Freundlich isotherm models, and the Langmuir model has been found to provide better correlation for hydrophilic sand. The breakthrough curves (BTCs) of Sr 2+ in these media were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region mobile-immobile model (TRM) using a nonlinear least square curve-fitting program CXTFIT. The TRM model showed better fit to the measured BTCs of Sr 2+ , and the parameters of the fraction of mobile water indicated that significant preferential flow effected the non-equilibrium transport of Sr 2+ . Although TRM model could not fit the Sr 2+ BTCs very well, the parameter estimated by TRM model may be more reliable than those obtained from batch experiments because the transport of Sr 2+ in these kind of sand is non-equilibrium processes. (author)

  6. Wettability changes in polyether impression materials subjected to immersion disinfection.

    Science.gov (United States)

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-07-01

    Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P polyether material. Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  7. Laser surface texturing of polymers for biomedical applications

    Science.gov (United States)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  8. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  9. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  10. A multifunctional polymeric nanofilm with robust chemical performances for special wettability

    Science.gov (United States)

    Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong

    2016-02-01

    A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has

  11. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes

    Science.gov (United States)

    Klamerus-Iwan, Anna; Błońska, Ewa

    2018-04-01

    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  12. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.

    2010-01-01

    leads to outward diffusion (OD) of divalent cations (primarily Mg2+), i.e., diffusion from the interior of the glass to the surface, and thereby, to formation of an oxide surface nano-layer. in contrast, when the glasses are heat-treated in H-2/N-2 gas containing 10 vol.% H-2, reduction of Fe3+ to Fe2...... on some properties such as hardness, chemical durability, and surface wettability....

  13. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    Science.gov (United States)

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  14. Centrifugation-Assisted Fog-Collecting Abilities of Metal-Foam Structures with Different Surface Wettabilities.

    Science.gov (United States)

    Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong

    2016-04-20

    The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.

  15. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  16. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  17. Wettability and sizing property improvement of raw cotton yarns treated with He/O{sub 2} atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sun Shiyuan [Key Laboratory of Textile Science and Technology, Ministry of Education, China, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textiles and Clothing Engineering, Dezhou University, Shandong 253023 (China); Sun Jie; Yao Lan [Key Laboratory of Textile Science and Technology, Ministry of Education, China, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, China, College of Textiles, Donghua University, Shanghai 201620 (China)

    2011-01-01

    Raw cotton fiber is water repellent due to the existence of the water repellent cuticle layer. This study is designed to systematically investigate how He/O{sub 2} atmospheric pressure plasma jet (APPJ) treatments influence the wettability and the sizing property of cotton yarns. Water absorption time and adhesion of the sizing agent to the cotton roving are used to evaluate the improvement of wettability and sizing property of the yarn respectively. The water absorption time decreases with the increase of the treatment time and the oxygen flow rate, and the decrease of the jet to substrate distance (JTSD). An optimal water absorption time of 0.8 s is obtained with a treatment time of 20 s, JTSD of 1 mm and O{sub 2} flow rate of 0.2 L/min. Scanning electron microscopy (SEM) shows that the etching effect increases with the decrease of the JTSD and X-ray photoelectron spectroscopy (XPS) presents increased oxygen contents after the plasma treatments. An increase of O-C=O bonds while a decrease of C-OH/C-O-C bonds are observed when the JTSD is set at 2 mm. However, a remarkable increase of both C-OH/C-O-C and O-C=O bonds are achieved when the JTSD is 1 mm. The roving impregnation test results show a nearly doubled adhesion of sizing and a slightly improved breaking elongation, indicating that the plasma treatment does effectively enhance the bonding strength between the fiber and the sizing.

  18. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    Science.gov (United States)

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  19. Surface Wettability of Oxygen Plasma Treated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2014-01-01

    Full Text Available Oxygen plasma treatment on porous silicon (p-Si surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.

  20. Improvement of surface wettability and interfacial adhesion of poly-(p-phenylene terephthalamide) by incorporation of the polyamide benzimidazole segment

    International Nuclear Information System (INIS)

    Cai Renqin; Peng Tao; Wang Fengde; Ye Guangdou; Xu Jianjun

    2011-01-01

    In order to investigate the effect of the polyamide benzimidazole group on the surface wettability and interfacial adhesion of fiber/matrix composites, surface features of two kinds of aramid fibers, poly (p-phenylene terephthalamide) fiber (Kevlar-49) and poly-(polyamide benzimidazole-co-p-phenylene terephthalamide) (DAFIII), have been analyzed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis (CAA) system, respectively. The results show that with the incorporation of the polyamide benzimidazole segment, more polar functional groups exist on DAFIII surface. The contact angles of water and diiodomethane on DAFIII surface get smaller. The surface free energy of DAFIII increases to 36.5 mJ/m 2 , which is 2.3% higher than that of Kevlar-49. In addition, DAFIII has a larger rough surface compared with that of Kevlar-49 due to different spinning processes. The interfacial shear strength (IFSS) of DAFIII/matrix composite is 25.7% higher than that of Kevlar-49/matrix composite, in agreement with the observed results from surface feature tests. SEM micrographs of failed micro-droplet specimens reveal a strong correlation between the fracture features and the observed test data.

  1. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  2. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  3. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  4. Effect of coating current density on the wettability of electrodeposited copper thin film on aluminum substrate

    Directory of Open Access Journals (Sweden)

    Arun Augustin

    2016-09-01

    Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.

  5. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  6. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  7. Retracted: Study of the wettability of ZnO nanofilms

    Directory of Open Access Journals (Sweden)

    Ujjwal M Joshi

    2012-04-01

    Full Text Available Al-doped and un-doped ZnO thin films deposited on quartz substrates by the nebulized spray pyrolysis method were studied to investigate the wettability of the surface. The main objective of the present study was to investigate the wettability of ZnO thin film by changing the concentration of Al doping. Microstructure and water contact angles of the films were measured by scanning electron microscopy (SEM and using a contact angle goniometer. SEM studies revealed that the grain size within the film increases with the doping concentration. The contact angles were studied to see the effect of aluminum doping on the hydrophilicity of the film. ZnO films were found to be hydrophobic in nature. A good correlation was observed between the SEM micrographs and contact angle results. The nature of the film was found to change from being hydrophobic to hydrophilic after the treatment in low-pressure DC glow discharge plasma, which, however, was reversible with the storage time.

  8. The Effect of Reflow on Wettability of Sn 96.5 Ag 3 Cu 0.5 Solder

    Directory of Open Access Journals (Sweden)

    Zoltán Weltsch

    2012-11-01

    Full Text Available Surface conditions on Printed Circuit Board (PCB final finishes have an important impact on the wetting behaviour with lead-free solder. The improvement of wettability in liquid Sn 96.5 Ag 3 Cu 0.5 Solder alloy on PCB substrate was measured with a sessile drop method at 523 K temperature. Wetting properties was determined in normal atmospheric air and inert atmosphere. The wetting angles increasing with the number of reflows both atmosphere. The effect of the atmosphere has a huge importance of the oxidation which manifests itself of the measured wetting angles. One of the most important factors to the wetting properties is the amount of oxygen in the soldering atmosphere. Using the inert atmosphere is crucial to Pb-free solders, particularly after reflows.

  9. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  10. Rock properties influencing impedance spectra (IS) studied by lab measurements on porous model systems

    Energy Technology Data Exchange (ETDEWEB)

    Volkmann, J.; Klitzsch, N.; Mohnke, O. [RWTH Aachen Univ. (Germany). Applied Geophysics and Geothermal Energy; Schleifer, N. [Wintershall Holding GmbH, Barnstorf (Germany)

    2013-08-01

    The wetting condition of reservoir rocks is a crucial parameter for the estimation of reservoir characteristics like permeability and saturation with residual oil or water. Since standard methods are often costly, at least in terms of time, we aim at assessing wettability of reservoir rocks using impedance spectroscopy (IS), a frequency dependent measurement of complex electric resistivity. This approach is promising, because IS is sensitive to the electrochemical properties of the inner surface of rocks which, on the other hand, are decisively influencing wettability. Unfortunately, there is large number of rock parameters - besides wettability - influencing the impedance spectra often not exactly known for natural rock samples. Therefore, we study model systems to improve the understanding of the underlying mechanisms and to quantify the influencing parameters. The model systems consist of sintered porous silica beads of different sizes leading to samples with different pore sizes. The main advantage of these samples compared to natural rocks is their well-defined and uniform mineralogical composition and thus their uniform electrochemical surface property. In order to distinguish pore geometry and fluid electrochemistry effects on the IS properties we measured the IS response of the fully water saturated model systems in a wide frequency range - from 1 mHz to 35 MHz - to capture different often overlapping polarization processes. With these measurements we study the influence of pore or grain size, fluid conductivity, and wettability (contact angle) on the impedance spectra. The influence of wettability was studied by modifying the originally hydrophilic inner surface into a hydrophobic state. The wettability change was verified by contact angle measurements. As results, we find pore size dependent relaxation times and salinity dependent chargeabilities for the hydrophilic samples in the low frequency range (< 10 kHz), whereas for the hydrophobic samples

  11. Mouillabilité et réservoirs pétroliers Wettability and Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Cuiec L.

    2006-11-01

    Full Text Available Dans la première partie de cet article, des considérations générales relatives à la mouillabilité sont exposées, en particulier sur les points suivants : - définition; - importance sur le comportement d'un système milieu poreux/fluide 1/fluide 2; - méthodes d'évaluation. Puis, différents aspects des problèmes posés par ce paramètre lors de l'étude des gisements sont abordés. Tout d'abord, le problème de l'obtention d'échantillons de roche-réservoir ayant des propriétés de surface représentatives est examiné; en effet, une telle obtention est indispensable pour réaliser des expériences de laboratoire significatives. Les causes de modification des propriétés de surface entre le réservoir et le laboratoire sont passées en revue. L'impossibilité d'empêcher à coup sûr de telles modifications justifie l'utilisation d'une procédure de restauration des propriétés originelles qui est ensuite décrite. L'existence de réservoirs non mouillables à l'eau n'est pas aussi rare que d'aucuns le pensaient il y a seulement une dizaine d'années. De nombreux travaux extraits de la littérature ou réalisés à l'Institut Français du Pétrole (IFP illustrent ce point. Enfin, l'état des connaissances concernant l'origine de la non-mouillabilité à l'eau est présenté. In the first part of this paper, general considerations about wettability are given, including:(a definition;(b importance of this parameter on the behavior of a porous-medium/fluid 1/fluid 2 system;(c methods of evaluation. Then we will examine various aspects of problems that arise for petroleum engineers because of this parameter. First of all, we will take up the problem of obtaining representative samples from the standpoint of surface properties. Obtaining such samples is indispensable for performing meaningful laboratory experiments. The causes of changes, in the surface properties of reservoir rock samples between the field and the laboratory will be

  12. Evaluation of the wettability of a resin-based sealer in contact with some herbal irrigants

    Directory of Open Access Journals (Sweden)

    Mohammadreza Nabavizade

    2018-01-01

    Conclusion: Under the experimental condition of this study, CC was able to increase dentin wettability and therefore may be regarded as a promising irrigant after careful evaluation of other properties of this irrigant.

  13. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles.

    Science.gov (United States)

    Lallbeeharry, P; Tian, Y; Fu, N; Wu, W D; Woo, M W; Selomulya, C; Chen, X D

    2014-09-01

    Mixing surfactants with whole milk feed before spray drying could be a commercially favorable approach to produce instant whole milk powders in a single step. Pure whole milk powders obtained directly from spray drying often have a high surface fat coverage (up to 98%), rendering them less stable during storage and less wettable upon reconstitution. Dairy industries often coat these powders with lecithin, a food-grade surfactant, in a secondary fluidized-bed drying stage to produce instant powders. This study investigated the changes in wetting behavior on the surface of a whole milk particle caused by the addition of surfactants before drying. Fresh whole milk was mixed with 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin (total solids), and the wetting behavior of the shell formed by each sample was captured using a single-droplet drying device at intermediate drying stages as the shell was forming. The addition of surfactants improved shell wettability from the beginning of shell formation, producing more wettable milk particles after drying. The increase in surfactant loading by 10 times reduced the wetting time from around 30s to 30s). We proposed that Tween 80 could adsorb at the oil-water interface of fat globules, making the surface fat more wettable, whereas lecithin tends to combine with milk proteins to form a complex, which then competes for the air-water surface with fat globules. Spray-drying experiments confirmed the greatly improved wettability of whole milk powders by the addition of either 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin; wetting time was reduced from 35±4s to drying system has been used to elucidate the complex interactions between ionic or nonionic surfactants and milk components (both proteins and fat), as well as the resultant effect on the development of milk particle functionality during drying. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    R Zahran

    Full Text Available Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5-7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.

  15. Application of photo-excitation reaction on titanium oxide thin film for control of wettability; Sanka chitann hakumakujo no hikari reiki hanno no nuresei seigyo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Nakajima, A.; Hashimoto, K. [The Univ. of Tokyo, Tokyo (Japan); Takada, Y. [Kyushu Univ., Fukuoka (Japan)

    2000-03-31

    It is clarified that the photo-excitation hydrophilic reaction increasing wettability remarkably is induced by changing surface structure of titanium oxide radiated light. There are already many examples being in practical use of coating products applied hydrophilic reaction of titanium oxide surface such as drip-proof side millers for automobiles, self-cleaning building materials, and the like. When surface of titanium oxide having high activities for oxidisation and decomposition is coated organic materials and radiated light, wettability of surface changes as organic materials are decomposed. If it is possible to change wettability shaping pattern drastically by radiating light, the possibility of application for printing materials will be developed. After increasing contact angle by coating water and oil repellent on the titanium oxide thin film, images can be shaped by radiating light into pattern for changing surface of titanium oxide to be ultra hydrophilicity as decomposition of repellent. At that time, contact angle is 150 degree in water, 80 degree in oil, for not radiated aria, and is 0 degree in water and oil for radiated aria. Application for control technology of wettability keeps possibility of broader development to itself, not staying ability of self-cleaning and drip-proof. (NEDO)

  16. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  17. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  18. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  19. Wettability control of polystyrene by ion implantation

    International Nuclear Information System (INIS)

    Suzuki, Yoshiaki; Kusakabe, Masahiro; Iwaki, Masaya

    1994-01-01

    The permanent effects of ion implantation on the improvement of wettability of polystyrene is investigated in relation to ion species and fluences. The He + , Ne + , Na + , N 2 + , O 2 + , Ar + , K + and Kr + ion implantations were performed at energies of 50 and 150 keV at room temperature. The fluences ranged from 1x10 15 to 1x10 17 ions/cm 2 . The results showed that the contact angle of water for Na + and K + implanted polystyrene decreased from 87 to 0 , as the fluences increased to 1x10 17 ions/cm 2 at an energy of 50 keV. The contact angle for Na + and K + implanted polystyrene did not change under ambient room conditions, even when time elapsed. However, the contact an gle for He + , C + , O + , Ne + , N 2 + , O 2 + , Ar + , and Kr + ion implanted specimens decreased slightly immediately after ion implantation. Results of X-ray photoelectron spectroscopy showed that the increase in the Na content in the surface of Na + implanted specimens were observed with increasing fluence. It is concluded that permanent improvement in wettability was caused by doping effects rather than by radiation effects from Na + and K + ion implantation. ((orig.))

  20. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    Science.gov (United States)

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  2. Wettability of graphene-laminated micropillar structures

    International Nuclear Information System (INIS)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun; Park, Ji-Hoon; Ahn, Joung Real

    2014-01-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues

  3. Effect of Water Glass Modification on Its Viscosity and Wettability of Quartz Grains

    Directory of Open Access Journals (Sweden)

    Kmita A.

    2012-09-01

    Full Text Available The aim of the present study was to develop a modifier for water glass. The method of thermal generation of metal oxide nanoparticles was adapted and used in the research. Nanoparticles of ZnO from the thermal decomposition of basic zinc carbonate were used. A method for the modifier introduction was developed, and the effect of modifier content and organic solvent type on the physico-chemical properties of binder (viscosity and quartz wettability was determined. Binder viscosity was examined from the flow curves plotted with the help of a RHEOTEST 2 rotational rheometer equipped with proper software. Quartz wettability was determined examining timerelated changes in the value of the contact angle in a quartz-binder system, until full stabilisation of the angle value has been achieved. Binder modification was carried out on sodium water glass designated as R"145". The water glass modifiers were suspensions of ZnO nanoparticles in propanol and methanol at a fixed concentration of c = 0.3 M and with the size of nanoparticles comprised in a range of . Water glass modification with the suspensions of ZnO nanoparticles in methanol and propanol showed the effect of modifier on the water glass viscosity and quartz wettability. This effect depends on the type of alcohol used. The ZnO suspension in propanol (alcohol with a longer hydrocarbon chain affects more strongly the viscosity of binder and quartz wettability than the methanol suspension

  4. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption

    International Nuclear Information System (INIS)

    Lorenzetti, M; Kobe, S; Novak, S; Bernardini, G; Santucci, A; Luxbacher, T

    2015-01-01

    This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO 2 -anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO 2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin ‘passivation’ layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO 2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces. (paper)

  5. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  7. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    International Nuclear Information System (INIS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-01-01

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film

  8. Surface wettability and triple line behavior controlled by nano-coatings: effects on the sessile drop evaporation

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerôme

    2010-11-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop posed on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (SiOx, SiOc and CF), the wettability and the triple line dynamic of a sessile drop under natural phase change. The experiment consists in analyzing simultaneously the kinetics of evaporation, internal thermal motion and heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamic of the evaporative heat flux appears clearly different for a drop evaporating in pinned mode than in receding mode. Moreover, the kinetics of evaporation, the internal flow structure and the evaporative heat flux are drastically influenced by the wettability the substrate.

  9. Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing

    International Nuclear Information System (INIS)

    Gill, Puneet; Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard

    2015-01-01

    The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. - Highlights: • Magnetoelectropolishing (MEP) reduces the surface asperities of Nitinol alloys and formed stable oxides on the surface. • Improved corrosion resistance and reduced Nickel ion leaching were observed for MEP surfaces. • Ni–Ti alloyed with Cr showed improved mechanical properties. • Enhanced endothelial cell proliferation on ternary Nitinol alloys

  10. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    Science.gov (United States)

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  11. Selective separation of oil and water with special wettability mesh membranes

    KAUST Repository

    Liu, Defei

    2017-02-24

    Due to the different interfacial effects of oil and water, utilizing the special wettability of solid surfaces to design an oil and water separation process has been demonstrated to be an effective approach for oil/water separation. In this report, a simple process has been developed to fabricate special surface wettability mesh membranes. The carbon nanoparticles with diameters of 10 nm were first coated onto the surface of steel wires based on a candle soot coating process. These templates of carbon nanoparticles were then coated with a more stable layer of silica (SiO2) particles via a facile chemical vapor deposition route. After being modified by two separate methods, a superhydrophobic/superoleophilic membrane was obtained by the use of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) and a oleophobic/superhydrophilic membrane was obtained by using poly(diallyldimethylammonium-perfluorooctanoate) (PDDA–PFO). Separation experiments show that these superhydrophobic/superoleophilic or oleophobic/superhydrophilic mesh membranes can be used to selectively separate oil/water with a high flux of more than 930 L m−2 h−1 and a collecting efficiency of over 97%. Furthermore, the repetitions of the separation experiments demonstrate that these superhydrophobic/superoleophilic or oleophobic/superhydrophilic mesh membranes are durable, stable and reusable, making them encouraging candidates for practical oil-polluted water treatment.

  12. The microstructure and wettability of the TiO{sub x} films synthesized by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin Zeng [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004 (China); State Key Laboratory of Plastic Forming Simulation and Die and Mould Technology Wuhan, Hubei 430074 (China)], E-mail: linzengsy@gmail.com; Liu Kun; Zhang Yichen; Yue Xiangji; Song Guiqiu [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004 (China); Ba Dechun [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004 (China)], E-mail: dechunba@yahoo.com

    2009-01-25

    Different chemical state of titanium oxide films were deposited on commercially pure Ti (CP Ti) by reactive DC magnetron sputtering under different oxygen flow rates to examine a possibility of their applications to endovascular stents. The chemical composition and crystal structure of the obtained films were analyzed by XPS and XRD, respectively. In dependence on the deposition parameters employed, the obtained films demonstrated different mixture of anatase TiO{sub 2}, Ti{sub 2}O{sub 3}, TiO and Ti. The wettability of the films was measured by the water contact angle variation. By formation of titanium oxide film on CP Ti, contact angle was decreased. In order to modify and control the surface wettability, the resultant TiO{sub x} films were etched subsequently by different plasma. The wettability was influenced by etched process according to the decreased contact angle values of etched TiO{sub x} film. Furthermore, TiO{sub x} films became highly hydrophilic by ultraviolet (UV) irradiation, and returned to the initial relatively hydrophobic state by visible-light (VIS) irradiation. The wettability of the TiO{sub x} film was enabled to convert between hydrophilic and hydrophobic reversibly by alternative UV and VIS irradiation. By adjusting deposition parameter and further modification process, the wettability of the TiO{sub x} films can be changed freely in the range of 0-90 deg.

  13. Study on coal dust wettability measurement using cold briquetting technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Xu, H.; Shu, X. [North China Institute of Science and Technology, Beijing (China). Department of Resource and Environmental Engineering

    2008-12-15

    Quantitative measuring of coal dust wettability is essential for the research and development of chemical coal dust suppressants in the field of dust control with wetting-agent-added water. The causes of low repeat rate and poor consistency in present lab testing of coal dust wettability are discussed. The influence of different briquetting pressure (from 0 to 6.5108 Pa) on the wet behavior of coal dust is investigated as a new way to quantitatively evaluate coal dust wettability. The study shows that there is a fairly high coincidence between the coal dust wettability data measured by the briquetting technique and the results gained from the lab dust suppression tests using an MCYZ apparatus designed by the authors. 9 refs., 8 figs., 2 tabs.

  14. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  15. On the CO2 Wettability of Reservoir Rocks: Addressing Conflicting Information

    Science.gov (United States)

    Garing, C.; Wang, S.; Tokunaga, T. K.; Wan, J.; Benson, S. M.

    2017-12-01

    Conventional wisdom is that siliclastic rocks are strongly water wet for the CO2-brine system, leading to high irreducible water saturation, moderate residual gas trapping and implying that tight rocks provide efficient seals for buoyant CO2. If the wetting properties become intermediate or CO2 wet, the conclusions regarding CO2 flow and trapping could be very different. Addressing the CO2 wettability of seal and reservoir rocks is therefore essential to predict CO2 storage in geologic formation. Although a substantial amount of work has been dedicated to the topic, contact angle data show a large variability and experiments on plates, micromodels and cores report conflicting results regarding the influence of supercritical CO2 (scCO2) exposure on wetting properties: whereas some experimental studies suggest dewetting upon reaction with scCO2, some others observe no wettability alteration under reservoir scCO2 conditions. After reviewing evidences for and against wettability changes associated with scCO2, we discuss potential causes for differences in experimental results. They include the presence of organic matter and impact of sample treatment, the type of media (non consolidated versus real rock), experimental time and exposure to scCO2, and difference in measurement system (porous plate versus stationary fluid method). In order to address these points, new scCO2/brine drainage-imbibition experiments were conducted on a same Berea sandstone rock core, first untreated, then fired and finally exposed to scCO2 for three weeks, using the stationary fluid method. The results are compared to similar experiments performed on quartz sands, untreated and then baked, using the porous plate method. In addition, a comparative experiment using the same Idaho gray sandstone rock core was performed with both the porous plate and the stationary fluid methods to investigate possible method-dependent results.

  16. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Tomacheski, Daiane, E-mail: daitomacheski@gmail.com [Department of Materials Engineering, Laboratory of Polymers – LAPOL, Universidade Federal do Rio Grande do Sul, UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970 (Brazil); Softer Brasil Compostos Termoplásticos LTDA, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000 (Brazil); Pittol, Michele [Softer Brasil Compostos Termoplásticos LTDA, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000 (Brazil); Simões, Douglas Naue; Ribeiro, Vanda Ferreira [Department of Materials Engineering, Laboratory of Polymers – LAPOL, Universidade Federal do Rio Grande do Sul, UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970 (Brazil); Softer Brasil Compostos Termoplásticos LTDA, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000 (Brazil); Santana, Ruth Marlene Campomanes [Department of Materials Engineering, Laboratory of Polymers – LAPOL, Universidade Federal do Rio Grande do Sul, UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970 (Brazil)

    2017-05-31

    Highlights: • Ag loaded TPE lost their antimicrobial efficacy after polymer degradation. • Modifications in Ag loaded TPE surface provide conditions to bacteria settlement. • Rough TPE surface and the low γ{sub S}{sup +} was more favorable for bacterial development. - Abstract: The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.

  17. Facile Method for Fabricating Superhydrophobic Surface on Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mun Hee; Park, Yeon Hwa; Hyun, June Won; Ahn, Yong Hyun [Dankook Univ., Yongin (Korea, Republic of)

    2010-04-15

    In conclusion, we have developed a simple and inexpensive method for fabricating a superhydrophobic surface of magnesium by metal deposition and stearic acid coating. We fabricated a superhydrophobic surface on magnesium by nickel deposition and surface coating of stearic acid. The fabricated surfaces were stable against acidic and basic solutions. In recent times, technologies based on the imitation of nature have attracted considerable attention. Lotus leaves are known for their self-cleaning effect. The micrometer-scale papillae structure and the epicuticular wax on the lotus leaf contribute to this effect. In a manner similar to the self-cleaning property of lotus leaves, the wettability of solid surfaces is of great interest in daily life and industry.1-4 Wettability is controlled by both the geometrical structure of a surface and a low surface energy material coating. A superhydrophobic surface is satisfied with a water contact angle of more than 150 .deg. and a sliding angle of less than 10 .deg. On such a surface, a water drop has a perfectly spherical shape and it easily rolls off and removes deposited contaminants. A superhydrophobic surface thus protects a material from contamination, fogging, and snow deposition.

  18. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids

    International Nuclear Information System (INIS)

    Wang Shutao; Song Yanlin; Jiang Lei

    2007-01-01

    Inspired by the lotus effect, we fabricate new microscale and nanoscale hierarchical structured copper mesh films by a simple electrochemical deposition. After modification of the long-chain fatty acid monolayer, these films show superhydrophobic and superoleophilic properties, which could be used for the effective separation of oil and water. The length of the fatty acid chain strongly influences the surface wettability of as-prepared films. It is confirmed that the cooperative effect of the hierarchical structure of the copper film and the nature of the long-chain fatty acid contribute to this unique surface wettability

  19. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  20. Effects of Cu interlayer on the wettability of aluminum on carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Jin [School of Advanced Material Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Nano Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-10-15

    Highlights: •The enhancement of wettability of Al on the Cu-coated graphite was restricted by the dewetting of the Cu layer. •The pre-sputtering of Cu could enhanced the wettability of Al more than the Cu single layer coating using electroless plating. •A thick Cu coating layer is needed to enhance the wettability of Al on graphite with time without dewetting of the Al droplet. -- Abstract: Wettability of Al on Cu coated graphites and the interfacial reactions between Al and the Cu coating were analyzed to examine in depth the effect of the Cu coating layer used to enhance the wettability of Al on carbon. The wetting behaviors of Al according to Cu coating method and Cu thickness were also investigated. The Cu/Cu double layer coated by sputtering the Cu single layer coated by electroless plating because it improved the stability of the Cu layer coated on graphite at high temperature. In order to suppress the dewetting of Al on graphite and improve the wettability of Al on graphite, a thick Cu coating layer to supply sufficient Cu atoms for saturation in an Al droplet is needed.

  1. Effects of Cu interlayer on the wettability of aluminum on carbon

    International Nuclear Information System (INIS)

    Ko, Young Jin; Yoon, Juil; Lee, Joonho; Han, Jun Hyun

    2013-01-01

    Highlights: •The enhancement of wettability of Al on the Cu-coated graphite was restricted by the dewetting of the Cu layer. •The pre-sputtering of Cu could enhanced the wettability of Al more than the Cu single layer coating using electroless plating. •A thick Cu coating layer is needed to enhance the wettability of Al on graphite with time without dewetting of the Al droplet. -- Abstract: Wettability of Al on Cu coated graphites and the interfacial reactions between Al and the Cu coating were analyzed to examine in depth the effect of the Cu coating layer used to enhance the wettability of Al on carbon. The wetting behaviors of Al according to Cu coating method and Cu thickness were also investigated. The Cu/Cu double layer coated by sputtering the Cu single layer coated by electroless plating because it improved the stability of the Cu layer coated on graphite at high temperature. In order to suppress the dewetting of Al on graphite and improve the wettability of Al on graphite, a thick Cu coating layer to supply sufficient Cu atoms for saturation in an Al droplet is needed

  2. Droplet flow along the wall of rectangular channel with gradient of wettability

    Science.gov (United States)

    Kupershtokh, A. L.

    2018-03-01

    The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.

  3. Three-phase flow in heterogeneous wettability porous media; Deplacements triphasiques en milieux poreux de mouillabilite heterogene

    Energy Technology Data Exchange (ETDEWEB)

    Jaffrennou-Laroche, C

    1998-11-26

    Better understanding and modelling of three-phase flow through porous media is of great interest, especially for improved oil recovery methods such as gas injection processes. Early theoretical and experimental studies have already demonstrated that the wettability characteristics of the solid surface and the spreading characteristics of the fluid system hold the key roles. This observation is confirmed by our theoretical results using DLP theory on the stability and the thickness of static oil films. In most of the works related to three-phase flow processes, homogeneous wettability is assumed. There exist only a few studies demonstrating the tremendous impact of the wettability heterogeneities on gas injection. The objective of the present work is twofold: to demonstrate the effect of small scale wettability heterogeneities on gas injection efficiency, and to develop a tool to predict this impact for various patterns and spatial distributions. To this end an experimental investigation in transparent glass micro-models is performed and a theoretical simulator is developed. Secondary and tertiary gas injections are performed for different heterogeneity patterns obtained by selective silane grafting. Displacement sequences are video-recorded and fluid saturations are determined by image analysis. Visualization of the displacement mechanisms provides the network model with the basic rules for water/oil and water/oil/gas motion. In water/oil displacement, drainage and imbibition occur according to the local wettability. Three-phase displacement is dominated by drainage mechanisms. The simulator allows the flow of oil through wetting films in the oil-wet regions and through spreading films on water in the water-wet regions. The effect of the wettability heterogeneities on: displacement mechanisms, sweep efficiency, and fluid distribution in three-phase gas injection is clearly demonstrated and successfully described by the network simulator. (author) 175 refs.

  4. Interfacial tension and wettability in water-carbon dioxide systems: Experiments and self-consistent field modeling

    NARCIS (Netherlands)

    Banerjee, S.; Hassenklover, E.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    This paper presents experimental and modeling results on water–CO2 interfacial tension (IFT) together with wettability studies of water on both hydrophilic and hydrophobic surfaces immersed in CO2. CO2–water interfacial tension (IFT) measurements showed that the IFT decreased with increasing

  5. Ash wettability conditions splash erosion in the postfire

    Science.gov (United States)

    Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio

    2015-04-01

    1. INTRODUCTION Soil sustainability and recovery after fire depend on physical, chemical and biological processes and fire severity (Neary et al., 1999; Mataix-Solera and Guerrero, 2007). Fire effects on soils are divided in two types: direct effects, as a consequence of combustion and temperature reached and indirect effects (Neary et al., 1999) as consequence of changes in other ecosystem components, such as decrease in vegetal coverage or ash and partially burned litter contribution including changes in flora (Pausas and Verdú, 2005; Trabaud, 2000). Low intensity fires, during which high temperatures are not reached, affect vegetal coverage but will not cause major impacts on soil. In contrast, prolonged, recurrent, or high-intensity fires may cause important impacts on the soil system functioning (De Celis et al., 2013; DeBano, 1991; Mataix-Solera et al., 2009; Zavala et al., 2014), aggregation (Mataix-Solera et al., 2011), organic matter content and quality (Sevink et al., 1989), water repellency (DeBano, 2000; Doerr et al., 2000), soil nutrients (Stark, 1977), soil erosion (Larsen et al., 2009) and others. In these cases, the restoration period of the initial conditions can be very long and changes may become permanent (DeBano, 1991). During combustion, fuel (biomass, necromass and soil organic matter) is transformed in materials with new physical and chemical properties. After burn, the soil surface is covered by a layer of ash and charred organic residues. Ash has important ecological, hydrological and geomorphological effects, even after being rearranged or mobilized by runoff or wind (Bodí et al., 2014). Ash properties will depend on the burned species, the amount of affected biomass, fuel flammability and structure, temperature and the residence time of thermal peaks (Pereira et al., 2009). Some studies have emphasized the role of ash on soil protection during the after fire period, in which the vegetable coverage could be drastically decreased (Cerd

  6. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    International Nuclear Information System (INIS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; Ostrikov, Kostya; Vasilev, Krasimir

    2016-01-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces. (paper)

  7. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  8. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  9. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  10. Wettability modification of electrospun poly(ε-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres

    International Nuclear Information System (INIS)

    He Lingna; Chen Jian; Farson, Dave F.; Lannutti, John J.; Rokhlin, Stan I.

    2011-01-01

    The effect of femtosecond laser irradiation in air and in O 2 and CF 4 gas flows on the wettability of electrospun poly(ε-caprolactone) fiber tissue scaffolds was studied. Laser power, focus spot size, raster scan spacing and gas atmosphere were varied in experiments. SEM imaging showed the average fiber diameter and surface porosity sizes were both altered by ablation. The micro-scale surface roughness measured by scanning laser profilometry was found to have a non-monotonic relationship to the surface wettability measured by the contact angle of sessile water droplets. In contrast, surface water contact angle continuously decreased with increased oxygen atomic percentage and oxygen-containing group fraction as measured by XPS. Further, the oxygen content was larger for more extensively ablated fiber surfaces, regardless of whether the increased ablation was caused by high laser power, smaller scanning space or smaller defocusing distance. Of the three gas atmospheres, O 2 gas flow was the most favorable environment for increasing surface oxidization, resulting in the largest water contact angle decrease for given laser power. For CF 4 gas flow, the least oxidization occurred, and the magnitude of water contact angle decrease was smallest for treatment at a given laser power.

  11. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    Science.gov (United States)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  12. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    Science.gov (United States)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  13. Patternable Poly(chloro-p-xylylene Film with Tunable Surface Wettability Prepared by Temperature and Humidity Treatment on a Polydimethylsiloxane/Silica Coating

    Directory of Open Access Journals (Sweden)

    Yonglian Yu

    2018-03-01

    Full Text Available Poly(chloro-p-xylylene (PPXC film has a water contact angle (WCA of only about 84°. It is necessary to improve its hydrophobicity to prevent liquid water droplets from corroding or electrically shorting metallic circuits of semiconductor devices, sensors, microelectronics, and so on. Herein, we reported a facile approach to improve its surface hydrophobicity by varying surface pattern structures under different temperature and relative humidity (RH conditions on a thermal curable polydimethylsiloxane (PDMS and hydrophobic silica (SiO2 nanoparticle coating. Three distinct large-scale surface patterns were obtained mainly depending on the contents of SiO2 nanoparticles. The regularity of patterns was mainly controlled by the temperature and RH conditions. By changing the pattern structures, the surface wettability of PPXC film could be improved and its WCA was increased from 84° to 168°, displaying a superhydrophobic state. Meanwhile, it could be observed that water droplets on PPXC film with superhydrophobicity were transited from a “Wenzel” state to a “Cassie” state. The PPXC film with different surface patterns of 200 μm × 200 μm and the improved surface hydrophobicity showed wide application potentials in self-cleaning, electronic engineering, micro-contact printing, cell biology, and tissue engineering.

  14. Controlling and modelling the wetting properties of III-V semiconductor surfaces using re-entrant nanostructures.

    Science.gov (United States)

    Ng, Wing H; Lu, Yao; Liu, Huiyun; Carmalt, Claire J; Parkin, Ivan P; Kenyon, Anthony J

    2018-02-23

    Inorganic semiconductors such as III-V materials are very important in our everyday life as they are used for manufacturing optoelectronic and microelectronic components with important applications span from energy harvesting to telecommunications. In some applications, these components are required to operate in harsh environments. In these cases, having waterproofing capability is essential. Here we demonstrate design and control of the wettability of indium phosphide based multilayer material (InP/InGaAs/InP) using re-entrant structures fabricated by a fast electron beam lithography technique. This patterning technique enabled us to fabricate highly uniform nanostructure arrays with at least one order of magnitude shorter patterning times compared to conventional electron beam lithography methods. We reduced the surface contact fraction significantly such that the water droplets may be completely removed from our nanostructured surface. We predicted the wettability of our patterned surface by modelling the adhesion energies between the water droplet and both the patterned surface and the dispensing needle. This is very useful for the development of coating-free waterproof optoelectronic and microelectronic components where the coating may hinder the performance of such devices and cause problems with semiconductor fabrication compatibility.

  15. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources.

    Science.gov (United States)

    Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun

    2018-04-01

    Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A Brief Note on the Magnetowetting of Magnetic Nanofluids on AAO Surfaces

    Science.gov (United States)

    Chien, Yu-Chin

    2018-01-01

    In magnetowetting, the material properties of liquid, surface morphology of solid, and applied external field are three major factors used to determine the wettability of a liquid droplet on a surface. For wetting measurements, an irregular or uneven surface could result in a significant experimental uncertainty. The periodic array with a hexagonal symmetry structure is an advantage of the anodic aluminum oxide (AAO) structure. This study presents the results of the wetting properties of magnetic nanofluid sessile droplets on surfaces of various AAO pore sizes under an applied external magnetic field. Stable, water-based magnetite nanofluids are prepared by combining the chemical co-precipitation with the sol-gel technique, and AAO surfaces are then generated by anodizing the aluminum sheet in the beginning. The influence of pore size and magnetic field gradient on the magnetowetting of magnetic nanofluids on AAO surfaces is then investigated by an optical test system. Experimental results show that increasing the processing voltage of AAO templates could result in enhanced non-wettability behavior; that is, the increase in AAO pore size could lead to the increase in contact angle. The contact angle could be reduced by the applied magnetic field gradient. In general, the magnetic field has a more significant effect at smaller AAO pore sizes. PMID:29461509

  17. A Brief Note on the Magnetowetting of Magnetic Nanofluids on AAO Surfaces

    Directory of Open Access Journals (Sweden)

    Yu-Chin Chien

    2018-02-01

    Full Text Available In magnetowetting, the material properties of liquid, surface morphology of solid, and applied external field are three major factors used to determine the wettability of a liquid droplet on a surface. For wetting measurements, an irregular or uneven surface could result in a significant experimental uncertainty. The periodic array with a hexagonal symmetry structure is an advantage of the anodic aluminum oxide (AAO structure. This study presents the results of the wetting properties of magnetic nanofluid sessile droplets on surfaces of various AAO pore sizes under an applied external magnetic field. Stable, water-based magnetite nanofluids are prepared by combining the chemical co-precipitation with the sol-gel technique, and AAO surfaces are then generated by anodizing the aluminum sheet in the beginning. The influence of pore size and magnetic field gradient on the magnetowetting of magnetic nanofluids on AAO surfaces is then investigated by an optical test system. Experimental results show that increasing the processing voltage of AAO templates could result in enhanced non-wettability behavior; that is, the increase in AAO pore size could lead to the increase in contact angle. The contact angle could be reduced by the applied magnetic field gradient. In general, the magnetic field has a more significant effect at smaller AAO pore sizes.

  18. Impact of land-use change on hydraulic properties of wettable and hydrophobic soils

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Nagy, V.; Houšková, B.; Šír, Miloslav; Tesař, Miroslav

    2008-01-01

    Roč. 36, Suppl. 5 (2008), s. 1599-1602 ISSN 0133-3720. [Alps Adria Scientific Workshop /7./. Stará Lesná, 28.04.2008-01.05.2008] R&D Projects: GA ČR GA205/06/0375; GA ČR GA205/08/1174; GA MŽP(CZ) SP/1A6/151/07 Grant - others:APVV(XE) SK-CZ-0066-07 Institutional research plan: CEZ:AV0Z20600510 Keywords : wettable soil * hydrophobic soil * hydraulic conductivity * bypassing ratio Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.190, year: 2007

  19. Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties

    International Nuclear Information System (INIS)

    Zhou Hai-Tao; Zou Fei; Gao Ge; Yu Ning; Yao Zhao-Hui; Shen Cheng-Min

    2016-01-01

    Vertically standing graphene (VSG) sheets have been fabricated by using plasma enhanced chemical vapor deposition (PECVD) method. The lateral size of VSG nanosheets could be well controlled by varying the substrate temperature. The higher temperature usually gives rise to a smaller sheet size. The wettability of VSG films was tuned between hydrophobicity and hydrophilicity by means of oxygen and hydrogen plasma treatment. The supercapacitor electrode made of VSG sheets exhibited an ideal double-layer-capacitor feature and the specific capacitance reached a value up to 9.62 F·m −2 . (rapid communication)

  20. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour

    International Nuclear Information System (INIS)

    Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C.

    2003-01-01

    Cell attachment and spreading to titanium-based alloy surfaces is a major parameter in implant technology. In this paper, substratum surface hydrophobicity, surface free energy, interfacial free energy and surface roughness were investigated to ascertain which of these parameters is predominant in human fibroblast spreading. Two methods for contact angle measurement were compared: the sessile drop method and the captive bubble two-probe method. The relationship between surface roughness and the sessile drop contact angles of various engineered titanium surfaces such as commercial pure titanium (cp-Ti), titanium-aluminium-vanadium alloy (Ti-6Al-4V), and titanium-nickel (NiTi), was shown. Surface free energy (SFE) calculations were performed from contact angles obtained on smooth samples based on the same alloys in order to eliminate the roughness effect. SFE of the surfaces have been calculated using the Owens-Wendt (OW) and Van Oss (VO) approaches with the sessile drop method. The OW calculations are used to obtain the dispersive (γ d ) and polar (γ p ) component of SFE, and the VO approach allows to reach the apolar (γ LW ) and the polar acid-base component (γ ab ) of the surface. From captive bubble contact angle experiments (air or octane bubble under water), the interfacial free energy of the different surfaces in water was obtained. A relationship between cell spreading and the polar component of SFE was found. Interfacial free energy values were low for all the investigated surfaces indicating good biocompatibility for such alloys

  1. Adsorption and wettability study of methyl ester sulphonate on precipitated asphaltene

    International Nuclear Information System (INIS)

    Okafor, H E; Gholami, R; Sukirman, Y

    2016-01-01

    Asphaltene precipitation from crude oil and its subsequent aggregation forms solid, which preferentially deposit on rock surfaces causing formation damage and wettability changes leading to loss of crude oil production. To resolve this problem, asphaltene inhibitor has been injected into the formation to prevent the precipitation of asphaltene. Asphaltene inhibitors that are usually employed are generally toxic and non-biodegradable. This paper presents a new environmentally friendly asphaltene inhibitor (methyl ester sulphonate), an anionic surfactant, which has excellent sorption on formation rock surfaces. Result from adsorption study validated by Langmuir and Freundlich models indicate a favourable adsorption. At low volumes injected, methyl ester sulphonate is capable of reverting oil-wet sandstone surface to water-wet surface. Biodegradability test profile shows that for concentrations of 100-5000ppm it is biodegradable by 65-80%. (paper)

  2. Influence of Aggregate Wettability with Different Lithology Aggregates on Concrete Drying Shrinkage

    Directory of Open Access Journals (Sweden)

    Yuanchen Guo

    2015-01-01

    Full Text Available The correlation of the wettability of different lithology aggregates and the drying shrinkage of concrete materials is studied, and some influential factors such as wettability and wetting angle are analyzed. A mercury porosimeter is used to measure the porosities of different lithology aggregates accurately, and the pore size ranges that significantly affect the drying shrinkage of different lithology aggregate concretes are confirmed. The pore distribution curve of the different coarse aggregates is also measured through a statistical method, and the contact angle of different coarse aggregates and concrete is calculated according to the linear fitting relationship. Research shows that concrete strength is determined by aggregate strength. Aggregate wettability is not directly correlated with concrete strength, but wettability significantly affects concrete drying shrinkage. In all types’ pores, the greatest impacts on wettability are capillary pores and gel pores, especially for the pores of the size locating 2.5–50 nm and 50–100 nm two ranges.

  3. A drop penetration method to measure powder blend wettability.

    Science.gov (United States)

    Wang, Yifan; Liu, Zhanjie; Muzzio, Fernando; Drazer, German; Callegari, Gerardo

    2018-03-01

    Water wettability of pharmaceutical blends affects important quality attributes of final products. We investigate the wetting properties of a pharmaceutical blend lubricated with Magnesium Stearate (MgSt) as a function of the mechanical shear strain applied to the blend. We measure the penetration dynamics of sessile drops deposited on slightly compressed powder beds. We consider a blend composed of 9% Acetaminophen 90% Lactose and 1% MgSt by weight. Comparing the penetration time of water and a reference liquid Polydimethylsiloxane (silicon oil) we obtain an effective cosine of the contact angle with water, based on a recently developed drop penetration method. We repeat the experiments for blends exposed to increasing levels of shear strain and demonstrate a significant decrease in water wettability (decrease in the cosine of the contact angle). The results are consistent with the development of a hydrophobic film coating the powder particles as a result of the increased shear strain. Finally, we show that, as expected dissolution times increase with the level of shear strain. Therefore, the proposed drop penetration method could be used to directly assess the state of lubrication of a pharmaceutical blend and act as a quality control on powder blend attributes before the blend is tableted. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  5. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Science.gov (United States)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  6. Drops and bubbles in contact with solid surfaces

    CERN Document Server

    Ferrari, Michele

    2012-01-01

    The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting pec

  7. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate

    Science.gov (United States)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.

    2010-06-01

    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  8. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    Science.gov (United States)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  9. Effect of airborne contaminants on the wettability of supported graphene and graphite

    Science.gov (United States)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  10. Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes

    Directory of Open Access Journals (Sweden)

    Joan Lario

    2018-01-01

    Full Text Available The implant osseointegration rate depends on the surface’s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM, and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS. The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV irradiation of the TiO2 nanotubes decrease the water contact angle.

  11. Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions

    Science.gov (United States)

    Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.

    2008-04-01

    This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.

  12. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K

    Science.gov (United States)

    Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong

    2018-06-01

    We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.

  13. Effect of starch type on the physico-chemical properties of edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  15. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  16. Wettability and interface considerations in advanced heat-resistant Ni-base composites

    International Nuclear Information System (INIS)

    Asthana, R.; Mileiko, S.T.; Sobczak, N.

    2006-01-01

    Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al 2 O 3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-of the

  17. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    Science.gov (United States)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  18. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid.

    Science.gov (United States)

    Zhao, Xiaoduo; Xiong, Dangsheng; Wang, Kun; Wang, Nan

    2017-06-01

    The keys of biomaterials application in artificial joints are good hydrophilicity and wear resistance. One kind of the potential bio-implant materials is polyetheretherketone (PEEK), which has some excellent properties such as non-toxic and good biocompatibility. However, its bioinert surface and inherent chemical inertness hinder its application. In this study, we reported an efficient method for improving the surface wettability and wear resistance for PEEK, a layer of acrylic acid (AA) polymer brushes on PEEK surface was prepared by UV-initiated graft polymerization. The effects of different grafting parameters (UV-irradiation time/AA monomer solution concentration) on surface characteristics were clearly investigated, and the AA-g-PEEK specimens were examined by ATR-FTIR, static water contact angle measurements and friction tests. Our results reveal that AA can be successfully grafted onto the PEEK surface after UV irradiation, the water wettability and tribological properties of AA-g-PEEK are much better than untreated PEEK because that AA is a hydrophilic monomer, the AA layer on PEEK surface can improve its bearing capacity and reduce abrasion. This detailed understanding of the grafting parameters allows us to accurately control the experimental products, and this method of surface modification broadens the use of PEEK in orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Wettability Alteration of Sandstone and Carbonate Rocks by Using ZnO Nanoparticles in Heavy Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Masoumeh Tajmiri

    2015-10-01

    Full Text Available Efforts to enhance oil recovery through wettability alteration by nanoparticles have been attracted in recent years. However, many basic questions have been ambiguous up until now. Nanoparticles penetrate into pore volume of porous media, stick on the core surface, and by creating homogeneous water-wet area, cause to alter wettability. This work introduces the new concept of adding ZnO nanoparticles by an experimental work on wettability alteration and oil recovery through spontaneous imbibition mechanism. Laboratory tests were conducted in two experimental steps on four cylindrical core samples (three sandstones and one carbonate taken from a real Iranian heavy oil reservoir in Amott cell. In the first step, the core samples were saturated by crude oil. Next, the core samples were flooded with nanoparticles and saturated by crude oil for about two weeks. Then, the core samples were immersed in distilled water and the amount of recovery was monitored during 30 days for both steps. The experimental results showed that oil recovery for three sandstone cores changed from 20.74, 4.3, and 3.5% of original oil in place (OOIP in the absence of nanoparticles to 36.2, 17.57, and 20.68% of OOIP when nanoparticles were added respectively. Moreover, for the carbonate core, the recovery changed from zero to 8.89% of OOIP by adding nanoparticles. By the investigation of relative permeability curves, it was found that by adding ZnO nanoparticles, the crossover-point of curves shifted to the right for both sandstone and carbonate cores, which meant wettability was altered to water- wet. This study, for the first time, illustrated the remarkable role of ZnO nanoparticles in wettability alteration toward more water-wet for both sandstone and carbonate cores and enhancing oil recovery.

  20. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-01-01

    DOE's waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE's efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids' surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships

  1. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  2. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    International Nuclear Information System (INIS)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X.; Wang, C.X.; Qiu, Y.

    2008-01-01

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick

  3. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    Science.gov (United States)

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao, E-mail: hyangwit@hotmail.com; Chen, Rong, E-mail: rchenhku@hotmail.com

    2015-10-30

    Graphical abstract: - Highlights: • Hierarchical bismuth nanostructures were synthesized by galvanic replacement reaction. • The bismuth coating shows superhydrophobicity after being modified by stearic acid. • Wetting transition could be realized by alternation of irradiation and modification. - Abstract: Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl{sub 3} in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV–vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  5. Characterization of Mixed Wettability at Different Scales and its Impact on Oil Recovery Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul M.; Hirasaki, George J.

    2002-01-28

    The objectives of this project was to: (1) quantify the pore scale mechanisms that determine the wettability state of a reservoir, (2) study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states, (3) clarify the effect of mixed - wettability on oil displacement efficiency in waterfloods, (4) develop a new tracer technique to measure wettability, fluid distributions, residual saturation's and relative permeabilities, and (5) develop methods for properly incorporating wettability in up-scaling from pore to core to reservoir scales.

  6. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  7. One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants

    Science.gov (United States)

    Peng, Ying-ying; Lu, Feng; Tong, Qing-Xiao

    2018-03-01

    In this work, a series of non-ionic hydro-fluorocarbon hybrid surfactants (C9F19CONH(CH2)3N(CmH2m+1)2, abbreviated as C9F19AM (m = 1), C9F19AE (m = 2) and C9F19AB (m = 4) were easily synthesized by one-step reaction and characterized by 1HNMR, 19FNMR and MS spectroscopy. Unlike conventional non-ionic surfactants (most hydrophilic units consisted of hydroxy or ether groups), their hydrophilic groups were composed of amide group, an eco-friendly unit. The surface activity, wettability, thermal stability and foaming performance were investigated. The results showed that the C9F19AE (C9F19CONH(CH2)3N[CH2CH3]2) had superior surface and interface activities, which could reduce the surface tension of water down to 15.37 mN/m and the interfacial tension (cyclohexane/water/surfactants) to 5.8 mN/m with a low cmc (critical micelle concentration) of 0.12 mmol/L. Through the calculation of Amin (the minimum area occupied per-surfactant molecule), we speculated this higher surface activity was related to the compatibility between hydrocarbon and fluorocarbon chains. When used as wetting and foaming agents, the C9F19AE also outperformed great advantages over conventional non-ionic fluorocarbon and hydrocarbon surfactants, which could decrease the contact angle of water on PTFE plate from 107.7° to 3.6°, and increase the foam integrated value F to 536 500 ± 3066.5 mL s. Moreover, the decomposition temperature (Td) of C9F19AE could reach up to 173 °C. This work demonstrates a valuable strategy to develop a kind of high-efficiency foaming agent via facile synthesis.

  8. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  9. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  10. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  11. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    Science.gov (United States)

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  12. Experimental Investigation of 2D thermal signature and 3D X-Ray Computed Tomography in contrasting Wettable and Water-Repellent Beads

    Science.gov (United States)

    Alsih, Abdulkareem; Flavel, Richard; McGrath, Gavan

    2017-04-01

    This study presents experimental results investigating spatial patterns of infiltration and evaporation in heterogeneous water repellent media. Infrared camera measurements and 3D X-ray computed tomography imaging was performed across wet-dry cycles on glass beads with engineered patches of water repellence. The imaging revealed spatial variability in infiltration and the redistribution of water in the media resulting in differences in relative evaporation rates during drying. It appears that the spatial organization of the heterogeneity play a role in the breakdown of water repellence at the interface of the two media. This suggests a potential mechanism for self-organization of repellency spatial patterns in field soils. At the interface between wettable and water repellent beads a lateral drying front propagates towards the wettable beads from the repellent beads. During this drying the relative surface temperatures change from a relatively cooler repellent media surface to a relatively cooler wettable media surface indicating the changes in evaporative water loss between the beads of varying water repellence. The lateral drying front was confirmed using thermography in a small-scale model of glass beads with chemically induced repellence and then subjected to 3D X-ray imaging. Pore-scale imaging identified the hydrology at the interface of the two media and at the drying front giving insights into the physics of water flow in water repellent soil.

  13. STUDIES ON WETTABILITY OF STAINLESS STEEL 316L POWDER IN LASER MELTING PROCESS

    Directory of Open Access Journals (Sweden)

    KURIAN ANTONY

    2014-10-01

    Full Text Available Laser sintering is one of the techniques used in additive manufacturing processes. The main objective of the work is to study the effects of process parameters on wetting phenomenon and interfacial energy during laser melting of stainless steel powder. This paper reports wetting of laser melted powder particles and its use for the determination of surface energy of stainless steel powder under laser beam exposure. Process parameters such as laser power, scan speed and beam diameter are considered for study. This study also identifies the process parameters for better wettability which produces smooth surfaces.

  14. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.

    Science.gov (United States)

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-05-22

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

  15. Biphilicity and Superbiphilicity for Wettability Control of Multiphase Heat Transfer

    Science.gov (United States)

    Attinger, Daniel; Betz, Amy Rachel; Schutzius, T. M.; Jenkins, J.; Kim, C.-J.; Megaridis, C. M.

    2012-11-01

    Multiphase energy transport, such as in boiling, suggests contradictory requirements on the wettability of the solid surfaces coming into contact with the working fluid. On the one hand, a hydrophobic wall promotes nucleation. On the other hand, a hydrophilic wall promotes water contact and enhances the critical heat flux. An analogous situation appears in the opposite thermodynamic process, i.e. condensation. These apparently contradictory requirements can be accommodated with biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. Biphilic surfaces were first manufactured in 1964 by Young and Hummel, who sprayed Teflon drops onto a smooth steel surface: they showed enhanced heat transfer coefficient during boiling of water. Our recent work has revisited the manufacturing of biphilic surfaces using micro- and nanofabrication processes (Betz et al. 2010, Schutzius et al. 2012); for instance, we fabricated the first superbiphilic surfaces, which juxtapose superhydrophobic and superhydrophilic areas. Using these surfaces, we measured significant enhancement during pool boiling of both the heat transfer coefficient and the critical heat flux. This enhanced performance can be explained by the inherent ability of the surfaces to control multiphase flow, decreasing nucleation energies and shaping drops, bubbles and jets, to maximize transport and prevent instabilities.

  16. Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    Directory of Open Access Journals (Sweden)

    Osękowska Małgorzata

    2015-09-01

    Full Text Available In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro of thin films. Morphological changes of mouse fibroblasts (L929 cell line after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

  17. Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics.

    Science.gov (United States)

    Berni, M; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Russo, A; Visani, A; Marcacci, M; Pavan, P G; Lopomo, N F

    2017-08-01

    In joint arthroplasty one of the main issues related to the failure of prosthetic implants is due to the wear of the ultra-high molecular weight polyethylene (UHMWPE) component. Surface treatments and coatings have been recognized as enhancing methods, able to improve the tribological properties of the implants. Therefore, the main objective of this work was to investigate the possibility to fabricate yttria-stabilized zirconia (YSZ) coatings on a metal (AISI 316-L) substrate by means of Pulsed Electron Deposition, in order to improve the tribological behavior of the polymer-metal coupling, by reducing the initial wear of the UHMWPE component. In order to optimize the coating characteristics, the effects of working gas pressure on both its morphological and tribological properties were analyzed. Morphological characterization of the films was evaluated by Atomic Force Microscopy (AFM). Coating wettability was also estimated by contact angle (CA) measurement. Tribological performance (coupling friction and wear of UHMWPE) was evaluated by using a ball-on-disc tribometer during highly-stressing tests in dry and lubricated (i.e. NaCl and serum) conditions; friction and wear were specifically evaluated at the initial sliding distances - to highlight the main effect of coating morphology - and after 100m - where the influence of the intrinsic materials properties prevails. AFM analysis highlighted that the working pressure heavily affected the morphological characteristics of the realized films. The wettability of the coating at the highest and lowest deposition pressures (CA ~ 60°, closed to substrate value) decreased for intermediate pressures, reaching a maximum CA of ~ 90°. Regarding tribological tests, a strong correlation was found in the initial steps between friction coefficient and wettability, which decreased as the distance increased. Concerning UHMWPE wear associated to coated counterpart, at 100m a reduction rate of about 7% in dry, 12% in NaCl and 5% in

  18. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken

    2007-09-30

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on

  19. Wettability modification of rock cores by fluorinated copolymer emulsion for the enhancement of gas and oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Feng Chunyan [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555 (China); Kong Ying, E-mail: yingkong1967@yahoo.com.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555 (China); Jiang Guancheng [MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249 (China); Yang Jinrong; Pu Chunsheng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555 (China); Zhang Yuzhong [Key Lab of Hollow Fibre Membrane Materials and Membrane Process, Tianjin Polytechnic University, Tianjin 300160 (China)

    2012-07-01

    The fluorine-containing acrylate copolymer emulsion was prepared with butyl acrylate, methacrylic acid and 1H, 1H, 2H, 2H-perfluorooctyl acrylate as monomers. Moreover, the structure of the copolymer was verified by Fourier transform infrared (FTIR), nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) and X-ray photoelectron spectroscopy (XPS) analyses. The results showed that all the monomers had been copolymerized and the presence of fluorine moieties. The contact angle (CA) analyses, capillary rise and imbibition spontaneous tests were used to estimate the influence of the copolymer emulsion on the wettability of gas reservoirs. It was observed that the rock surface was of large contact angles of water, oilfield sewage, hexadecane and crude oil after treatment with the emulsion. The capillary rise results indicated that the contact angles of water/air and oil/air systems increased from 60 Degree-Sign and 32 Degree-Sign to 121 Degree-Sign and 80 Degree-Sign , respectively, due to the emulsion treatment. Similarly, because of wettability alteration by the fluoropolymer, the imbibition of water and oil in rock core decreased significantly. Experimental results demonstrated that the copolymer emulsion can alter the wettability of porous media from strong liquid-wetting to gas-wetting. This work provides a cost-effective method to prepare the fluoropolymer which can increase gas deliverability by altering the wettability of gas-condensate reservoirs and mitigating the water block effect.

  20. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Hong, Jungwoo [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Shin, Jennifer H., E-mail: j_shin@kaist.ac.kr [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Byun, Doyoung, E-mail: dybyun@skku.edu [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2017-02-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  1. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    International Nuclear Information System (INIS)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-01-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  2. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  3. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    International Nuclear Information System (INIS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O_2 or C_3F_8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  4. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup, E-mail: kssong10@kumoh.ac.kr

    2016-01-15

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O{sub 2} or C{sub 3}F{sub 8} gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  5. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, D., E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, M.; Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, P. [Institute of Experimental Physics, University of Wrocław, Max Born 9, 50-204 Wrocław (Poland); Szponar, B. [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław (Poland); Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Kepinski, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi{sub 3} and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  6. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    International Nuclear Information System (INIS)

    Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Mazur, P.; Szponar, B.; Domaradzki, J.; Kepinski, L.

    2016-01-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi_3 and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  7. Comparison of the effect of plasma treatment and gamma ray irradiation on PS-Cu nanocomposite films surface

    Science.gov (United States)

    Farag, O. F.

    2018-06-01

    Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.

  8. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion.

    Science.gov (United States)

    Vermeltfoort, Pit B J; Rustema-Abbing, Minie; de Vries, Joop; Bruinsma, Gerda M; Busscher, Henk J; van der Linden, Matthijs L; Hooymans, Johanna M M; van der Mei, Henny C

    2006-06-01

    The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H contact lenses. The first pair was worn continuously for a week and the second pair for 4 weeks. One lens of each pair was used for surface characterization and the other one for bacterial adhesion experiments. Lens surfaces were characterized by examination of their wettability, roughness, elemental composition, and proteins attached to their surfaces. Adhesion of Staphylococcus aureus 835 and Pseudomonas aeruginosa #3 to a lens was studied using a parallel plate flow chamber. Before use, the lotrafilcon A lens was rougher than the balafilcon A lens and had a lower water contact angle and a higher affinity for S. aureus 835. After wear, both lens types had similar water contact angles, whereas the differences in elemental surface composition decreased as well. S. aureus 835 adhered in higher numbers to worn balafilcon A lenses, whereas the opposite was seen for P. aeruginosa #3. The initial deposition rates of both bacterial strains to lotrafilcon A lenses decreased by wearing and were found to correlate significant (P lenses. In this study, the differences in surface properties between 2 types of S-H lenses were found to change after 1 week of continuous wear. Generally, bacteria adhered in lower numbers and less tenaciously to worn lenses, except S. aureus 835, adhering in higher numbers to worn balafilcon A lenses.

  9. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  10. Parametric Study of Effects of Atmospheric Pressure Plasma Treatment on the Wettability of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2018-02-01

    Full Text Available In textiles processing, wettability of fabric plays a very important role in enhancing processes such as dyeing and printing. Although well-prepared cotton fabric has very good wettability, further enhancement of its wettability can effectively improve the subsequent dyeing and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT, a continuous process, is now drawing attention of the industry. In this study, we investigated the effect of APPT under four operational parameters: (1 discharge power; (2 flow rate of oxygen; (3 jet travelling speed; and (4 jet-to-substrate distance on wettability (in terms of wickability and wetting area of cotton fabric. Experimental results revealed that the four parameters interact with each other in affecting the wettability of the cotton fabric. The results are discussed comprehensively.

  11. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  12. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    Science.gov (United States)

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  13. Pore Scale Investigation of Wettability Alteration Through Chemically-Tuned Waterflooding in Oil-Wet Carbonate Rocks Using X-Ray Micro-Ct Imaging

    Science.gov (United States)

    Tawfik, M. S.; Karpyn, Z.

    2017-12-01

    Carbonate reservoirs host more than half of the remaining oil reserves worldwide. Due to their complex pore structure and intermediate to oil-wet nature, it is challenging to produce the remaining oil from these formations. For two decades, chemically tuned waterflooding (CTWF) has gained the attention of many researchers. Experimental, numerical, and field studies suggest that changes in ion composition of injected brine can increase oil recovery in carbonate reservoirs via wettability alteration. However, previous studies explaining the improvement in oil recovery by wettability alteration deduce wettability based on indirect measurements, including sessile drop contact angle measurements on polished rocks, relative permeability, chromatographic separation of SCN- and potential determining ions (PDIs), etc. CTWF literature offers no direct measurement of wettability alteration at the pore scale. This study proposes a direct pore-scale measurement of changes in interfacial curvatures before and after CTWF. Micro-coreflood experiments are performed to investigate the effect of injection brine salinity, ion composition and temperature on rock wettability at the pore scale. X-ray micro-CT scanning is used to obtain 3D image sets to calculate in-situ contact angle distributions. The study also aims to find a correlation between the magnitude of improvement in oil recovery at the macro-scale and the corresponding contact angle distribution at the pore-scale at different experimental conditions. Hence, macro-scale coreflood experiments are performed using the same conditions as the micro-corefloods. Macro-scale coreflood experiments have shown that brines with higher concentration of Ca2+, Mg2+ and SO42- ions have higher recoveries compared to standard seawater. This translates to wettability alteration into a more intermediate-wet state. This study enhances the understanding of the pore-scale physico-chemical mechanisms controlling wettability alteration via CTWF

  14. Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions

    Science.gov (United States)

    Al-Menhali, Ali; Krevor, Samuel

    2014-05-01

    The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements

  15. Modulation of the wettability of excipients by surfactant and its impacts on the disintegration and release of tablets.

    Science.gov (United States)

    Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming

    2016-12-01

    To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.

  16. Improved osteoblast response to UV-irradiated PMMA/TiO2 nanocomposites with controllable wettability.

    Science.gov (United States)

    Shayan, Mahdis; Jung, Youngsoo; Huang, Po-Shun; Moradi, Marzyeh; Plakseychuk, Anton Y; Lee, Jung-Kun; Shankar, Ravi; Chun, Youngjae

    2014-12-01

    Osteoblast response was evaluated with polymethylmethacrylate (PMMA)/titanium dioxide (TiO2) nanocomposite thin films that exhibit the controllable wettability with ultraviolet (UV) treatment. In this study, three samples of PMMA/TiO2 were fabricated with three different compositional volume ratios (i.e., 25/75, 50/50, and 75/25) followed by UV treatment for 0, 4, and 8 h. All samples showed the increased hydrophilicity after UV irradiation. The films fabricated with the greater amount of TiO2 and treated with the longer UV irradiation time increased the hydrophilicity more. The partial elimination of PMMA on the surface after UV irradiation created a durable hydrophilic surface by (1) exposing higher amount of TiO2 on the surface, (2) increasing the hydroxyl groups on the TiO2 surface, and (3) producing a mesoporous structure that helps to hold the water molecules on the surface longer. The partial elimination of PMMA on the surface was confirmed by Fourier transform infrared spectroscopy. Surface profiler and atomic force microscopy demonstrated the increased surface roughness after UV irradiation. Both scanning electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that particles containing calcium and phosphate elements appeared on the 8 h UV-treated surface of PMMA/TiO2 25/75 samples after 4 days soaking in Dulbecco's Modified Eagle Medium. UV treatment showed the osteoblast adhesion improved on all the surfaces. While all UV-treated hydrophilic samples demonstrated the improvement of osteoblast cell adhesion, the PMMA/TiO2 25/75 sample after 8 h UV irradiation (n = 5, P value = 0.000) represented the best cellular response as compared to other samples. UV-treated PMMA/TiO2 nanocomposite thin films with controllable surface properties represent a high potential for the biomaterials used in both orthopedic and dental applications.

  17. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    Science.gov (United States)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  18. Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification

    Science.gov (United States)

    Hu, Ran; Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.

    2017-08-01

    How the wettability of pore surfaces affects supercritical (sc) CO2 capillary trapping in geologic carbon sequestration (GCS) is not well understood, and available evidence appears inconsistent. Using a high-pressure micromodel-microscopy system with image analysis, we studied the impact of wettability on scCO2 capillary trapping during short-term brine flooding (80 s, 8-667 pore volumes). Experiments on brine displacing scCO2 were conducted at 8.5 MPa and 45°C in water-wet (static contact angle θ = 20° ± 8°) and intermediate-wet (θ = 94° ± 13°) homogeneous micromodels under four different flow rates (capillary number Ca ranging from 9 × 10-6 to 8 × 10-4) with a total of eight conditions (four replicates for each). Brine invasion processes were recorded and statistical analysis was performed for over 2000 images of scCO2 saturations, and scCO2 cluster characteristics. The trapped scCO2 saturation under intermediate-wet conditions is 15% higher than under water-wet conditions under the slowest flow rate (Ca ˜ 9 × 10-6). Based on the visualization and scCO2 cluster analysis, we show that the scCO2 trapping process in our micromodels is governed by bypass trapping that is enhanced by the larger contact angle. Smaller contact angles enhance cooperative pore filling and widen brine fingers (or channels), leading to smaller volumes of scCO2 being bypassed. Increased flow rates suppress this wettability effect.

  19. Characterization of highly hydrophobic textiles by means of X-ray microtomography, wettability analysis and drop impact

    Science.gov (United States)

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2017-11-01

    Highly hydrophobic surfaces have been intensively investigated in the last years because their properties may lead to very promising technological spillovers encompassing both everyday use and high-tech fields. Focusing on textiles, hydrophobic fabrics are of major interest for applications ranging from clothes to architecture to environment protection and energy conversion. Gas diffusion media - made by a gas diffusion layer (GDL) and a microporous layer (MPL) - for fuel cells are a good benchmark to develop techniques aimed at characterizing the wetting performances of engineered textiles. An experimental investigation was carried out about carbon-based, PTFE-treated GDLs with and without MPLs. Two samples (woven and woven-non-woven) were analysed before and after coating with a MPL. Their three-dimensional structure was reconstructed and analysed by computer-aided X-ray microtomography (µCT). Static and dynamic wettability analyses were then carried out using a modified axisymmetric drop shape analysis technique. All the surfaces exhibited very high hydrophobicity, three of them near to a super-hydrophobic behavior. Water drop impacts were performed, evidencing different bouncing, sticking and fragmentation outcomes for which critical values of the Weber number were identified. Finally, a µCT scan of a drop on a GDL was performed, confirming the Cassie-Baxter wetting state on such surface.

  20. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    Science.gov (United States)

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society

  1. Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding

    International Nuclear Information System (INIS)

    Kim, Young-Jong; Taniguchi, Yoshinao; Murase, Kuniaki; Taguchi, Yoshihiro; Sugimura, Hiroyuki

    2009-01-01

    The surface of cyclo-olefin polymer (COP) was treated with vacuum ultraviolet (VUV) light at 172 nm wavelength to improve the wettability and adhesion properties. Through VUV treatment in air, the terminal groups of the COP surface were oxidized into oxygen functional groups, containing C-O, C=O, and COO components, making the COP surface hydrophilic. The extent of oxygenation was evaluated by XPS and FTIR-ATR spectra, and it was shown that the surface properties, hydrophilicity, and functionalization were dependent on both VUV irradiation distance and irradiation time, which have an effect on the concentration of oxygen functional groups. VUV-light treatment with a short irradiation distance was more effective in introducing oxygen functional groups.

  2. Studies on the wetting properties of plate surfaces used in pulsed extraction columns

    International Nuclear Information System (INIS)

    Tai Derong; Yang Xin; Wang Xinchang

    1991-01-01

    Many factors influence the hydrodynamic characteristics of pulsed column. Of all the factors the surface effect at liquid-liquid interfaces and liquid-solid boundaries may be the most influential factor to the state of droplets. In order to get some understanding of the behaviour of droplets in a pulsed column, the time history of wetting properties of plates under different conditions in 30% TBP (Kerosene) -HNO 3 -UO 2 (NO 3 ) 2 -H 2 O systems was studied. The results show that the hydrophilic wetting behaviour of the plates changes into the hydrophobic and neutral conditions, respectively after they have been exposed to air and put in the 'open system' within about 50 days after contacting with process solutions. For the case where the access of air is prohibited at the upper organic phase boundary by a well fitting cover, or supersonic pulse cleaning is used to the cartridge, the behaviour of the metal surface stays in the original good hydrophilic wetting condition constant with time. The uranium charged liquid systems can conserve hydrophilic behaviour better than the non-charged systems under identical conditions. It is also found that the interfacial tension is unvaried with time for saturated process systems, hence it has no effects on the variation of wettability

  3. The effect of temperature, matrix alloying and substrate coatings on wettability and shear strength of Al/Al2O3 couples

    Science.gov (United States)

    Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.

    2004-03-01

    A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.

  4. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  5. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    Science.gov (United States)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  6. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    International Nuclear Information System (INIS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-01-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  7. Inclined-wall regular micro-pillar-arrayed surfaces covered entirely with an alumina nanowire forest and their improved superhydrophobicity

    International Nuclear Information System (INIS)

    Kim, Dae-Ho; Lee, Dongyun; Cho, Chae-Ryong; Kim, Soo-Hyung; Lee, Deug-Woo; Kim, Jong-Man; Kim, Yongsung; Kang, Jae-Wook; Hong, Suck Won

    2011-01-01

    This paper reports a multiple-scale hierarchically structured superhydrophobic surface that is composed of inclined-wall regular micro-pillar arrays covered entirely with an alumina nanowire forest (ANF) to improve the surface wettability. The multiple-scaled structures were fabricated stably using a simple batch process based on an anisotropic chemical silicon etching process and a subsequent time-controlled anodic aluminum oxide technique. The surface wetting properties of the mono-roughened surfaces with inclined-wall micro-pillar arrays, which are normally in the Wenzel wetting regime, could be transitioned perfectly to the slippery Cassie mode and enhanced greatly in the Wenzel regime in cases of a high- and low-density of the micro-pillars, respectively, by easily amplifying the intrinsic contact angle through the entire coverage of the ANF on the micro-roughened surfaces. The wettability of the proposed multiple-scaled surfaces could also be predicted using analytic surface models and the experimental results agreed greatly with the wetting trends estimated theoretically due to the geometrical regularity of the base micro-structures

  8. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller

    2016-06-01

    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  9. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  10. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  11. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes

    Science.gov (United States)

    Sun, Yu; Sun, Shupei; Liao, Xiaoming; Wen, Jiang; Yin, Guangfu; Pu, Ximing; Yao, Yadong; Huang, Zhongbing

    2018-05-01

    The aim of this study is to investigate the effect of different annealing temperature and atmosphere on the surface wettability retaining properties of titania nanotubes (TNs) fabricated by anodization. The TNs morphology, crystal phase composition and surface elemental composition and water contact angle (WCA) were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle instrument, respectively. After the samples annealed at 200 °C, 450 °C, 850 °C have been stored in air for 28 days, the WCAs increase to 31.7°, 21.1° and 110.5°, respectively. The results indicate that crystal phase composition of TNs plays an important role in surface wettability. Compared with the WCA (21.1°) of the samples annealed in air after 28 days, the WCA of samples annealed in oxygen-deficient atmosphere is lower, suggesting the contribution of oxygen vacancy in the enhanced hydrophilicity-retaining ability. Our study demonstrates that the surface hydrophilicity-retaining ability of TNs is related to the ordered nanotubular structure, crystal structure, the amount of surface hydroxyl group and oxygen vacancy defects.

  12. Irradiation influence on Mylar and Makrofol induced by argon ions in a plasma immersion ion implantation system

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, A. [Accelerators & Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); El-Saftawy, A.A., E-mail: aama1978@yahoo.com [Accelerators & Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); Aal, S.A. Abd El [Central Lab. for Elemental & Isotopic Analysis, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); Ghazaly, M. El [Physiology Department, College of Medicine, Taif University, P.O. 888, Taif (Saudi Arabia); Physics Department, Faculty of Science, Zagazig University, P.O. 44519, Zagazig (Egypt)

    2015-08-30

    Highlights: • A home-built plasma immersion ion implantation system was tested in modifying surfaces. • Wettability modifications within the energy range 10 keV implantation are not investigated elsewhere, up to our knowledge. • The wettability of Mylar and Makrofol surface was enhanced by the dual effect of ion implantation and plasma treatment. • The improved wettability was found to depend on both surface roughness and chemistry. • The adhesive bonding and surface energy of the polymers are improved. - Abstract: Mylar and Makrofol polycarbonate polymers were irradiated by Ar ions in a plasma immersion ion implantation (PIII) system. The surface wettability of both polymers was investigated by employing the contact angle method. The measured contact angles were found to depend on the surface layer properties. Good wetting surfaces were found to depend not only on surface roughness but also on its chemistry that analyzed by Fourier transform infrared (FTIR) spectroscopy. Surfaces topography and roughness was investigated and correlated to their surface energy which studied with the aid of acid-base model for evaluating the improvement of surface wettability after irradiation. PIII improves polymers surface properties efficiently in a controllable way.

  13. Effect of Calendering on Electrode Wettability in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yangping eSheng

    2014-12-01

    Full Text Available Controlling the wettability between the porous electrode and the electrolyte in lithium ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process on the wettability of anode electrodes was investigated. A graphite anode film with an as-coated thickness of 59 μm was used as baseline electrode film and was calendered to produce films with thickness ranging from 55 to 41 µm. Results show that wettability is improved by light calendering from an initial thickness of 59 μm to a calendered thickness of 53 μm where the wetting rate increased from 0.375 to 0.589 mm/s0.5. Further calendering below 53 µm resulted in a decrease in wetting rates to a minimum observed value of 0.206 mm/s0.5 at a calendered thickness of 41 μm. Under the same electrolyte, wettability of the electrode is controlled to a great extent by the pore structure in the electrode film which includes parameters such as porosity, pore size distribution, pore geometry and topology. Relations between the wetting behavior and the pore structure as characterized by mercury intrusion and electron microscopy exist and can be used to manipulate the wetting behavior of electrodes.

  14. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Faria, Amanda N. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Ramos, Ana P., E-mail: anapr@ffclrp.usp.br [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil)

    2016-05-01

    Graphical abstract: - Highlights: • CaCO{sub 3} continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO{sub 3} particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO{sub 3} deposited as thin films for this propose is unknown. Here, we report the growth of CaCO{sub 3} continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca{sup 2+}, exposed to CO{sub 2} (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO{sub 3} film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ{sub s}) were accessed. The presence of HAp increased the wettability and γ{sub s} of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO{sub 3} thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  15. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    International Nuclear Information System (INIS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-01-01

    Graphical abstract: - Highlights: • CaCO 3 continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO 3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO 3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO 3 continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca 2+ , exposed to CO 2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO 3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ s ) were accessed. The presence of HAp increased the wettability and γ s of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO 3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  16. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  17. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  18. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.

  19. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: Toward controllable oil/water separation

    KAUST Repository

    Zhang, L.

    2012-02-01

    Advanced materials with surfaces that have controllable oil wettability when submerged in aqueous media have great potential for various underwater applications. Here we have developed smart surfaces on commonly used materials, including non-woven textiles and polyurethane sponges, which are able to switch between superoleophilicity and superoleophobicity in aqueous media. The smart surfaces are obtained by grafting a block copolymer, comprising blocks of pH-responsive poly(2-vinylpyridine) and oleophilic/hydrophobic polydimethylsiloxane (i.e., P2VP-b-PDMS) on these materials. The P2VP block can alter its wettability and its conformation via protonation and deprotonation in response to the pH of the aqueous media, which provides controllable and switchable access of oil by the PDMS block, resulting in the switchable surface oil wettability in the aqueous media. On the other hand, the high flexibility of the PDMS block facilitates the reversible switching of the surface oil wettability. As a proof of concept, we also demonstrate that materials functionalized with our smart surfaces can be used for highly controllable oil/water separation processes.

  20. Wear of carbon nanotubes grafted on carbon fibers and this influence on the properties of composites materials

    Science.gov (United States)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2017-10-01

    Carbon nanotubes (CNTs) grafted on carbon surfaces can be used to reinforce composite materials. During an industrial process of CNTs production and composite processing, friction stresses will be applied on CNTs. This study showed that CNTs formed a transfer film under friction stresses and that the wear of the CNTs has no influence on the wettability of the surface, so we can predict no decrease in the properties of composites.

  1. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    Science.gov (United States)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  2. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    Science.gov (United States)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-08-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  3. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy

    International Nuclear Information System (INIS)

    Ren Yu; Wang Chunxia; Qiu Yiping

    2007-01-01

    One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%

  4. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  5. [Determination of contact angle of pharmaceutical excipients and regulating effect of surfactants on their wettability].

    Science.gov (United States)

    Hua, Dong-dong; Li, He-ran; Yang, Bai-xue; Song, Li-na; Liu, Tiao-tiao; Cong, Yu-tang; Li, San-ming

    2015-10-01

    To study the effects of surfactants on wettability of excipients, the contact angles of six types of surfactants on the surface of two common excipients and mixture of three surfactants with excipients were measured using hypsometry method. The results demonstrated that contact angle of water on the surface of excipients was associated with hydrophilcity of excipients. Contact angle was lowered with increase in hydrophilic groups of excipient molecules. The sequence of contact angle from small to large was starch contact angle of excipients, and their abilities to lower contact angle varied. The results of the present study offer a guideline in the formulation design of tablets.

  6. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff

    Science.gov (United States)

    Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene

    1979-01-01

    This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...

  7. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    Science.gov (United States)

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  8. Development of a Freeze-Dried Fungal Wettable Powder Preparation Able to Biodegrade Chlorpyrifos on Vegetables

    Science.gov (United States)

    Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758

  9. Impact of Pore-Scale Wettability on Rhizosphere Rewetting

    Directory of Open Access Journals (Sweden)

    Pascal Benard

    2018-04-01

    Full Text Available Vast amounts of water flow through a thin layer of soil around the roots, the rhizosphere, where high microbial activity takes place—an important hydrological and biological hotspot. The rhizosphere was shown to turn water repellent upon drying, which has been interpreted as the effect of mucilage secreted by roots. The effects of such rhizosphere water dynamics on plant and microbial activity are unclear. Furthermore, our understanding of the biophysical mechanisms controlling the rhizosphere water repellency remains largely speculative. Our hypothesis is that the key to describe the emergence of water repellency lies within the microscopic distribution of wettability on the pore-scale. At a critical mucilage content, a sufficient fraction of pores is blocked and the rhizosphere turns water repellent. Here we tested whether a percolation approach is capable to predict the flow behavior near the critical mucilage content. The wettability of glass beads and sand mixed with chia seed mucilage was quantified by measuring the infiltration rate of water drops. Drop infiltration was simulated using a simple pore-network model in which mucilage was distributed heterogeneously throughout the pore space with a preference for small pores. The model approach proved capable to capture the percolation nature of the process, the sudden transition from wettable to water repellent and the high variability in infiltration rates near the percolation threshold. Our study highlights the importance of pore-scale distribution of mucilage in the emergent flow behavior across the rhizosphere.

  10. Controllable Self-Assembly of Amphiphilic Zwitterionic PBI Towards Tunable Surface Wettability of the Nanostructures.

    Science.gov (United States)

    Ye, Yong; Lü, Baozhong; Cheng, Wenyu; Wu, Zhen; Wei, Jie; Yin, Meizhen

    2017-05-04

    Amphiphilic molecules have received wide attention as they possess both hydrophobic and hydrophilic properties, and can form diverse nanostructures in selective solvents. Herein, we report an asymmetric amphiphilic zwitterionic perylene bisimide (AZP) with an octyl chain and a zwitterionic group on the opposite imide positions of perylene tetracarboxylic dianhydride. The controllable nanostructures of AZP with tunable hydrophilic/hydrophobic surface have been investigated through solvent-dependent amphiphilic self-assembly as confirmed by SEM, TEM, and contact angle measurements. The planar perylene core of AZP contributes to strong π-π stacking, while the amphiphilic balance of asymmetric AZP adjusts the self-assembly property. Additionally, due to intermolecular π-π stacking and solvent-solute interactions, AZP could self-assemble into hydrophilic microtubes in a polar solvent (acetone) and hydrophobic nanofibers in an apolar solvent (hexane). This facile method provides a new pathway for controlling the surface properties based on an asymmetric amphiphilic zwitterionic perylene bisimide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.

    Science.gov (United States)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Zhao, Xuetong; Zhuang, Aoyun; Yuan, Yuan

    2017-01-01

    Ice accumulation on insulators affected the safety of power system and may inflict serious consequences such as insulator flashover accidents and power failure. This article reported a simple method to prepare anti-icing polydimethylsiloxane superhydrophobic surface on glass by utilizing nano-particle filling method. The effect of concentration of silica nanoparticles on superhydrophobicity of the samples was investigated. The wettability, surface morphology and anti-icing property of the as-prepared superhydrophobic surface were characterized by corresponding methods. Results show that the as-prepared surface with addition amount of 7 g silica nanoparticles exhibited self-cleaning property and excellent superhydrophobicity with a contact angle of 165.7 ± 2.4° and a sliding angle of 3.8°. It was found that the ice formation was delayed for 29 min at −5 °C. Moreover, the as-prepared superhydrophobic surface showed superhydrophobicity in the pH range of 1–13 and exhibited excellent drop impact stability. The as-prepared superhydrophobic surface may be suitable for applications in cold regions owing to its flexibility, durability and anti-icing property.

  12. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoduo; Xiong, Dangsheng, E-mail: xiongds@163.com; Wang, Kun; Wang, Nan

    2017-06-01

    The keys of biomaterials application in artificial joints are good hydrophilicity and wear resistance. One kind of the potential bio-implant materials is polyetheretherketone (PEEK), which has some excellent properties such as non-toxic and good biocompatibility. However, its bioinert surface and inherent chemical inertness hinder its application. In this study, we reported an efficient method for improving the surface wettability and wear resistance for PEEK, a layer of acrylic acid (AA) polymer brushes on PEEK surface was prepared by UV-initiated graft polymerization. The effects of different grafting parameters (UV-irradiation time/AA monomer solution concentration) on surface characteristics were clearly investigated, and the AA-g-PEEK specimens were examined by ATR-FTIR, static water contact angle measurements and friction tests. Our results reveal that AA can be successfully grafted onto the PEEK surface after UV irradiation, the water wettability and tribological properties of AA-g-PEEK are much better than untreated PEEK because that AA is a hydrophilic monomer, the AA layer on PEEK surface can improve its bearing capacity and reduce abrasion. This detailed understanding of the grafting parameters allows us to accurately control the experimental products, and this method of surface modification broadens the use of PEEK in orthopedic implants. - Highlights: • Acrylic acid was successful grafted onto PEEK substrate by UV-initiated graft polymerization. • AA-g-PEEK owned better hydrophilicity than untreated PEEK. • Wear resistance of AA-g-PEEK were significantly improved due to AA brushes could bear high contact stress.

  13. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Skovbjerg, Lone Lindbæk; Stipp, Susan Louise Svane

    2009-01-01

    been drilled in a water-bearing formation. At this site, the chalk has never seen oil, though at other locations, the same stratigraphic horizon with the same rock properties is known to be a productive oil reservoir. Thus the properties of the investigated particle surfaces are inherent to the chalk......Ultimate Oil recovery from chalk reservoirs is limited by many factors - including the grain size and the surface properties of the small mainly biogenic calcite particles that chalk is made off . Wettability, the tendency for water or oil to spread over a surface, of the particle surfaces is one...... of the controlling factors for the effectiveness of water flooding, one of the most common methods to improve oil recovery in Chalk reservoirs. Understanding surface wetting and its variability at scales smaller than the pore dimension will potentially provide clues for more effective oil production methods. We used...

  14. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  15. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  16. Maximum spreading of liquid drop on various substrates with different wettabilities

    Science.gov (United States)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  17. 4H-SiC surface energy tuning by nitrogen up-take

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  18. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    Science.gov (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  19. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  20. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.

    Science.gov (United States)

    Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming

    2018-04-06

    To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.

  1. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  2. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel; Aifantis, Katerina E

    2011-01-01

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  3. Surface modification of PTFE sheet by synchrotron radiation in the soft X-ray region

    International Nuclear Information System (INIS)

    Kato, Y.; Kanda, K.; Haruyama, Y.; Matsui, S.

    2004-01-01

    Full text: The surface properties of poly (tetrafluoroethylene) (PTFE) are changed by the exposure to synchrotron radiation (SR). We succeeded in controlling the wettability of the PTFE surface from hydrophobic to hydrophilic by varying the substrate temperature during the SR irradiation and found that the wettability was ascribable to microstructure and chemical composition of surface.In these previous works, oxygen atoms were found to inhabit on the hydrophobic surface of PTFE. In this study, we investigated the surface modification of PTFE from the SR exposure experiment under the O 2 gas atmosphere. The SR exposure to the PTFE sheet was carried out at beamline 6 (BL6) of the New- SUBARU. The PTFE sheet was irradiated to the white beam, ranging 50-1000 eV at BL6 at room temperature. The gas cell was mounted at the irradiation chamber. The O 2 gas pressure in the gas cell can be maintained at about 0.20 Pa during the SR exposure using 5mm φ hole window. The wettability of PTFE surface was evaluated by the contact angle of a small water drop. Contact angle was measured with the water drop of 1 μl using the contact angle meter. Fig.1 shows the SR dose dependence of contact angle of PTFE surface under the O 2 gas atmosphere and under the vacuum. Contact angle decreased monotonically with SR dose. The decrease rate of contact angle of the PTFE surface irradiated under the O 2 gas atmosphere was larger than that of the PTFE surface irradiated without O 2 gas. Therefore, the combination of O atom to the PTFE surface was enhanced by the O 2 gas in the reaction region. These results suggested that the bonding of O atom on the hydrophobic PTFE surface is dominantly produced in the sample chamber during SR irradiation, but not in the air atmosphere after the SR irradiation

  4. Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity

    International Nuclear Information System (INIS)

    Steele, Adam; Bayer, Ilker; Moran, Stephen; Cannon, Andrew; King, William P.; Loth, Eric

    2010-01-01

    A conformal coating process is presented to transform surfaces with inherent micro-morphology into superhydrophobic surfaces with hierarchical surface structure using wet chemical spray casting. Nanocomposite coatings composed of zinc oxide nanoparticles and organosilane quaternary nitrogen compound are dispersed in solution for application. The coating is applied to a micro-patterned polydimethylsiloxane substrate with a regular array of cylindrical microposts as well as a surface with random micro-structure for the purpose of demonstrating improved non-wettability and a superhydrophobic state for water droplets. Coating surface morphology is investigated with an environmental scanning electron microscope and surface wettability performance is characterized by static and dynamic contact angle measurements.

  5. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  6. The role of seeding in the morphology and wettability of ZnO nanorods films on different substrates

    International Nuclear Information System (INIS)

    Rodríguez, Juan; Onna, Diego; Sánchez, Luis; Marchi, M. Claudia; Candal, Roberto; Ponce, Silvia; Bilmes, Sara A.

    2013-01-01

    Spray pyrolysis (SP) and spray-gel (SG) techniques were used to deposit ZnO seeds on Fluor doped tin oxide glasses (FTO), heated at 350 °C or 130 °C, and PET heated at 90 °C. The effect of seeding on the morphology and wettability of ZnO nanorods (NRs) films grown by wet chemical methods was analyzed. The morphology and wettability of ZnO NRs films depend on the seeding process. SP seeds formed from zinc acetate dissolved in water ethanol mixtures yield vertically aligned ZnO NRs, whose diameters and dispersion size are determined by the ethanol/water ratio in the precursor solution. SG seeds formed from a methanol ZnO sol produce a ring patterned distribution on the FTO substrate. The drying of ZnO sol drops impinging on the substrate produces high density of seeds along a ring yielding textured films with NRs vertically oriented on the rings and multi-oriented outside them. This effect was not observed when ZnO NRs grown onto the ZnO/PET substrate, however rod diameter is related with the density of seeds. This way to control the density and diameter of NRs deposited onto a substrate modify the wettability and opens new possibilities for the design of tailored nanomaterials for photochemical applications. Both type of NRs films showed a strong luminescence emission in the UV and in the blue, associated with surface and intrinsic defects.

  7. The role of seeding in the morphology and wettability of ZnO nanorods films on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Juan [Facultad de Ciencias, Universidad Nacional de Ingeniería, P.O. Box 31-139, Lima 31, Perú (Peru); Onna, Diego [DQIAQF-INQUIMAE, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, 1428 Buenos Aires (Argentina); Sánchez, Luis [Facultad de Ciencias, Universidad Nacional de Ingeniería, P.O. Box 31-139, Lima 31, Perú (Peru); Marchi, M. Claudia [DQIAQF-INQUIMAE, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, 1428 Buenos Aires (Argentina); Centro de Microscopias Avanzadas, FCEyN-Universidad ed Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina); Candal, Roberto, E-mail: rjcandal@gmail.com [DQIAQF-INQUIMAE, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, 1428 Buenos Aires (Argentina); ECyT, 3iA, Universidad Nacional de San Martín, Martín de Irigoyen No 3100 (1650), San Martín, Pcia de Buenos Aires (Argentina); Ponce, Silvia [Universidad de Lima, Av. Javier Prado Este s/n, Monterrico, Lima 33, Perú (Peru); Bilmes, Sara A. [DQIAQF-INQUIMAE, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, 1428 Buenos Aires (Argentina)

    2013-08-15

    Spray pyrolysis (SP) and spray-gel (SG) techniques were used to deposit ZnO seeds on Fluor doped tin oxide glasses (FTO), heated at 350 °C or 130 °C, and PET heated at 90 °C. The effect of seeding on the morphology and wettability of ZnO nanorods (NRs) films grown by wet chemical methods was analyzed. The morphology and wettability of ZnO NRs films depend on the seeding process. SP seeds formed from zinc acetate dissolved in water ethanol mixtures yield vertically aligned ZnO NRs, whose diameters and dispersion size are determined by the ethanol/water ratio in the precursor solution. SG seeds formed from a methanol ZnO sol produce a ring patterned distribution on the FTO substrate. The drying of ZnO sol drops impinging on the substrate produces high density of seeds along a ring yielding textured films with NRs vertically oriented on the rings and multi-oriented outside them. This effect was not observed when ZnO NRs grown onto the ZnO/PET substrate, however rod diameter is related with the density of seeds. This way to control the density and diameter of NRs deposited onto a substrate modify the wettability and opens new possibilities for the design of tailored nanomaterials for photochemical applications. Both type of NRs films showed a strong luminescence emission in the UV and in the blue, associated with surface and intrinsic defects.

  8. Wettability of TiAlN films by molten aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ping [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan) and Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun, 130025 (China)]. E-mail: shenping@jlu.edu.cn; Nose, Masateru [Department of Industrial Art and Craft, Takaoka National College, 180 Futagami-machi, Takaoka City, Toyama 933-8588 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan); Nogi, Kiyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan)

    2006-12-05

    In this study, we made an attempt to measure the wettability of the TiAlN films by molten Al at temperatures between 1073 K and 1273 K using an improved sessile drop method. The true contact angles cannot be obtained for the films deposited on the stainless steel and tungsten substrates due to considerable interdiffusion or reaction between molten Al and the substrate constituents. For the films deposited on the stable alumina single crystals and in contact with clean Al, the true contact angles are possible in the range of 80-100 deg. at 1173-1273 K and the work of adhesion is 0.77-1.08 J m{sup -2}. In the case of oxidized Al, typically at T < 1173 K, however, the wettability and the adhesion are significantly decreased.

  9. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  10. Are superhydrophobic surfaces best for icephobicity?

    Science.gov (United States)

    Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos

    2011-03-15

    Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness.

  11. Surface modification of gutta-percha cones by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Maíra, E-mail: maira@metalmat.ufrj.br [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Menezes, Marilia Santana de Oliveira [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Gomes, Brenda Paula Figueiredo de Almeida [Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP (Brazil); Barbosa, Carlos Augusto de Melo [Department of Clinical Dentistry, Endodontic Division, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Athias, Leonardo [Social Indicators Division, Brazilian Institute of Geography and Statistics, Rio de Janeiro, RJ (Brazil); Simão, Renata Antoun [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil)

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  12. Surface modification of gutta-percha cones by non-thermal plasma

    International Nuclear Information System (INIS)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-01-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  13. Surface modification of polymer nanofibres by plasma treatment

    International Nuclear Information System (INIS)

    Wei, Q.F.; Gao, W.D.; Hou, D.Y.; Wang, X.Q.

    2005-01-01

    Polymer nanofibres have great potential for technical applications in biomaterials, filtration, composites and electronics. The surface properties of nanofibres are of importance in these applications. In this study, cold gas plasma treatment was used to modify the surface of polyamide 6 nanofibres prepared by electrospinning. The chemical nature of the nanofibre surfaces was examined by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was employed to study the surface characteristics of the fibres. The AFM results indicate a significant change in the morphology of the fibre surface before and after plasma treatment. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behaviour of the fibres. In the ESEM, relative humidity was raised to 100% to facilitate the water condensation onto fibre surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of the polyamide 6 nanofibres

  14. Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility.

    Science.gov (United States)

    Das, Punamshree; Ojah, Namita; Kandimalla, Raghuram; Mohan, Kiranjyoti; Gogoi, Dolly; Dolui, Swapan Kumar; Choudhury, Arup Jyoti

    2018-03-22

    In this paper, surface of electrospun PVA/Cs nanofibers is modified using dielectric barrier discharge (DBD) plasma and the relationship between the observed mechanical properties and biocompatibility of the nanofibers and plasma-induced surface properties is discussed. Plasma treatment of electrospun PVA/Cs nanofibers is carried out with both inert (argon, Ar) and reactive (oxygen, O 2 ) gases at atmospheric pressure. Incorporation of oxygen-containing polar functional groups on the surface of Ar-plasma treated (PVA/Cs/Ar) and O 2 -plasma treated (PVA/Cs/O 2 ) nanofibers and increase in surface roughness contribute to the improvement of surface wettability and the decrease of contact angle with water of the nanofibers. Both PVA/Cs/Ar and PVA/Cs/O 2 nanofibers show high tensile strength (11.6-15.6%) and Young's modulus (33.8-37.3%) as compared to the untreated one. Experimental results show that in terms of haemolytic activity the PVA/Cs/Ar and PVA/Cs/O 2 nanofibers do not cause structural changes of blood cells and meet the biocompatibility requirements for blood-contacting polymeric materials. MTT cell viability results further reveals improvement in biocompatibility of PVA/Cs nanofibers after Ar and O 2 plasma treatment. The results suggest that DBD plasma treated electrospun PVA/Cs nanofibers have the potential to be used as wound dressing and scaffolds for tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    Science.gov (United States)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  16. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    International Nuclear Information System (INIS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K.S.S.; Majali, A.B.; Tikku, V.K.

    2002-01-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer

  17. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  18. Numerical Study of the Influence of Cavity on Immiscible Liquid Transport in Varied-Wettability Fractures

    Directory of Open Access Journals (Sweden)

    Zhi Dou

    2015-01-01

    Full Text Available Field evidence indicates that cavities often occur in fractured rocks, especially in a Karst region. Once the immiscible liquid flows into the cavity, the cavity has the immiscible liquid entrapped and results in a low recovery ratio. In this paper, the immiscible liquid transport in cavity-fractures was simulated by Lattice Boltzmann Method (LBM. The interfacial and surface tensions were incorporated by Multicomponent Shan-Chen (MCSC model. Three various fracture positions were generated to investigate the influence on the irreducible nonwetting phase saturation and displacement time. The influences of fracture aperture and wettability on the immiscible liquid transport were discussed and analyzed. It was found that the cavity resulted in a long displacement time. Increasing the fracture aperture with the corresponding decrease in displacement pressure led to the long displacement time. This consequently decreased the irreducible nonwetting phase saturation. The fracture positions had a significant effect on the displacement time and irreducible saturation. The distribution of the irreducible nonwetting phase was strongly dependent on wettability and fracture position. Furthermore, this study demonstrated that the LBM was very effective in simulating the immiscible two-phase flow in the cavity-fracture.

  19. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711, a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM. The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.

  20. Absorption mechanism study of benzoic acid on calcite. Influence on the wettability; Etude du mecanisme d`absorption de l`acide benzoique sur la calcite. Incidence sur la mouillabilite

    Energy Technology Data Exchange (ETDEWEB)

    Legens, Ch

    1997-12-03

    A pure carbonate rock is strongly water-wet whereas oil accumulations study shows that most of carbonate reservoirs are oil-wet or of mixed-wettability. This is one of the main difficulties to extract crude oil. This change of behavior is due to the adsorption of some crude oil compounds on the mineral surface. We have mainly studied the interactions between acid molecules by adsorption on a calcite powder in an organic phase (benzoic acid and lauric acid) and in an aqueous phase (benzoic acid and lauric sodium salt). The technics which enabled us to define and characterize adsorption are thermogravimetry infrared diffuse reflection and thermal analysis with controlled kinetic linked to a mass spectrometer. Molecular modelling calculations have completed these analysis. It has been showed that when crude oil fills the biggest pores of the reservoir rock, the aqueous film is unstable and acids adsorb via ionic bonds on mineral calcium ions. Wettability is evaluated thanks to contact angle measurements of a water droplet deposited on a compacted powder pellet. Calcite wettability changes were all the greater as hydro-carbonated chains were longer, as it confers molecule hydrophobia. It has been also investigated acid molecules diffusion from the organic to the aqueous phase which saturates the smallest pores. Molecules which are able to diffuse from the first to the second medium do not adsorb on the surface. As a consequence, carbonate rock wettability changes require a direct contact between crude oil and mineral that involves aqueous film instability. (author) 128 refs.

  1. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Madhurima, V., E-mail: madhurima.v@gmail.com [Department of Physics, Central University of Tamil Nadu, Thiruvarur-610004 (India)

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  2. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  3. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  4. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    International Nuclear Information System (INIS)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-01-01

    Graphical abstract: - Highlights: • Both O_2 and N_2 plasma increased cotton surface wettability and higher K/S. • SF6 plasma gave hydrophobicity on cotton surface and increased contact angle to 138°. • Plasma treatment on cotton fabric produced surface roughness. • XPS confirmed the generation of new functional groups on cotton fabric. • Wettability and surface roughness controlled K/S and good ink adhesion. - Abstract: Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O_2), nitrogen (N_2) and sulfur hexafluoride (SF_6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O_2 plasma treatments produced new functional groups, −O−C−O/C=O and O−C=O while N_2 plasma treatments produced additionally new functional groups, C−N and O=C−NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF_6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF_6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher

  5. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    Science.gov (United States)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  6. Synchrotron radiation effect in the soft x-ray region on the surface properties of pyromellitic dianhydride-oxydianline polyimide

    International Nuclear Information System (INIS)

    Kato, Yuri; Kanda, Kazuhiro; Haruyama, Yuichi; Matsui, Shinji

    2004-01-01

    The surface modification of a polyimide (PI) sheet using synchrotron radiation (SR) was carried out. The PI sheet was irradiated to white radiation ranging between 50-1000 eV in a vacuum chamber. The contact angle of the PI surface with a water droplet was found to decrease from 75deg to 58deg by the SR irradiation. The variation of chemical components of the PI surface was studied using X-ray photoelectron spectroscopy (XPS). The ratio of peak intensity from the Ols orbital to that from the Cls orbital increased remarkably by SR irradiation. The increase of wettability on the PI surface was ascribable to the production of an O-rich surface by SR irradiation in the soft X-ray region. (author)

  7. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment

    International Nuclear Information System (INIS)

    Zhang, E W; Wang, Y B; Zheng, Y F; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Wei, S C

    2011-01-01

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  8. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E W; Wang, Y B; Zheng, Y F [State Key Laboratory for Turbulence and Complex System, Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S C, E-mail: enwei@pku.edu.cn, E-mail: yanbo.pku@pku.edu.cn, E-mail: shuaikegang@gmail.com, E-mail: soarfgoal@gmail.com, E-mail: norice86@163.com, E-mail: chengyan@pku.edu.cn, E-mail: xxiaoling11@hotmail.com, E-mail: yfzheng@pku.edu.cn, E-mail: weishicheng99@163.com [Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing 100081 (China)

    2011-04-15

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  9. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  10. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  11. Surface characterization of polyethylene terephthalate/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Moradian, Siamak [Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohamad-Esmail [Department of Textile, Islamic Azad University, Yazd Branch, Yazd (Iran, Islamic Republic of)

    2010-02-15

    Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.

  12. Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching

    Science.gov (United States)

    Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  13. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  14. Droplet motion in one-component fluids on solid substrates with wettability gradients

    KAUST Repository

    Xu, Xinpeng

    2012-05-11

    Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the

  15. Droplet motion in one-component fluids on solid substrates with wettability gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the

  16. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  17. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-01-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe 3+ , Al 3+ , Ca 2+ , Ba 2+ and Sr 2+ )-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. (paper)

  18. CO2 interfacial properties: application to multiphase flow at reservoir conditions

    International Nuclear Information System (INIS)

    Chalbaud, C.

    2007-07-01

    In this work we deal with the interfacial properties of CO 2 at reservoir conditions with a special interest on deep saline aquifers. Each chapter of this dissertation represents a different physical scale studied with different experimental devices and simulation tools. The results obtained in the first part of this study represent a complete data set of brine-CO 2 interfacial tension at reservoir conditions. A semi-analytical equation is proposed in order to facilitate the work of reservoir engineers. The second deals with the interfacial properties at the pore scale using glass micro-models at different wettability conditions. This part shows the wetting behavior of CO 2 on hydrophobic or oil-wet solid surfaces. A pore network model was used for the interpretation and exploitation of these results. The third part corresponds to two different experimental approaches at the core scale at different wettability conditions associated to a modelling at flue Darcy scale. This part is a significant contribution to the validation of COORES compositional reservoir simulator developed by IFP. It has also allow us to estimate multiphase properties, Pc and kr, for brine-CO 2 systems at reservoir conditions. This study presents the necessary scales to model CO 2 storage in deep saline aquifers. (author)

  19. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    Science.gov (United States)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  20. Changes in wetting properties of silica surface treated with DPPC in the presence of phospholipase A{sub 2} enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Wiacek, Agnieszka Ewa, E-mail: a.wiacek@poczta.umcs.lublin.pl [Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin (Poland)

    2010-10-01

    Wetting properties of silica plates contacted with dipalmitoylphosphatidylcholine (DPPC) or DPPC/enzyme (phospholipase PLA{sub 2}) in NaCl solution were determined by thin layer wicking and with a help of Washburn equation. The wicking experiments were performed both for bare plates and the silica plates precontacted overnight with the probe liquid saturated vapors the silica plates, as well as untreated and DPPC (or DPPC/enzyme) treated. Adsorption of DPPC on original silica plates increases a bit hydrophobic character of silica surface in such a way that hydrocarbon chains are directed outwards and the polar part towards the silica surface. However, after the enzyme action the products of DPPC hydrolysis by PLA{sub 2} (palmitic acid and lysophosphatidylcholine) increase again hydrophilic character of silica surface (an increase in acid-base interactions, {gamma}{sub s}{sup AB}). The changes of silica surface wettability are evidently dependent on the time of enzyme contacting with DPPC in NaCl solution. Although, the changes of total surface free energy of silica after treatment with DPPC/enzyme solution are minor about 2-6 mJ/m{sup 2}, the changes of the electron-donor ({gamma}{sub s}{sup -}) and Lifshitz-van der Waals ({gamma}{sub s}{sup LW}) component of the surface free energy are noticeable. Despite, these results are somehow preliminary, it seems that thin layer wicking method is an interesting tool for investigation of the effect of adsorbed DPPC on hydrophobicity/hydrophilicity of silica surface and influence of enzyme PLA{sub 2} action.

  1. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  2. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    International Nuclear Information System (INIS)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z 1 ) and nanograins by SILAR (Z 2 ). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10 2 Ω cm) is lower than that of SILAR deposited films (10 5 Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method

  3. ``Smart'' Surfaces of Polymer Brushes

    Science.gov (United States)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  4. Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Toth, A., E-mail: totha@chemres.hu [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary); Veres, M. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kereszturi, K.; Mohai, M.; Bertoti, I.; Szepvoelgyi, J. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary)

    2011-10-01

    The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and I{sub D}/I{sub G} ratio and between chroma and I{sub D}/I{sub G} ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp{sup 2} carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the I{sub D}/I{sub G} ratio and inverse correlations between surface energy and I{sub D}/I{sub G} ratio and between dispersive component of surface energy and I{sub D}/I{sub G} ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp{sup 2} carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the {pi} {yields} {pi}* shake-up satellite of the C 1s peak.

  5. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  6. Effect of Water Glass Modification on Its Viscosity and Wettability of Quartz Grains

    Directory of Open Access Journals (Sweden)

    A. Kmita

    2012-09-01

    Full Text Available The aim of the present study was to develop a modifier for water glass. The method of thermal generation of metal oxide nanoparticleswas adapted and used in the research. Nanoparticles of ZnO from the thermal decomposition of basic zinc carbonate were used. A methodfor the modifier introduction was developed, and the effect of modifier content and organic solvent type on the physico-chemicalproperties of binder (viscosity and quartz wettability was determined. Binder viscosity was examined from the flow curves plotted with the help of a RHEOTEST 2 rotational rheometer equipped with proper software. Quartz wettability was determined examining timerelated changes in the value of the contact angle in a quartz-binder system, until full stabilisation of the angle value has been achieved.Binder modification was carried out on sodium water glass designated as R"145". The water glass modifiers were suspensions of ZnOnanoparticles in propanol and methanol at a fixed concentration of c = 0.3 M and with the size of nanoparticles comprised in a range of. Water glass modification with the suspensions of ZnO nanoparticles in methanol and propanol showed the effect ofmodifier on the water glass viscosity and quartz wettability. This effect depends on the type of alcohol used. The ZnO suspension inpropanol (alcohol with a longer hydrocarbon chain affects more strongly the viscosity of binder and quartz wettability than the methanol suspension.

  7. Leaf wettability as a measure of air pollution effects

    International Nuclear Information System (INIS)

    Jagels, R.

    1994-01-01

    Droplet contact angle (DCA) is a technique that can be used to measure wettability and, in turn, provide an assessment of the physical and chemical characteristics of a surface. As adapted to plant bioligy, DCA measurements have been useful in characterizing changes in the type or condition of leaf epicuticular waxes. Environmental as well as temporal factors can modify the biophysical features of epicuticular wax surfaces and thereby affect DCA measurements. An understanding of the role of these non-pollutant factors is necessary before pollution damage can be accurately assessed. Controlled chamber experiments and field pollutant gradient studies have shown that DCA is generally reduced when plants are exposed to air pollutants such as ozone, So 2 , and acidic fog. In some cases, environmental influences, such as temperature, have been separated from the pollutant effect. However, mixtures of anthropogenic pollutants or anthropogenic and natural compounds (sea salts, dust particles) which are often present in field studies can confound the interpretation of DCA measurements. A few studies that attempt to separate these factors have been conducted, but more are needed before the potential for using DCA measurements in long-term bioindicator studies can be fully realized. Some studies have demonstrated that pollutants do not necessarily affect leaf surfaces in a uniform pattern, but rather are specific for certain structures such as stomates or trichomes; deposition levels can also be different on ad-and abaxial surfaces. The degree to which these inhomogeneities of action can affect DCA measurements needs further study. (orig.)

  8. Corrosion, wettability and thrombogenicity investigation of ion beam modified HAP/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Shikha, Deep; Shahid, Md.; Jha, Ush [Department of Chemistry, BIT Mesra, Ranchi 835215 (India); Sinha, Sanjay Kumar, E-mail: sksinha@bitmesra.ac.in [Department of Physics, BIT Mesra, Ranchi 835215 (India); Reddy, V. Raghavendra [UGC-DAE Consortium for Scientific Research Indore (India); Ojha, Sunil; Kumar, P.; Kanjilal, Dinakar [IUAC, Aruna Asaf Ali road, New Delhi (India)

    2015-08-01

    Hydroxyapatite Ca{sub 10}(PO4){sub 6}(OH){sub 2}, is a biosensitive ceramic which promotes bone growth in human fluid. However due to its weak mechanical strength it is often coated on chemically inert material such as alumina. In the present work hydroxyapatite (HAP) of thickness 1 μm is deposited on alumina using sol–gel process and the stoichiometric ratio of Ca:P = 1.67 is maintained. Surface property of HAP is further improved by Ar{sup +} ion implantation. The samples were irradiated with 1.4 MeV Ar{sup +} ions with fluence ranging from 5 × 10{sup 14} to 1 × 10{sup 16} ions/cm{sup 2}. After irradiation, the surface is characterized using Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), electron dispersive X-ray spectroscopy (EDX), Glancing incidence X-ray diffraction (GXRD) and Rutherford backscattering Spectroscopy (RBS) techniques. Corrosion resistances and impedance analysis were carried out in Ringer solution. RBS and EDX were used to confirm the stoichiometric ratio of the film. Compound formation before and after ion implantation was studied using GXRD. Nanohardness, wettability and thrombogenicity of all the samples were studied. Correlation among surface morphology, improvement in corrosion resistance, hardness, wetability and thrombogenicity before and after ion implantation are discussed in this paper. - Highlights: • .People have worked on HAP coated on metallic alloy and even alumina but the characterization done here are all different. • Throbmobogenicity, corrosion resistance and wetability have all been carried out first time. • Improvement of Surface and interface using energetic inert ions like argon is carried out first time. • The best ion fluence for orthopaedic implants is proposed.

  9. Fabrication of highly hydrophobic two-component thermosetting polyurethane surfaces with silica nanoparticles

    Science.gov (United States)

    Yang, Guang; Song, Jialu; Hou, Xianghui

    2018-05-01

    Highly hydrophobic thermosetting polyurethane (TSU) surfaces with micro-nano hierarchical structures were developed by a simple process combined with sandpaper templates and nano-silica embellishment. Sandpapers with grit sizes varying from 240 to 7000 grit were used to obtain micro-scale roughness on an intrinsic hydrophilic TSU surface. The surface wettability was investigated by contact angle measurement. It was found that the largest contact angle of the TSU surface without nanoparticles at 102 ± 3° was obtained when the template was 240-grit sandpaper and the molding progress started after 45 min curing of TSU. Silica nanoparticles modified with polydimethylsiloxane were scattered onto the surfaces of both the polymer and the template to construct the desirable nanostructures. The influences of the morphology, surface composition and the silica content on the TSU surface wettability were studied by scanning electron microscopy (SEM), attenuated total reflection (ATR) infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surface of the TSU/SiO2 nanocomposites containing 4 wt% silica nanoparticles exhibited a distinctive dual-scale structure and excellent hydrophobicity with the contact angle above 150°. The mechanism of wettability was also discussed by Wenzel model and Cassie-Baxter model.

  10. Influence of extractives on wood gluing and finishing- a review

    Science.gov (United States)

    Chung-Yun Hse; Mon-Lin Kuo

    1988-01-01

    Migration of extractives to the wood surface alters the properties of wood as an adherent. Extractives change the wettability and the curing properties of adhesives. A desirable wettability-permeability relationship is sometimes affected by extractives, thus reducing the gluebond strength and performance. Past efforts to determine which of the components of extractives...

  11. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  12. Surface changes of biopolymers PHB and PLLA induced by Ar{sup +} plasma treatment and wet etching

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar{sup +} plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers – polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  13. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  14. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    Energy Technology Data Exchange (ETDEWEB)

    Linch, Heidi Sue [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  15. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Dirscherl, Kai; Jørgensen, Bodil

    2017-01-01

    that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell...... wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96....... The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more...

  16. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    Science.gov (United States)

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces.

  17. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  18. Effect and origin of the structure of hyperbranched polysiloxane on the surface and integrated performances of grafted Kevlar fibers

    Science.gov (United States)

    Zhang, Hongrui; Yuan, Li; Liang, Guozheng; Gu, Aijuan

    2014-11-01

    Four hyperbranched polysiloxanes (HPSis) with different molecular weights and concentration ratios of double bonds to epoxy groups (1:6.5-1:0.7) were synthesized and characterized. Each HPSi was facilely grafted onto surfaces of Kevlar fibers (KFs) to develop novel modified fibers (HPSi-g-KFs). The structures and integrated properties of HPSi-g-KFs as well as the origin behind were systematically investigated. Results show that HPSi-g-KFs have much rougher surface morphologies, and their surface free energies are as high as about 1.7 times that of KFs, showing greatly improved wettability. Besides, HPSi-g-KFs have excellent UV resistance after 168 h UV irradiation, the retentions of tenacity, energy to break, modulus and break extension are as high as 92, 86, 95 and 96%, respectively, while those of KFs are 66-85%. In addition, compared with KFs, HPSi-g-KFs have higher tensile tenacity and energy to break with similar modulus and break extension, much better thermal stability and flame retardancy. The nature of HPSi has different influence on different property of fibers, the HPSi with smaller molecular weight and more epoxy groups is beneficial to prepare HPSi-g-KFs with better wettability, while that with larger molecular weight and more double bonds tends to prepare HPSi-g-KF with better flame retardancy and UV resistance.

  19. Oxygen influence on ceramics wettability by liquid metals: Ag/{alpha}-Al{sub 2}O{sub 3}-Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Muolo, M.L.; Valenza, F. [Institute for Energetics and Interphases - IENI CNR, via de Marini 6, 16149 Genova (Italy); Passerone, A. [Institute for Energetics and Interphases - IENI CNR, via de Marini 6, 16149 Genova (Italy)], E-mail: a.passerone@ge.ieni.cnr.it; Passerone, D. [Swiss Federal Lab. for Mater. Testing and Res. (EMPA) - Uberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2008-11-15

    A renewed interest in the effects of oxygen on the wetting of solid oxides has recently risen in connection to the development of the technique of 'air brazing' which makes use of the strong effect of oxygen to increase the wettability of oxides by means of processes running in air or in atmospheres with high oxygen content. Adsorption of oxygen not only at the liquid-vapour surface but also at the solid-liquid interface has been postulated by many previous researches, mainly on the basis of thermodynamic considerations. Along the same line, new results of the wetting behaviour in the system Ag/{alpha}-Al{sub 2}O{sub 3} as a function of oxygen partial pressure are presented, with the simultaneous measurement of the liquid surface tension. These results are compared with the existing ones, and discussed on the basis of thermodynamic principles. The resulting work of adhesion is compared with the 'work of separation' computed by the density functional theory (DFT) approach. DFT calculations are also employed, at variance with previous models, to investigate the structures that are formed at the interface upon addition of oxygen in different sites energetics, atomic and electronic properties of this oxygen-rich interface are discussed together with the connection with experiments.

  20. Fabrication of hydrophobic surface of titanium dioxide films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    More, A.M.; Gunjakar, J.L.; Lokhande, C.D.; Joo, Oh Shim

    2009-01-01

    Titanium dioxide (TiO 2 ) films were fabricated on fluorine doped tin oxide (FTO) coated glass substrate using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption and contact angle measurement were applied to study the structural, surface morphological, optical and surface wettability properties of the as-deposited and annealed TiO 2 films. The X-ray diffraction studies revealed both as-deposited and annealed TiO 2 films are amorphous. Irregular shaped spherical grains of random size and well covered to the fluorine doped tin oxide coated glass substrates were observed from SEM studies with some cracks after annealing. The optical band gap values of virgin TiO 2, annealed, methyl violet and rose bengal sensitized TiO 2 were found to be 3.6, 3.5, 2.87 and 2.95 eV, respectively. Surface wettability studied in contact with liquid interface, showed hydrophobic nature as water contact angles were greater than 90 deg. The adsorption of dyes, as confirmed by the photographs, is one of the prime requirements for dye sensitized solar cells (DSSC).