WorldWideScience

Sample records for surface physics soft

  1. Soft matter physics

    CERN Document Server

    Williams, Claudine

    1999-01-01

    What do colloids, fractals, liquid crystals, and polymers have in common? Nothing at first sight. Yet the distance scales, the energy transfers, the way these objects react to an external field are very similar. For the first time, this book offers an introduction to the physics of these soft materials in one single volume. A variety of experiments and concepts are presented, including the phenomena of capillarity and wetting, fractals, small volumes and large surfaces, colloids, surfactants, giant micelles and fluid membranes, polymers, and liquid crystals. Each chapter is written by experts in the field with the aim of making the book accessible to the widest possible scientific audience: graduate students, lecturers, and research scientists in physics, chemistry, and other disciplines. Nobel Prize winner Pierre-Gilles de Gennes inspired this book and has written a foreword.

  2. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  3. Surface tension and deformation in soft adhesion

    Science.gov (United States)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  4. Mechanics and Physics of Soft Materials

    OpenAIRE

    Liu, Qihan

    2016-01-01

    Materials where thermal energy is comparable to the interaction energy between molecules are called soft materials. Soft materials are everywhere in our life: food, rubber, polymer diaper, our own body, etc. The thermal fluctuation endows soft materials with fundamentally different behavior comparing to hard materials like metals and ceramics. This dissertation studies three aspects of the mechanics and physics of soft materials, as is reviewed below. First, soft materials are generally s...

  5. From Soft Sculpture to Soft Robotics: Retracing a Physical Aesthetics of Bio-Morphic Softness

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2017-01-01

    the soft sculpture that started proliferating in the late 1960s. Critical descriptions of these works, interestingly, frequently emphasize their similarities with living organisms and bodies as a central tenet of their aesthetics. The paper seeks to articulate aspects of a contiguity between softness...... science. Recently, soft robotics technology has also started to make its way into art, design, and architecture. This paper attempts to think an aesthetics of softness and the life-like through an artistic tradition deeply imbricated with an interrogation of softness and its physical substrates, namely...... and the life-like in these works through readings that draw on concepts from technical soft robotics research and the description of life in physics (via entropy). It is argued, that fractions of soft sculpture anticipate central interests and notions present in contemporary technical soft robotics research....

  6. A bag with soft surface

    International Nuclear Information System (INIS)

    Il-Tong Cheon.

    1991-02-01

    The MIT bag has a sharply edged surface. It seems to be unnatural. Taking vector mesons into account, we discuss effects of a smooth surface of the bag constructed by superposition of the MIT bags with various radii on the baryon magnetic moments. (author). 9 refs, 2 figs, 2 tabs

  7. Physical Agents for Soft Tissue Injury.

    Science.gov (United States)

    2016-07-01

    The clinical management of soft tissue injuries of the lower limb commonly includes physical agents such as electrotherapy or ultrasound. However, the evidence about the effectiveness of physical agents varies, and their use remains controversial. A systematic review of randomized clinical trials (RCTs), published in the July 2016 issue of JOSPT, examined the benefits and safety risks of various physical agents for soft tissue injuries of the lower limb. Importantly, the review looked closely at the quality of the RCTs and focused on studies with low risk of bias. In this Perspectives for Practice, the authors explain the impact of their findings for clinicians treating patients with such musculoskeletal conditions. J Orthop Sports Phys Ther 2016;46(7):555. doi:10.2519/jospt.2016.0503.

  8. Physics of soft impact and cratering

    CERN Document Server

    Katsuragi, Hiroaki

    2016-01-01

    This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid’s terrain...

  9. Drop impact on spherical soft surfaces

    Science.gov (United States)

    Chen, Simeng; Bertola, Volfango

    2017-08-01

    The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.

  10. PREFACE: The Physics of Soft Matter Complexes

    Science.gov (United States)

    Suezaki, Yukio

    2005-08-01

    The International Workshop on the Physics of Soft Matter Complexes was held from 29 November to 2 December 2004 at Tokyo Metropolitan University, Tokyo, Japan. The aim of the workshop was to discuss the current topics of composite systems of surfactants, polymers, colloids, liquid crystals and biological materials. Special attention was focused on the features that are realized due to the combination of those materials. Distinguished invited speakers from Japan and the rest of the world, and many other workers in the field, participated in this workshop. The topics covered were colloids, polymers, surfactants, biomaterials such as proteins and DNA, rheology, and their composite systems. We, the organizing committee of this workshop, wished not only to show the activity of Japanese workers in this field but also wanted to exchange and discuss ideas on the theme with workers from other countries. In addition, although as physicists we tend to study simple systems, as the theme of our workshop we focused on complex or composite systems. We hope that readers will see that the many excellent papers in this special issue of Journal of Physics: Condensed Matter show that the aim of the workshop was achieved. Lastly, we acknowledge that the workshop was held as part of the project for the promotion of international conferences by the Japan Society for the Promotion of Science.

  11. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  12. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  13. Concepts in surface physics

    CERN Document Server

    Desjonquères, M -C

    1993-01-01

    This textbook is intended as an introduction to surface science for graduate students. It began as a course of lectures that we gave at the University of Paris (Orsay). Its main objectives are twofold: to provide the reader with a compre­ hensive presentation of the basic principles and concepts of surface physics and to show the usefulness of these concepts in the real world by referring to experiments. It starts at a rather elementary level since it only requires a knowledge of solid state physics, quantum mechanics, thermodynamics and statistical physics which does not exceed the background usually taught to students early in their university courses. However, since it finally reaches an advanced level, we have tried to render it as self-contained as possible so that it remains accessible even to an unexperienced reader. Furthermore, the emphasis has been put on a pedagogical level rather than on a technical level. In this spirit, whenever possible, models which are simplified, but which contain the featu...

  14. Candida albicans colonization of surface-sealed interim soft liners.

    Science.gov (United States)

    Olan-Rodriguez, L; Minah, G E; Driscoll, C F

    2000-12-01

    This in-vivo investigation evaluated the effect of 2 denture sealer agents on the microbial colonization of a newly placed soft interim denture liner during a period of 14 days. An interim soft denture liner (Coe-Soft; GC America, Alsip, IL) was coated with 2 different denture surface sealants (Palaseal [Heraeus Kulzer, Irvine, CA] and Mono-Poly [Plastodent, New York, NY]). Three rectangular wells of 1 cm wide x 2 cm long x 2 mm deep were placed in the intaglio of 10 maxillary complete dentures and filled with the soft liner material. The soft liner surface was treated with Palaseal (first well) and Mono-Poly (second well), and the unsealed (third well) was used as a control. These were exposed to the oral cavity for 14 days. The effect the sealant had in the prevention of Candidal colonization in vivo of the soft liner material was evaluated. Microbiological specimens were recovered from all samples and cultivated. Microbiological data from the control and 2-test samples in each denture were tabulated, and statistical analyses were performed. This investigation showed clear differences (p denture liner with either Palaseal or Mono-Poly significantly decreased yeast and bacterial colonization. . Copyright 2000 by The American College of Prosthodontists.

  15. Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine

    Directory of Open Access Journals (Sweden)

    Dario Maggiorini

    2014-01-01

    Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.

  16. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    Science.gov (United States)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  17. Physics of Surfaces and Interfaces

    CERN Document Server

    Ibach, Harald

    2006-01-01

    This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. The Physics of Surfaces and Interfaces is designed as a handbook for the researcher as well as a study-text for graduate students in physics or chemistry with special interest in the surface sciences, material science, or the nanosciences. The experienced researcher, professional or academic teacher will appreciate the opportunity to share many insights and ideas that have grown out of the author's long experience. Readers will likewise appreciate the wide range of topics treated, each supported by extensive references. Graduate students will benefit f...

  18. Surface segregations in amorphous magnetically soft alloy under oxidation

    International Nuclear Information System (INIS)

    Bayankin, V.A.; Vasil'ev, V.Yu.; Volkova, I.B.; Skvortsova, N.G.; Smirnova, O.I.

    1997-01-01

    Using the Auger electron spectroscopy and electron reflecting diffraction the effects of high temperature annealing and electro-chemical treatment on chemical composition and atomic structure of amorphous magnetically soft alloy Co 57 Fe 5 Ni 10 Si 11 B 7 were investigated. It is shown the surface layers on the base of silicon carbide are formed during annealing while during electro-chemical treatment a cobalt borides are formed. Besides, during electro-chemical treatment the amorphous structure with different interatomic space are saved depending on time. At the time, mechanical properties of the alloy are not worse and it may be used for manufacturing of magnetodrives from amorphous magnetically soft materials [ru

  19. Surface physics : experimental

    International Nuclear Information System (INIS)

    Padalia, B.D.

    1978-01-01

    In this report, discussion is confined to some important ultra high vacuum surface techniques such as ultra-violet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and the low energy electron diffraction (LEED). An attempt is made to cover the basic principles and the experimental details of XPS and AES. Selected examples illustrating the potentialities of the above techniques to solve the important basic as well as applied problems relating to surfaces are presented. Salient features of the available commercial machines in which UPS, AES and LEED are combined to facilitate surface examination sequentially or simultaneously under identical experimental conditions are indicated. (auth.)

  20. Dynamic Impacts of Water Droplets onto Icephobic Soft Surfaces at High Weber Numbers

    Science.gov (United States)

    Ma, Liqun; Liu, Yang; Hu, Hui; Wang, Wei; Kota, Arun

    2017-11-01

    An experimental investigation was performed to examine the effects of the stiffness of icephobic soft PDMS materials on the impact dynamics of water drops at high weber numbers pertinent to aircraft icing phenomena. The experimental study was performed in the Icing Research Tunnel available at Iowa State University (ISU-IRT). During the experiments, both the shear modulus of the soft PDMS surface and the Weber numbers of the impinging water droplets are controlled for the comparative study. While the shear modulus of the soft PDMS surface was changed by tuning the recipes to make the PDMS materials, the Weber number of the impinging water droplets was altered by adjusting the airflow speed in the wind tunnel. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were used to quantify the transient behavior of water droplet impingement, unsteady heat transfer and dynamic ice accreting process over the icephobic soft airfoil surfaces. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather.

  1. The Soft-Confined Method for Creating Molecular Models of Amorphous Polymer Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-02-09

    The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to produce molecular models for these surfaces was developed, which involved the use of a "soft" confining layer comprised of a xenon crystal. This method compacts the polymers into a density distribution and a degree of molecular surface roughness that corresponds well to experimental values. In addition, calculated properties such as density, cohesive energy density, coefficient of thermal expansion, and the surface energy agree with experimental values and thus validate the use of soft confining layers. The method can be applied to polymers with a linear backbone such as PP as well as those whose backbones contain rings, such as cellulose. The developed PP and cellulose surfaces were characterized by their interactions with water. It was found that a water nanodroplet spreads on the amorphous cellulose surfaces, but there was no significant change in the dimension of the droplet on the PP surface; the resulting MD water contact angles on PP and amorphous cellulose surfaces were determined to be 106 and 33°, respectively. © 2012 American Chemical Society.

  2. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions.

    Science.gov (United States)

    Johnson, Grant E; Priest, Thomas; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au(11)L(5)(3+), L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au(11)L(5)(3+) cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic acid (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto carefully selected substrates. © 2011 American Chemical Society

  3. Cluster-surface interaction: from soft landing to implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Barke, Ingo; Campbell, Eleanor E.B.

    2011-01-01

    The current paper presents a state-of-the-art review in the field of interaction of atomic and molecular clusters with solids. We do not attempt to overview the entire broad field but rather concentrate on impact phenomena: how the physics of the cluster-surface interaction depends on the kinetic...... for utilisation in optics and electronics, as magnetic media and catalysts, in nanobiology and nanomedicine. We pay considerable attention to phenomena occurring on impact of clusters with increased kinetic energies. In particular, we discuss the physics of the intermediate regime between deposition...... for efficient smoothing of surfaces on the macroscopic scale. Several examples of successful applications of the cluster beam technique for polishing of surfaces are given. We also discuss how the physical sputtering can be combined with reactive accelerated cluster erosion. The latter can be an efficient tool...

  4. Large deformation and instability of soft hollow cylinder with surface effects

    OpenAIRE

    Wu, Jian; Liu, Mingchao; Wang, Zhenyu; Chen, C. Q.

    2017-01-01

    Surface stress, which is always neglected in classical elastic theories, has recently emerged as a key role in the mechanics of highly deformable soft solids. In this paper, the effect of surface stress on the deformation and instability of soft hollow cylinder are analyzed. By incorporating surface energy density function into the constitutive model of a hyper-elastic theory, explicit solutions are obtained for the deformation of soft hollow cylinder under the conditions of uniform pressure ...

  5. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  6. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  7. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle

    Science.gov (United States)

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p =0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  8. Neutron reflectometry of soft films supported on electrified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, A.I. [Univ. of Saskatchewan, Dept. of Chemistry, Saskatoon, Saskatchewan (Canada); Vezvaie, M. [Canadian Neutron Beam Centre, Chalk River, Ontario (Canada); Burgess, I.J., E-mail: ian.burgess@usask.ca [Univ. of Saskatchewan, Dept. of Chemistry, Saskatoon, Saskatchewan (Canada)

    2014-07-01

    The specular reflection of neutrons is a non-destructive, nuclear-based technique, sensitive to low atomic number elements, has a high penetration depth, and can distinguish between isotopes of the same element. This makes neutron reflectometry (NR) especially effective for the study of biological membranes, soft films and buried interfaces. Furthermore, commonly used NR substrates such as silicon and quartz single-crystals can be modified with thin metallic layers to form conductive supports allowing for the precise control of the electrical state of the interface. The coupling of NR with in-situ electrochemical control provides a powerful tool to study the composition of soft and/or buried interfaces under conditions that mimic, for example, transmembrane potentials or corrosion potentials. Here we report our recent efforts to perform in situ electrochemical NR studies and the previous experimental framework from which they were developed. The talk will address technical and infrastructure challenges but emphasize scientific highlights from our work with biomimetic phospholipid membranes. 'Isotopic variation has been applied to quantify the electroporation and distribution of water as a function of surface charge density in lipid bilayers. These studies have more recently been extended to study the location of redox-active ubiquinone (coenzyme Q{sub 10}) in biomimetic lipid bilayers as a function of potential and temperature. To probe the location of ubiquinone, a phospholipid bilayer was prepared on a gold coated solid substrate using a combination of Langmuir-Blodgett and vesicle fusion techniques. The combination of these two methods allowed for the composition of the inner and outer membrane leaflets to be varied. Preliminary results show sensitivity to the location of a small biologically relevant molecule. (author)

  9. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  10. Laminar flow drag reduction on a soft porous media surface

    Science.gov (United States)

    Wu, Zhenxing; Tambasco, Michael; Mirbod, Parisa

    2017-11-01

    The ability to control flow reduction in microchannels could significantly advance microfluidic-based devices in a wide range of industrial applications including biomedical fields. The aim of this work is to understand the fundamental physics of the laminar skin friction coefficient and the related drag reduction due to the existence of porous media in the pressure-driven flow. We conducted an analytical framework to predict a laminar Newtonian fluid flow and corresponding drag reduction in a rectangular microchannel which coated with various soft random porous media. Specifically, we present predictions of the laminar skin friction coefficient, and drag reduction for pressure-driven flows. We found the laminar drag reduction is strongly depended on the Darcy permeability of porous medium, the thickness of the permeable layer, and the height of the microchannel. To verify the accuracy of our analytical predictions, several pressure-drop experiments were conducted. We chose various combinations of porous material and the morphology of the fibers to achieve a unique height ratio, between the height of two domains, and permeability parameter of porous media for each experiment. We found a good agreement between the experiments and analytical predictions of laminar drag reduction. Supported by NSF Grant CBET#1706766.

  11. Hard and soft physics of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Tywoniuk, Konrad

    2008-01-01

    somehow biased toward personal conclusion drawn during the course of the thesis work. Chapter 3 give a brief introduction to some theoretical approaches of high-energy hadronic scattering, both in the soft and hard regime. Also, the Glauber model is briefly described. Nuclear effects in hadron-nucleus collisions are introduced in Chapter 4 with a main emphasis on nuclear shadowing. Other multiple scattering effects, such as absorption and transverse momentum broadening, are briefly described. We present also some preliminary result on particle production in p+Pb and d+Au collisions at SPS and RHIC, respectively. Finally, nucleus-nucleus collisions are discussed in Chapter 5 in the context of simple model of final state interactions. In the 'string' jargon one may say, that the former chapter relates to particle production from independent strings, while the latter additionally includes the possibility of string interaction or, rather, interactions of particles originating from different strings. Chapter 6 contains a description of the main results obtained in the papers, and outlines interesting topics for further study in the LHC-era of heavy-ion physics.(Author). refs., figs., tabs

  12. Surface morphology of silicone soft relining material after mechanical and chemical cleaning.

    Science.gov (United States)

    Ueda, Takayuki; Kubo, Keitaro; Saito, Takeshi; Obata, Tomokuni; Wada, Takeshi; Yanagisawa, Koichiro; Sakurai, Kaoru

    2018-04-07

    The objective was to investigate the influence of chemical and mechanical cleaning on the surface morphology of a silicone soft relining material. Three plate-shaped specimens were prepared for each group (Control, Hard and Soft) by laminating a 1.5-mm-thick silicone soft relining material. The Control group specimens were stored in water, and the Hard and Soft group specimens were cleaned with hard and soft bristle denture brushes, respectively. Abrasion testing with a toothbrush and immersion testing with an enzyme-containing peroxide denture cleanser were performed, simulating a period of approximately 4 months. The arithmetic mean roughness (Sa) and maximum height of the cross-section (Sz) were measured before and after abrasion and immersion testing. Sa was 4.9±0.9, 22.1±4.2 and 44.2±4.0μm in the Control, Soft and Hard groups, respectively. Sz was 257.5±31.7, 392.0±23.8 and 452.2±41.9μm in the Control, Soft and Hard groups, respectively. After abrasion testing, Sa and Sz differed significantly between the Soft and Control groups and between the Hard and Control groups. Sa was 2.2±1.2μm before and after immersion, and Sz was 142.1±81.4μm before and after immersion. No significant difference was noted in either Sa or Sz in the Control specimens before or after immersion. Surfaces cleaned using a soft bristle brush were less likely to roughen than those cleaned with a hard bristle brush under the conditions of this study. Additionally, chemical cleaning using the enzyme+neutral peroxide denture cleanser did not roughen the surface of the silicone soft relining material. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. In vivo evaluation of defined polished titanium surfaces to prevent soft tissue adhesion.

    Science.gov (United States)

    Hayes, Jessica S; Welton, Joanne L; Wieling, Ronald; Richards, R Geoff

    2012-04-01

    Soft tissue-implant adhesion is often required for implant integration into the body; however, in some situations, the tissue is required to glide freely over an implant. In the case of distal radius fracture treatment, current literature describes how titanium and its alloys tend to lead to more intra-tendon inflammatory reactions compared with stainless steel. This leads to tendon-implant adhesion and damage possibly causing limited palmar flexion and even tendon rupture. The goal of this study was to analyze the effect of different surface polishings of titanium and titanium molybdenum implants on soft tissue reactions in vivo, with the aim to prevent direct soft tissue adhesion. Using a nonfracture model, to allow for study of the soft-tissue-implant surface interactions only, six surface variants of the same plate design were implanted onto the tibia of 24 New Zealand white rabbits and left in situ for 12 weeks. Results indicate that paste polished commercially pure titanium and titanium molybdenum alloy had the least soft tissue adhesion, with the concomitant development of a soft tissue capsule. Surface topography did not appear influence the thickness of the connective tissue surrounding the plate. Therefore, suitable surface polishing could be applied to plates for clinical use, where free gliding of tissues is required. Copyright © 2012 Wiley Periodicals, Inc.

  14. How to make a soft, rough surface transparent

    Science.gov (United States)

    Helseth, L. E.

    2017-09-01

    A transparent elastomer is made opaque by making one of its surfaces rough. By squeezing the rough surface against a piece of glass, the roughness is smoothed out and the elastomer becomes transparent.

  15. Neutron scattering in soft matter physics and chemistry

    International Nuclear Information System (INIS)

    White, J.W.

    1999-01-01

    Recent experiments area of soft matter science show that self assembly on the micron scale as well as the nanometer scale can be directed chemically. This lecture illustrates how such processes can be studied using the contrast variation available in neutron scattering through isotopic replacement and the techniques of neutron small angle scattering and neutron reflectivity. Related dynamical information at nanometer resolution and on time scales between a nanosecond and a few tenths of a picosecond will become accessible with brighter neutron sources. The examples presented concern the template induced crystallisation of zeolites, the liquid crystal template induced synthesis of mesoporous materials and the structure of thin films at the air water interface. (J.P.N.)

  16. Resonant soft x-ray scattering from stepped surfaces of SrTiO3

    NARCIS (Netherlands)

    Schlappa, J.; Chang, C.F.; Hu, Z.; Schierle, E.; Ott, H.; Weschke, E.; Kaindl, G.; Huijben, Mark; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Tjeng, L.H.; Schüssler-Langeheine, C.

    2012-01-01

    We studied the resonant diffraction signal from stepped surfaces of SrTiO3 at the Ti 2p ¿ 3d (L2,3) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suitable as a model system for resonant soft x-ray

  17. Boundary conditions for soft glassy flows: slippage and surface fluidization.

    Science.gov (United States)

    Mansard, Vincent; Bocquet, Lydéric; Colin, Annie

    2014-09-28

    We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

  18. Rapid Formation of Soft Hydrophilic Silicone Elastomer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Efimenko,K.; Crowe, J.; Manias, E.; Schwark, D.; Fischer, D.; Genzer, J.

    2005-01-01

    We report on the rapid formation of hydrophilic silicone elastomer surfaces by ultraviolet/ozone (UVO) irradiation of poly(vinylmethylsiloxane) (PVMS) network films. Our results reveal that the PVMS network surfaces render hydrophilic upon only a short UVO exposure time (seconds to a few minutes). We also provide evidence that the brief UVO irradiation treatment does not cause dramatic changes in the surface modulus of the PVMS network. We compare the rate of formation of hydrophilic silicone elastomer surfaces made of PVMS to those of model poly(dimethyl siloxane) (PDMS) and commercial-grade PDMS (Sylgard-184). We find that relative to PVMS, 20 times longer UVO treatment times are needed to oxidize the PDMS network surfaces in order to achieve a comparable density of surface-bound hydrophilic moieties. The longer UVO treatment times for PDMS are in turn responsible for the dramatic increase in surface modulus of UVO treated PDMS, relative to PVMS. We also study the formation of self-assembled monolayers (SAMs) made of semifluorinated organosilane precursors on the PVMSUVO and PDMS-UVO network surfaces. By tuning the UVO treatment times and by utilizing mono- and tri-functional organosilanes we find that while mono-functionalized organosilanes attach directly to the substrate, SAMs of tri-functionalized organosilanes form in-plane networks on the underlying UVO-modified silicone elastomer surface, even with only short UVO exposure times.

  19. Recent soft QCD and jet physics results from ATLAS

    CERN Document Server

    Boerner, Daniela; The ATLAS collaboration

    2017-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena. Recent soft-QCD measurements include studies of track-based measurement of underlying event and particle production properties at sqrt(s)= 13 TeV. Final states with jets and photons provide a unique opportunity for tests of perturbative QCD predictions. In this talk, the latest results on the measurement of the prompt isolated photon production and the inclusive jet and dijet production at a center of mass energy of 8 and 13 TeV are presented. The 8 TeV dataset was also used to measure the photon+jet and diphoton production, differential in a wide range of kinematic variables describing the photon+jet production dynamic. Colour-coherence effects were investigated in events with a photon accompanied by two jets. Furthermore, we will discuss the measurement of multijet production cross sections, where multijet event shape variables have been used to extract the strong coupling constant. The talk concludes with a report on the observ...

  20. Soft-landing deposition of radioactive probe atoms on surfaces

    NARCIS (Netherlands)

    Laurens, C.R; Rosu, M.F; Pleiter, F; Niesen, L

    1999-01-01

    We present a method to deposit a wide range of radioactive probe atoms on surfaces, without introducing lattice damage or contaminating the surface with other elements or isotopes. In this method, the probe atoms are mass-separated using an isotope separa-tor, decelerated to 5 eV, and directly

  1. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    Science.gov (United States)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  2. Surface Accelerometer Fixation Method Affects Leg Soft Tissue Motion Following Heel Impacts

    Directory of Open Access Journals (Sweden)

    Jennifer M. Stefanczyk

    2013-10-01

    Full Text Available Surface-mounted accelerometers (SMA secured tightly to body segments with an elastic strap, are commonly used to quantify the impact response of bone.  However, the effect that this type of fixation has on segment soft tissue motion relative to bone has yet to be determined.  Heel impacts were collected from 20 participants using a human pendulum apparatus, with (strap and without (no strap a SMA attached to the proximal tibia.  Leg soft tissue motion was quantified using digital image analysis software which monitored positions of skin markers from a series of high speed photographs.  The strap was found to alter the natural physiological motion of the soft tissue, with significant displacement, velocity and sex differences occurring within the most proximal regions.  Future research should evaluate alternative methods for quantifying bone and soft tissue response to impact concurrently, to advance our understanding of impact-related injury mechanisms.

  3. Soft matter food physics—the physics of food and cooking

    International Nuclear Information System (INIS)

    Vilgis, Thomas A

    2015-01-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales. (report on progress)

  4. The chemical physics of surfaces

    CERN Document Server

    Morrison, Stanley Roy

    1990-01-01

    Even more importantly, some authors who have contributed substantially to an area may have been overlooked. For this I apologize. I have, however, not attempted to trace techniques or observa­ tions historically, so there is no implication (unless specified) that the authors referred to were or were not the originators of a given method or observation. I would like to acknowledge discussions with co-workers at SFU for input relative to their specialties, to acknowledge the help of students who have pointed out errors and difficulties in the earlier presentation, and to acknowledge the infinite patience of my wife Phyllis while I spent my sabbatical and more in libraries and punching computers. S. Roy Morrison 0 1 Contents Notation XV 1. Introduction 1 1. 1. Surface States and Surface Sites . 1 1. 1. 1. The Chemical versus Electronic Representation of the Surface. 1 1. 1. 2. The Surface State on the Band Diagram 4 1. 1. 3. The Fermi Energy in the Surface State Model. 6 1. 1. 4. Need for Both Surface...

  5. Surface layer softing in mechanically polished molybdenum monocrystals

    International Nuclear Information System (INIS)

    Ivashchenko, R.K.; Kostyuchenko, V.G.; Lotsko, D.V.; Lukinov, I.V.; Mil'man, Yu.V.; Novikov, G.A.

    1990-01-01

    Softening of the surface layer together with growth of dislocation density is found in molybdenum single crystals mechanically polished with diamond suspension in water solution of CuSO 4 . The penetration of small amount of copper into molybdenum is observed by SIMS. A supposition has been made about molybdenum solid solution softening influenced by copper penetrating into molybdenum by means of a dynamic dislocation mechanism

  6. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    Science.gov (United States)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  7. Development of soft scaffolding strategy to improve student’s creative thinking ability in physics

    Science.gov (United States)

    Nurulsari, Novinta; Abdurrahman; Suyatna, Agus

    2017-11-01

    Student’s creative thinking ability in physics learning can be developed through a learning experience. However, many students fail to gain a learning experience because of the lack of teacher roles in providing assistance to students when they face learning difficulties. In this study, a soft scaffolding strategy developed to improve student’s creative thinking ability in physics, especially in optical instruments. The methods used were qualitative and quantitative. The soft scaffolding strategy developed was called the 6E Soft Scaffolding Strategy where 6E stands for Explore real-life problems, Engage students with web technology, Enable experiment using analogies, Elaborate data through multiple representations, Encourage questioning, and Ensure the feedback. The strategy was applied to 60 students in secondary school through cooperative learning. As a comparison, conventional strategies were also applied to 60 students in the same school and grade. The result of the study showed that the soft scaffolding strategy was effective in improving student’s creative thinking ability.

  8. Effect of soft drinks on the release of calcium from enamel surfaces.

    Science.gov (United States)

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Surarit, Rudee

    2013-09-01

    Continuous consumption of soft drinks is the main cause of potential oral health problems, including dental caries and erosion. The purpose of this study was to compare the effect of three different types of soft drinks on the release of calcium from the enamel surface of teeth. Forty bovine teeth were selected for the experiment. They were divided into four groups (n=10/group): Group 1 (Coke), Group 2 (Pepsi), Group 3 (Sprite), and Group 4 (distilled water, the control). The pH of each beverage was measured using a pH meter. The release of calcium ions was measured using an atomic absorption spectrophotometer at baseline, 15, 30, and 60 minutes. The results were assessed by analysis of variance and then by the Tukey test (pexposure to soft drinks could lead to significant enamel loss.

  9. Soft landing of polyatomic ions for selective modification of fluorinated self-assembled monolayer surfaces

    Science.gov (United States)

    Luo, Hai; Miller, Scott A.; Cooks, R. Graham; Pachuta, Steven J.

    1998-03-01

    Fluorinated self-assembled monolayer (F-SAM) surfaces comprised of CF3(CF2)7(CH2)2S- groups bound to a gold substrate were modified by deposition of mass-selected polyatomic ions at collision energies of ~10 eV. The modified material was characterized in situ by low-energy ion bombardment and by independent high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. Modification of F-SAM surfaces using hyperthermal (CH3)2SiNCS+ (m/z 116) and (CH3)3SiOSi(CH3)2 (m/z 147) projectile ion beams incorporated the intact projectile ions m/z 116 and mlz 147, respectively, which were released upon subsequent 60 eV [multiset union] sputtering. In addition to simple cases of soft landing of intact ions into a surface, two related soft landing channels, dissociative soft landing and reactive soft landing, are also identified. Surfaces modified by prolonged exposure to 35CICH2(CH3)2SiOSi(CH3)2+ (m/z 181) and its isotopic variant 37CICH2(CH3)2SiOSi(CH3)2+ (m/z 183), yielded only fragment ions derived from the projectile ions, primarily C3H10OSi235Cl+ (m/z 153) and C3H10OSi237Cl+ (m/z 155) upon [multiset union] sputtering as well as in the 15 keV Ga+TOF-SIMS spectra. In these cases, facile fragmentation occurs upon initial ion impact with the surface, the fragment ion being trapped at the interface in an overall process which is described as dissociative soft landing. Consistent with this, the fragment ions C3H10OSi235CI+ (m/z 153) and C3H10OSi237Cl+ (m/z 155) generated as such in the ion source were deposited without fragmentation and subsequently released intact by 60 eV [multiset union] sputtering. In the cases of some projectiles, such as protonated 2,4,6-trimethylpyridine, the sputtered ions released from the modified surface included chemically transformed products due to reaction of the projectile ion at the surface. Such reactive soft landing processes occur by ion/molecule reactions at the interface, although details of their mechanism and its

  10. SoftAR: visually manipulating haptic softness perception in spatial augmented reality.

    Science.gov (United States)

    Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke

    2015-11-01

    We present SoftAR, a novel spatial augmented reality (AR) technique based on a pseudo-haptics mechanism that visually manipulates the sense of softness perceived by a user pushing a soft physical object. Considering the limitations of projection-based approaches that change only the surface appearance of a physical object, we propose two projection visual effects, i.e., surface deformation effect (SDE) and body appearance effect (BAE), on the basis of the observations of humans pushing physical objects. The SDE visualizes a two-dimensional deformation of the object surface with a controlled softness parameter, and BAE changes the color of the pushing hand. Through psychophysical experiments, we confirm that the SDE can manipulate softness perception such that the participant perceives significantly greater softness than the actual softness. Furthermore, fBAE, in which BAE is applied only for the finger area, significantly enhances manipulation of the perception of softness. We create a computational model that estimates perceived softness when SDE+fBAE is applied. We construct a prototype SoftAR system in which two application frameworks are implemented. The softness adjustment allows a user to adjust the softness parameter of a physical object, and the softness transfer allows the user to replace the softness with that of another object.

  11. Snakes and labyrinths: contact fingering instability of a soft elastic film between two rigid surfaces

    Science.gov (United States)

    Davis-Purcell, Ben; Dalnoki-Veress, Kari

    Intricate patterns are abundant in nature, from the stripes of a zebra, to the formation of snowflakes, to the wavy peaks and valleys on a beach. One such instability occurs when a soft elastomeric film bonded to a rigid substrate deforms to adhere to another rigid surface brought into contact with the film. If there is a gap between the film and the surface, then a contact fingering instability results as the film deforms to adhere to the surface. The reduction in the interfacial surface energy upon adhering is balanced by the elastic strain as the soft film deforms to span the gap and leads to distinct labyrinth patterns. We study the formation of this adhesion-induced instability and observe the fingering labyrinth pattern both statically, to measure wavelength as a function of film thickness, as well as dynamically where we see patterns similar to snakes meandering along the ground. We also investigate this contact fingering instability in the presence of an anisotropic tension in the soft elastic film.

  12. Soft QCD and pA physics, with a focus on the ridge at LHCb

    CERN Multimedia

    Dreimanis, Karlis

    2016-01-01

    The LHCb experiment is a forward spectrometer originally designed for study of b and c hadron decays. However, it can be used in a much wider spectrum of physics analyses. The poster presented here highlights a few studies from the extensive range of soft QCD and heavy-ion physics analyses performed at the LHCb. A particular emphasis is placed on the observation of the two-particle angular correlations, so-called ridge effect, in the forward region. The results presented here serve as one of numerous examples of LHCb being a proven multi-purpose detector in the forward region.

  13. Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts

    Science.gov (United States)

    Jensen, Katharine E.; Style, Robert W.; Xu, Qin; Dufresne, Eric R.

    2017-10-01

    Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ϒ /E . Here, we investigate experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.

  14. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  15. Minimally Invasive Holographic Surface Scanning for Soft-Tissue Image Registration

    Science.gov (United States)

    Hackworth, Douglas M.; Webster, Robert J.

    2014-01-01

    Recent advances in registration have extended intra-surgical image guidance from its origins in bone-based procedures to new applications in soft tissues, thus enabling visualization of spatial relationships between surgical instruments and subsurface structures before incisions begin. Preoperative images are generally registered to soft tissues through aligning segmented volumetric image data with an intraoperatively sensed cloud of organ surface points. However, there is currently no viable noncontact minimally invasive scanning technology that can collect these points through a single laparoscopic port, which limits wider adoption of soft-tissue image guidance. In this paper, we describe a system based on conoscopic holography that is capable of minimally invasive surface scanning. We present the results of several validation experiments scanning ex vivo biological and phantom tissues with a system consisting of a tracked, off-the-shelf, relatively inexpensive conoscopic holography unit. These experiments indicate that conoscopic holography is suitable for use with biological tissues, and can provide surface scans of comparable quality to existing clinically used laser range scanning systems that require open surgery. We demonstrate experimentally that conoscopic holography can be used to guide a surgical needle to desired subsurface targets with an average tip error of less than 3 mm. PMID:20659823

  16. Minimally invasive holographic surface scanning for soft-tissue image registration.

    Science.gov (United States)

    Lathrop, Ray A; Hackworth, Douglas M; Webster, Robert J

    2010-06-01

    Recent advances in registration have extended intrasurgical image guidance from its origins in bone-based procedures to new applications in soft tissues, thus enabling visualization of spatial relationships between surgical instruments and subsurface structures before incisions begin. Preoperative images are generally registered to soft tissues through aligning segmented volumetric image data with an intraoperatively sensed cloud of organ surface points. However, there is currently no viable noncontact minimally invasive scanning technology that can collect these points through a single laparoscopic port, which limits wider adoption of soft-tissue image guidance. In this paper, we describe a system based on conoscopic holography that is capable of minimally invasive surface scanning. We present the results of several validation experiments scanning ex vivo biological and phantom tissues with a system consisting of a tracked, off-the-shelf, relatively inexpensive conoscopic holography unit. These experiments indicate that conoscopic holography is suitable for use with biological tissues, and can provide surface scans of comparable quality to existing clinically used laser range scanning systems that require open surgery. We demonstrate experimentally that conoscopic holography can be used to guide a surgical needle to desired subsurface targets with an average tip error of less than 3 mm.

  17. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  18. The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar

    NARCIS (Netherlands)

    Kiers, PJM; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    Many Staphylococcus epidermidis strains possess capsule or slime layers and consequently the staphylococcal cell surface should be regarded as a soft, polyelectrolyte layer allowing electrophoretic fluid flow through a layer of fixed charges. The presence of such a soft layer decreases the energy

  19. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  20. In situ SIMS and IR spectroscopy of well-defined surfaces prepared by soft landing of mass-selected ions.

    Science.gov (United States)

    Johnson, Grant E; Gunaratne, K Don Dasitha; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3](2+) (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  1. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  2. The Effectiveness of Physical Agents for Lower-Limb Soft Tissue Injuries: A Systematic Review.

    Science.gov (United States)

    Yu, Hainan; Randhawa, Kristi; Côté, Pierre; Optima Collaboration

    2016-07-01

    Study Design Systematic review. Background Soft tissue injuries to the lower limb bring a substantial health and economic burden to society. Physical agents are commonly used to treat these injuries. However, the effectiveness of many such physical agents is not clearly established in the literature. Objective To evaluate the effectiveness and safety of physical agents for soft tissue injuries of the lower limb. Methods We searched 5 databases from 1990 to 2015 for randomized controlled trials (RCTs), cohort studies, and case-control studies. Paired reviewers independently screened the retrieved literature and appraised relevant studies using the Scottish Intercollegiate Guidelines Network criteria. Studies with a high risk of bias were excluded. We synthesized low-risk-of-bias studies according to principles of best-evidence synthesis. Results We screened 10261 articles. Of 43 RCTs identified, 20 had a high risk of bias and were excluded from the analysis, and 23 RCTs had a low risk of bias and were included in the analysis. The available higher-quality evidence suggests that patients with persistent plantar fasciitis may benefit from ultrasound or foot orthoses, while those with persistent midportion Achilles tendinopathy may benefit from shockwave therapy. However, the current evidence does not support the use of shockwave therapy for recent plantar fasciitis, low-Dye taping for persistent plantar fasciitis, low-level laser therapy for recent ankle sprains, or splints for persistent midportion Achilles tendinopathy. Finally, evidence on the effectiveness of the following interventions is not established in the current literature: (1) shockwave therapy for persistent plantar fasciitis, (2) cryotherapy or assistive devices for recent ankle sprains, (3) braces for persistent midportion Achilles tendinopathy, and (4) taping or electric muscle stimulation for patellofemoral pain syndrome. Conclusion Almost half the identified RCTs that evaluated the effectiveness of

  3. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Zhang, Deyuan

    2016-11-01

    Soft tissue adhesion on the electrosurgical instruments can induce many serious complications, such as failure of hemostasis and damage to the surrounding soft tissue. The soft tissue adhesion is mainly caused by the high temperature on the instrument surface generally made of stainless steel. Nepenthes inspired liquid-infused surfaces (LIS), highly promising for anti-adhesion, have attracted considerable interests. In this paper, we investigated the anti-adhesion effects of LIS on high-temperature stainless steel for soft tissue for the first time, aiming to develop a new approach to solve the soft tissue adhesion problem. The textured surface, acting as the holding structures, was fabricated by photolithography-assisted chemical etching. Silicone oil, with good biocompatibility and high-temperature resistance, was chosen as the infused liquid. The adhesion force measurements for soft tissue on the LIS at high temperatures indicated that the soft tissue adhesion force was decreased by approximately 80% at 250 °C. Besides, the cycle tests of soft tissue adhesion force demonstrated the excellent stability of prepared LIS. We anticipate that LIS will be of great promise for practical applications on the electrosurgical instruments.

  4. Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution.

    Science.gov (United States)

    Matsui, Shusuke; Kureha, Takuma; Hiroshige, Seina; Shibata, Mikihiro; Uchihashi, Takayuki; Suzuki, Daisuke

    2017-09-25

    The real-time adsorption behavior of polymeric colloidal microspheres onto solid surfaces in aqueous solution was visualized for the first time using high-speed atomic force microscopy (HS-AFM) to reveal how the softness of the microspheres affects their dynamic adsorption. Studies that focus on the deformability of microspheres upon dynamic adsorption have not yet been reported, most likely on account of a lack of techniques that appropriately depict the dynamic adsorption and deformation behavior of individual microspheres at the nanoscale in real time. In this study, the deformability of microspheres plays a crucial role on the adsorption kinetics, that is, soft hydrogel microspheres adsorb faster than harder elastomeric or rigid microspheres. These results should provide insight towards development of new colloidal nanomaterials that exhibit effective adsorption on specific sites in aqueous solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Probabilistic-Stochastic Model of Distribution of Physical and Mechanical Properties of Soft Mineral Rocks

    Directory of Open Access Journals (Sweden)

    O.O. Sdvizhkova

    2017-12-01

    Full Text Available The physical and mechanical characteristics of soils and soft rocks obtained as a result of laboratory tests are important initial parameters for assessing the stability of natural and artificial slopes. Such properties of rocks as adhesion and the angle of internal friction are due to the influence of a number of natural and technogenic factors. At the same time, from the set of factors influencing the stability of the slope, the most significant ones are singled out, which to a greater extent determine the properties of the rocks. The more factors are taken into account in the geotechnical model, the more closely the properties of the rocks are studied, which increases the accuracy of the scientific forecast of the landslide danger of the slope. On the other hand, an increase in the number of factors involved in the model complicates it and causes a decrease in the reliability of geotechnical calculations. The aim of the work is to construct a statistical distribution of the studied physical and mechanical properties of soft rocks and to substantiate a probabilistic statistical model. Based on the results of laboratory tests of rocks, the statistical distributions of the quantitative traits studied, the angle of internal friction φ and the cohesion, were constructed. It was established that the statistical distribution of physical mechanical properties of rocks is close to a uniform law.

  6. Physical Readiness Testing of Surface Warfare Officers

    Science.gov (United States)

    1991-06-01

    NA% I PHISICAL READIiESS TEST (PRT QUEST1OthAIRE I. hE ARE CONDUCTI NG THESIS RESEAR H 0N HO- ELL THE PRT SUPPORT5 TNE R 0 T i E 0F St RF AC E ’ARAR...AD-A245 519 NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC CTE.EC a% FEB071992 CI THESIS Physical Readiness Testing of Surface Warfare Officers...READINESS TESTING OF SURFACE WARFARE OFFICERS 12. PERSONAL AUTHOR(S) Hatch, William D. II and Swinney, Lori D. 13a. TYPE OF REPORT 13b. TIME COVERED 14

  7. Surface effects in black hole physics

    International Nuclear Information System (INIS)

    Damour, T.

    1982-01-01

    This contribution reviews briefly the various analogies which have been drawn between black holes and ordinary physical objects. It is shown how, by concentrating on the properties of the surface of a black hole, it is possible to set up a sequence of tight analogies allowing one to conclude that a black hole is, qualitatively and quantitatively, similar to a fluid bubble possessing a negative surface tension and endowed with finite values of the electrical conductivity and of the shear and bulk viscosities. These analogies are valid simultaneously at the levels of electromagnetic, mechanical and thermodynamical laws. Explicit applications of this framework are worked out (eddy currents, tidal drag). The thermostatic equilibrium of a black hole electrically interacting with its surroundings is discussed, as well as the validity of a minimum entropy production principle in black hole physics. (Auth.)

  8. Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS.

    Science.gov (United States)

    Faragasso, A; Stilli, A; Bimbo, J; Noh, Y; Liu, H; Nanayakkara, T; Dasgupta, P; Wurdemann, H A; Althoefer, K

    2014-01-01

    This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analyzing the behavior of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.

  9. Photonic crystal structures on nonflat surfaces fabricated by dry lift-off soft UV nanoimprint lithography

    International Nuclear Information System (INIS)

    Sun, Tangyou; Xu, Zhimou; Xu, Haifeng; Zhao, Wenning; Wu, Xinghui; Liu, Sisi; Ma, Zhichao; He, Jian; Liu, Shiyuan; Peng, Jing

    2013-01-01

    The surface nonflatness induced from the material itself or the production atmosphere can lead to serious non-uniformity consequences in nanoimprint lithography (NIL) which is used for providing a low cost and high throughput nano-fabrication process. In this paper, soft UV NIL (SUNIL) processes are used for photonic crystal (PC) pattern transfer of a GaN-based light-emitting diode (LED) with patterned sapphire substrate (PSS). The results reveal a significant incompatibility between the conventional SUNIL and the nonflat p-GaN surface. Ellipse-shaped rather than circle-shaped PC structure is obtained on the p-GaN surface due the deformation of the soft mold in nonflat NIL. A dry lift-off (DLO) SUNIL is proposed to overcome the non-uniformity issue in nonflat NIL as well as the collapse problem of the free-standing pillar-shaped resist in wet lift-off. The photoluminescence enhancements of the LED fabricated by the DLO SUNIL method compared to those with conventional SUNIL and unpatterned LED are 1.41 fold and 3.48 fold, respectively. Further study shows that the DLO SUNIL is applicable in the fabrication of the PC structure with tunable duty cycle via one single initial PC mold. (paper)

  10. Influence of steel implant surface microtopography on soft and hard tissue integration.

    Science.gov (United States)

    Hayes, J S; Klöppel, H; Wieling, R; Sprecher, C M; Richards, R G

    2018-02-01

    After implantation of an internal fracture fixation device, blood contacts the surface, followed by protein adsorption, resulting in either soft-tissue adhesion or matrix adhesion and mineralization. Without protein adsorption and cell adhesion under the presence of micro-motion, fibrous capsule formation can occur, often surrounding a liquid filled void at the implant-tissue interface. Clinically, fibrous capsule formation is more prevalent with electropolished stainless steel (EPSS) plates than with current commercially pure titanium (cpTi) plates. We hypothesize that this is due to lack of micro-discontinuities on the standard EPSS plates. To test our hypothesis, four EPSS experimental surfaces with varying microtopographies were produced and characterized for morphology using the scanning electron microscope, quantitative roughness analysis using laser profilometry and chemical analysis using X-ray photoelectron spectroscopy. Clinically used EPSS (smooth) and cpTi (microrough) were included as controls. Six plates of each type were randomly implanted, one on both the left and right intact tibia of 18 white New Zealand rabbits for 12 weeks, to allow for a surface interface study. The results demonstrate that the micro-discontinuities on the upper surface of internal steel fixation plates reduced the presence of liquid filled voids within soft-tissue capsules. The micro-discontinuities on the plate under-surface increased bony integration without the presence of fibrous tissue interface. These results support the hypothesis that the fibrous capsule and the liquid filled void formation occurs mainly due to lack of micro-discontinuities on the polished smooth steel plates and that bony integration is increased to surfaces with higher amounts of micro-discontinuities. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 705-715, 2018. © 2017 Wiley Periodicals, Inc.

  11. Effect of net fiber reinforcement surface treatment on soft denture liner retention and longevity.

    Science.gov (United States)

    Hatamleh, Muhanad M; Maryan, Christopher J; Silikas, Nick; Watts, David C

    2010-06-01

    To evaluate shear bond strength of Molloplast-B soft liner attached to different acrylic surfaces (smooth, rough, and Sticktech net fiber-reinforced interfaces) after 3000 thermal cycles. Sixty-nine specimens were fabricated by attaching Molloplast-B soft liner to acrylic bases of three interfaces (n= 23); smooth (Group 1, control), rough (Group 2), and Sticktech net fiber-reinforced interface (Group 3). The specimens underwent 3000 thermocycles (5 and 55 degrees C) before being subject to a shear bond test at 2 mm/min crosshead speed. Debonding sites were investigated using an optical microscope at 40x magnification. Bond failures were categorized as adhesive, cohesive, or mixed. Mean (SD) bond strength values (MPa) were: 0.71 (0.15); 0.63 (0.07); and 0.83 (0.12) for smooth, rough, and fiber-reinforced acrylic interfaces, respectively. The mean values were analyzed using one-way ANOVA and Bonferroni post hoc test for pairwise comparisons (p< or = 0.05). The net fiber-reinforced acrylic interface exhibited a statistically significantly higher bond strength value when compared to smooth and rough acrylic interfaces (P= 0.003 and P= 0.000, respectively). Modes of failure were mainly cohesive (91%), followed by mixed failures (9%). Molloplast-B exhibited a stronger bond to StickTech Net fiber-reinforced surfaces when compared to smooth and rough acrylic interfaces after thermocycling. This may enhance prosthesis serviceability during clinical use.

  12. Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts

    Directory of Open Access Journals (Sweden)

    Katharine E. Jensen

    2017-11-01

    Full Text Available Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ϒ/E. Here, we investigate experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.

  13. A novel method of freeform surface grinding with a soft wheel based on industrial robots

    Science.gov (United States)

    Sha, Sheng-chun; Guo, Xiao-ling

    2011-08-01

    In order to meet the growing demand for high-quality images, optical elements of freeform surface are more and more applied to imaging system. However the fabrication of freeform surface optical elements is much more difficult than that of traditional spherical ones. Recent research on freeform surface manufacture often deals with precision machine tools which have limitations on dimensions and are always expensive. Little has been researched on industrial robots. In this paper, a new method of freeform surface grinding based on industrial robots was found. This method could be applied to both whole surface grinding as well as partial surface grinding. The diameter of lenses to be ground would not be restricted to the machine tool's size. In this method a high-speed-rotating soft wheel was used. The relation between removing amount and grinding time which could be called removing function was established and measured. The machining precision was achieved by means of controlling the grinding time instead of the machine tool or industrial robot itself. There are two main factors affecting the removing function: i).rotating speed of the soft wheel; ii).pressure between the wheel and the work piece. In this paper, two groups of experiments have been conducted. One is the removing function tested at constant rotating speed while under different pressure. The other is that tested under a certain pressure with variable speed. Tables and curves which can show the effect of speed and pressure on the removing efficiency have been obtained. Cause for inaccuracy between experiment data and calculated result according to the theory and the non-linearity in the curves was analyzed. Through these analyses the removing function could be concluded under certain condition including rotating speed and pressure. Finally several experiments were performed to verify the appropriateness of the removing function. It could also be concluded that this method was more efficient in comparison

  14. Braking of a Body by a Soft Inflatable Shell on Impact on a Surface

    Science.gov (United States)

    Gimadiev, R. Sh.

    2017-09-01

    The results of mathematical simulation of a solid velocity damping by a soft skeleton fabric shell filled with air on impact on a hard surface are given. The equations of motion of a falling body and of the loading dynamics of membrane shells and the reinforcement rings in the fabric shell are considered together. Themathematical model and the numerical algorithm for solving the spatial problem of the dynamics of inflation of a shell with reinforcement rings are explicitly realized by the finite difference method. The boundary conditions are posed with regard to the contact of the shell elements in compression near the ring belts. The results of numerical experiments considering the interaction of the falling body with the deformable skeleton shell are discussed. The parameters influencing the process of the body braking on impact on a surface are determined.

  15. Theory of magnetism application to surface physics

    CERN Document Server

    Diep, Hung T

    2014-01-01

    The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner. In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described — in which the basic formulation of the Boltzmann's equation is recalled — and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained. This book contains a large number of detailed solutions for the problems given ...

  16. Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns

    Science.gov (United States)

    Abalos, C.; Paul, A.; Mendoza, A.; Solano, E.; Palazon, C.; Gil, F. J.

    2013-03-01

    The aim of this study was to determine the influence of soft drinks on the surface of Ni-Ti archwires and their corrosion behavior. Archwires with different patterns (smooth, scratch, dimple, and crack) were selected and characterized by scanning electron microscopy and laser confocal microscopy. Immersion tests were performed in artificial saliva (pH 6.7) with a soft drink with a pH of 2.5 for 28 days. The results showed an increase in the surface defects and/or roughness of the dimple, crack and scratch patterns with the immersion times, and a decrease in corrosion resistance. A relationship between the surface pattern and the extent of the corrosion in Ni-Ti archwires with soft drinks at low pH has been demonstrated. Pattern should be taken into account in future studies, and manufacturing processes that produce surface defects (especially cracks) should be avoided.

  17. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin.

    Science.gov (United States)

    Mendonça e Bertolini, Martinna de; Cavalcanti, Yuri Wanderley; Bordin, Dimorvan; Silva, Wander José da; Cury, Altair Antoninha Del Bel

    2014-01-01

    The effect of Candida albicans biofilms and methyl methacrylate (MMA) pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA) resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based), and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10) were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR) and scanning electron microscopy (SEM) analysis were performed on denture liners (n = 8). Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01). Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01). The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  18. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  19. Recent developments in the area of SoftQCD and Diffractive Physics at the ATLAS Experiment

    CERN Document Server

    Astalos, Robert; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration released several new measurements in the area of SoftQCD and diffractive physics, ranging from the exclusive production of dimuons, over the total pp cross section measurement to studies of correlated hadron production. An overview of these most recent developments will be given in this talk: The total inelastic proton-proton cross section and the diffractive part of the inelastic cross section has been measured at 8 and 13 TeV in special data sets taken with low beam currents and using forward scintillators. More precise measurements of the total pp cross section and the elastic and inelastic contributions have been extracted from measurements of the differential elastic cross section using the optical theorem. In the absence of forward proton tagging, exclusive processes can be distinguished in the central part of the ATLAS detector exploiting the large rapidity gap in the central region and the absence of charged particles reconstructed in the inner tracking detector. This strategy ...

  20. Correlation of Physical Exam Findings with Fever in Patients with Skin and Soft Tissue Infections.

    Science.gov (United States)

    Mongelluzzo, Jillian; Tu, Brian; Grimes, Barbara; Ziyeh, Sharvina; Fortman, Jonathan; Neilson, Jersey; Rodriguez, Robert M

    2017-04-01

    The objectives of this study were to determine the prevalence of fever in adult ED patients with skin and soft tissue infections (SSTI) and to determine which, if any, physical exam, radiograph and laboratory test findings were associated with fever. We conducted a prospective, observational study at an urban county trauma center of adults who presented to the ED for evaluation of suspected SSTI. ED providers measured area of erythema and induration using a tape measure, and completed data sheets indicating comorbid conditions and the presence or absence of physical exam findings. Fever was defined as any recorded temperature ≥ 38°C during the first six hours of ED evaluation. Of the 734 patients enrolled, 96 (13.1%) had fever. Physical and laboratory exam findings associated with the presence of a fever in multivariable logistic regression were the area of erythema, particularly the largest quartile of area of erythema, 144 - 5,000 cm 2 , (odd ratio [OR] = 2.9; 95% confidence interval [CI] [1.6 - 5.2]) and leukocytosis (OR = 4.4, 95% CI [2.7 - 7.0]). Bullae, necrosis, streaks, adenopathy, and bone involvement on imaging were not associated with fever. Fever is uncommon in patients presenting to the ED for evaluation of suspected SSTI. Area of erythema and leukocytosis were associated with fever and should be considered in future decision rules for the evaluation and treatment of SSTI.

  1. Effect of Soft Drinks and Fresh Fruit Juice on Surface Roughness of Commonly used Restorative Materials.

    Science.gov (United States)

    Maganur, Prabhadevi; Satish, V; Prabhakar, A R; Namineni, Srinivas

    2015-01-01

    In this in vitro study, the effects of a Cola drink, and fresh fruit juice (citrus) on the surface roughness on flowable composite and resin-modified glass ionomer cement (RMGIC) each was evaluated and compared. Using a brass mold 70 pellets each of flowable composite (Filtek™ Flow) and RMGIC tricure restorative material were prepared according to the manufacturer's instructions. Two groups (groups I and II) were formed containing 30 pellets of each material. Remaining 10 pellets of each restorative material did form the control group [water (group III)]. Experimental group pellets were again divided into three subgroups (mild, moderate and severe) containing 10 pellets each and were kept in plastic containers with 30 ml Cola drink (group I) and fresh fruit juice (group II) respectively. Immersion regime was followed according to M aupome G et al. Baseline and final surface roughness (Ra) value for each pellet was evaluated using a profilometer. Statistical analysis was done with Wilcoxon's signed rank test and analysis of variance (ANOVA) followed by Mann-Whitney test. Results showed that the erosive effect of both Cola drink and fresh fruit juice caused significant surface roughness on both flowable composite and RMGIC restorative materials in the mild, moderate and severe immersion regimes. How to cite this article: Maganur P, Satish V, Prabhakar AR, Namineni S. Effect of Soft Drinks and Fresh Fruit Juice on Surface Roughness of Commonly used Restorative Materials. Int J Clin Pediatr Dent 2015;8(1):1-5.

  2. Effect of different surface treatments on tensile bond strength of silicone-based soft denture liner.

    Science.gov (United States)

    Akin, Hakan; Tugut, Faik; Mutaf, Burcu; Akin, Gulsah; Ozdemir, A Kemal

    2011-11-01

    Failure of the bond between the acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to investigate the effect of different surface treatments (sandblasting, Er:YAG, Nd:YAG, and KTP lasers) on tensile bond strength of silicone-based soft denture liner. Polymethyl methacrylate test specimens were fabricated and each received one of eight surface treatments: untreated (control), sandblasted, Er:YAG laser irradiated, sandblasted + Er:YAG laser irradiated, Nd:YAG laser irradiated, sandblasted + Nd:YAG laser irradiated, KTP laser irradiated, and sandblasted + KTP laser irradiated. The resilient liner specimens (n = 15) were processed between two polymethyl methacrylate (PMMA) blocks. Bonding strength of the liners to PMMA were compared by tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Kruskal-Wallis and Wilcoxon tests were used to analyze the data (α = 0.05). Altering the polymethyl methacrylate surface by Er:YAG laser significantly increased the bond strengths in polymethyl methacrylate/silicone specimens, however, sandblasting before applying a lining material had a weakening effect on the bond. In addition, Nd:YAG and KTP lasers were found to be ineffective for increasing the strength of the bond.

  3. Enhancement of transmission of laser and other radiation by soft turbid physical and biological media

    Science.gov (United States)

    Askar'yan, G. A.

    1982-07-01

    An analysis is made and experimental results are reported of studies of the transmission of laser and other radiation by turbid physical and biological media, such as layers of a scattering medium or human tissue of thickness much greater than the characteristic attenuation length. It is reported that the transmission increases strongly as a result of depression and piercing of soft scattering media. A local pressure applied to a biological tissue produces a transmission enhancement considerably greater than compression of a layer of a physically turbid medium: this is due to the displacement of blood and of muscle out of the compressed region. A reduction in the scattering and absorption is expected to occur also in the case of rf and ionizing radiations, such as charged particles, x rays, gamma rays, etc. It is pointed out that this could be useful in deep irradiation carried out with the aim of inhibiting internal morbid processes (for example, in the spinal cord) and in treatment of neuroinfectious diseases (amyotrophic lateral sclerosis, multiple sclerosis, poliomyelitis, etc.), as well as in oncological conditions, ulcers, etc.

  4. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    Science.gov (United States)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  5. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    Science.gov (United States)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of

  6. In situ evaluation of surface roughness and micromorphology of temporary soft denture liner materials at different time intervals.

    Science.gov (United States)

    Araújo, Célio U; Basting, Roberta T

    2018-03-01

    To perform an in situ evaluation of surface roughness and micromorphology of two soft liner materials for dentures at different time intervals. The surface roughness of materials may influence the adhesion of micro-organisms and inflammation of the mucosal tissues. The in situ evaluation of surface roughness and the micromorphology of soft liner materials over the course of time may present results different from those of in vitro studies, considering the constant presence of saliva and food, the changes in temperature and the pH level in the oral cavity. Forty-eight rectangular specimens of each of the two soft liner materials were fabricated: a silicone-based material (Mucopren Soft) and an acrylic resin-based material (Trusoft). The specimens were placed in the dentures of 12 participants (n = 12), and the materials were evaluated for surface roughness and micromorphology at different time intervals: 0, 7, 30 and 60 days. Roughness (Ra) was evaluated by means of a roughness tester. Surface micromorphology was evaluated by scanning electron microscopy. Analysis of variance for randomised block design and Tukey's test showed that surface roughness values were lower in the groups using the silicone-based material at all the time intervals (P < .0001). The average surface roughness was higher at time interval 0 than at the other intervals, for both materials (P < .0001). The surface micromorphology showed that the silicone material presented a more regular and smoother surface than the acrylic resin-based material. The surface roughness of acrylic resin-based and silicone-based denture soft liner materials decreased after 7 days of evaluation, leading to a smoother surface over time. The silicone-based material showed lower roughness values and a smoother surface than the acrylic resin-based material, thereby making it preferred when selecting more appropriate material, due its tendency to promote less biofilm build-up. © 2017 John Wiley & Sons A/S and The

  7. Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    Science.gov (United States)

    2016-08-04

    response measures, which will allow for independent testing and validation of the model components such as soil type, tire/track, powertrain system...material parameters considered in this study are the soil cohesive strength and the internal friction angle. Following the NRMM practice, we will measure...SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer Wasfy*, Paramsothy Jayakumar**, Dave Mechergui**, and Srinivas Sanikommu** *Advanced

  8. PHYSICAL FIELDS OF CIRCULAR CYLINDRICAL PIEZOCERAMIC RECEIVER IN PRESENCE OF A FLAT ACOUSTIC SOFT SCREEN

    Directory of Open Access Journals (Sweden)

    A. V. Derepa

    2017-01-01

    Full Text Available System in the form of a circular cylindrical piezoceramic transducer near a flat acoustic screen was analyzed. The aim of the work was to solve the problem of receiving plane sound waves by «cylindrical piezoceramic transducer – flat acoustically soft screen» system.Considered system was characterized by a violation of the radial symmetry of the radiation load of the transducer while maintaining the radial symmetry of the electric load. At the same time, the energy perceived by the system under consideration is distributed between all modes of oscillation of the transducer, while the conversion of mechanical energy into electric is realized only at zero mole of oscillations.Special attention was paid to the method of coupled fields in multiply connected domains using the imaging method. The design model of the «transducer–creen» system was formulated taking into account the interaction of acoustic, mechanical and electric fields in the process of energy conversion, the interaction of a cylindrical transducer with a flat screen and the interaction of a converter with elastic media outside and inside it. The physical fields of the system under consideration were determined by following solutions: the wave equation; equations of motion of thin piezoceramic cylindrical shells in displacements; equations of stimulated electrostatics for piezoceramics for given boundary conditions, conditions for coupling fields at interfaces and electrical conditions.A general conclusion was made concerning solving of an infinite system of linear algebraic equations with respect to the unknown coefficients of the expansion of the fields. As an example of the application of the obtained relations, a calculation was made and an analysis of the dependences of the electric fields of the system under consideration for various parameters of its construction on the direction of arrival on the plane wave system was conducted.

  9. Extending Controllable Adhesive Technologies to Irregular Surfaces with Soft Robotic Actuation

    Data.gov (United States)

    National Aeronautics and Space Administration — Using the compliant materials and distributed fluid actuation employed in soft robotics, I propose a thin and conformal actuator to be integrated with controllable...

  10. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    Science.gov (United States)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  11. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.

    Directory of Open Access Journals (Sweden)

    Geir Villy Isaksen

    2014-08-01

    Full Text Available Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution.

  12. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material.

    Science.gov (United States)

    Atsü, Saadet; Keskın, Yasemin

    2013-01-01

    This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling. Fifty rectangular heat-polymerized acrylic resin (QC-20) specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10) according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive) (control); Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System); Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P) were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles) before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS) and Fourier Transform Infrared spectrometer (FTIR) analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces. The highest bond strength test value was observed for Group A (1.35±0.13); the lowest value was for Group S (0.28±0.07) and Group SCSIL (0.34±0.03). Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces. Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone soft liner.

  13. Effect of surface treatment on the bonding of an autopolymerizing soft denture liner to a denture base resin.

    Science.gov (United States)

    Minami, Hiroyuki; Suzuki, Shiro; Ohashi, Hirohumi; Kurashige, Hisanori; Tanaka, Takuo

    2004-01-01

    This in vitro study evaluated the effects of surface treatments and thermocycling on the bonding of autopolymerizing silicone soft denture liner (Sofreliner) to denture base resin. The bonding surfaces of denture base cylinders were polished with 600-grit silicon carbide paper and pretreated with applications of Sofreliner Primer, Sofreliner Primer after air abrasion, Reline Primer, or Reline Primer after air abrasion. Failure loads and elongation at failure were measured after subjecting specimens to 0, 10,000, 20,000, and 30,000 thermocycles. Failure modes were assessed for all specimens. Seven specimens were fabricated for each of 16 groups, including four pretreatments and four thermocycle groups. Failure loads of the Sofreliner Primer group were significantly higher than those of the air-abrasion group up to 20,000 thermocycles; both groups showed cohesive failures of the soft denture liner. Failure loads of the Reline Primer group were significantly higher than with Reline Primer after air abrasion up to 10,000 thermocycles. Failure mode after 10,000 thermocycles was cohesive for the Reline Primer group and mixed cohesive/adhesive for Reline Primer after air abrasion. Failure loads of the Sofreliner Primer group were significantly higher than those of the Reline Primer group at each thermocycling interval. Elongation values decreased after 10,000 thermocycles for all groups. Air abrasion on the denture base resin surface was not effective in enhancing failure load. Cyclic thermal stress is one factor degrading the bond between soft denture liner and acrylic resin denture base.

  14. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  15. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Directory of Open Access Journals (Sweden)

    J. Bhardwaj

    2018-02-01

    Full Text Available New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  16. Structural–mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N2+ implantation

    International Nuclear Information System (INIS)

    Morozov, Ilya A.; Mamaev, Alexander S.; Osorgina, Irina V.; Lemkina, Larisa M.; Korobov, Vladimir P.; Belyaev, Anton Yu; Porozova, Svetlana E.; Sherban, Marina G.

    2016-01-01

    The surface of elastic polyurethane treated by plasma immersion N 2 + ion implantation at different fluences has been investigated. A folded surface structure is observed in all cases. Analysis has been performed to study the structural (roughness, steepness and fraction of folds, fractal characteristics), mechanical (stiffness, adhesion force between the AFM probe and the material) and wetting properties of surfaces. Under uniaxial stretching the cracks orthogonal to the axis of deformation and longitudinal folds are formed on the examined surfaces. After unloading the initial structure of the surface of deformed materials exposed to low fluences becomes smoother and does not recover, i.e. it has plastic properties. By contrast, the structure of the surfaces of materials subjected to high-fluence treatment recovers without visible changes and the cracks are fully closed. The study of Staphylococcus colonies grown on these materials has demonstrated significant reduction (from 3 to 5 times) in the vitality of bacteria on treated surfaces. This result was repeated on samples after 11 months of storage. Such antibacterial properties are primarily related to the structural changes of the surfaces accompanied by the increased hydrophilicity. - Highlights: • Surface of soft polyurethane after plasma immersion ion implantation was studied. • Treated surfaces have fluence dependent plicated fractal structure. • Surface properties were investigated both in undeformed and stretched states. • Vitality of bacteria on treated surfaces demonstrated significant reduction.

  17. Composition and physical properties of Enceladus' surface

    Science.gov (United States)

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  18. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  19. Riemann Surfaces: Vector Bundles, Physics, and Dynamics

    DEFF Research Database (Denmark)

    Sikander, Shehryar

    We construct quantum representation of a subgroup of the mapping class group of a genus two surface. Our construction relies on realizing this subgroup as the orbifold fundamental group of a Teichmueller curve, pulling back the Hitchin connection to this Tecihmueller curve, and computing the mono...

  20. Physical parameter optimization by Response Surface Methodology ...

    African Journals Online (AJOL)

    Response Surface Methodology (RSM) is an empirical technique involving the use of Design Expert software to derive a predictive model similar to regression analysis. This present study explains the significant application of RSM in optimization of lipase production by Aspergillus niger. The experimental validation of the ...

  1. 2015 Soft Condensed Matter Physics: Self-Assembly and Active Matter GRC/GRS

    Science.gov (United States)

    2015-10-20

    pm Sriram Ramaswamy ( Tata Institute of Fundamental Research, India) "Active Soft Matter: An Update" 8:10 pm - 8:30 pm Discussion 8:30 pm - 9:10 pm...Amherst Poster Presenter Registered Ramaswamy, Sriram Tata Institute of Fundamental Research Speaker Registered Reichhardt, Charles M Los Alamos

  2. Soft tissue coverage on the segmentation accuracy of the 3D surface-rendered model from cone-beam CT.

    Science.gov (United States)

    Dusseldorp, J K; Stamatakis, H C; Ren, Y

    2017-04-01

    The aim of this study is to investigate the effect of soft tissue presence on the segmentation accuracy of the 3D hard tissue models from cone-beam computed tomography (CBCT). Seven pairs of CBCT Digital Imaging and Communication in Medicine (DICOM) datasets, containing data of human cadaver heads and their respective dry skulls, were used. The effect of the soft tissue presence on the accuracy of the segmented models was evaluated by performing linear and angular measurements and by superimposition and color mapping of the surface discrepancies after splitting the mandible and maxillo-facial complex in the midsagittal plane. The linear and angular measurements showed significant differences for the more posterior transversal measurements on the mandible (p  0.05). The RMSE value for the mandible, however, significantly decreased from 1.240 to 0.981 mm after splitting (p cone-beam CT, below a generally accepted level of clinical significance of 1 mm. However, this level of accuracy may not meet the requirement for applications where high precision is paramount. Accuracy of CBCT-based 3D surface-rendered models, especially of the hard tissues, are crucial in several dental and medical applications, such as implant planning and virtual surgical planning on patients undergoing orthognathic and navigational surgeries. When used in applications where high precision is paramount, the effect of soft tissue presence should be taken into consideration during the segmentation process.

  3. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses.

    Science.gov (United States)

    Style, Robert W; Boltyanskiy, Rostislav; Che, Yonglu; Wettlaufer, J S; Wilen, Larry A; Dufresne, Eric R

    2013-02-08

    Droplets deform soft substrates near their contact lines. Using confocal microscopy, we measure the deformation of silicone gel substrates due to glycerol and fluorinated-oil droplets for a range of droplet radii and substrate thicknesses. For all droplets, the substrate deformation takes a universal shape close to the contact line that depends on liquid composition, but is independent of droplet size and substrate thickness. This shape is determined by a balance of interfacial tensions at the contact line and provides a novel method for direct determination of the surface stresses of soft substrates. Moreover, we measure the change in contact angle with droplet radius and show that Young's law fails for small droplets when their radii approach an elastocapillary length scale. For larger droplets the macroscopic contact angle is constant, consistent with Young's law.

  4. The surface physics work station: final design

    International Nuclear Information System (INIS)

    Landers, R.; Kleiman, G.G.; Castro, S.G.C. de; Douglas, R.A.; Nascente, P.A.P.

    1996-01-01

    Thanks to funding from FAPESP we will be installing in the beginning of 1997 a work station for electron spectroscopy designed for the study of clean solid surfaces and the modification of these surfaces by deposition in situ of ultra thin metallic films. The main analytical tool will be a high resolution hemispherical analyzer made by VSW-Omicrom (EA 125 HR) which is capable of better than 5 meV resolution and high transmission due to its five channeltron multi detection system. The system will also have a Rear View LEED Optics for single crystal studies. The system will be housed in a 16'' cylindrical chamber with mu metal magnetic shielding having two levels for analysis. The upper level will contain instruments for technique which do not require photons such as LEED and sample cleaning. The lower level will have the electron analyzer, conventional X-ray source (Al/Mg), electron gun for Auger, e-beam evaporators for thin film deposition and ports for the future addition of different detectors. We will have a manipulator with 5 degrees of freedom (thre translation and two rotational) and sample heating and LN cooling. Finally we will have a fast entry/preparation chamber. The pumping system will have a combination of turbomolecular and ion pumps for the main chamber and a turbo for the fast entr/prep chamber. The system will be used initially for the study of surface alloys by XPS and Photoelectron Diffraction but as soon as it is properly characterized it will be open for collaborations with other groups interested in using its capabilities. (author)

  5. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  6. SASP '86: Symposium on atomic and surface physics

    International Nuclear Information System (INIS)

    Howorka, F.; Lindinger, W.; Maerk, T.D.

    1986-02-01

    71 papers are presented on subject matters indicated in the section headings: 1) Ion-neutral and neutral-neutral interactions in the gas phase; 2) Laser physics and photonics; 3) Electron collisions and electronic capture; 4) Ion-surface interaction and plasma-related effects; 5) Cluster physics. 70 thereof are of INIS interested and are treated separately. (G.Q.)

  7. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  8. The Chemistry and Physics of Molecular Surfaces

    Science.gov (United States)

    Kaldor, A.; Cox, D. M.; Trevor, D. J.; Zakin, M. R.

    1986-06-01

    This article reviews the results of several recent experiments performed in our laboratory designed to elucidate the fundamental chemical and physical properties of clusters of both transition metals and other refractory elements containing from one to several hundred atoms. The gas-phase reactivity of clusters towards a variety of reagents is explored using a fast-flow reactor system. Strong cluster size-dependent variations in reactivity are observed, especially for the case of hydrogen chemisorption. Measurement of cluster photoionization thresholds (IPs) provides a sensitive probe of the evolution of cluster electronic structure as a function of the number of constituent atoms. Cluster ionization potentials are observed to exhibit fluctuations about the smooth global falloff predicted by the classical drop model, indicating the non-bulk-like behavior of small clusters. Measurement of shifts in IP induced by chemisorption of different reagents provides insight into the nature of adsorbate-cluster bonding. The formation and properties of bare and metal-doped carbon clusters are explored, with particular emphasis on elucidating the photophysics and photochemistry of the postulated ultrastable larger clusters. The results suggest that further work is required to prove soccer ball-like structures for C50, C60, etc. Finally, infrared multiple-photon dissociation (IR-MPD) is demonstrated to be a viable technique for obtaining infrared spectra of absorbate-cluster complexes. This technique is an important new tool for obtaining information about the molecularity of gas-phase reactions beyond that currently available from mass spectrometric analysis. As an illustration of the method, IR-MPD spectra of methanol chemisorbed on small iron clusters are obtained.

  9. Alternative Penetrometers to Measure the Near Surface Strength of Soft Seafloor Soils

    Science.gov (United States)

    2013-09-30

    specimens has been a key accomplishment for this project. The readied specimens were tested by advancing a standard ball penetrometer (100 cm2), mini ...simple shear testing. Digital imaging was used to observe the flow mechanism during shallow penetration. A photo of the soil flow mechanisms for the mini ...tested at a rock quarry site in Irwindale. Soft and fine grained tailings were tested in an old spreading pond at the site. A total of six spherical

  10. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material

    Science.gov (United States)

    ATSÜ, Saadet; KESKİN, Yasemin

    2013-01-01

    Objective This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling. Material and Methods Fifty rectangular heat-polymerized acrylic resin (QC-20) specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10) according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive) (control); Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System); Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P) were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles) before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS) and Fourier Transform Infrared spectrometer (FTIR) analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces. Results The highest bond strength test value was observed for Group A (1.35±0.13); the lowest value was for Group S (0.28±0.07) and Group SCSIL (0.34±0.03). Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces. Conclusion Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone soft liner

  11. Effect of silica coating and silane surface treatment on the bond strength of soft denture liner to denture base material

    Directory of Open Access Journals (Sweden)

    Saadet Atsu

    2013-07-01

    Full Text Available OBJECTIVE: This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling. MATERIAL AND METHODS: Fifty rectangular heat-polymerized acrylic resin (QC-20 specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10 according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive (control; Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System; Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS and Fourier Transform Infrared spectrometer (FTIR analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces. RESULTS: The highest bond strength test value was observed for Group A (1.35±0.13; the lowest value was for Group S (0.28±0.07 and Group SCSIL (0.34±0.03. Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces. CONCLUSION: Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone

  12. Magnetization of neutron star matter and implications in physics of soft gamma repeaters

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-01-01

    The magnetization of neutron star matter is considered within the thermodynamic formalism. The quantization effects are demonstrated to result in sharp abrupt magnetic field dependence of nuclide magnetic moments. Accounting for inter-nuclide magnetic coupling we show that such anomalies give rise to erratic jumps in magnetotransport of neutron star crusts. The properties of such a noise are favorably compared with burst statistics of Soft Gamma Repeaters. PACS: 97.60.Jd, 21.10.Dr, 26.60.+c, 95.30.Ky. (author)

  13. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers.

    Science.gov (United States)

    Zhu, Y; Hu, J; Yeung, K

    2009-11-01

    Shape memory polyurethane (SMPU) ionomers containing constant 75 wt.% soft segment content were synthesized using poly(epsilon-caprolactone)diol, 4,4'-diphenylmethane diisocyanate, 1,4-butanediol and/or N,N-bis(2-hydroxyethyl)-isonicotinamide. To introduce substrate bonding antibacterial activity, pyridinium was prepared through a neutralization reaction using 1-iodooctane as neutralization agent. For the SMPU ionomer film obtained, tensile testing at 70 degrees C and dynamic mechanical analysis suggests that, at temperatures>T(ms) (the melting point of soft segments), 6.72 and 29.55 mol.% pyridinium within hard segments significantly decreased the mechanical properties such as the stress at 100% elongation (70 degrees C), the initial modulus (70 degrees C) and the elastic modulus (75-110 degrees C). Cyclic tensile investigation demonstrated that the two factors, soft segment crystallization and hard segment physical crosslink, play a very important role in shape memory function in SMPU ionomers. For the each individual specimen, the fixity ratio increased, and the recovery ratio decreased with the extension of cooling time. After sufficient cooling time, the fixity ratio of all specimens can reach a high value (approximately 95%). Owing to the disrupted physical crosslink in the sample containing 29.55 mol.% pyridinium, the crystallization rate of soft segments has less effect on shape fixity. Therefore, a high fixity ratio (93.8%) can be achieved in a short cooling time (30 s). In the control sample, the fixity ratio is only 73.7% after 30 s cooling. In addition, the admirable substrate bonding antibacterial activity of prepared SMPU ionomers was verified using standards AACTT 147 and ASTM E2149 in comparison with the control sample. The antibacterial activity of SMPU ionomers on Gram-positive bacteria (Staphylococcus aureus) is significant, and the rate of reduction of bacteria is 100%; the antibacterial activity on Gram-negative bacteria (Klebsiella pneumoniae

  14. Surface Radiation from GOES: A Physical Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  15. Chemodynamics of Soft Nanoparticulate Metal Complexes: From the Local Particle/Medium Interface to a Macroscopic Sensor Surface.

    Science.gov (United States)

    Town, Raewyn M; Pinheiro, José Paulo; van Leeuwen, Herman P

    2017-01-17

    The lability of a complex species between a metal ion M and a binding site S, MS, is conventionally defined with respect to an ongoing process at a reactive interface, for example, the conversion or accumulation of the free metal ion M by a sensor. In the case of soft charged multisite nanoparticulate complexes, the chemodynamic features that are operative within the micro environment of the particle body generally differ substantially from those for dissolved similar single-site complexes in the same medium. Here we develop a conceptual framework for the chemodynamics and the ensuing lability of soft (3D) nanoparticulate metal complexes. The approach considers the dynamic features of MS at the intraparticulate level and their impact on the overall reactivity of free metal ions at the surface of a macroscopic sensing interface. Chemodynamics at the intraparticulate level is shown to involve a local reaction layer at the particle/medium interface, while at the macroscopic sensor level an operational reaction layer is invoked. Under a certain window of conditions, volume exclusion of the nanoparticle body near the medium/sensor interface is substantial and affects the properties of the reaction layer and the overall lability of the nanoparticulate MS complex toward the reactive surface.

  16. Recovery and Disinfection of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, from Hard Nonporous and Soft Porous Surfaces.

    Science.gov (United States)

    Yeargin, Thomas; Fraser, Angela; Huang, Guohui; Jiang, Xiuping

    2015-10-01

    Human norovirus is a leading cause of foodborne disease and can be transmitted through many routes, including environmental exposure to fomites. In this study, both the recovery and inactivation of two human norovirus surrogates, feline calicivirus (FCV) and murine norovirus (MNV), on hard nonporous surfaces (glass) and soft porous surfaces (polyester and cotton) were evaluated by both plaque assay and reverse transcription quantitative PCR method. Two disinfectants, sodium hypochlorite (8.25%) and accelerated hydrogen peroxide (AHP, at 4.25%) were evaluated for disinfection efficacy. Five coupons per surface type were used to evaluate the recovery of FCV and MNV by sonication and stomaching and the disinfection of each surface type by using 5 ml of disinfectant for a contact time of 5 min. FCV at an initial titer of ca. 7 log PFU/ml was recovered from glass, cotton, and polyester at 6.2, 5.4, and 3.8 log PFU/ml, respectively, compared with 5.5, 5.2, and 4.1 log PFU/ml, respectively, for MNV with an initial titer of ca. 6 log PFU/ml. The use of sodium hypochlorite (5,000 ppm) was able to inactivate both FCV and MNV (3.1 to 5.5 log PFU/ml) below the limit of detection on all three surface types. AHP (2,656 ppm) inactivated FCV (3.1 to 5.5 log PFU/ml) below the limit of detection for all three surface types but achieved minimal inactivation of MNV (0.17 to 1.37 log PFU/ml). Reduction of viral RNA by sodium hypochlorite corresponded to 2.72 to 4.06 log reduction for FCV and 2.07 to 3.04 log reduction for MNV on all three surface types. Reduction of viral RNA by AHP corresponded to 1.89 to 3.4 log reduction for FCV and 0.54 to 0.85 log reduction for MNV. Our results clearly indicate that both virus and surface types significantly influence recovery efficiency and disinfection efficacy. Based on the performance of our proposed testing method, an improvement in virus recovery will be needed to effectively validate virus disinfection of soft porous surfaces.

  17. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.

    Science.gov (United States)

    Jusufi, Ardian; Vogt, Daniel M; Wood, Robert J; Lauder, George V

    2017-09-01

    Undulatory motion of the body is the dominant mode of locomotion in fishes, and numerous studies of body kinematics and muscle activity patterns have provided insights into the mechanics of swimming. However, it has not been possible to investigate how key parameters such as the extent of bilateral muscle activation affect propulsive performance due to the inability to manipulate muscle activation in live, freely swimming fishes. In this article we extend previous work on passive flexible mechanical models of undulatory propulsion by using actively controlled pneumatic actuators attached to a flexible foil to gain insight into undulatory locomotion and mechanisms for body stiffness control. Two soft actuators were attached on each side of a flexible panel with stiffness comparable to that of a fish body. To study how bilateral contraction can be used to modify axial body stiffness during swimming, we ran a parameter sweep of actuator contraction phasing and frequency. Thrust production by the soft pneumatic actuators was tested at cyclic undulation frequencies ranging from 0.3 to 1.2 Hz in a recirculating flow tank at flow speeds up to 28 cm/s. Overall, this system generated more thrust at higher tail beat frequencies, with a plateau in thrust above 0.8 Hz. Self-propelled speed was found to be 0.8 foil lengths per second or ∼13 cm/s when actuated at 0.55 Hz. This active pneumatic model is capable of producing substantial trailing edge amplitudes with a maximum excursion equivalent to 1.4 foil lengths, and of generating considerable thrust. Altering the extent of bilateral co-contraction in a range from -22% to 17% of the cycle period showed that thrust was maximized with some amount of simultaneous left-right actuation of ∼3% to 6% of the cycle period. When the system is exposed to water flow, thrust was substantially reduced for conditions of greatest antagonistic overlap in left-right actuation, and also for the largest latencies introduced. This

  18. The decontamination of soft-plated nickel surfaces compared to alternative surface materials used in radioactive transport and storage containers

    International Nuclear Information System (INIS)

    Zwicky, H.U.; Bedenig, D.O.; Bohringer, I.M.; Petrik, F.

    1983-01-01

    Surfaces of raw, nickel-plated, and epoxy-coated spheroidal graphite cast iron, together with stainless steel, were contaminated with a modified fission product solution then conditioned by heat treatment. This was followed by a variety of simple decontamination techniques. It was shown that the ease of removal of contaminations similar to those expected on a dry storage container surface is significantly affected by the roughness of the surface. The raw cast iron surface was virtually impossible to significantly decontaminate. Highest decontamination factors were obtained on nickel-plated and epoxy-painted surfaces using steam/detergent mixtures. Stainless steel only performed well in a polished condition. In a supplementary irradiation experiment, scanning electron microscopy indicated visible decomposition of an epoxy-painted surface at a gamma dose of 3.1 X 10 6 Gy (3.1 X 10 8 rad). A nickel-plated surface did not undergo any visible changes at the same dose

  19. On the surface physics affecting solar oscillation frequencies

    DEFF Research Database (Denmark)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.

    2017-01-01

    . In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called 'surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar...... physics in our model computation, we are able to reproduce the observed solar frequencies to less than or similar to 3 mu Hz without the need of any additional ad hoc functional corrections....

  20. SASP - Symposium on atomic, cluster and surface physics '94

    International Nuclear Information System (INIS)

    Maerk, T.D.; Schrittwieser, R.; Smith, D.

    1994-01-01

    This international symposium (Founding Chairman: W. Lindinger, Innsbruck) is one in a continuing biennial series of conferences which seeks to promote the growth of scientific knowledge and its effective exchange among scientists in the field of atomic, molecular, cluster and surface physics and related areas. The symposium deals in particular with interactions between ions, electrons, photons, atoms, molecules, and clusters and their interactions with surfaces. (author)

  1. Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time.

    Science.gov (United States)

    Harriman, O L J; Leake, M C

    2011-12-21

    The soft matter of biological systems consists of mesoscopic length scale building blocks, composed of a variety of different types of biological molecules. Most single biological molecules are so small that 1 billion would fit on the full-stop at the end of this sentence, but collectively they carry out the vital activities in living cells whose length scale is at least three orders of magnitude greater. Typically, the number of molecules involved in any given cellular process at any one time is relatively small, and so real physiological events may often be dominated by stochastics and fluctuation behaviour at levels comparable to thermal noise, and are generally heterogeneous in nature. This challenging combination of heterogeneity and stochasticity is best investigated experimentally at the level of single molecules, as opposed to more conventional bulk ensemble-average techniques. In recent years, the use of such molecular experimental approaches has become significantly more widespread in research laboratories around the world. In this review we discuss recent experimental approaches in biological physics which can be applied to investigate the living component of soft condensed matter to a precision of a single molecule. © 2011 IOP Publishing Ltd Printed in the UK & the USA

  2. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    Science.gov (United States)

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  3. Speak softly--and forget the stick. Corporal punishment and child physical abuse.

    Science.gov (United States)

    Zolotor, Adam J; Theodore, Adrea D; Chang, Jen Jen; Berkoff, Molly C; Runyan, Desmond K

    2008-10-01

    Previous studies have shown an association between spanking and child physical abuse. However, the relationship between more frequent and severe corporal punishment and abuse remains unknown. The objective of this study was to examine the associations between reported spanking, spanking frequency, or spanking with an object and the odds of physical abuse in a representative sample of mothers from North and South Carolina. This study is a cross-sectional, anonymous telephone survey of adult mothers with children agedcorporal punishment (spanking, spanking frequency, and spanking with an object) and an index of harsh physical punishment consistent with physical abuse (beating, burning, kicking, hitting with an object somewhere other than the buttocks, or shaking a child aged<2 years). Mothers who report that the child was spanked are 2.7 (95% CI=1.2, 6.3) times more likely to report abuse. Increases in the frequency of reported spanking in the last year are also associated with increased odds of abuse (OR=1.03, 95% CI=1.01, 1.06). Mothers reporting spanking with an object are at markedly increased odds of reporting abuse (OR=8.9, 95% CI=4.1, 19.6). Although reported spanking increases the odds of reported physical abuse, the relationship between the reported hitting of a child with an object and reported abuse is much stronger. Reduction in this form of discipline through media, educational, and legislative efforts may reduce child physical abuse.

  4. A physically-based model of global freshwater surface temperature

    NARCIS (Netherlands)

    van Beek, L.P.H.; Eikelboom, T.; van Vliet, M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  5. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  6. Surface modification of PTFE sheet by synchrotron radiation in the soft X-ray region

    International Nuclear Information System (INIS)

    Kato, Y.; Kanda, K.; Haruyama, Y.; Matsui, S.

    2004-01-01

    Full text: The surface properties of poly (tetrafluoroethylene) (PTFE) are changed by the exposure to synchrotron radiation (SR). We succeeded in controlling the wettability of the PTFE surface from hydrophobic to hydrophilic by varying the substrate temperature during the SR irradiation and found that the wettability was ascribable to microstructure and chemical composition of surface.In these previous works, oxygen atoms were found to inhabit on the hydrophobic surface of PTFE. In this study, we investigated the surface modification of PTFE from the SR exposure experiment under the O 2 gas atmosphere. The SR exposure to the PTFE sheet was carried out at beamline 6 (BL6) of the New- SUBARU. The PTFE sheet was irradiated to the white beam, ranging 50-1000 eV at BL6 at room temperature. The gas cell was mounted at the irradiation chamber. The O 2 gas pressure in the gas cell can be maintained at about 0.20 Pa during the SR exposure using 5mm φ hole window. The wettability of PTFE surface was evaluated by the contact angle of a small water drop. Contact angle was measured with the water drop of 1 μl using the contact angle meter. Fig.1 shows the SR dose dependence of contact angle of PTFE surface under the O 2 gas atmosphere and under the vacuum. Contact angle decreased monotonically with SR dose. The decrease rate of contact angle of the PTFE surface irradiated under the O 2 gas atmosphere was larger than that of the PTFE surface irradiated without O 2 gas. Therefore, the combination of O atom to the PTFE surface was enhanced by the O 2 gas in the reaction region. These results suggested that the bonding of O atom on the hydrophobic PTFE surface is dominantly produced in the sample chamber during SR irradiation, but not in the air atmosphere after the SR irradiation

  7. Soft-landing ion deposition of isolated radioactive probe atoms on surfaces: A novel method

    NARCIS (Netherlands)

    Laurens, C.R; Rosu, M.F; Pleiter, F; Niesen, L

    1997-01-01

    We present a method to deposit a wide range of radioactive probe atoms on surfaces, without introducing lattice damage or contaminating the surface with other elements or isotopes. In this method, the probe atoms are mass separated using an isotope separator, decelerated to 5 eV, and directly

  8. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  9. Non-invasive objective and contemporary methods for measuring ocular surface inflammation in soft contact lens wearers - A review.

    Science.gov (United States)

    Chao, Cecilia; Richdale, Kathryn; Jalbert, Isabelle; Doung, Kim; Gokhale, Moneisha

    2017-10-01

    Contact lens wear is one of the primary risk factors for the development of ocular surface inflammatory events. The purpose of this review is to examine and summarize existing knowledge on the mechanisms of contact lens related ocular surface inflammation and the evidence for the effectiveness of current objective methods to measure ocular surface inflammation. Contact lens wear is postulated to trigger an inflammatory response on the ocular surface due to mechanical, chemical, hypoxic stress, or by the introduction of microbes and their toxins. Apart from the traditional signs of inflammation, such as swelling, oedema, redness and heat, on the ocular surface, other methods to measure ocular surface inflammation in sub-clinical levels include tear inflammatory mediator concentrations, conjunctival cell morphology, and corneal epithelial dendritic cell density and morphology. Tear inflammatory mediator concentrations are up- or down-regulated during contact lens wear, with or without the presence of associated inflammatory events. There is higher conjunctival cell metaplasia observed with contact lens wear, but changes in goblet cell density are inconclusive. Dendritic cell density is seen to increase soon after initiating soft contact lens wear. The long term effects of contact lens wear on dendritic cell migration in the cornea and conjunctiva, including the lid wiper area, require further investigation. Currently patient factors, such as age, smoking, systemic diseases and genetic profile are being studied. A better understanding of these mechanisms may facilitate the development of new management options and strategies to minimize ocular surface inflammation related to contact lens wear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  10. Discrepancies between soft x-ray emissivity contours and magnetic flux surfaces in Alcator C-Mod

    International Nuclear Information System (INIS)

    Borras, M.C.; Granetz, R.S.

    1996-01-01

    The soft x-ray diagnostic system of Alcator C-Mod, equipped with 152 detectors distributed in four arrays, is used to obtain iso-emissivity surfaces. These surfaces have been characterized by giving their elongation and relative shift from the centre of the tokamak as functions of plasma radius. Flux surfaces, provided by magnetic diagnostics, have also been described with elongation and shift. Results from the comparison of the two sets of geometric parameters obtained from magnetic and x-ray diagnostics are presented. We find that, whereas the shifts obtained from these two diagnostic methods are always in good agreement, the corresponding elongation curves show different patterns. An agreement between elongations better than 2% is only found in a range of about 2 cm in minor radius. On the other hand, the elongations can differ by 10% towards the plasma edge and the plasma centre. Error bars for the x-ray diagnostic are obtained by propagating the effect of ± 1% random errors at the detector signals, and can amount to ± 1-2% of the estimated values near the edge and the centre of the plasma. The estimated uncertainties in the determination of elongation from magnetic flux surfaces are of the order of 4%. A series of tests and simulations performed to verify the accuracy of the X-ray diagnostic system is presented. The discrepancies found could imply the existence of asymmetries in impurity concentration. (Author)

  11. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  12. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  13. Comparative Evaluation of Tensile Bond Strength between Silicon Soft Liners and Processed Denture Base Resin Conditioned by Three Modes of Surface Treatment: An Invitro Study.

    Science.gov (United States)

    Surapaneni, Hemchand; Ariga, Padma; Haribabu, R; Ravi Shankar, Y; Kumar, V H C; Attili, Sirisha

    2013-09-01

    Soft denture liners act as a cushion for the denture bearing mucosa through even distribution of functional load, avoiding local stress concentrations and improving retention of dentures there by providing comfort to the patient. The objective of the present study was to compare and evaluate the tensile bond strengths of silicone-based soft lining materials (Ufi Gel P and GC Reline soft) with different surface pre treatments of heat cure PMMA denture base acrylic resin. Stainless steel dies measuring 40 mm in length; 10 mm in width and 10 mm in height (40 × 10 × 10) were machined to prepare standardized for the polymethyl methacrylate resin blocks. Stainless steel dies (spacer for resilient liner) measuring 3 mm thick; 10 mm long and 10 mm wide were prepared as spacers to ensure uniformity of the soft liner being tested. Two types of Addition silicone-based soft lining materials (room temperature polymerised soft lining materials (RTPSLM): Ufi Gel P and GC Reline soft) were selected. Ufi Gel P (VOCO, Germany), GC Reline soft (GC America) are resilient, chairside vinyl polysiloxane denture reliners of two different manufacturers. A total of 80 test samples were prepared of which 40 specimens were prepared for Group A (Ufi Gel P) and 40 specimens for Group B (GC Reline soft). In these groups, based on Pre-treatment of acrylic resin specimens each group was subdivided into four sub groups of 10 samples each. Sub-group I-without any surface treatment. Sub-group II-sand blasted Sub-group III-treated with Methyl Methacrylate monomer Sub-group IV-treated with chemical etchant Acetone. The results were statistically analysed by Kruscal Wallis test, Mann-Whitney U test, and Independent t test. The specimens treated with MMA monomer wetting showed superior and significant bond strength than those obtained by other surface treatments. The samples belonging to subgroups of GC Reline soft exhibit superior tensile bond strength than subgroups of Ufi Gel P. The modes

  14. Clothing adjustments for concealed soft body armor during moderate physical exertion.

    Science.gov (United States)

    Ryan, Greg A; Bishop, Stacy H; Herron, Robert L; Katica, Charles P; Elbon, Bre'anna L; Bosak, Andrew M; Bishop, Phillip

    2015-01-01

    Previous research has studied the impact of Level II concealed soft body armor (SBA) on the augmentation of heat storage in a hot environment simulating a typical summer day in the southeastern United States (wet bulb globe temperature [WBGT] = 30°C) and noted a significant difference between macro- and micro-WBGTs. The purpose of this study was to characterize the microclimate (micro-WBGT) under a concealed Level II SBA during 60 min of moderately intense work at two separate macro-WBGTs (26°C and 30°C), and to establish WBGT corrections to allow prediction of heat strain in an individual wearing a concealed Level II SBA. A single trial was performed with nine volunteers (27 ± 4 years) outfitted with a simulated standard law enforcement uniform and a traditional concealed Level II SBA, in a moderately warm environment (WBGT = 26°C). Each participant performed cycles of 12 min of walking (1.25 L · min(-1)) and 3 min of arm curls (14.3 kg, 0.6 L · min(-1)) with a 5 min rest after every other cycle, for a total of 60 minutes. This trial was compared to an identical previously completed 60-min work bout at 30°C. A two-way repeated measures ANOVA with Post hoc Bonferroni and paired samples t-test analysis was conducted. A greater difference between macro- micro-WBGTs existed at 26°C compared to the 30°C macro-WBGT. Under these conditions, a moderate work in Level II SBA requires a WBGT correction of 8.9°C and 6.2°C at macro-WBGTs of 26°C and 30°C, respectively. A modified simple linear regression prediction model was established for mean Micro-WBGT for each macro-WBGTs after the plateau point at the 30 min mark. The derivation regressions at 26°C (R(2) = 0.99), and 30°C (R(2) = 0.99) indicate that micro-WBGT could be predicted for each 15 minutes time at both macro-WBGTs tested for individuals doing moderate intensity (300 Kcals · hr(-1)) work wearing concealed Level II SBA.

  15. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  16. Wetting of two-dimensional physically patterned surfaces

    Science.gov (United States)

    Bell, Michael Scott

    An understanding of wetting phenomena is important, in part, due to the many practical applications of controlled wetting. Some of the most exciting applications involve superhydrophobic surfaces, on which water droplets exhibit contact angles larger than 150° and contact angle hysteresis less than 10°. These surfaces are notable for their low-drag, antifouling, and self-cleaning properties, among others. Wetting is known to be affected by both the chemistry and the physical patterning of a surface, with the chemistry affecting what is called the intrinsic contact angle, which is the contact angle displayed by a droplet on a smooth flat surface made of the given material. To date, the largest intrinsic contact angle observed for any material is only about 120°, which does not confer superhydrophobicity. Thus, physical patterning is a crucial component of any superhydrophobic surface. Interestingly, many natural examples of superhydrophobic surfaces exist, with one of the most notable being the lotus leaf. In designing such surfaces, scientists have turned to the natural examples for inspiration, and have found that most natural examples have multiple (usually two) scales of roughness, commonly referred to as hierarchical roughness. Though hierarchical roughness is ubiquitous in the superhydrophobic surfaces of the natural world, its precise role in conferring superhydrophobicity has so far remained elusive. In this work, we develop a thermodynamic model to study the wetting of two-dimensional physically patterned surfaces. Past models that have been developed for this purpose often make several assumptions: the drop must be much larger than the surface features while simultaneously being small enough that the effects of gravity are negligible. Many of these models ultimately rely on the older Cassie and Wenzel models, which themselves make assumptions about the drop size relative to the surface features--namely that the drop is again much larger than the surface

  17. Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces.

    Science.gov (United States)

    Si, Kae Jye; Guo, Pengzhen; Shi, Qianqian; Cheng, Wenlong

    2015-05-19

    We report on self-assembled nanocube-based plasmene nanosheets as new surface-enhanced Raman scattering (SERS) substrates toward direct identification of a trace amount of drugs sitting on topologically complex real-world surfaces. The uniform nanocube arrays (superlattices) led to low spatial SERS signal variances (∼2%). Unlike conventional SERS substrates which are based on rigid nanostructured metals, our plasmene nanosheets are mechanically soft and optically semitransparent, enabling conformal attachment to real-world solid surfaces such as banknotes for direct SERS identification of drugs. Our plasmene nanosheets were able to detect benzocaine overdose down to a parts-per-billion (ppb) level with an excellent linear relationship (R(2) > 0.99) between characteristic peak intensity and concentration. On banknote surfaces, a detection limit of ∼0.9 × 10(-6) g/cm(2) benzocaine could be achieved. Furthermore, a few other drugs could also be identified, even in their binary mixtures with our plasmene nanosheets. Our experimental results clearly show that our plasmene sheets represent a new class of unique SERS substrates, potentially serving as a versatile platform for real-world forensic drug identification.

  18. The effectiveness of soft contact lens disinfection systems against Acanthamoeba on the lens surface.

    Science.gov (United States)

    Liedel, K K; Begley, C G

    1996-03-01

    This investigation compared the efficacy of three widely used contact lens disinfection systems against an ocular isolate of Acanthamoeba polyphaga. Twenty-seven worn Ciba NewVues lenses were quartered, heat sterilized and inoculated with Acanthamoeba. Lens quarters were then randomly assigned to three experimental groups, with Group A lenses exposed to cleaner and saline rinse only, Group B to disinfection only, and Group C to both cleaner and disinfection. One quarter of each lens served as a control and the other three quarters were experimental. Quantification of viable Acanthamoeba remaining on the lens was performed after each step of the disinfection process. Group A lenses showed no significant difference between the treatments, or the treatments and the control. Group B lenses demonstrated a significant difference (p = 0.0001) between the treatments and the control. In Group C (cleaning and disinfection), the control lens quarters were significantly different (p = 0.037) from the experimental group, but there was no significant difference between the treatments. All three disinfection regimens were very effective in reducing the number of viable Acanthamoeba on the contact lens surface. In the absence of proper cleaning (Group B), AOSept was the most effective of the three. These results also show the importance of thoroughly rubbing the contact lens surface to decrease the number of Acanthamoeba.

  19. Atomic physics for fusion plasma spectroscopy; a soft x-ray study of molybdenum ions

    International Nuclear Information System (INIS)

    Fournier, K.B.

    1996-01-01

    Understanding the radiative patterns of the ions of heavy atoms (Z approx-gt 18) is crucial to fusion experiments. The present thesis applies ab initio, relativistic calculations of atomic data to modeling the emission of molybdenum (Z = 42) ions in magnetically confined fusion plasmas. The models are compared to observations made in the Alcator C-Mod tokamak (Plasma Fusion Center, Massachusetts Institute of Technology), and the Frascati Tokamak Upgrade. Experimental confirmation of these models allows confidence in calculations of the total molybdenum concentration and quantitative estimates of the total power lost from the plasmas due to molybdenum line radiation. Charge states in the plasma core (Mo 33+ to Mo 29+ ) emit strong x-ray and XUV spectra which allow benchmarking of models for the spatial distribution of highly stripped molybdenum ions; the models only achieve agreement with observations when the rates of indirect ionization and recombination processes are included in the calculation of the charge state distribution of the central molybdenum ions. The total concentration of molybdenum in the core of the plasma is found, and the total power radiated from the plasma core is computed. Observations of line emission from more highly charged molybdenum ions (Mo 36+ to Mo 34+ ) are presented. open-quotes Bulkclose quotes molybdenum charge states (Mo 25+ to Mo 23+ ) emit complicated XUV spectra from a position in the plasma near C-Mod's half radius; spatial profiles of these ions' emission are analyzed. Models for the line-emission spectra of adjacent ions (Mo 28+ to Mo 26+ ) are offered, and the accuracy and limits of ab initio energy level calculations are discussed. open-quotes Edgeclose quotes charge states (Mo 22+ to Mo 15 ) extend to the last closed magnetic flux surface of the C-Mod plasma. The strongest features from these charge states are emitted in a narrow band from ∼70 Angstrom

  20. Surface physics with cold and thermal neutron reflectometry

    International Nuclear Information System (INIS)

    Steyerl, A.

    1991-11-01

    Three aspects of the research project ''Surface physics with cold and ultracold neutron reflectometry'' were stressed during the present first year: (1) Setup of the reflectometer facility at the research reactor of the Rhode Island Nuclear Science Center. The installation provides a narrow ''pencil beam'' analyzed by time of flight using a chopper system. Following beam characterization and a test measurement of the total cross section of copper single crystal first reflectivity measurements are currently performed using a supermirror. (2) Design stud for the ultracold neutron imaging system, with involvement of the relevant industry. Bids are available for several components indicating that it will be very difficult to build the entire system unless further funds become available. (3) Analysis of features of neutron reflection from surfaces with special emphasis on the effect of surface roughness both on the specular beam and the diffusely reflected and refracted intensity. Previous theoretical studies were supplemented by further numerical calculations of diffuse scattering distributions using different models. Application of ultracold and cold neutron reflectometry to the study of liquid-vapor phase transition were discussed. The theoretical work also includes the development of tentative ideas for novel fundamental physics experiments

  1. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  2. The role of water in the molecular structure and properties of soft contact lenses and surface interactions

    Science.gov (United States)

    Monti, Patrizia; Simoni, Rosa

    1992-06-01

    The role played by water in the molecular structure and properties of commercial soft contact lenses (hydrogels) based on poly 2-hydroxyethyl methacrylate (PHEMA) or poly vinylpyrrolidone (PVP) was investigated by means of vibrational spectroscopy and thermal analyses. The results of this study show that the materials having the greatest water percentage have elastic properties closer to those of the ocular tissues with which they come into contact. Water interacts by hydrogen bonding with the hydrophilic groups present in the polymers, and the strength of this interaction depends on the type of hydrophilic group involved. Moreover, in the case of PVP materials, water also modifies the conformation of the hydrophobic groups. The arrangement of surface water molecules can explain the different adhesion capability of Staphilococcus aureus on this type of lens depending on the water content. In connection with this, a simple model is presented. The water molecules present in the hydrogel structures completely exchange with those of the biological environment. A quantitative analytical method for evaluating the amount of water in commercial lenses by means of Raman spectroscopy is reported.

  3. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness

  4. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments.

    Science.gov (United States)

    Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker

    2013-01-01

    This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups.

  5. In situ reactivity and TOF-SIMS analysis of surfaces prepared by soft and reactive landing of mass-selected ions.

    Science.gov (United States)

    Johnson, Grant E; Lysonski, Michael; Laskin, Julia

    2010-07-01

    An instrument has been designed and constructed that enables in situ reactivity and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of surfaces prepared or modified through soft and reactive landing of mass-selected polyatomic cations and anions. The apparatus employs an electrospray ion source coupled to a high transmission electrodynamic ion funnel, two focusing collision quadrupoles, a large 19 mm diameter quadrupole mass filter, and a quadrupole bender that deflects the ion beam, thereby preventing neutral contaminants from impinging on the deposition surface. The ion soft landing apparatus is coupled to a commercial TOF-SIMS instrument permitting the introduction of surfaces into vacuum and SIMS analysis before and after ion deposition without breaking vacuum. To facilitate a comparison of the current TOF-SIMS instrument with the in situ Fourier transform ion cyclotron resonance (FTICR-SIMS) deposition apparatus constructed previously, dications of the cyclic peptide Gramicidin S (GS) and the photoactive organonometallic complex ruthenium tris-bipyridine (Ru(bpy)(3)) were soft-landed onto fluorinated self-assembled monolayer (FSAM) on gold surfaces. In both cases, similarities and differences were observed in the secondary ion mass spectra, with the TOF-SIMS results, in general, characterized by greater sensitivity, larger dynamic range, less fragmentation, and fewer in-plume reactions than the corresponding FTICR-SIMS spectra. The charge reduction kinetics of both the doubly and singly protonated GS cations on the FSAM surface were also examined as was the influence of the primary gallium ion (Ga(+)) flux on the efficiency of these processes. In addition, we demonstrate that the new instrument enables detailed studies of the reactivity of catalytically active species immobilized by soft and reactive landing toward gaseous reagents.

  6. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.

    Science.gov (United States)

    Zhou, Yufeng; Wang, Xiaotong

    2018-03-01

    Cavitation histotripsy with the short pulse duration (PD) but high pulse repetition frequency (PRF) disintegrates the tissue at a fluid interface. However, longer PD and lower PRF are used in the other focused ultrasound applications, where the acoustic radiation force, streaming, and cavitation are different, and their effects on erosion are unknown. In this study, the erosion at the surface of phantom/ex vivo tissue and the characteristics of induced bubble cloud captured by high-speed photography, passive cavitation detection, and light transmission during histotripsy exposure at varied PDs and PRFs but the same duty cycle were compared. The peak negative pressure of 6.6 MPa at the PD of 20 ms and PRF of 1 Hz began to erode the phantom, which becomes more significant with the increase of peak negative pressure, PD, and interval time between bursts. The increase of the PRF from 1 Hz to 1000 Hz, while the decrease of the PD from 20 ms to 20 μs (duty cycle of 2%) at the same energy was delivered to the gel phantom immersed in the degassed water led to the decrease of erosion volume but a slight increase of the erosion area and smoother surface. Low PRF and long PD produce the significant tissue deformation, acoustic wave refocusing, confinement of bubbles in a conical region, and more bubble dissolution after the collapse for the high acoustic scattering and light transmission signals. In comparison, high PRF and low PD produce a wide distribution of bubbles with only little wave refocusing at the beginning of cavitation histotripsy and high inertial cavitation. Acoustic emission dose has a good correlation with the erosion volume. The erosion on the porcine kidney at the varied PRFs and PDs with the same energy output showed similar trends as those in the phantom but at a slow rate. In summary, the PRF and PD are important parameters for the cavitation histotripsy-induced erosion at the interface of fluid and soft material, and they should be

  7. Soft hair as a soft wig

    Science.gov (United States)

    Bousso, Raphael; Porrati, Massimo

    2017-10-01

    We consider large gauge transformations of gravity and electromagnetism in D=4 asymptotically flat spacetime. Already at the classical level, we identify a canonical transformation that decouples the soft variables from the hard dynamics. We find that only the soft dynamics is constrained by BMS or large U(1) charge conservation. Physically this corresponds to the fact that sufficiently long-wavelength photons or gravitons that are added to the in-state will simply pass through the interaction region; they scatter trivially in their own sector. This implies in particular that the large gauge symmetries bear no relevance to the black hole information paradox. We also present the quantum version of soft decoupling. As a consistency check, we show that the apparent mixing of soft and hard modes in the original variables arises entirely from the long range field of the hard charges, which is fixed by gauge invariance and so contains no additional information.

  8. Continuous Surface Rendering, Passing from CAD to Physical Representation

    Directory of Open Access Journals (Sweden)

    Mario Covarrubias

    2013-06-01

    Full Text Available This paper describes a desktop-mechatronic interface that has been conceived to support designers in the evaluation of aesthetic virtual shapes. This device allows a continuous and smooth free hand contact interaction on a real and developable plastic tape actuated by a servo-controlled mechanism. The objective in designing this device is to reproduce a virtual surface with a consistent physical rendering well adapted to designers' needs. The desktop-mechatronic interface consists in a servo-actuated plastic strip that has been devised and implemented using seven interpolation points. In fact, by using the MEC (Minimal Energy Curve Spline approach, a developable real surface is rendered taking into account the CAD geometry of the virtual shapes. In this paper, we describe the working principles of the interface by using both absolute and relative approaches to control the position on each single control point on the MEC spline. Then, we describe the methodology that has been implemented, passing from the CAD geometry, linked to VisualNastran in order to maintain the parametric properties of the virtual shape. Then, we present the co-simulation between VisualNastran and MATLAB/Simulink used for achieving this goal and controlling the system and finally, we present the results of the subsequent testing session specifically carried out to evaluate the accuracy and the effectiveness of the mechatronic device.

  9. Structural–mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N{sub 2}{sup +} implantation

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Ilya A., E-mail: ilya.morozov@gmail.com [Institute of Continuous Media Mechanics UB RAS, Academika Koroleva st. 1, 614013 Perm (Russian Federation); Perm State University, Bukireva st. 15, 614990 Perm (Russian Federation); Mamaev, Alexander S. [Institute of Electrophysics UD RAS, Amundsen st. 106, 620016 Ekaterinburg (Russian Federation); Osorgina, Irina V. [Perm State University, Bukireva st. 15, 614990 Perm (Russian Federation); Lemkina, Larisa M. [Institute of Ecology and Genetics of Microorganisms UB RAS, Golev st. 13, 614081 Perm (Russian Federation); Korobov, Vladimir P. [Institute of Ecology and Genetics of Microorganisms UB RAS, Golev st. 13, 614081 Perm (Russian Federation); Perm National Research Polytechnic University, Komsomolsky av. 29, 614990 Perm (Russian Federation); Belyaev, Anton Yu [Institute of Continuous Media Mechanics UB RAS, Academika Koroleva st. 1, 614013 Perm (Russian Federation); Porozova, Svetlana E. [Perm National Research Polytechnic University, Komsomolsky av. 29, 614990 Perm (Russian Federation); Sherban, Marina G. [Perm State University, Bukireva st. 15, 614990 Perm (Russian Federation)

    2016-05-01

    The surface of elastic polyurethane treated by plasma immersion N{sub 2}{sup +} ion implantation at different fluences has been investigated. A folded surface structure is observed in all cases. Analysis has been performed to study the structural (roughness, steepness and fraction of folds, fractal characteristics), mechanical (stiffness, adhesion force between the AFM probe and the material) and wetting properties of surfaces. Under uniaxial stretching the cracks orthogonal to the axis of deformation and longitudinal folds are formed on the examined surfaces. After unloading the initial structure of the surface of deformed materials exposed to low fluences becomes smoother and does not recover, i.e. it has plastic properties. By contrast, the structure of the surfaces of materials subjected to high-fluence treatment recovers without visible changes and the cracks are fully closed. The study of Staphylococcus colonies grown on these materials has demonstrated significant reduction (from 3 to 5 times) in the vitality of bacteria on treated surfaces. This result was repeated on samples after 11 months of storage. Such antibacterial properties are primarily related to the structural changes of the surfaces accompanied by the increased hydrophilicity. - Highlights: • Surface of soft polyurethane after plasma immersion ion implantation was studied. • Treated surfaces have fluence dependent plicated fractal structure. • Surface properties were investigated both in undeformed and stretched states. • Vitality of bacteria on treated surfaces demonstrated significant reduction.

  10. Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: A potential technique for soft tissue engineering applications.

    Science.gov (United States)

    Liu, Mingyue; Zhou, Jianfeng; Yang, Yang; Zheng, Miao; Yang, Jianjun; Tan, Jianguo

    2015-12-01

    The quality of soft-tissue integration plays an important role in the short- and long-term success of dental implants. The aim of the present study was to provide a surface modification approach for zirconia implant abutment materials and to evaluate its influence on fibroblast behavior and oral bacteria adhesion, which are the two main factors influencing the quality of peri-implant soft-tissue seal. In this study, polydopamine (PDA)-coated zirconia was prepared and the surface characteristics were evaluated using scanning electron microscopy, atomic force microscopy, a contact-angle-measuring device, X-ray photoelectron spectroscopy, and Raman spectroscopy. The responses of human gingival fibroblasts (HGFs) to PDA-coated zirconia; i.e., adhesion, proliferation, morphology, protein synthesis, and gene expression, were analyzed. Additionally, the adhesion of Streptococcus gordonii and Streptococcus mutans to zirconia after PDA coating was assessed by scanning electron microscopy and live/dead staining. The material surface analyses suggested the successful coating of PDA onto the zirconia surface. The PDA coating significantly increased cell adhesion and proliferation compared with pristine zirconia. HGFs exhibited a high degree of spreading and secreted a high level of collagen type I on PDA-modified disks. Upregulation of integrin α5, β1, β3 and fibronectin was noted in HGFs cultured on PDA-coated zirconia. The number of adherent bacteria decreased significantly on zirconia after PDA coating. In summary, our result suggest that PDA is able to modify the surface of zirconia, influence HGFs' behavior and reduce bacterial adhesion. Therefore, this surface modification approach holds great potential for improving soft-tissue integration around zirconia abutments in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study.

    Science.gov (United States)

    Maddox, Michael M; Feibus, Allison; Liu, James; Wang, Julie; Thomas, Raju; Silberstein, Jonathan L

    2018-03-01

    To construct patient-specific physical three-dimensional (3D) models of renal units with materials that approximates the properties of renal tissue to allow pre-operative and robotic training surgical simulation, 3D physical kidney models were created (3DSystems, Rock Hill, SC) using computerized tomography to segment structures of interest (parenchyma, vasculature, collection system, and tumor). Images were converted to a 3D surface mesh file for fabrication using a multi-jet 3D printer. A novel construction technique was employed to approximate normal renal tissue texture, printers selectively deposited photopolymer material forming the outer shell of the kidney, and subsequently, an agarose gel solution was injected into the inner cavity recreating the spongier renal parenchyma. We constructed seven models of renal units with suspected malignancies. Partial nephrectomy and renorrhaphy were performed on each of the replicas. Subsequently all patients successfully underwent robotic partial nephrectomy. Average tumor diameter was 4.4 cm, warm ischemia time was 25 min, RENAL nephrometry score was 7.4, and surgical margins were negative. A comparison was made between the seven cases and the Tulane Urology prospectively maintained robotic partial nephrectomy database. Patients with surgical models had larger tumors, higher nephrometry score, longer warm ischemic time, fewer positive surgical margins, shorter hospitalization, and fewer post-operative complications; however, the only significant finding was lower estimated blood loss (186 cc vs 236; p = 0.01). In this feasibility study, pre-operative resectable physical 3D models can be constructed and used as patient-specific surgical simulation tools; further study will need to demonstrate if this results in improvement of surgical outcomes and robotic simulation education.

  12. Implants with an Oxidized Surface Placed Predominately in Soft Bone Quality and Subjected to Immediate Occlusal Loading: Results from an 11-Year Clinical Follow-Up.

    Science.gov (United States)

    Glauser, Roland

    2016-06-01

    The purpose of this clinical follow-up was to document the 11-year outcome of implants with a moderately rough oxidized surface subjected to immediate occlusal loading. Twenty-six of 38 patients enrolled in a 5-year prospective study were available for this follow-up analysis, with 33 restorations supported by 66 slightly tapered implants (Brånemark System MkIV, Nobel Biocare, Gothenburg, Sweden). The majority of implants were placed in posterior regions (88%) and into soft bone (76%). Parameters included cumulative survival rate (CSR), radiographic marginal bone level, bleeding on probing (BOP), intrasulcular counts of perio-pathogenic markers (DNA probes), and total bacterial load (TBL). The CSR was 97.1% at 11.2 years mean follow-up. Mean marginal bone remodeling was 0.47 mm (SD 1.09, n = 65) from 1 year postplacement to 11-year follow-up. BOP was absent at most sites (63.6%). No statistically significant differences in TBL or perio-pathogenic marker species were observed at implants and teeth. The results of the present follow-up show high long-term survival, stable marginal bone levels, and soft tissue outcomes of oxidized surface implants placed predominately in posterior regions and soft bone. The quantity and quality of intrasulcular microbiota were comparable at implants and teeth. © 2015 Wiley Periodicals, Inc.

  13. Hydrothermal Synthesis of Nanooctahedra MnFe₂O₄ onto the Wood Surface with Soft Magnetism, Fire Resistance and Electromagnetic Wave Absorption.

    Science.gov (United States)

    Wang, Hanwei; Yao, Qiufang; Wang, Chao; Ma, Zhongqing; Sun, Qingfeng; Fan, Bitao; Jin, Chunde; Chen, Yipeng

    2017-05-23

    In this study, nanooctahedra MnFe₂O₄ were successfully deposited on a wood surface via a low hydrothermal treatment by hydrogen bonding interactions. As-prepared MnFe₂O₄/wood composite (MW) had superior performance of soft magnetism, fire resistance and electromagnetic wave absorption. Among them, small hysteresis loops and low coercivity (magnetization-field curve of MW with saturation magnetization of 28.24 emu/g, indicating its excellent soft magnetism. The MW also exhibited a good fire-resistant property due to its initial burning time at 20 s; while only 6 s for the untreated wood (UW) in combustion experiments. Additionally, this composite revealed good electromagnetic wave absorption with a minimum reflection loss of -9.3 dB at 16.48 GHz. Therefore, the MW has great potential in the fields of special decoration and indoor electromagnetic wave absorbers.

  14. Glacially striated, soft sediment surfaces on late Paleozoic tillite at São Luiz do Purunã, PR

    Directory of Open Access Journals (Sweden)

    Ivo Trosdtorf Jr.

    2005-06-01

    Full Text Available Striae and furrows found on the upper surfaces of three stratigraphically superposed decimetric beds of late Paleozoic lodgement tillite of the Itararé Subgroup in the northern Paraná Basin were engraved by ploughing of clasts and possibly also ice protuberances at the base of the glacier, on unconsolidated to partially consolidated sediment. Associated features indicate that the rheology of the bed varied from stiff during lodgement to soft and deformable during ploughing. Poor drainage of meltwater at the glacier-bed interface may have contributed to lower the strength of sediment to deformation. The deformed interval was probably generated during a single glacial phase or advance of a glacier grounding in a marine or lacustrine water body. Changes in the dynamics of the glacier involving slow and fast flow were correlated respectively with alternation of deposition and erosion. The proposed model is analogous to that of lodgement till complexes from the Pleistocene of the northern hemisphere. Retreat of the glacier was probably fast, followed by settling of muds on top of the upper striated and furrowed surface, and progradation of deltaic sands during post-glacial time.Estrias e sulcos encontrados sobre três camadas decimétricas, estratigraficamente superpostas, de tilito de alojamento neopaleozóico do Subgrupo Itararé, na porção norte da Bacia do Paraná, foram formados por aração de clastos e, possivelmente, por protuberâncias de gelo, na base da geleira. Feições associadas indicam que a reologia do sedimento variou de rígido, durante o alojamento, a inconsolidado e deformável durante a aração. A baixa drenagem da água de degelo na interface geleira-substrato pode ter contribuído para reduzir a resistência do sedimento à deformação. A sucessão acima foi gerada provavelmente durante uma única fase glacial ou avanço de geleira sobre corpo de água marinho ou lacustre. Mudanças na dinâmica da geleira envolvendo

  15. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  16. Soft x-ray induced femtosecond solid-to-solid phase transition

    Czech Academy of Sciences Publication Activity Database

    Tavella, F.; Höppner, H.; Tkachenko, V.; Medvedev, Nikita; Capotondi, F.; Golz, T.; Kai, Y.; Manfredda, M.; Pedersoli, E.; Prandolini, M.J.; Stojanovic, N.; Tanikawa, T.; Teubner, U.; Toleikis, S.; Ziaja, B.

    2017-01-01

    Roč. 24, Sep (2017), s. 22-27 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : soft x-ray * ultrashort x-ray pulses * grafitization of diamond * non-thermal phase transition Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  17. Search for new physics in the one soft lepton final state using 2015 data at $\\sqrt{s}=13~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2016-01-01

    This note presents the results of a search for new physics using events with one soft lepton and large missing transverse momentum, inclusive in jet flavor and multiplicity. Results are based on a $2.3~\\mathrm{fb}^{-1}$ data sample of $\\sqrt{s} = 13~\\mathrm{TeV}$ proton-proton collisions collected with the CMS detector. No significant deviations from the standard model expectations are observed, and the results are used to set limits on models featuring compressed spectra. For pair production of top squarks decaying into four bodies, $\\widetilde{t} \\rightarrow b \\widetilde\\chi^{0} l (q) \

  18. Holiday fun with soft gluons

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Emissions of soft gluons from energetic particles play an important role in collider processes. While the basic physics of soft emissions is simple, it gives rise to a variety of interesting and intricate phenomena (non-global logs, Glauber phases, super-leading logs, factorization breaking). After an introduction, I will review progress in resummation methods such as Soft-Collinear Effective Theory driven by a better understanding of soft emissions. I will also show some new results for computations of soft-gluon effects in gap-between-jets and isolation-cone cross sections.

  19. Soft Connected Spaces and Soft Paracompact Spaces

    OpenAIRE

    Fucai Lin

    2013-01-01

    Soft topological spaces are considered as mathematical tools for dealing with uncertainties, and a fuzzy topological space is a special case of the soft topological space. The purpose of this paper is to study soft topological spaces. We introduce some new concepts in soft topological spaces such as soft closed mapping, soft open mappings, soft connected spaces and soft paracompact spaces. We also redefine the concept of soft points such that it is reasonable in soft topological spaces. Mo...

  20. Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device

    Science.gov (United States)

    Hayata, Hiroki; Okamoto, Marin; Takeoka, Shinji; Iwase, Eiji; Fujie, Toshinori; Iwata, Hiroyasu

    2017-05-01

    In this paper, we present a simple method for manufacturing electronic devices using ultrathin polymer films, and develop a high-frequency RF identification. To expand the market for flexible devices, it is important to enhance their adhesiveness and conformability to surfaces, to simplify their fabrication, and to reduce their cost. We developed a method to design an antenna for use on an operable RF identification whose wiring was subjected to commercially available inkjet or simple screen printing, and successfully fabricated the RF identification. By using ultrathin films made of polystyrene-block-polybutadiene-block-polystyrene (SBS) as substrates — less than 750 nm — the films could be attached to various surfaces, including soft surfaces, by van der Waals force and without using glue. We succeeded in the simple fabrication of an ultrathin RF identification including a commercial or simple printing process.

  1. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    Science.gov (United States)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  2. Computer aided display of multiple soft tissue anatomical surfaces for simultaneous structural and area-dose appreciation in 3D-radiationtherapy planning. 115

    International Nuclear Information System (INIS)

    Moore, C.J.; Mott, D.J.; Wilkinson, J.M.

    1987-01-01

    For radiotherapy applications a 3D display that includes soft tissues is required but the presentation of all anatomical structures is often unnecessary and is potentially confusing. A tumour volume and a small number of critical organs, usually embedded within other soft tissue anatomy, are likely to be all that can be clearly displayed when presented in a 3D format. The inclusion of dose data (in the form of isodose lines or surfaces) adds to the complication of any 3D display. A solution to this problem is to incorporate the presentation of dose distribution into the technique used to provide the illusion of 3D. This illusion can be provided by either depth cueing or by the hypothetical illumination of spatially defined object surfaces. The dose distribution from irradiation fields or, in the case of brachytherapy from radioactive sources, can be regarded as a source of illumination for tumour and critical organs. The intensity of illumination at any point on a tissue surface represents the dose at that point. Such an approach also allows the variation of dose over a given surface (and by extension, over the corresponding volume) to be quantified using histogram techniques. This may be of value in analysing and comparing techniques in which vulnerable tissue surfaces are irradiated. The planning of intracavitary treatments for cervical cancer is one application which might benefit from the display approach described above. Here the variation of dose over the mucosal surfaces of the bladder and the rectum is of particular interest, since dose related morbidity has often been reported following these treatments. 7 refs.; 8 figs

  3. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  4. Physical and numerical modelings of lateral drag in a pipeline in very soft clay; Modelagens fisica e numerica de arraste lateral de duto em argila mole

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato M.S.; Almeida, Maria C.F.; Almeida, Marcio S.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Borges, Ricardo G.; Amaral, Claudio S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    This paper discusses some results from a joint research project undertaken by COPPE/UFRJ and CENPES/PETROBRAS about soil-structure interaction applied to thermal snaking of shallowly buried pipelines embedded in very soft clay. At this phase, the lateral soil reaction due to pipeline horizontal displacements was studied by means of physical and numerical modeling. In that way, a set of comprehensive centrifuge tests has been undertaken using a 1:30 scaled pipe dragged laterally, varying the burial depth condition. The soil used for the tests is a very soft clay sample collected at the Duque de Caxias Refinery area in Rio de Janeiro. The vertical and horizontal displacements of the pipe were imposed by computer-controlled actuators, with soil reaction forces being measured on both directions. The physical modeling results were compared with numerical simulations of the same centrifuge scenarios using the software AEEPECD, developed by PETROBRAS, showing good agreement in terms of horizontal and vertical soil reactions. (author)

  5. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs.

    Science.gov (United States)

    Schwarz, Frank; Ferrari, Daniel; Herten, Monika; Mihatovic, Ilja; Wieland, Marco; Sager, Martin; Becker, Jürgen

    2007-11-01

    The aim of the present study was to investigate the effects of surface hydrophilicity and microtopography on soft and hard tissue integration at non-submerged titanium implants. Implantation of conventional sand-blasted large grit and acid-etched (SLA) and chemically modified SLA (modSLA) titanium implants with differently structured transmucosal surfaces (SLA implants: machined [M-SLA] or SLA [SLA-SLA]; modSLA implants: mod acid-etched [modA] [modA-modSLA] or modSLA [modSLA-modSLA]) was performed bilaterally in the upper and lower jaws of 15 beagle dogs. The animals were sacrificed after 1, 4, 7, 14, or 28 days. Tissue reactions were assessed histomorphometrically and immunohistochemically using monoclonal antibodies to transglutaminase II (angiogenesis) and osteocalcin. Although the junctional epithelium commonly was separated from M-SLA and SLA-SLA implants by a gap, the epithelial cells appeared to be in close contact with modA-modSLA surfaces after 14 days of healing. Moreover, modA-modSLA and modSLA-modSLA groups showed a well-vascularized subepithelial connective tissue exhibiting collagen fibers that started to extend and attach partially perpendicular to the implant surface. The highest and statistically significant mean bone-to-implant contact areas were observed in the modA-modSLA and modSLA-modSLA groups at days 7, 14, and 28. Within the limits of this study, it may be concluded that soft and hard tissue integration was influenced mainly by surface hydrophilicity rather than by microtopography.

  6. Formation of nanostructures induced by capillary-discharge soft X-ray laser on BaF2 surfaces

    Science.gov (United States)

    Zhao, Yongpeng; Cui, Huaiyu; Zhang, Shuqing; Zhang, Wenhong; Li, Wei

    2017-02-01

    BaF2 was ablated by a capillary-discharge pumped soft X-ray laser at 46.9 nm focused by a toroidal mirror at a grazing incidence of 83°. The damaged area, induced by both single and multiple laser pulses, was determined to be covered with fringe-like nanostructures with spacings of approximately 400 nm and mastoid nanostructures with diameters of approximately 600 nm. In this study, we analyze the morphology of the detected damage patterns and discuss the damage mechanism. Results indicate that the depth of the nanostructures varies with different pulse numbers and laser power densities.

  7. Dose-volume histogram and dose-surface histogram analysis for skin reactions to carbon ion radiotherapy for bone and soft tissue sarcoma.

    Science.gov (United States)

    Yanagi, Takeshi; Kamada, Tadashi; Tsuji, Hiroshi; Imai, Reiko; Serizawa, Itsuko; Tsujii, Hirohiko

    2010-04-01

    To evaluate the usefulness of the dose-volume histogram (DVH) and dose-surface histogram (DSH) as clinically relevant and available parameters that helped to identify bone and soft tissue sarcoma patients at risk of developing late skin reactions, including ulceration, when treated with carbon ion radiotherapy. Thirty-five patients with bone and soft tissue sarcoma treated with carbon ion beams were studied. The clinical skin reactions were evaluated. Some pretreatment variables were compared with the grade of late skin reactions. Average DVH and DSH were established in accordance with the grading of the skin reactions. Prescribed dose, the difference in depths between the skin surface and the proximal extent of the tumor, and some DVH/DSH parameters were correlated with late skin reaction (> or = grade 3) according to univariate analysis. Furthermore, the area irradiated with over 60 GyE (S(60)>20 cm(2)) on DSH was the most important factor by multivariate analysis. The area irradiated with over 60 GyE (S(60)>20 cm(2)) on DSH was found to be a parameter for use as a predictor of late skin reactions. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Energy output reduction and surface alteration of quartz tips following Er:YAG laser contact irradiation on soft and hard tissues in vitro.

    Science.gov (United States)

    Lin, Taichen; Kawamura, Rie; Aoki, Akira; Ichinose, Shizuko; Mizutani, Koji; Taniguchi, Yoichi; Eguro, Toru; Saito, Norihito; Izumi, Yuichi

    2016-01-01

    Though the Er:YAG laser (ErL) has been used in periodontal therapy, the irradiated tip damage has not been studied in detail. In this study, the change in the energy output, surface morphology, and temperature of quartz tips was evaluated following contact irradiation. Soft tissue, calculus on extracted human teeth, and porcine bone were irradiated by ErL for 60 min at 14.2 or 28.3 J/cm(2)/pulse and 20 Hz with or without water spray. The energy output ratio declined the most in the calculus group, followed by the bone and soft tissue groups with and/or without water spray. Carbon contamination was detected in all groups, and contamination by P, Ca, and/or other inorganic elements was observed in the calculus and bone groups. The rate of energy output reduction and the degree of surface alteration/contamination is variously influenced by the targeting tissue, temperature elevation of the tip and water spray.

  9. The physical structure of the oceanic surface-layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, K.N.

    1981-01-01

    A study is presented of the structure of the near-surface layer of the ocean under various hydrometeorological conditions. Such a study allows the isolation of border measures for a four characteristic regime for the top ocean layer: 1) intensive wind-wave mixing; 2) Langmuir circulation; 3) intense solar heating during still and calm weather (with and without internal wave modulations); 4) a pressing-out of surface sediment. It is demonstrated that the spatial temperature change in the ocean surface, the thermal structure, and the heat attainment in the top layer have various characteristics during different regimes and this must be considered during the measuring of the ocean surface temperature with the contact method as well as during the comparison of contact and satallite data on the ocean surface temperature. The necessity for more research in this area is underscored.

  10. Quantification of phosphorus metabolites in human calf muscle and soft-tissue tumours from localized MR spectra acquired using surface coils

    Science.gov (United States)

    Doyle, V. L.; Payne, G. S.; Collins, D. J.; Verrill, M. W.; Leach, M. O.

    1997-04-01

    Metabolite concentrations determined from MR spectra provide more specific information than peak area ratios. This paper presents a method of quantification that allows metabolite concentrations to be determined from in vivo MR spectra acquired using a surface coil and ISIS localization. Corrections for the effects of field inhomogeneity produced by surface coils are based on a measured and calibrated spatial sensitivity field map for the coil. Account is taken of imperfections in pulse performance, coil loading effects and relaxation effects, the latter making use of published metabolite relaxation times. The technique is demonstrated on model solutions. The concentrations of the main metabolites in normal human calf muscle measured using this method are [PCr] = ; [Pi] = ; [NTP] = . Quantification of spectra acquired from soft-tissue tumours in patients both pre- and post-treatment showed that changes in metabolite concentrations are more sensitive to metabolic changes than changes in peak area ratios.

  11. The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry

    Science.gov (United States)

    Eid, K. F.; Panth, M.; Sommers, A. D.

    2018-03-01

    This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.

  12. Vitamin D, surface electromyography and physical function in uraemic patients

    DEFF Research Database (Denmark)

    Heaf, J.G.; Mølsted, Stig; Harrison, Adrian Paul

    2010-01-01

    ) under voluntary contractions. Physical function was determined using a 30-second Chair Stand Test and the Short Form 36 quality of life questionnaire. Clinical characteristics were collected from the patient records. Results: Moderate vitamin 25-OHD deficiency (

  13. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  14. Influence of urban surface properties and rainfall characteristics on surface water flood outputs - insights from a physical modelling environment

    Science.gov (United States)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2017-04-01

    Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope

  15. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    Science.gov (United States)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  16. Influence of Laser-Microtextured Surface Collar on Marginal Bone Loss and Peri-Implant Soft Tissue Response: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chen, Zhaozhao; Zhang, Yujiao; Li, Junying; Wang, Hom-Lay; Yu, Haiyang

    2017-07-01

    A laser-microtextured surface (LMS) dental implant collar appears to promote a more tooth-like gingival collagen fiber attachment, which may help to stabilize peri-implant tissues. The purpose of this systematic review is to assess the clinical effect of an LMS versus non-LMS collar on crestal bone level and peri-implant soft tissue response. Electronic and manual literature searches were performed by two independent reviewers for articles written in English up to December 2016. Studies were included if they were human clinical trials with the purpose of evaluating the impact of an LMS collar on peri-implant hard and soft tissues. Cumulative marginal bone loss (MBL), probing depth (PD), and survival rate (SR) with 95% confidence intervals (CIs) were calculated to show the performance of LMS implant collars. MBL, PD, and SR data were analyzed with a random effects model to compare the influence of LMS collars with non-LMS collars (e.g., roughened surface and machined surface). Fifteen human clinical studies (three randomized controlled trials, six cohort studies, and six case series) with 772 implants met the inclusion criteria. For the overall data, the weighted mean MBL was 0.72 mm (95% CI: 0.59 to 0.85 mm), PD was 1.81 mm (95% CI: 1.13 to 2.49 mm), and SR was 0.97 (95% CI: 0.95 to 0.98). MBL around an LMS collar was significantly less than around machined-surface collars (weighted mean difference [WMD]: -0.77; 95% CI: -1.01 to -0.52; I 2 = 95.2%; P surface group (WMD: -1.34; 95% CI: -1.62 to -1.05; I 2 = 81.4%; P surface groups (WMD: -0.04; 95% CI: -0.16 to 0.08; I 2 = 0.0%; P = 0.75). No statistically significant difference was found for SR between the LMS and non-LMS groups (risk ratio: 1.01; 95% CI: 0.97 to 1.04; I 2 = 0.0%; P = 0.91). Meta-analysis showed that an LMS collar can reduce the amount of MBL and PD compared with a machined-surface collar. Due to high heterogeneity between the included studies, results should be interpreted cautiously.

  17. Physical basis for river segmentation from water surface observables

    Science.gov (United States)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  18. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    OpenAIRE

    J. Bhardwaj; K. K. Gupta; R. Gupta

    2018-01-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor no...

  19. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  20. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Importance of physical vs. chemical interactions in surface shear rheology

    NARCIS (Netherlands)

    Wierenga, P.A.; Kosters, H.; Egmond, M.R.; Voragen, A.G.J.; Jongh, H.H.J. de

    2006-01-01

    The stability of adsorbed protein layers against deformation has in literature been attributed to the formation of a continuous gel-like network. This hypothesis is mostly based on measurements of the increase of the surface shear elasticity with time. For several proteins this increase has been

  2. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  3. Soft coral abundance on the central Great Barrier Reef: effects of Acanthaster planci, space availability, and aspects of the physical environment

    Science.gov (United States)

    Fabricius, K. E.

    1997-07-01

    The distribution and abundance of soft coral genera on reefs of the central Great Barrier Reef was investigated in relation to reef position, recent history of disturbance, wave exposure, substratum slope and depth. Eighty-five 25 m long transects were surveyed at 10 m depth on windward sides of 14 mid- and outer-shelf reefs. A further 75 transects in different zones on one mid-shelf reef (Davies Reef) between 5 and 30 m depth were investigated. The crown-of-thorns starfish Acanthaster planci had caused large-scale mortality of scleractinians on eight of these reefs five to ten years prior to the study, and as a result, scleractinian cover was only 35-55% of that on the six unimpacted reefs. On the impacted reefs, stony corals with massive and encrusting growths form had smaller average colony diameters but similar or slightly lower numerical abundance. In contrast, mean colony size, cover and abundance of branching stony corals showed no difference between impacted and unimpacted reefs. Twenty-four genera of soft corals (in eight families) were recorded, and none showed different abundance or cover in areas of former A. planci impact, compared to unaffected sites. Similarly, no difference was detected among locations in the numbers or area cover of sponges, tunicates, zoanthids, Halimeda or other macro-algae. Mean soft coral cover was 2 to 5% at 10 m on sheltered mid-shelf reefs, and 12 to 17% on more current-exposed reefs. Highest cover and abundances generally occurred on platforms of outer-shelf reefs exposed to relatively strong currents but low wave energy. On Davies Reef, cover and colony numbers of the families Nephtheidae and Xeniidae were low within the zone of wave impact, in flow-protected bays and lagoons, on shaded steep slopes, and at depths above 10 and below 25 m. In contrast, distributions of genera of the family Alcyoniidae were not related to these physical parameters. The physical conditions of a large proportion of habitats appear "sub

  4. Gd{sup 3+} doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B. [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Kumar, Manoj [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Barman, Dipto [Gwangju Institute of Science & Technology, Gwangju (Korea, Republic of); Department of Computer Science & Engineering, Jaypee University of Information Technology, Waknaghat, Solan, Himachap Pradesh 173234 (India); Katyal, S.C. [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2017-06-15

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Gd{sub x}Fe{sub 2-x}O{sub 4} (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd{sup 3+} nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  5. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  6. Development of high magnetic field soft X-ray spectroscopy and its application to the study of surface and interface

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Narumi, Yasuo

    2014-01-01

    Magnetic materials are generally synthesized and used as alloys and compounds. They are also stacked as a multilayer film for spintronics device such as a reading-head sensor of a hard disk drive. The evaluation of magnetization is the most fundamental characterization in studies of magnetic materials. Especially, in alloys and compounds involving more than two magnetic elements, a partial magnetization with respect to each element, we call as an element specific magnetization, promises to provide the deeper understanding of their magnetic property. X-ray magnetic circular dichroism (XMCD) in absorption spectroscopy provides an element specific magnetization. As XMCD became increasingly popular, high-magnetic-field environment for XMCD measurements also became very important in order to investigate paramagnetic, antiferromagnetic, and meta-magnetic materials. Under the circumstance, a high-magnetic-field XMCD measurement technique of the soft-X-ray regime has been developed using a non-destructive pulse magnet having capability of generating 40 T at the twin helical undulators beamline, BL25SU, of SPring-8. In this review, we first introduce the concept and the technical features of high magnetic field XMCD and then show recent examples of the experiments. (author)

  7. A qualitative analysis to compare the effects of surface machining of conventional denture base resin and two soft liners: a scanning electron microscopic study.

    Science.gov (United States)

    Kumari, Santoshi V; Taruna, M; Chittaranjan, B; Reddy, Sushendhar M; Reddy, Kranti Kiran E; Kulkarni, Ganesh

    2015-01-01

    The denture base acrylic resins require adjustments for various reasons. During this process there is an alteration in the surface characteristics of the denture base. Rough surfaces promote the bacterial adhesion and plaque accumulation; therefore it is important to know the character of the surface left by instrumentation on denture base materials. This study evaluated the surface characteristics of the machined surfaces of heat-cured acrylic denture base resin, GC supersoft and Permasoft softliners. Thirty 15×15×1.5mm acrylic resin specimens were fabricated with each of three acrylic resins: Lucitone 199 denture base resin (Group I), GC supersoft (Group II) and Permasoft (Group III) softliners. They were further divided into three sub Groups A, B and C, in which Sub Group A was control group that is smooth produced against the glass. Sub Group B was produced by machining with the tungsten carbide bur and Sub group C is machined with the stone bur. Each surface was evaluated by a Scanning electron microscope and data were analyzed by analysis of variance followed by Tukey's HSD test. Stone bur produced smoother surface (Ra 3.6681μm± 0.254) on Lucitone199 than the tungsten carbide bur (Ra 5.3881μm ± 0.3373). Carbide bur produced a smoother surface on the GC super soft (Ra 1.617097μm ± 0.191767) and Permasoft softliners (Ra 2.237419μm ± 0.354259). Whereas stone bur produced rougher surface on GC supersoft(Ra 2.6μm) and Permasoft (Ra 4.184839μm ± 0.409869) softliners. The present study shows each type of rotary instrument produces its own characteristic surface on each type of denture base materials and that care is needed when selecting the most appropriate instrument to adjust denture base materials. These results can have a significant clinical implication. While using Lucitone 199 stone bur can be used for chair side adjustments. Tungsten carbide bur can be used for GC supersoft and Permasoft softliners to achieve smoother surface.

  8. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  9. Experiment on Physical Desalinisation of Uranium-contaminated Gravel Surface

    International Nuclear Information System (INIS)

    Park, Uk-Ryang; Kim, Gye-Nam; Kim, Seung-Soo; Han, Gyu-Seong; Moon, Jai-Kwon

    2014-01-01

    As a result, the method to wash uranium-contaminated gravels could not get satisfactory desalinization rate. During the long oxidization process it was judged that uranium penetrated inside the gravels, so we tried to increase the desalinization rate by fragmentizing them into pieces and then washing them. The desalinization rate after fragmentizing the gravels into pieces and washing them brought a satisfactory result.. However, we could obtain desired concentration for gravels with high uranium concentration by fragmentizing them and breaking them further into even smaller pieces. Likewise, desalinization using soil washing process is complicated and has to go through multiple washing steps, resulting in too much of waste fluid generated accordingly. The increase of waste fluid generated leads to the increase in by-products of the final disposal process later on, bringing a not good economic result. Furthermore, taking into account that the desalinization rate is 65% during soil washing process, it is expected that gravel washing will show a similar desalinization result; it is considered uneasy to have a perfect desalinization only by soil washing. The grinding method is actually used in the primary desalinization process in order to desalinize radioactivity-contaminated concrete. This method does desalinization by grinding the radioactivity-contaminated area of the concrete surface with desalinization equipment, which enables a near-to-perfect desalinization for relatively thinly contaminated surface. Likewise, this research verified the degree of desalinization by applying the grinding method and comparing it to the fragmentizing-washing method, and attempted to find a method to desalinize uranium-contaminated gravels more effectively. In order to desalinize uranium-contaminated gravels more effectively and compare to the existing washing-desalinization method, we conducted a desalinization experiment with grinding method that grinds gravel surface. As a

  10. Proceedings of the 1. Latin-American Colloquium of Surface Physics

    International Nuclear Information System (INIS)

    Majlis, N.; Anda, E.V.; Ure, J.E.; Selzer, S.; Lerner, E.; Koiller, B.; Costa, R.B. da.

    1981-10-01

    Several physical properties are discussed, reviewed and presented from studies in metal, liquid and solid surfaces. The adsorption effect is studied for a series of experimental and theoretical configuration. Experimental devices are also shown. (L.C.) [pt

  11. Physical characterization of asteroid surfaces from photometric analysis

    Science.gov (United States)

    Helfenstein, P.; Veverka, J.

    1989-01-01

    The feasibility of using photometric models like Hapke's (1981, 1984, 1986) equation for deriving physical properties of asteroids from photometric observations is discussed. Using data for Ceres and Vesta, it is shown that the incomplete phase-angle coverage limits the reliable determination of Hapke's photometric parameters from asteroid disk-integrated phase curves (the second limitation is the nonsphericity of many asteroids). However, within this limitations, certain trends among asteroids can be compared. It is shown that there is a general similarity among the Hapke's parameters other than the h parameter, which characterizes the width of the opposition surge in terms of soil structure (porosity, particle-size distribution, and the rate of compaction with depth), derived for similar objects, e.g., average C asteroids and Ceres, and average S asteroids, 1982 Apollo, and Vesta.

  12. Effect of surface treatments on the bond strength of soft denture lining materials to an acrylic resin denture base.

    Science.gov (United States)

    Gundogdu, Mustafa; Yesil Duymus, Zeynep; Alkurt, Murat

    2014-10-01

    Adhesive failure between acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to evaluate the effect of different surface treatments on the bond strength of 2 different resilient lining materials to an acrylic resin denture base. Ninety-six dumbbell-shaped specimens were fabricated from heat-polymerized acrylic resin, and 3 mm of the material was cut from the thin midsection. The specimens were divided into 6 groups according to their surface treatments: no surface treatment (control group), 36% phosphoric acid etching (acid group), erbium:yttrium-aluminum-garnet (Er:YAG) laser (laser group), airborne-particle abrasion with 50-μm Al2O3 particles (abrasion group), an acid+laser group, and an abrasion+laser group. The specimens in each group were divided into 2 subgroups according to the resilient lining material used: heat-polymerized silicone based resilient liner (Molloplast B) and autopolymerized silicone-based resilient liner (Ufi Gel P). After all of the specimens had been polymerized, they were stored in distilled water at 37°C for 1 week. A tensile bond strength test was then performed. Data were analyzed with a 2-way ANOVA, and the Sidak multiple comparison test was used to identify significant differences (α=.05). The effects of the surface treatments and resilient lining materials on the surface of the denture base resin were examined with scanning electron microscopy. The tensile bond strength was significantly different between Molloplast B and Ufi Gel P (Presin. Molloplast B exhibited significantly higher bond strength than Ufi Gel P. Altering the surface of the acrylic resin denture base with 36% phosphoric acid etching increased bond strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  14. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  15. Negotiating Surface Water Allocations to Achieve a Soft Landing in the Closed Lerma-Chapala Basin, Mexico

    NARCIS (Netherlands)

    Wester, P.; Vargas-Velázquez, S.; Mollard, E.; Silva-Ochoa, P.

    2008-01-01

    The Lerma-Chapala basin exemplifies the challenges posed by basin closure, where surface water allocation mechanisms, lack of environmental flows and access to water are critical issues. Underlying these issues is a need for accurate water accounting that is transparent and publicly available. This

  16. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    Science.gov (United States)

    2016-08-02

    forces between a tire/track shoe and a plastically deformable soil surface based on sinkage and relative normal & tangential velocities...distribution is unlimited. (#28138) DEM Cohesive Soil Model (2/2) • Maximum adhesion force is a function of plastic deformation. Cohesion factor f...s2 from rest to a maximum speed of 25 m/s (56 mph) in 25 sec. • Soil and grade resistances cause the vehicle speed to level off below the commanded

  17. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  18. Soft Neutrosophic Ring and Soft Neutrosophic Field

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-04-01

    Full Text Available In this paper we extend the theory of neutrosophic rings and neutrosophic fields to soft sets and construct soft neutrosophic rings and soft neutrosophic fields. We also extend neutrosophic ideal theory to form soft neutrosophic ideal over a neutrosophic ring and soft neutrosophic ideal of a soft neutrosophic ring. We have given many examples to illustrate the theory of soft neutrosophic rings and soft neutrosophic fields and display many properties of these. At the end of this paper we gave soft neutrosophic ring homomorphism.

  19. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    Science.gov (United States)

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  20. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound a...

  1. Adapting the vertical position of implants with a conical connection in relation to soft tissue thickness prevents early implant surface exposure: A 2-year prospective intra-subject comparison.

    Science.gov (United States)

    Vervaeke, Stijn; Matthys, Carine; Nassar, Rima; Christiaens, Veronique; Cosyn, Jan; De Bruyn, Hugo

    2018-01-23

    To evaluate the effect of soft tissue thickness on bone remodelling and to investigate whether implant surface exposure can be avoided by adapting the vertical implant position in relation to the soft tissue thickness. Twenty-five patients received two non-splinted implants supporting an overdenture in the mandible. Soft tissue thickness was measured using bone sounding and ultrasonically. One implant was installed equicrestally (control), and the vertical position of the second implant was adapted to the site-specific soft tissue thickness (test). Crestal bone levels were determined on digital peri-apical radiographs and compared with baseline (implant placement). Twenty-five patients were consecutively treated. No implants failed during the follow-up. A significant correlation was observed between soft tissue thickness and bone level alterations after 6 months (ultrasound ICC = 0.610; bone sounding ICC = 0.641) with inferior bone levels for equicrestal implants when thin tissues are present. Subcrestal implants showed significantly better bone levels after 6-month (n = 24, 0.04 mm versus 0.72 mm; p implant seemed highly successful to avoid implant surface exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Physical and chemical modifications of PET surface using a laser-plasma EUV source

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Biliński, A.; Chernyayeva, O.; Sobczak, J. W.

    2010-06-01

    Extreme ultraviolet (EUV) radiation is the electromagnetic radiation ranging from vacuum ultraviolet to soft X-rays. A single EUV photon carries enough energy to ionize any atom or molecule. The penetration depth of the radiation in any material is very short, ranging from tens to hundreds nanometers. Intense EUV pulses can remove material from the surface or modify its morphology or/and chemical structure. In this work, the radiation from a laser-plasma EUV source based on a double-stream gas-puff target was used for surface modification of polyethylene terephthalate (PET). The PET samples were irradiated with the EUV pulses emitted from krypton plasma and focused with a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated for 1 s-2 min at a 10-Hz repetition rate. Surface morphology of polymer samples after irradiation was investigated using a scanning electron microscope. Changes in chemical surface structure of the irradiated samples were investigated using an X-ray photoelectron spectroscopy. Different kinds of surface microstructures were obtained depending on the EUV fluence in a single pulse and the total EUV fluence. XPS measurements also revealed a modification of the chemical structure.

  3. Soft tissue changes after orthodontic surgical correction of jaws asymmetry evaluated by three-dimensional surface laser scanner.

    Science.gov (United States)

    Verzé, Laura; Bianchi, Francesca Antonella; Schellino, Eleonora; Ramieri, Guglielmo

    2012-09-01

    Aesthetic improvement is an essential goal of treatment of facial asymmetry, and it is often difficult to achieve. Reliable three-dimensional measurements are required to support outcome studies. In this study, 15 white adult subjects, 9 females and 6 males, with maxillomandibular asymmetry and malocclusion were studied. The patients were treated with orthodontics and different surgical procedures in single or multiple steps. All patients received double-jaw surgery, except 1 patient who underwent only maxillary osteotomy. Nine of the 15 patients received additional procedures (genioplasty and rhinoplasty) to achieve better symmetry. Posterior-anterior and lateral cephalometry and three-dimensional facial surface data were obtained before (T0) and 1 year (T1) after surgery. Scan data at T0 and T1 were pooled by electronic surface averaging to obtain the mean pretreatment and posttreatment facial model. A symmetric model was constructed by averaging the actual T0 scans and their mirrored models to obtain the virtual optimal symmetric face. Different linear and angular measurements were then calculated for comparison of the mean T0 and T1 models. The normalization of facial proportion and a high increase in symmetry were evident. Residual defects were documented in the postoperative symmetry of the chin. Treatment of facial asymmetry, combined with dental occlusion problems, is still a challenge for maxillofacial surgeons. Orthognathic surgery provides an important improvement of symmetry, but further refinements of technique are still required. Three-dimensional evaluation results in an effective method to support outcome studies on the surgical correction of complex facial deformities.

  4. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  5. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals

    Science.gov (United States)

    Krichen, S.; Liu, L.; Sharma, P.

    2017-10-01

    Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.

  6. Soft-x-ray spectroscopy study of nanoscale materials

    International Nuclear Information System (INIS)

    Guo, J.-H.

    2005-01-01

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented

  7. Physically-based Surface Texture Synthesis Using a Coupled Finite Element System.

    Science.gov (United States)

    Bajaj, Chandrajit; Zhang, Yongjie; Xu, Guoliang

    2008-01-01

    This paper describes a stable and robust finite element solver for physically-based texture synthesis over arbitrary manifold surfaces. Our approach solves the reaction-diffusion equation coupled with an anisotropic diffusion equation over surfaces, using a Galerkin based finite element method (FEM). This method avoids distortions and discontinuities often caused by traditional texture mapping techniques, especially for arbitrary manifold surfaces. Several varieties of textures are obtained by selecting different values of control parameters in the governing differential equations, and furthermore enhanced quality textures are generated by fairing out noise in input surface meshes.

  8. Physical and chemical characterization methods of surfaces and interfaces; Methodes de caracterisation physico-chimique des surfaces et des interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthes-Labrousse, M.G. [Centre d`Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France)

    1997-12-31

    The main physical and chemical characterization techniques of surfaces and interfaces are presented. There are: Auger electron spectroscopy, photoelectron spectroscopies (XPS and UPS), secondary ions mass spectroscopy (SIMS), infrared and Raman spectroscopies, electron energy loss spectroscopy (EELS and HREELS) and atomic force microscopy (AFM). For each method is given the theoretical principle, the apparatus and the main uses of the techniques. (O.M.) 27 refs.

  9. Soft errors in modern electronic systems

    CERN Document Server

    Nicolaidis, Michael

    2010-01-01

    This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, s

  10. Surface folding-induced attraction and motion of particles in a soft elastic gel: cooperative effects of surface tension, elasticity, and gravity.

    Science.gov (United States)

    Chakrabarti, Aditi; Chaudhury, Manoj K

    2013-12-17

    We report some experimental observations regarding a new type of long-range interaction between rigid particles that prevails when they are suspended in an ultrasoft elastic gel. A denser particle submerges itself to a considerable depth inside the gel and becomes elasto-buoyant by balancing its weight against the elastic force exerted by the surrounding medium. By virtue of a large elasto-capillary length, the surface of the gel wraps around the particle and closes to create a line singularity connecting the particle to the free surface of the gel. A substantial amount of tensile strain is thus developed in the gel network parallel to the free surface that penetrates to a significant depth inside the gel. The field of this tensile strain is rather long-range because of a large gravito-elastic correlation length and sufficiently strong to pull two submerged particles into contact. The particles move toward each other with an effective force following an inverse linear distance law. When more monomers or dimers of the particles are released inside the gel, they orient rather freely inside the capsules where they are located and attract each other to form closely packed clusters. Eventually, these clusters themselves interact and coalesce. This is an emergent phenomenon in which gravity, capillarity, and elasticity work in tandem to create a long-range interaction. We also present the results of a related experiment, in which a particle suspended inside a thickness-graded gel moves accompanied by the continuous folding and the relaxation of the gel's surface.

  11. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    Science.gov (United States)

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. (c) 2008 Wiley Periodicals, Inc.

  12. Inhibition of surface crystallisation of amorphous indomethacin particles in physical drug-polymer mixtures

    DEFF Research Database (Denmark)

    Priemel, Petra A; Laitinen, Riikka; Barthold, Sarah

    2013-01-01

    or Soluplus(®) in 3:1, 1:1 and 1:3 (w/w) ratios were stored at 30°C and 23 or 42% RH. Samples were analysed during storage by X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy (SEM). IMC Eudragit(®) mixtures showed higher physical......Surface coverage may affect the crystallisation behaviour of amorphous materials. This study investigates crystallisation inhibition in powder mixtures of amorphous drug and pharmaceutical excipients. Pure amorphous indomethacin (IMC) powder and physical mixtures thereof with Eudragit(®) E...... through reduced IMC surface molecular mobility. Polymer particles may also mechanically hinder crystal growth outwards from the surface. This work highlights the importance of microparticulate surface coverage of amorphous drug particles on their stability....

  13. Biomimetic surface-conducting silicone rubber obtained by physical deposition of MWCNT

    International Nuclear Information System (INIS)

    Zylka, Pawel

    2015-01-01

    The paper presents a minimal approach to produce superhydrophobic, surface-conducting silicone rubber with a strongly developed surface modified with multiwall carbon nanotubes partially embedded in the silicone elastic matrix. The modification was achieved by physical deposition of carbon nanotube powder on a semi-liquid silicone rubber surface prior to its cross-linking. The resulting biomimetic material displayed superhydrophobic properties (static wetting angle >160°, sliding angle ∼10°), as well as elevated electric surface resistance (surface resistivity approx 18 kΩ). A piezoresistive hysteretic response with nonmonotonic change of the surface resistance accompanying substantial linear stretching was also demonstrated in the developed specimens displaying negative resistance change in a broad range of extension ratios, making them applicable as highly compliant, large-specific-area electrodes. (paper)

  14. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  15. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  16. Lubrication of soft viscoelastic solids

    OpenAIRE

    Pandey, Anupam; Karpitschka, Stefan; Venner, Cornelis H.; Snoeijer, Jacobus Hendrikus

    2015-01-01

    Lubrication flows appear in many applications in engineering, biophysics, and in nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubrication fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as viscoelastic: soft materials are typically not purely elastic, but dissipate energy under dynamical loading conditions. We present a method for viscoelastic lubrication and focus on three canonical examp...

  17. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Science.gov (United States)

    Cao, Yuanyuan; Diao, Dongfeng

    2017-05-01

    We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM) mode to the Stranski-Krastanow (SK) mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  18. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2017-05-01

    Full Text Available We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM mode to the Stranski-Krastanow (SK mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  19. Physical interpretation and geometrical representation of constant curvature surfaces in Euclidean and pseudo-Euclidean spaces

    International Nuclear Information System (INIS)

    Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo

    2005-08-01

    The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it

  20. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials.

    Science.gov (United States)

    Guo, Yuqiao; Xu, Kun; Wu, Changzheng; Zhao, Jiyin; Xie, Yi

    2015-02-07

    Two-dimensional (2D) nanomaterials, especially the inorganic ultrathin nanosheets with single or few-atomic layers, have been extensively studied due to their special structures and rich physical properties coming from the quantum confinement of electrons. With atomic-scale thickness, 2D nanomaterials have an extremely high specific surface area enabling their surface phase to be as important as bulk counterparts, and therefore provide an alternative way of modifying the surface phase for engineering the intrinsic physical properties of inorganic 2D nanomaterials. In this review, we focus on recent research concerning surface chemical modification strategies to effectively engineer the intrinsic physical properties of inorganic 2D nanomaterials. We highlight the newly developed regulation strategies of surface incorporation, defect engineering, and structure modulation of inorganic 2D nanomaterials, which respectively influence the intrinsic conductivity, band structure, and magnetism while maintaining the primary 2D freestanding structures that are vital for 2D based ultrasensitive electronic response, enhanced catalytic and magnetocaloric capabilities.

  1. Surface emission from neutron stars and implications for the physics of their interiors

    International Nuclear Information System (INIS)

    Özel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces. (review article)

  2. Surface emission from neutron stars and implications for the physics of their interiors.

    Science.gov (United States)

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  3. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  4. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  5. In vitro effect of meconium on the physical surface properties and morphology of exogenous pulmonary surfactant.

    Science.gov (United States)

    Park, K. H.; Bae, C. W.; Chung, S. J.

    1996-01-01

    The pathophysiology of meconium aspiration syndrome(MAS) is related to mechanical obstruction of the airways and to chemical pneumonitis. Meconium is also suggested to cause functional deterioration of pulmonary surfactant. Recent studies have reported that meconium inhibits the physical surface properties of pulmonary surfactant, and that administration of exogenous surfactant may provide therapeutic benefits in animal models or infants with respiratory distress due to MAS. To assess the effects of meconium on physical surface properties, especially the changes on the air-liquid interface and hypophase of pulmonary surfactant in vitro, we studied the following findings; a) the surface spreading rate(SSR) and the surface adsorption rate(SAR), b) the viscosity, c) the electron microscopic changes, on a series of mixtures with various concentrations of lyophilized human meconium and Surfactant-TA(SurfactenTM). The human meconium has significantly increased the surface tension of SSR and the viscosity of pulmonary surfactant, but had decreased the surface pressure of SAR of surfactant, and changed the electron microscopic findings of surfactant. We have concluded that these findings support the concept that meconium-induced surfactant dysfunction may play a role in the pathophysiology of MAS. PMID:8934399

  6. Recursion relations from soft theorems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hui [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, Hamburg, D-22761 (Germany); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, Roma, 00133 (Italy)

    2016-03-14

    We establish a set of new on-shell recursion relations for amplitudes satisfying soft theorems. The recursion relations can apply to those amplitudes whose additional physical inputs from soft theorems are enough to overcome the bad large-z behaviour. This work is a generalization of the recursion relations recently obtained by Cheung et al. for amplitudes in scalar effective field theories with enhanced vanishing soft behaviours, which can be regarded as a special case of those with non-vanishing soft limits. We apply the recursion relations to tree-level amplitudes in various theories, including amplitudes in the Akulov-Volkov theory and amplitudes containing dilatons of spontaneously-broken conformal symmetry.

  7. Soft mappings space.

    Science.gov (United States)

    Ozturk, Taha Yasin; Bayramov, Sadi

    2014-01-01

    Various soft topologies are being introduced on a given function space soft topological spaces. In this paper, soft compact-open topology is defined in functional spaces of soft topological spaces. Further, these functional spaces are studied and interrelations between various functional spaces with soft compact-open topology are established.

  8. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2011-12-01

    Spray droplet adhesion is dependent not only on formulation and droplet parameters but also on the surface properties (physical and chemical) of the leaf. Quantifying these leaf surface properties would aid understanding and modelling of adhesion, helping to optimise spray formulations. Fractal dimensions (FDs) were used to quantify the relative leaf surface roughness of ten plant species. Static droplet contact angles were measured on each leaf surface, and wetting tension was calculated. Chemical profiles of the leaf surfaces were developed by evaluating contact angle behaviour relative to solution dielectric constants. The FDs of Cryo-SEM micrographs taken at 300× magnification gave the best correlation with adhesion. The wetting tension intercept had a strong relationship with mean adhesion, and successfully accounted for the wettability of the outlier species. The microroughness of the leaf surface, as revealed by Cryo-SEM, can be quantified by fractal dimension analysis. However, the wetting tension intercept is a more useful universal measure of the surface properties of the leaf (including roughness) as they pertain to adhesion. The slope of the wetting tension versus dielectric constant plot allowed preliminary quantification of the chemical contribution of leaf surface dielectric behaviour to adhesion. Copyright © 2011 Society of Chemical Industry.

  9. Dust Plate, Retina, Photograph: Imaging on Experimental Surfaces in Early Nineteenth-Century Physics.

    Science.gov (United States)

    Ramalingam, Chitra

    2015-09-01

    This article explores the entangled histories of three imaging techniques in early nineteenth-century British physical science, techniques in which a dynamic event (such as a sound vibration or an electric spark) was made to leave behind a fixed trace on a sensitive surface. Three categories of "sensitive surface" are examined in turn: first, a metal plate covered in fine dust; second, the retina of the human eye; and finally, a surface covered with a light-sensitive chemical emulsion (a photographic plate). For physicists Michael Faraday and Charles Wheatstone, and photographic pioneer William Henry Fox Talbot, transient phenomena could be studied through careful observation and manipulation of the patterns wrought on these different surfaces, and through an understanding of how the imaging process unfolded through time. This exposes the often-ignored materiality and temporality of epistemic practices around nineteenth-century scientific images said to be "drawn by nature."

  10. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  11. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  12. Local soft tissue musculoskeletal disorders and injuries. The role of physical and rehabilitation medicine physicians. The European perspective based on the best evidence. A paper by the UEMS-PRM Section Professional Practice Committee.

    Science.gov (United States)

    Oral, A; Ilieva, E M; Küçükdeveci, A A; Varela, E; Valero, R; Berteanu, M; Christodoulou, N

    2013-10-01

    One of the objectives of the Professional Practice Committee (PPC) of the Physical and Rehabilitation Medicine (PRM) Section of the Union of European Medical Specialists (UEMS) is the development of the field of competence of PRM physicians in Europe. To achieve this objective, UEMS PRM Section PPC has adopted a systematic action plan of preparing a series of papers describing the role of PRM physicians in a number of disabling health conditions, based on the evidence of effectiveness of PRM interventions. Soft tissue musculoskeletal disorders (MSDs) and injuries are associated with significant pain and loss of function that may lead to significant disability. The aim of this paper is to define the role of PRM physician in the management of local soft tissue MSDs and injuries with their specific focus on assessing and improving function as well as participation in the community. The training of PRM specialists make them well equipped to successfully treat MSDs including soft tissue MSDs and injuries. PRM specialists may well meet the needs of patients with soft tissue MSDs and injuries using PRM approaches including 1) assessment based on the comprehensive model of functioning, the International Classification of Functioning, Disability and Health (ICF), that enable them to identify the areas of impaired functioning in order to apply necessary measures; 2) accurate diagnosis using instrumental diagnostic procedures in addition to clinical examination; 3) outcome measurements available to them; 4) evidence-based pharmacological and nonpharmacological treatments; and finally 5) maintenance of social involvement including "return to work" based on restoration of function, all of which will eventually result in improved quality of life for patients with soft tissue MSDs and injuries.

  13. SASP. Contributions to the 13. Symposium on atomic and surface physics and related topics

    International Nuclear Information System (INIS)

    Scheier, P.; Maerk, T.

    2002-01-01

    The XIII symposium on Atomic and Surface Physics and related Topics (SASP) is devoted to cover the research of interactions between ions, electrons, photons, atoms, molecules and clusters and their interaction with surfaces. This year there was a special session dedicated to proton transfer reaction mass spectrometry covering its applications in different fields and a mini symposium on the radiation action on bio-molecules such as uracil. The contributions included in the proceeding correspond to invited lectures and poster sessions, consisting of short and extended abstracts as well as short articles. (nevyjel)

  14. Constraining the physical properties of compositionally distinctive surfaces on Mars from overlapping THEMIS observations

    Science.gov (United States)

    Ahern, A.; Rogers, D.

    2017-12-01

    Better constraints on the physical properties (e.g. grain size, rock abundance, cohesion, porosity and amount of induration) of Martian surface materials can lead to greater understanding of outcrop origin (e.g. via sedimentary, effusive volcanic, pyroclastic processes). Many outcrop surfaces on Mars likely contain near-surface (thermal conductivity of the outcrop materials just below. Fortunately, vertical heterogeneity within near-surface materials can result in unique, and possibly predictable, diurnal and seasonal temperature patterns. The KRC thermal model has been utilized in a number of previous studies to predict thermal inertia of surface materials on Mars. Here we use KRC to model surface temperatures from overlapping Mars Odyssey THEMIS surface temperature observations that span multiple seasons and local times, in order to constrain both the nature of vertical heterogeneity and the underlying outcrop thermal inertia for various spectrally distinctive outcrops on Mars. We utilize spectral observations from TES and CRISM to constrain the particle size of the uppermost surface. For this presentation, we will focus specifically on chloride-bearing units in Terra Sirenum and Meridiani Planum, as well as mafic and feldspathic bedrock locations with distinct spectral properties, yet uncertain origins, in Noachis Terra and Nili Fossae. We find that many of these surfaces exhibit variations in apparent thermal inertia with season and local time that are consistent with low thermal inertia materials overlying higher thermal inertia substrates. Work is ongoing to compare surface temperature measurements with modeled two-layer scenarios in order to constrain the top layer thickness and bottom layer thermal inertia. The information will be used to better interpret the origins of these distinctive outcrops.

  15. Animating Soft Matter with the Elastic Leidenfrost Effect

    Science.gov (United States)

    Waitukaitis, Scott; van Hecke, Martin; Souslov, Anton; Coulais, Corentin; Zuiderduin, Antal

    Liquid droplets near hot surfaces don't boil, but instead float on a cushion of vapor created beneath them. This is the Leidenfrost Effect, and while it is well-studied for liquids and even hard solids such as dry ice, nothing is known about the behavior of soft solids under such conditions. I will show how this leads to a new phenomenon: the Elastic Leidenfrost Effect. By dropping hydrogel spheres onto a hot substrate, we observe not hovering, but instead sustained bouncing dynamics accompanied by violent screeching. With a variety of experimental techniques, I will show that the underlying physics of both the bouncing and the screeching relies on the coupling between vaporization and elastic deformation. Beyond the Leidenfrost Effect, this phenomenon unearths the broader concept of coupling activiation to deformation in soft materials and promises to impact fields ranging from granular physics and active matter to microfluidics and metamaterials. This research is supported by an NWO Veni Grant.

  16. Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations

    International Nuclear Information System (INIS)

    Liuzzi, G; Masiello, G; Serio, C; Blasi, M G; Venafra, S

    2015-01-01

    This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007. (paper)

  17. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.

    Science.gov (United States)

    Cianchetti, M; Calisti, M; Margheri, L; Kuba, M; Laschi, C

    2015-05-13

    The octopus is an interesting model for the development of soft robotics, due to its high deformability, dexterity and rich behavioural repertoire. To investigate the principles of octopus dexterity, we designed an eight-arm soft robot and evaluated its performance with focused experiments. The OCTOPUS robot presented here is a completely soft robot, which integrates eight arms extending in radial direction and a central body which contains the main processing units. The front arms are mainly used for elongation and grasping, while the others are mainly used for locomotion. The robotic octopus works in water and its buoyancy is close to neutral. The experimental results show that the octopus-inspired robot can walk in water using the same strategy as the animal model, with good performance over different surfaces, including walking through physical constraints. It can grasp objects of different sizes and shapes, thanks to its soft arm materials and conical shape.

  18. Physical Retracking of Jason-1 LRM data for ocean surface height/gravity field determination

    Science.gov (United States)

    Jain, Maulik; Baltazar Andersen, Ole; Stenseng, Lars; Dall, Jørgen

    2013-04-01

    Jason-1 Low Resolution Mode (LRM) waveforms can be processed to extract accurate heights of the ocean surface. These heights are adjusted taking into account various corrections available. Further the along surface slope/variation of these ocean heights can be used to make an estimation of the gravity field. An important part of this gravity field estimation is dependent on the way the LRM waveform is processed. Thus a physical model based on an error function is used, and the LRM waveforms are fit to this model. A processing system made up of 2 parameter and 3 parameter fitting models are used in order to extract the most reliable ocean surface heights. The quality of the processing system is judged by evaluating the standard deviation of the sea surface anomaly obtained after all corrections and the mean sea surface/geoid are removed. The lower the value of the standard deviation of the sea surface anomaly, the better the quality of processing is. Hence, different processing schemes are considered and evaluated in order to conclude towards the best retracking procedure which would eventually result in high accuracy gravity field estimations.

  19. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  20. The XPS study of physical and chemical forms of neptunium group on the surface of minerals

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The sorption behavior and the physical and chemical forms of neptunium on the surface of minerals of the two chlorate samples, biotite and kaolin, with different contents of Fe(II was studied. The liquid-liquid extraction and the X-ray photoelectron spectroscopy were employed to identify the valence forms of neptunium. On the basis of the obtained data the quantitative elemental composition of the surface of the studied minerals, as well as the ionic composition of the formed neptunium complexes was determined. It was shown that the Np(IV and Np(VI containing compounds did not form, while the complexes Np(VO+ -hydroxyl did form on the surface. The oxygen ions bonded with iron and oxygen belonging to water and/or of carboxyl were suggested to be present in the equatorial plane of the neptunyl group NpO+.

  1. Biocompatible mesoporous and soft nanoarchitectures

    Czech Academy of Sciences Publication Activity Database

    Angelova, A.; Angelov, Borislav; Mutafchieva, R.; Lesieur, S.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 214-232 ISSN 1574-1443 R&D Projects: GA ČR GAP208/10/1600 Institutional support: RVO:61389013 Keywords : soft nanoarchitectures * lipid bilayer building block * self-assembled nanochannel networks Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.308, year: 2015

  2. Soft-Collinear Effective Theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review the basic principles about Soft-Collinear Effective Theory. I will focus on how it can be used to understand factorization properties and how one can resum large logarithms arising from infrared physics using the renormalization group evolution.

  3. A Recipe for Soft Fluidic Elastomer Robots.

    Science.gov (United States)

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  4. On the physics of both surface overcharging and charge reversal at heterophase interfaces.

    Science.gov (United States)

    Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei

    2018-02-07

    The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the

  5. Soft Tectonics

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2011-01-01

    of the radical directions that the creative industries are taking. Design expert Bradley Quinn reveals how a new generation of products, materials and surfaces will align design with such areas as artificial intelligence, genetic engineering and nanotechnology, reinventing the spaces in which we live and work...

  6. Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators

    Science.gov (United States)

    Kulkarni, Parth

    This thesis describes the centrifugal forming and resulting mechanical properties of silicone-based elastomers for the manufacture of soft robotic actuators. This process is effective at removing bubbles that get entrapped within 3D-printed, enclosed molds. Conventional methods for rapid prototyping of soft robotic actuators to remove entrapped bubbles typically involve degassing under vacuum, with open-faced molds that limit the layout of formed parts to raised 2D geometries. As the functionality and complexity of soft robots increase, there is a need to mold complete 3D structures with controlled thicknesses or curvatures on multiples surfaces. In addition, characterization of the mechanical properties of common elastomers for these soft robots has lagged the development of new designs. As such, relationships between resulting material properties and processing parameters are virtually non-existent. One of the goals of this thesis is to provide guidelines and physical insights to relate the design, processing conditions, and resulting properties of soft robotic components to each other. Centrifugal forming with accelerations on the order of 100 g's is capable of forming bubble-free, true 3D components for soft robotic actuators, and resulting demonstrations in this work include an aquatic locomotor, soft gripper, and an actuator that straightens when pressurized. Finally, this work shows that the measured mechanical properties of 3D geometries fabricated within enclosed molds through centrifugal forming possess comparable mechanical properties to vacuumed materials formed from open-faced molds with raised 2D features.

  7. Soft Condensed Matter

    International Nuclear Information System (INIS)

    Jones, Richard A L

    2002-01-01

    The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented phenomenologically

  8. Lubrication of soft viscoelastic solids

    NARCIS (Netherlands)

    Pandey, Anupam; Karpitschka, Stefan; Venner, Cornelis H.; Snoeijer, Jacobus Hendrikus

    2016-01-01

    Lubrication flows appear in many applications in engineering, biophysics and nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubricating fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as

  9. Lubrication of soft viscoelastic solids

    NARCIS (Netherlands)

    Pandey, Anupam; Karpitschka, Stefan; Venner, Cornelis H.; Snoeijer, Jacobus Hendrikus

    2015-01-01

    Lubrication flows appear in many applications in engineering, biophysics, and in nature. Separation of surfaces and minimisation of friction and wear is achieved when the lubrication fluid builds up a lift force. In this paper we analyse soft lubricated contacts by treating the solid walls as

  10. Soft set theory and topology

    Directory of Open Access Journals (Sweden)

    D. N. Georgiou

    2014-04-01

    Full Text Available In this paper we study and discuss the soft set theory giving new definitions, examples, new classes of soft sets, and properties for mappings between different classes of soft sets. Furthermore, we investigate the theory of soft topological spaces and we present new definitions, characterizations, and properties concerning the soft closure, the soft interior, the soft boundary, the soft continuity, the soft open and closed maps, and the soft homeomorphism.

  11. Fuzzy Soft Topological Groups

    Directory of Open Access Journals (Sweden)

    S. Nazmul

    2014-03-01

    Full Text Available Notions of Lowen type fuzzy soft topological space are introduced and some of their properties are established in the present paper. Besides this, a combined structure of a fuzzy soft topological space and a fuzzy soft group, which is termed here as fuzzy soft topological group is introduced. Homomorphic images and preimages are also examined. Finally, some definitions and results on fuzzy soft set are studied.

  12. Relationship between the Physical Properties and Surface Area of Cellulose Derived from Adsorbates of Various Molecular Sizes.

    Science.gov (United States)

    Ougiya, H; Hioki, N; Watanabe, K; Morinaga, Y; Yoshinaga, F; Samejima, M

    1998-01-01

    An aqueous suspension of bacterial cellulose (BC) has such physical properties as higher viscosity, emulsion-stabilizing effect and filler retention than cellulose of other origins. The specific surface areas of BC, microfibrillated cellulose and wood pulp were evaluated by determining the maximum amounts of adsorption of Congo red, cellobiose dehydrogenase (CDH) and xyloglucan. There was a positive linear correlation between the above-mentioned physical properties of each cellulose sample and the specific surface area derived from the maximum amount of CDH adsorbed. The highest physical property values for BC result from the largest external surface area of the fibrils of BC to which CDH was adsorbed.

  13. Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study

    Science.gov (United States)

    Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.

    2016-12-01

    Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et

  14. Physical adsorption: rare gas atoms on solid surfaces. Progress report, June 1, 1980-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cole, M.W.

    1981-02-01

    This project has entailed investigation of three areas during the current term: physical adsorption, photostimulated field emission (PSE), and phonon reflection at interfaces. The principal effort has been directed toward understanding interactions associated with physical adsorption and the associated properties of a film. The specific topics pursued include the detailed form of the long range interaction, the configuration space wave function, and the interaction between adatoms. Experimental confirmation of the last two come from neutron scattering and thermodynamic measurements, respectively. The research in PSE has yielded results which improve upon previous calculations. There is, however, a remaining disagreement with experiment; suggestions for the origin are discussed. The phonon reflection work is directed toward understanding the role of surface roughness, an important factor in increasing the energy transmission across interfaces. A formalism has been developed which will be evaluated in the future.

  15. Investigating surface and subsurface physical properties of small bodies from light scattering observations and simulations

    Science.gov (United States)

    Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.; Renard, J. B.

    Investigating surface and subsurface physical properties of small bodies from light scattering observations and simulations A.C. Levasseur-Regourd (1), E. Hadamcik (1), J. Lasue (1), J.B. Renard (2) (1) Université Pierre et Marie Curie-Paris6, UMR 7620, Aéronomie, BP-3, Verrières, 91371 France, (2) LPCE-CNRS, 3A av. Recherche Scientifique, Orléans, F-45071 France Investigating surface and subsurface physical properties of asteroids and comet nuclei is of major interest to i) assess future space missions and ii) constrain formation and evolution models. Our purpose is to infer such properties from the properties of solar light scattered by such media. We will first summarize recent remote polarimetric observations of small bodies, which confirm the main characteristics of the variation of the linear polarization of solar scattered light in the visible domain with the scattering geometry and the wavelength (1). To interpret such characteristics in terms of physical properties of the regoliths (e.g. albedo, size distribution, complex refractive index, porosity), experimental and numerical simulations on various types of particles and aggregates are mandatory, together with some comparisons between experimental and numerical simulations (2,3). We will thus present recent results of such simulations (for dust around bright comets, for core-mantle particles, for loose deposited transparent and dark materials), and point out the trends already suggested by this approach. Finally, we will mention future key observations and elaborate simulations, which could solve open questions about surface and subsurface properties of small bodies. References 1. Levasseur-Regourd et al., ASR 37, 161, 2006. 2. Hadamcik et al., JQSRT 100, 143, 2006. 3. Lasue et al., JQSRT 100, 220, 2006.

  16. Dispersion states and surface characteristics of physically blended polyhedral oligomeric silsesquioxane/polymer hybrid nanocomposites

    Science.gov (United States)

    Misra, Rahul

    Control of dispersion and segregation states of nanostructured additives is one of the biggest challenges in realizing the optimum potential of high performance hybrid polymer nanocomposites. Polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals, with their hybrid organic-inorganic nature and flexible functionalization with a variety of organic substituents, yield possibilities to control dispersion and tune compatibility in a wide range of polymer systems. The overall goal of this research is to investigate the fundamental parameters that influence the dispersion and segregation states of POSS nanostructured chemicals, and to understand chain dynamics and conformations in physically blended POSS hybrid polymer nanocomposites (HPNC's). Multiple structural and mechanical factors influencing macro to nano scale surface and bulk properties were successfully investigated and correlated. A strategy based on thermodynamic principles for selective control of POSS dispersion states in a given polymer matrix is developed and discussed. This dissertation consists of eight chapters. Chapter 1 provides a detailed introduction about the development and current research interest in POSS/polymer nanocomposites. This chapter also discusses limitations of current advanced nanoprobe techniques. Chapter 2 establishes the overall goal of this research and specific research ii objectives. Chapter 3 establishes the preferential surface migration behavior of physically dispersed, non-reactive, closed cage octaisobutyl POSS (Oib-POSS) in a non-polar polypropylene matrix. Furthermore, influence of POSS surface segregation on the surface properties, especially nano-tribomechanical behavior is also discussed. Chapter 4 expands the studies by melt blending two different types of POSS molecules, a non-reactive, closed cage Oib-POSS and an open cage trisilanolphenyl POSS (Tsp-POSS), in a nylon 6 matrix. This chapter discusses the morphology, nano-dispersion and macro- to

  17. Study of surface phenomena in biomaterials: The influence of physical factors

    Science.gov (United States)

    Sachelarie, Liliana; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-01

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  18. Study of surface phenomena in biomaterials: The influence of physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Sachelarie, Liliana, E-mail: lisachero@yahoo.com; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-15

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  19. Parametric modelling design applied to weft knitted surfaces and its effects in their physical properties

    Science.gov (United States)

    Oliveira, N. P.; Maciel, L.; Catarino, A. P.; Rocha, A. M.

    2017-10-01

    This work proposes the creation of models of surfaces using a parametric computer modelling software to obtain three-dimensional structures in weft knitted fabrics produced on single needle system machines. Digital prototyping, another feature of digital modelling software, was also explored in three-dimensional drawings generated using the Rhinoceros software. With this approach, different 3D structures were developed and produced. Physical characterization tests were then performed on the resulting 3D weft knitted structures to assess their ability to promote comfort. From the obtained results, it is apparent that the developed structures have potential for application in different market segments, such as clothing and interior textiles.

  20. Effects of phosphourus addition on the physical properties and surface condition of tungsten-copper composites

    International Nuclear Information System (INIS)

    Akiyoshi, N.; Nakada, K.; Nakayama, M.; Kohda, K.

    2001-01-01

    Tungsten-copper composites containing a small amount of phosphorus prepared using conventional P/M method. Cu 3 P powder was used as phosphorous source. The effects of phosphorus addition on the physical properties and the surface condition were investigated and the existing form of phosphorus was specified on the tungsten-copper composites The results are summarized as follows. The tungsten-copper composite containing 10 % copper, for example, demonstrated optimum thermal conductivity at the phosphorus addition of 0.02 %. The density of the composites was almost 100 % and the surface of the sintered body was flat and smooth after sintering at a temperature between 1100 and 1150 o C. It was shown that phosphorus exists as Co 2 P. (author)

  1. Near-surface physics during convection affecting air-water gas transfer

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  2. Soft Tectonics

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2011-01-01

    of the radical directions that the creative industries are taking. Design expert Bradley Quinn reveals how a new generation of products, materials and surfaces will align design with such areas as artificial intelligence, genetic engineering and nanotechnology, reinventing the spaces in which we live and work......, and how we experience the human body. Featuring interviews with renowned designers, architects and trend forecasters – among them Karim Rashid, Toyo Ito and Li Edelkoort – and over 250 illustrations of futuristic products and concepts, this is a unique guide to some of the twenty-first century’s most...

  3. Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect

    Directory of Open Access Journals (Sweden)

    Ashvin Vishwanath

    2013-02-01

    Full Text Available We discuss physical properties of “integer” topological phases of bosons in D=3+1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free-fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response θ, which, somewhat surprisingly, is an odd multiple of 2π. Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term. The second invokes vortices on the surface that transform under a projective representation of the symmetry group. We identify a bulk-field theory consistent with these properties, which is a multicomponent background-field theory supplemented, crucially, with a topological term. We also provide bulk sigma-model field theories of these phases and discuss a possible topological phase characterized by the thermal analog of the magnetoelectric effect.

  4. Radiation physics and modelling for off-nadir satellite-sensing of non-Lambertian surfaces

    Science.gov (United States)

    Gerstl, S. A.; Simmer, C.

    1986-01-01

    The primary objective of this paper is to provide a deeper understanding of the physics of satellite remote-sensing when off-nadir observations are considered. Emphasis is placed on the analysis and modeling of atmospheric effects and the radiative transfer of non-Lambertian surface reflectance characteristics from ground-level to satellite locations. The relative importance of spectral, spatial, angular, and temporal reflectance characteristics for satellite-sensed identification of vegetation types in the visible and near-infrared wavelength regions is evaluated. The highest identification value is attributed to angular reflectance signatures. Using radiative transfer calculations to evaluate the atmospheric effects on angular reflectance distributions of vegetation surfaces, atmosphere-invariant angular reflectance features such as the 'hot spot' and the 'persistent valley' are identified. A new atmospheric correction formalism for complete angular reflectance distributions is described. A sample calculation demonstrates that a highly non-Lambertian measured surface reflectance distribution can be retrieved from simulated satellite data in the visible and near infrared to within about 20 percent accuracy for almost all view directions up to 60 deg off-nadir. Thus the high value of angular surface reflectance characteristics (the 'angular signature') for satellite-sensed feature identification is confirmed, which provides a scientific basis for future off-nadir satellite observations.

  5. The soft notion of China's 'soft power'

    OpenAIRE

    Breslin, Shaun

    2011-01-01

    · Although debates over Chinese soft power have increased in\\ud recent years, there is no shared definition of what ‘soft power’\\ud actually means. The definition seems to change depending on\\ud what the observer wants to argue.\\ud · External analyses of soft power often include a focus on\\ud economic relations and other material (hard) sources of power\\ud and influence.\\ud · Many Chinese analyses of soft power focus on the promotion of a\\ud preferred (positive) understanding of China’s inter...

  6. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  7. Magnetic soft mode behaviour investigated via multi-spin flip Raman spectroscopy on near surface Cd{sub 1-x}Mn{sub x}Te/Cd{sub 1-y}Mg{sub y}Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kehl, Christian

    2011-03-28

    The main motivation for this thesis was the experimental confirmation of the theoretically predicted magnetic soft mode and the analysis of its dependence on the hole-concentration and external B-field, as well as its disappearance with increasing sample temperature. For that purpose, CdMnTe/CdMgTe QWs (Mn: 0.6%, 1.0%) positioned close to the sample surface (13-19 nm) were investigated in an in-plane applied external magnetic field (up to 4.5 T in Voigt-geometry) via a two-colour experiment i.e. using two light sources. This allows the spin excitation of Mn-ions by simultaneously tuning the hole-concentration towards the ferromagnetic phase transition by photo-generated carriers. Thus, one tuneable laser is responsible for resonant below-barrier excitation as a probe for Multi-SF Raman scattering. The other laser excites photo-generated carriers from above barrier (2.41 eV) for tuning the hole concentration in the QW. Positioning the QW close to the sample surface causes a surface-induced p-doping of the QW (intrinsic hole concentration in the QW) and enables the active tuning of the hole concentration by photo-generated carriers due to different tunnelling behaviour of electrons and holes from the QW to the surface. The Mn-g-factor was decreased by quasi-continuously increasing the above-barrier illumination, while the below-barrier excitation was kept at a constant low power. This results in a Mn-g-factor reduction starting from its atomic value g=2.01 to lowest evaluated Mn-g-factor in this thesis g=1.77. This is a magnetic softening of 12%. Apart from the general magnetic soft mode behaviour at low temperatures, one of the main experimental results in this thesis is the confirmation of the theoretical prediction that the magnetic soft mode behaviour in the external B-field does not only depend on the carrier concentration but also on the B-field strength itself. An additional aspect is the temperature dependence of the magnetic soft mode. The Mn

  8. Monitoring of chemical and physical characteristics of stone surfaces by a portable spectroradiometer

    Science.gov (United States)

    Camaiti, Mara; Benvenuti, Marco; Costagliola, Pilar; Di Benedetto, Francesco; Del Ventisette, Chiara; Garfagnoli, Francesca; Lombardi, Luca; Moretti, Sandro; Pecchioni, Elena; Vettori, Silvia

    2013-04-01

    A portable radiometer (ASD-FieldSpec FP Pro spectroradiometer), which continuously and rapidly acquires punctual reflectance spectra in the 350-2500 nm spectral range, has been recently proposed as non-destructive and non-invasive technology for detecting gypsum and other materials (inorganic as well as organic) on surfaces of historical buildings [1,2,3]. The instrument, which is also capable to quantitatively assess physical changes of the surfaces (i. e. color changes), has the potentialities to be used for monitoring the state of conservation of stone surfaces through the monitoring of the relative abundance of some components considered precursor symptoms of decay. The increase of gypsum or the decrease of the relative abundance of organic materials used as protective materials allows, in fact, to control and detect the chemical attack of carbonate surfaces, as well as the efficacy and durability of protective treatments. Although the relative abundance of any compound is theoretically related to the signal intensities of its spectral signature, a quantitative analysis is often compromised by some factors such as the grain dimension of crystals [2 4]. However the monitoring of critical areas may give useful information on the progression of decay provided that the same areas are investigated. The spectroradiometer can operate both in natural light conditions and by a contact probe with fixed illumination and geometry of shot; in this study the second condition was preferred since the same operative conditions can be maintained for all the measurements during the monitoring. Aim of this work was to find an easy to use and accurate system for repositioning the spectroradiometer probe in the same small areas of interest during the long-term monitoring. Two systems (theodolite and distance measuring laser) have been tested and their accuracy has been evaluated on some Florentine historical buildings (Cathedral of Santa Maria del Fiore and Basilica of San Miniato

  9. Soft b-compact spaces

    Directory of Open Access Journals (Sweden)

    Alkan Özkan

    2016-04-01

    Full Text Available In this paper, a new class of generalized soft open sets in soft generalized topological spaces as a generalization of compact spaces, called soft b-compact spaces, is introduced and studied. A soft generalized topological space is soft b-compact if every soft b-open soft cover of (F,E contains a finite soft subcover. We characterize soft b-compact space and study some of their basic properties.

  10. The role of surface defects in HOPG on the electrochemical and physical deposition of Ag

    Directory of Open Access Journals (Sweden)

    R. PETROVIC

    1999-08-01

    Full Text Available The role of defects on a substrate surface during the initial stages of nucleation and growth of Ag deposited electrochemically and physically on highly oriented pyrolytic graphite (HOPG has been observed ex situ by scanning tunneling microscopy (STM. The silver was electrodeposited under current controlled electrochemical conditions at 26 µA/cm2, which corresponded to a deposition rate of 0.1 monolayers (ML per second. For comparison, physical deposition of Ag on HOPG was performed by DC Ar+ ion sputtering, at the same deposition rate and for the same deposition times. In both cases, Ag grows in an island growth mode, but the distribution of the islands appears to be quite different. In physical deposition, the Ag islands are almost homogeneously distributed over the substrate surface and a slight accumulation of islands on steps does not contribute significantly to the overall morphology. This indicates the crucial role of point defects on the substrate in the initial stages of nucleation. In electrochemical deposition, more lined defects are observed after a flow of current, and their role in the beginning of the nucleation is more pronounced. Lined defects are responsible for the string-like shaped domains of deposited atoms. Also, the existence of string-like shaped nucleation exclusion zones is indicated. The problem of the formation of nucleation exclusion zones, which appear only in electrochemical deposition, has been reconsidered and a new explanaton of their formation is given. A mathematical model for the calculation of the radius of the nucleation exclusion zone has been developed.

  11. A New Physical Model to Estimate Solar Irradiance Componets on the Earth's Surface from Satellite Images

    Science.gov (United States)

    Cony, Marco, ,, Dr.; Wiesenberg, Ralf, ,, Dr.; Fernandéz, Irene; Jimenez, Marta

    2017-04-01

    The present study describes a new model designed to estimate the incident solar radiation at the Earth's surface from geostationary satellites images (AFASat). In this new physical model proposed, the effect of Rayleigh scattering, aerosols and Earth's surface topography are taken into account. Water vapor absorption is also introduced by means of its climatological effects on shortwave radiation. Cloud albedo, ground albedo and absorption are derived from brightness measurements on the assumption that they both are linearly related to the brightness. However, this simple consideration applied to individual images elements represents quite accurately the bulk effect of clouds and reflectance. AFASat model uses the Heliosat-3 method and add others environmental factors to estimate with relative precision the solar radiation that arrives at the Earth's surface. Comparisons with daily radiation measurements from ground data station located in Europe, Africa and India (BSRN) showed that the satellite estimates were, on the average, within 2% of the ground measurements for global horizontal irradiance and less than 7% for direct normal irradiance. The hourly variations monitored by the satellite also followed very closely the variations measured on the ground. This study has shown that model is sufficient for the determination of the incident solar radiation when the high spatial and temporal coverage of a geostationary satellite is used. The AFASat is highly appropriate for such those projects that required an analysis of the solar resource assessment as such as TMY report (Typical Meteorological Year).

  12. Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology NATO Advanced Study Institute, Geilo, Norway, 24 March - 3 April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, G. ed.

    2003-05-01

    The goal of this ASI was to bring together a group of disparate sciences to discuss areas of research related to competition between interactions of different ranges, for it is this that creates local structure on which complexity depends in soft condensed matter, biological systems and their synthetic models. The starting point, and the underlying theme throughout the ASI, was thus a thorough discussion of the relative role of the various fundamental interactions in such systems (electrostatic, hydrophobic, steric, conformational, van der Waals, etc.). The next focus was on how these competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, focus was on how the competing interactions influence various bio processes like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The report includes the abstracts of the posters presented, two of which are given in this database: (1) Precise characterisation of nano channels in track etched membranes by SAXS and SANS, and (2) Cisplatin binding to DNA: Structure, bonding and NMR properties from CarParrinello/Classical MD simulations.

  13. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    Science.gov (United States)

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  14. Uniform surface-to-line integral reduction of physical optics for curved surfaces by modified edge representation with higher-order correction

    Science.gov (United States)

    Lyu, Pengfei; Ando, Makoto

    2017-09-01

    The modified edge representation is one of the equivalent edge currents approximation methods for calculating the physical optics surface radiation integrals in diffraction analysis. The Stokes' theorem is used in the derivation of the modified edge representation from the physical optics for the planar scatterer case, which implies that the surface integral is rigorously reduced into the line integral of the modified edge representation equivalent edge currents, defined in terms of the local shape of the edge. On the contrary, for curved surfaces, the results of radiation integrals depend upon the global shape of the scatterer. The physical optics surface integral consists of two components, from the inner stationary phase point and the edge. The modified edge representation is defined independently from the orientation of the actual edge, and therefore, it could be available not only at the edge but also at the arbitrary points on the scatterer except the stationary phase point where the modified edge representation equivalent edge currents becomes infinite. If stationary phase point exists inside the illuminated region, the physical optics surface integration is reduced into two kinds of the modified edge representation line integrations, along the edge and infinitesimally small integration around the inner stationary phase point, the former and the latter give the diffraction and reflection components, respectively. The accuracy of the latter has been discussed for the curved surfaces and published. This paper focuses on the errors of the former and discusses its correction. It has been numerically observed that the modified edge representation works well for the physical optics diffraction in flat and concave surfaces; errors appear especially for the observer near the reflection shadow boundary if the frequency is low for the convex scatterer. This paper gives the explicit expression of the higher-order correction for the modified edge representation.

  15. An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products

    Science.gov (United States)

    Qin, Jun; Tang, Wenjun; Yang, Kun; Lu, Ning; Niu, Xiaolei; Liang, Shunlin

    2015-05-01

    Surface solar irradiance (SSI) is required in a wide range of scientific researches and practical applications. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since SSI is directly measured at a very limited number of stations. Even so, meteorological stations are still sparse, especially in remote areas. Remote sensing can be used to map spatiotemporally continuous SSI. Considering the huge amount of satellite data, coarse-resolution SSI has been estimated for reducing the computational burden when the estimation is based on a complex radiative transfer model. On the other hand, many empirical relationships are used to enhance the retrieval efficiency, but the accuracy cannot be guaranteed out of regions where they are locally calibrated. In this study, an efficient physically based parameterization is proposed to balance computational efficiency and retrieval accuracy for SSI estimation. In this parameterization, the transmittances for gases, aerosols, and clouds are all handled in full band form and the multiple reflections between the atmosphere and surface are explicitly taken into account. The newly proposed parameterization is applied to estimate SSI with both Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric and land products as inputs. These retrievals are validated against in situ measurements at the Surface Radiation Budget Network and at the North China Plain on an instantaneous basis, and moreover, they are validated and compared with Global Energy and Water Exchanges-Surface Radiation Budget and International Satellite Cloud Climatology Project-flux data SSI estimates at radiation stations of China Meteorological Administration on a daily mean basis. The estimation results indicates that the newly proposed SSI estimation scheme can effectively retrieve SSI based on MODIS products with mean root-mean-square errors of about 100 Wm- 1 and 35 Wm- 1 on an instantaneous and daily

  16. Complex fuzzy soft multisets

    Science.gov (United States)

    Alkouri, Abd Ulazeez M.; Salleh, Abdul Razak

    2014-09-01

    In this paper we combine two definitions, namely fuzzy soft multiset and complex fuzzy set to construct the definition of a complex fuzzy soft multiset and study its properties. In other words, we study the extension of a fuzzy soft multiset from real numbers to complex numbers. We also introduce its basic operations, namely complement, union and intersection. Some examples are given.

  17. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Directory of Open Access Journals (Sweden)

    Zheng-min Xiong

    2016-05-01

    Full Text Available The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  18. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zheng-min; Ge, Su-qin; Wang, Xi-guang; Li, Zhi-xiong; Xia, Qing-lin; Wang, Dao-wei; Nie, Yao-zhuang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2016-05-15

    The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  19. Fuzzy Soft Multiset Theory

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2012-01-01

    Full Text Available In 1999 Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. Alkhazaleh et al. in 2011 introduced the definition of a soft multiset as a generalization of Molodtsov's soft set. In this paper we give the definition of fuzzy soft multiset as a combination of soft multiset and fuzzy set and study its properties and operations. We give examples for these concepts. Basic properties of the operations are also given. An application of this theory in decision-making problems is shown.

  20. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  1. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  2. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  3. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    Science.gov (United States)

    Cuntz, Matthias; Haverd, Vanessa

    2014-05-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture

  4. Soft matter approaches to food structuring

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2012-01-01

    We give an overview of the many opportunities that arise from approaching food structuring from the perspective of soft matter physics. This branch of physics employs concepts that build upon the seminal work of van der Waals, such as free volume, the mean field, and effective temperatures. All

  5. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a nodule detection sensitivity and (b elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing

  6. Camouflage and display for soft machines.

    Science.gov (United States)

    Morin, Stephen A; Shepherd, Robert F; Kwok, Sen Wai; Stokes, Adam A; Nemiroski, Alex; Whitesides, George M

    2012-08-17

    Synthetic systems cannot easily mimic the color-changing abilities of animals such as cephalopods. Soft machines--machines fabricated from soft polymers and flexible reinforcing sheets--are rapidly increasing in functionality. This manuscript describes simple microfluidic networks that can change the color, contrast, pattern, apparent shape, luminescence, and surface temperature of soft machines for camouflage and display. The color of these microfluidic networks can be changed simultaneously in the visible and infrared--a capability that organisms do not have. These strategies begin to imitate the functions, although not the anatomies, of color-changing animals.

  7. The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L. Wood

    Directory of Open Access Journals (Sweden)

    Nevzat Çakıcıer

    2008-09-01

    Full Text Available Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L. wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, wereb made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra, mean peak-to-valley height (Rz, root mean square roughness (Rq, and maximum roughness (Ry obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05 between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  8. Ultra soft pseudo potential investigation of fundamental physical properties of CaXO3 (X=Sn and Hf) distorted perovskites: A reference study to the perfect perovskites

    International Nuclear Information System (INIS)

    Cherrad, Djellal; Maouche, D.; Boudissa, M.; Reffas, M.; Louail, L.; Maamache, M.; Haddadi, K.; Medkour, Y.

    2013-01-01

    The structural, electronic and optical properties of CaXO 3 distorted perovskites compounds have been investigated by employing the Vanderbilt Ultra Soft Pseudo Potential (US-PP) using the plane wave method (PW) within density functional theory (DFT) and the local density approximation LDA. The studies of the dependence with pressure of enthalpies have confirmed the excellent mechanical stability of these materials. We have found that these compounds have a direct band gaps (G–G). The (110) charge density contour show that these distorted compounds exhibit a zig zag electronic short chains in contrast of ideal perovskites presenting a perfectly aligned chains. Elastic–electronic correlation was established between Cij individual elastic constant and the bonding-anti bonding chemical bonds. After that, some above properties were studied under hydrostatic pressure effect. CaSnO 3 perovskite was very sensitive towards pressure than CaHfO 3 . The reflectivity maximum of these materials occurs in the ultra-violet energy ranges, which indicate that these perovskites can serve in some technological applications. Optical anisotropy shows that the compound CaSnO 3 is considered as more anisotropic than CaHfO 3 . Furthermore, anisotropy maximum was found to be according to [0 1 0] and [1 0 0] directions for CaHfO 3 and CaSnO 3 , respectively

  9. Fermi Surface of Three-Dimensional La(1-x)Sr(x)MnO3 Explored by Soft-X-Ray ARPES: Rhombohedral Lattice Distortion and its Effect on Magnetoresistance.

    Science.gov (United States)

    Lev, L L; Krempaský, J; Staub, U; Rogalev, V A; Schmitt, T; Shi, M; Blaha, P; Mishchenko, A S; Veligzhanin, A A; Zubavichus, Y V; Tsetlin, M B; Volfová, H; Braun, J; Minár, J; Strocov, V N

    2015-06-12

    Electronic structure of the three-dimensional colossal magnetoresistive perovskite La(1-x)Sr(x)MnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.

  10. [Soft contactlenses in general practice (author's transl)].

    Science.gov (United States)

    Miller, B

    1975-07-01

    In contrast to the hard lenses the soft lens has enough permeability for oxygen and water-soluble substances, whereas high molecular substances, bacteria and virus cannot penetrate the soft lenses, so long as their surfaces are intact. The two principal production methods, the spin cast method and the lathe-turned method are compared. The duration of wearing of the soft lens depends on the deposits of proteins from the tears on the surface of the lens and the desinfection method. The daily boiling of the lenses shortens their useful life, while chemical desinfection causes besides bacteriolysis, damage of the corneal cell protein. The new cleaners on the base of proteolytic plant enzymes promise good results. For the optical correction of astigmatism with more than 1 cyl, soft lenses with conic outer surface are used or combinations of a soft and a hard lens (Duosystem). The therapeutic use of soft lenses has as aim: protection of the cornea against mechanical irritation, release of pain, protracted administration output of medicaments. Further indications for use: aseptic corneal inflammation and corneal defects.

  11. An experimental study on advancement of damping performance of foundations in soft ground. Pt.2: Experiment focusing on damping and antivibration performance of side surface of foundation blocks

    International Nuclear Information System (INIS)

    Ishimaru, S.; Shimomura, Y.; Kawamuram, M.; Ikeda, Y.; Hata, I.; Miwa, S.

    2005-01-01

    To aim at progress of damping performance of foundations that will be built at soft ground, we have proposed an improved foundation work of backfilling a damping material into trenches dug along a foundation supported by improved soil medium. This damping material is a mixture of asphalt with crushed stones and rubber chips (MACSRC) and has itself high attenuation and mitigation performance. Not only to comprehend the attenuation ability of the improved foundation work quantitatively and qualitatively but also to verify the effectiveness of this work, we carried out forced vibration tests for two test blocks, which were constructed by a normal construction work and the above improved foundation work. According to the experiment results of the blocks by the normal construction work and by the improved foundation work that were excited by the vibration generator, magnitude of amplitudes of the latter became half than the former. Effectiveness in the attenuation performance of MACSRC was confirmed. When the block by the normal construction work was vibrated, the improved foundation work decreased magnitude of amplitude of the adjacent block than the normal construction work. It is expected that MACSRC would exert mitigation ability against earthquakes or other external and internal forces. (authors)

  12. 60-day aging requirement does not ensure safety of surface-mold-ripened soft cheeses manufactured from raw or pasteurized milk when Listeria monocytogenes is introduced as a postprocessing contaminant.

    Science.gov (United States)

    D'Amico, Dennis J; Druart, Marc J; Donnelly, Catherine W

    2008-08-01

    Because of renewed interest in specialty cheeses, artisan and farmstead producers are manufacturing surface-mold-ripened soft cheeses from raw milk, using the 60-day holding standard (21 CFR 133.182) to achieve safety. This study compared the growth potential of Listeria monocytogenes on cheeses manufactured from raw or pasteurized milk and held for > 60 days at 4 degrees C. Final cheeses were within federal standards of identity for soft ripened cheese, with low moisture targets to facilitate the holding period. Wheels were surface inoculated with a five-strain cocktail of L. monocytogenes at approximately 0.2 CFU/ cm2 (low level) or 2 CFU/cm2 (high level), ripened, wrapped, and held at 4 degrees C. Listeria populations began to increase by day 28 for all treatments after initial population declines. From the low initial inoculation level, populations in raw and pasteurized milk cheese reached maximums of 2.96 +/- 2.79 and 2.33 +/- 2.10 log CFU/g, respectively, after 60 days of holding. Similar growth was observed in cheese inoculated at high levels, where populations reached 4.55 +/- 4.33 and 5.29 +/- 5.11 log CFU/g for raw and pasteurized milk cheeses, respectively. No significant differences (P milk types. Independent of the milk type, cheeses held for 60 days supported growth from very low initial levels of L. monocytogenes introduced as a postprocess contaminant. The safety of cheeses of this type must be achieved through control strategies other than aging, and thus revision of current federal regulations is warranted.

  13. Physical-mechanical image of the cell surface on the base of AFM data in contact mode

    Science.gov (United States)

    Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.

    2017-10-01

    Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.

  14. Improved Quality of MODIS Sea Surface Temperature Retrieval and Data Coverage Using Physical Deterministic Methods

    Directory of Open Access Journals (Sweden)

    Prabhat K. Koner

    2016-05-01

    Full Text Available Sea surface temperature (SST retrievals from satellite imager measurements are often performed using only two or three channels, and employ a regression methodology. As there are 16 thermal infrared (IR channels available for MODIS, we demonstrate a new SST retrieval methodology using more channels and a physically deterministic method, the modified total least squares (MTLS, to improve the quality of SST. Since cloud detection is always a part of any parameter estimation from IR satellite measurements, we hereby extend our recently-published novel cloud detection technique, which is based on both functional spectral differences and radiative transfer modeling for GOES-13. We demonstrate that the cloud detection coefficients derived for GOES-13 are working well for MODIS, while further improvements are made possible by the extra channels replacing some of the previous tests. The results are compared with available operational MODIS SST through the Group for High Resolution SST website–the data themselves are originally processed by the NASA Goddard Ocean Biology Processing Group. It is observed the data coverage can be more than doubled compared to the currently-available operational product, and at the same time the quality can be improved significantly. Two other SST retrieval methods, offline-calculated coefficients using the same form of the operational regression equation, and radiative transfer based optimal estimation, are included for comparison purposes.

  15. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  16. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene; Vidal, Rene Victor Valqui

    2006-01-01

    ’s interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable for supporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology...

  17. learning and soft skills

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2000-01-01

    Learning of soft skills are becoming more and more necessary due to the complexe development of modern companies and their environments. However, there seems to be a 'gap' between intentions and reality regarding need of soft skills and the possiblities to be educated in this subject in particular...... at some of the Technical Universities....

  18. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Vidal, Rene Victor Valqui

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology...

  19. Evaluating Six Soft Approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Valqui Vidal, René Victor

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology...

  20. Soft Tissue Sarcoma

    Science.gov (United States)

    ... removed Causes In most cases, it's not clear what causes soft tissue sarcoma. In general, cancer occurs when cells develop ... of cell that develops the genetic mutation determines what type of soft tissue sarcoma you have. For example, angiosarcoma begins in ...

  1. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  2. Development of a land surface model with coupled snow and frozen soil physics

    Science.gov (United States)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  3. Reactive physical vapor deposition of TixAlyN: Integrated plasma-surface modeling characterization

    International Nuclear Information System (INIS)

    Zhang Da; Schaeffer, J.K.

    2004-01-01

    Reactive physical vapor deposition (RPVD) has been widely applied in the microelectronic industry for producing thin films. Fundamental understanding of RPVD mechanisms is needed for successful process development due to the high sensitivity of film properties on process conditions. An integrated plasma equipment-target nitridation modeling infrastructure for RPVD has therefore been developed to provide mechanistic insights and assist optimal process design. The target nitridation model computes target nitride coverage based on self-consistently derived plasma characteristics from the plasma equipment model; target sputter yields needed in the plasma equipment model are also self-consistently derived taking into account the yield-suppressing effect from nitridation. The integrated modeling infrastructure has been applied to investigating RPVD processing with a Ti 0.8 Al 0.2 compound target and an Ar/N 2 gas supply. It has been found that the process produces athermal metal neutrals as the primary deposition precursor. The metal stoichiometry in the deposited film is close to the target composition due to the predominance of athermal species in the flux that reaches the substrate. Correlations between process parameters (N 2 flow, target power), plasma characteristics, surface conditions, and deposition kinetics have been studied with the model. The deposition process is characterized by two regimes when the N 2 flow rate is varied. When N 2 is dilute relative to argon, target nitride coverage increases rapidly with increasing N 2 flow. The sputter yield and deposition rate consequently decrease. For less dilute N 2 mixtures, the sputter yield and deposition rate are stable due to the saturation of target nitridation. With increasing target power, the electron density increases nearly linearly while the variation of N generation is much smaller. Target nitridation and its suppression of the sputter yield saturate at high N 2 flow rendering these parameters

  4. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  5. Strain-accelerated dynamics of soft colloidal glasses

    KAUST Repository

    Agarwal, Praveen

    2011-04-11

    We have investigated strain-accelerated dynamics of soft glasses theoretically and experimentally. Mechanical rheology measurements performed on a variety of systems reveal evidence for the speeding-up of relaxation at modest shear strains in both step and oscillatory shear flows. Using the soft glassy rheology (SGR) model framework, we show that the observed behavior is a fundamental, but heretofore unexplored attribute of soft glasses. © 2011 American Physical Society.

  6. Fuzzy soft connected sets in fuzzy soft topological spaces II

    Directory of Open Access Journals (Sweden)

    A. Kandil

    2017-04-01

    Full Text Available In this paper, we introduce some different types of fuzzy soft connected components related to the different types of fuzzy soft connectedness and based on an equivalence relation defined on the set of fuzzy soft points of X. We have investigated some very interesting properties for fuzzy soft connected components. We show that the fuzzy soft C5-connected component may be not exists and if it exists, it may not be fuzzy soft closed set. Also, we introduced some very interesting properties for fuzzy soft connected components in discrete fuzzy soft topological spaces which is a departure from the general topology.

  7. Influence of a Laser-Lok Surface on Immediate Functional Loading of Implants in Single-Tooth Replacement: Three-Year Results of a Prospective Randomized Clinical Study on Soft Tissue Response and Esthetics.

    Science.gov (United States)

    Guarnieri, Renzo; Grande, Maurizio; Ippoliti, Stefano; Iorio-Siciliano, Vincenzo; Riccitiello, Francesco; Farronato, Davide

    2015-01-01

    The purpose of the present prospective randomized study was to evaluate the influence of Laser-Lok microtextured surface on soft tissue peri-implant parameters and esthetics around immediate, functionally loaded implants for single-tooth replacement in the esthetic zone. This study included 77 patients divided into two groups based on different implants used: the control group had BioHorizons tapered internal non-Laser-Lok-type implants (NLL; n = 39) and the test group had BioHorizons tapered internal Laser-Lok-type implants (LL; n = 39). Outcome measures were survival, radiographic marginal bone-level changes, soft tissue parameters, and esthetics. One implant was lost in the test group and one in the control group, for a total survival rate of 96.1% after 3 years. Radiographically, mean crestal bone loss ± standard deviation was 0.59 ± 0.27 mm in the LL group compared with 1.17 ± 0.31 mm in the NLL group. A mean gain in papilla level of 0.41 ± 0.34 mm and 0.17 ± 0.36 mm was observed in the LL and the NLL groups, respectively, while the level of the midfacial peri-implant mucosa remained stable in both groups with no statistically significant differences (0.08 ± 0.42 mm for the LL group vs 0.06 ± 0.36 mm for the NLL group). The mean probing depth values in the LL and NLL groups were 0.58 ± 0.2 mm and 1.89 ± 0.3 mm, respectively. Within the limitations of this study, it was demonstrated that the clinical and esthetic outcome of immediate functional loading was more favorable for LL implants than for NLL implants.

  8. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  9. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  10. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  11. Characterization of the aspects of osteoprogenitor cell interactions with physical tetracalcium phosphate anchorage on titanium implant surfaces

    International Nuclear Information System (INIS)

    Ko, Chia-Ling; Chang, Ya-Yuan; Liou, Cian-Hua; Chen, Wen-Cheng

    2015-01-01

    Well-designed implants are used not only to modify the geometry of the implant but also to change the chemical properties of its surfaces. The present study aims to assess the biofunctional effects of tetracalcium phosphate (TTCP) particles as a physical anchor on the implant surface derived through sandblasting. The characteristics of the surface, cell viability, and alkaline phosphatase (ALP) activity toward osteoprogenitor cells (D1) were obtained. D1 cells were cultured on a plain surface that underwent sandblasting and acid etching (SLA) (control SLA group) and on different SLA surfaces with different anchoring TTCP rates (new test groups, M and H). The mean anchoring rates were 57% (M) and 74% (H), and the anchored thickness was estimated to range from 12.6 μm to 18.3 μm. Compared with the control SLA surface on Ti substrate, the new test groups with different TTCP anchoring rates (M and H) failed to improve cell proliferation significantly but had a well-differentiated D1 cell phenotype that enhanced ALP expression in the early stage of cell cultures, specifically, at day 7. Results suggest that the SLA surface with anchored TTCP can accelerate progenitor bone cell mineralization. This study shows the potential clinical application of the constructed geometry in TTCP anchorage on Ti for dental implant surface modification. - Highlights: • TTCP (tetracalcium phosphate) as a physical anchorage on implant is characterized. • Theoretical values of anchored thickness and capping areas were estimated. • TTCP anchored by sandblasting can accelerate progenitor bone cell mineralization. • TTCP anchored on SLA (sandblasting and acid etching) surface is a promising method

  12. Characterization of the aspects of osteoprogenitor cell interactions with physical tetracalcium phosphate anchorage on titanium implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Yuan; Liou, Cian-Hua [Alliance Global Technology Co., Ltd., Kaohsiung Medical Device Special Zone in Southern Taiwan Science Park, Kaohsiung 82151, Taiwan (China); Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan (China)

    2015-04-01

    Well-designed implants are used not only to modify the geometry of the implant but also to change the chemical properties of its surfaces. The present study aims to assess the biofunctional effects of tetracalcium phosphate (TTCP) particles as a physical anchor on the implant surface derived through sandblasting. The characteristics of the surface, cell viability, and alkaline phosphatase (ALP) activity toward osteoprogenitor cells (D1) were obtained. D1 cells were cultured on a plain surface that underwent sandblasting and acid etching (SLA) (control SLA group) and on different SLA surfaces with different anchoring TTCP rates (new test groups, M and H). The mean anchoring rates were 57% (M) and 74% (H), and the anchored thickness was estimated to range from 12.6 μm to 18.3 μm. Compared with the control SLA surface on Ti substrate, the new test groups with different TTCP anchoring rates (M and H) failed to improve cell proliferation significantly but had a well-differentiated D1 cell phenotype that enhanced ALP expression in the early stage of cell cultures, specifically, at day 7. Results suggest that the SLA surface with anchored TTCP can accelerate progenitor bone cell mineralization. This study shows the potential clinical application of the constructed geometry in TTCP anchorage on Ti for dental implant surface modification. - Highlights: • TTCP (tetracalcium phosphate) as a physical anchorage on implant is characterized. • Theoretical values of anchored thickness and capping areas were estimated. • TTCP anchored by sandblasting can accelerate progenitor bone cell mineralization. • TTCP anchored on SLA (sandblasting and acid etching) surface is a promising method.

  13. PHYSICS

    CERN Document Server

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  14. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  15. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  16. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  17. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  18. tt in the soft-gluon approximation

    Indian Academy of Sciences (India)

    April 2002 physics pp. 575–590. QCD corrections to decay-lepton polar and azimuthal angular distributions in ee+ee- t t in the soft-gluon approximation. SAURABH D RINDANI ... accurate determination of its couplings will have to await the construction of a linear e ·e collider. ..... is the azimuthal angle of the l· momentum.

  19. Soft chemical routes to semiconductor nanostructures

    Indian Academy of Sciences (India)

    Soft chemical routes to semiconductor nanostructures. UJJAL K GAUTAM1,2, KRIPASINDHU SARDAR1,2, F L DEEPAK1 and C N R RAO1,2,∗. 1Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry,. Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O.,. Bangalore 560 ...

  20. Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains

    Directory of Open Access Journals (Sweden)

    H. C. Cheng

    2017-01-01

    Full Text Available The conventional orthodontic power chain, often composed of polymer materials, has drawbacks such as a reduction of elasticity owing to water absorption as well as surface discoloration and staining resulting from food or beverages consumed by the patient. The goal of this study was to develop a surface treatment (nanoimprinting for orthodontic power chains and to alleviate their shortcomings. A concave template (anodic alumina was manufactured by anodization process using pure aluminum substrate by employing the nanoimprinting process. Convex nanopillars were fabricated on the surface of orthodontic power chains, resulting in surface treatment. Distinct parameters of the nanoimprinting process (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature were used to fabricate nanopillars on the surface of orthodontic power chains. The results of this study showed that the contact angle of the power chains became larger after surface treatment. In addition, the power chains changed from hydrophilic to hydrophobic. The power chain before surface treatment without water absorption had a water absorption rate of approximately 4%, whereas a modified chain had a water absorption rate of approximately 2%–4%. Furthermore, the color adhesion of the orthodontic power chains after surface modification was less than that before surface modification.

  1. Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains.

    Science.gov (United States)

    Cheng, H C; Chen, M S; Peng, B Y; Lin, W T; Shen, Y K; Wang, Y H

    2017-01-01

    The conventional orthodontic power chain, often composed of polymer materials, has drawbacks such as a reduction of elasticity owing to water absorption as well as surface discoloration and staining resulting from food or beverages consumed by the patient. The goal of this study was to develop a surface treatment (nanoimprinting) for orthodontic power chains and to alleviate their shortcomings. A concave template (anodic alumina) was manufactured by anodization process using pure aluminum substrate by employing the nanoimprinting process. Convex nanopillars were fabricated on the surface of orthodontic power chains, resulting in surface treatment. Distinct parameters of the nanoimprinting process (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature) were used to fabricate nanopillars on the surface of orthodontic power chains. The results of this study showed that the contact angle of the power chains became larger after surface treatment. In addition, the power chains changed from hydrophilic to hydrophobic. The power chain before surface treatment without water absorption had a water absorption rate of approximately 4%, whereas a modified chain had a water absorption rate of approximately 2%-4%. Furthermore, the color adhesion of the orthodontic power chains after surface modification was less than that before surface modification.

  2. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    Science.gov (United States)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  3. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.

  4. Soft morphological image resizing

    Science.gov (United States)

    Maltseff, Pavel A.

    1997-04-01

    One important problem in computer vision and image processing is image resizing. Current techniques are generally based on different interpolation methods. These methods are convenient but the downsampled or upsampled image will include new gray values which are not present in the original image. Soft morphological interpolation is a new technique for resampling discrete data. The soft morphological operations are an alternative to the standard morphological operation. The generic description of hierarchical soft morphological transformations was done previously. The further development of soft morphological operations by a hierarchical structural system uses the relaxation of the requirement that the result of the operation must be the r-th largest or smallest value of the corresponding multiset, where r is an order index of the internal hard center. We will assume that any reasonable integer value is acceptable. The purpose of this paper is to derive the sot morphological convolution and compare the result of this convolution with the cubic convolution and Gaussian pyramid.

  5. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  6. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  7. Comparison study of intraoperative surface acquisition methods for surgical navigation.

    Science.gov (United States)

    Simpson, Amber L; Burgner, Jessica; Glisson, Courtenay L; Herrell, S Duke; Ma, Burton; Pheiffer, Thomas S; Webster, Robert J; Miga, Michael I

    2013-04-01

    Soft-tissue image-guided interventions often require the digitization of organ surfaces for providing correspondence from medical images to the physical patient in the operating room. In this paper, the effect of several inexpensive surface acquisition techniques on target registration error and surface registration error (SRE) for soft tissue is investigated. A systematic approach is provided to compare image-to-physical registrations using three different methods of organ spatial digitization: 1) a tracked laser-range scanner (LRS), 2) a tracked pointer, and 3) a tracked conoscopic holography sensor (called a conoprobe). For each digitization method, surfaces of phantoms and biological tissues were acquired and registered to CT image volume counterparts. A comparison among these alignments demonstrated that registration errors were statistically smaller with the conoprobe than the tracked pointer and LRS (pconoscopic holography) of digitizing surfaces for clinical usage. The tracked conoscopic holography device outperforms LRS acquisitions with respect to registration accuracy.

  8. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  9. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  10. Teaching Soft Skills Employers Need

    Science.gov (United States)

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft skills…

  11. Stretchable and Soft Electronics using Liquid Metals.

    Science.gov (United States)

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency

    Directory of Open Access Journals (Sweden)

    Bichitra Sahoo

    2018-01-01

    Full Text Available Since the discovery of the self-cleaning properties of the lotus effect, the wetting of surfaces were intensively investigated due to their potential application in many industrial sectors. The transparency of flexible liquid repellent coatings are a major industrial problem and their economic consequences are widely known. Hence, a comprehensive understanding of the developments of flexible and transparent superamphiphobic surfaces is required in a number of technological and industrial situations. In this review, we aim to discuss the progress in the design, synthesis, fabrication techniques, and applications of flexible and transparent superamphiphobic surfaces. We start with an introduction, exploring the contact angles and wetting states for superhydrophilic, superhydrophobic, and superoleophobic surfaces, and continue with a review of the wetting transition of such surfaces. Then, we highlight the fabrication techniques involved for the preparation of flexible and transparent superamphiphobic surfaces. This review also discusses the key issues in the fabrication process and surfaces, and their features in improving durability characteristics and self-repellent performance. Then we suggest various recommendations for the improvement of mechanical durability along with potential future directions towards more systematic methods that will also be acceptable for industry. Finally, we conclude with some challenges and potential applications.

  13. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  14. Physical adsorption vs. chemical binding of undecylenic acid on porous silicon surface: a comparative study of differently functionalized materials

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, J.; Lehto, V.P. [University of Turku (Finland). Department of Physics; Chirvony, V.; Matveeva, E. [Nanophotonics Technology Center, Technical University of Valencia (Spain); Pastor, E.

    2009-07-15

    To imply miscibility to porous silicon (PSi) used for biomedical purposes a number of functionalization methods are employed. In order to distinguish between a non-specific surfactant-like interaction (physical sorption) and chemical binding of unsaturated chemicals (undecylenic acid, UD) to H-terminated PSi surface we studied the two differently treated materials. Differential scanning calorimetry (DSC) and thermogravimetry (TGA), BET and FTIR measurements were performed with the PSi powder samples (n+ doped). Changes in surface area, weight loss, calorific effect and chemical composition that accompanied the thermal treatment have shown that the physisorbed UD molecules undergo a chemical process (binding) with the Si-H{sub x} surface groups at about 150 C in both, N{sub 2} inert atmosphere and in a synthetic air, oxidative atmosphere. Controlled conversion of physically sorbed molecules to the chemically attached ones is discussed with respect to methods of surface modification of PSi materials for increasing their biocompatibility. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  16. Thermal and Physical Properties and Deposit Structure of Power Equipment Heating Surfaces

    Directory of Open Access Journals (Sweden)

    A. V. Nerezko

    2007-01-01

    Full Text Available The paper shows influence of heating surface material, design peculiarities, operational conditions of heat exchangers and water-chemical regime on chemical and structural composition of deposits, their heat conduction and porosity.

  17. Some physical aspects of the surface waters around the little Andaman Island

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Das, P.K.; Gouveia, A.D.

    Along with the thermal and haline characteristics of the waters during the peak northeast monsoon period (February),observations on stratifications, inversions, mixed layers, nature and depth of thermocline, wind-induced surface drifts, zones...

  18. Physical principles of the surface plasma method for producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    1977-01-01

    The processes which are important for the production of intense beams of negative ions from surface plasma sources (SPS) are examined. The formation of negative ions when atomic particles interact with a surface is analyzed on the basis of both experimental results obtained when a surface was bombarded with beams and recently developed theoretical considerations of reflection, scattering, and electron exchange. The characteristic features of these processes in SPS, when a surface is bombarded with intense fluxes of plasma particles, are revealed in special experiments. The characteristics of generation and acceleration of the bombarding particles in a gas discharge SPS plasma, the characteristics of transportation of negative ions through the plasma toward the beam forming system, the role of cesium in SPS, and the characteristics of formation of the intense negative ion beams as well as the removal of parasite electrons from the beam

  19. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  20. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer.

    Science.gov (United States)

    Schuster, Matthias; Seebauer, Christian; Rutkowski, Rico; Hauschild, Anna; Podmelle, Fred; Metelmann, Camilla; Metelmann, Bibiana; von Woedtke, Thomas; Hasse, Sybille; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert

    2016-09-01

    The aim of the study was to learn, whether clinical application of cold atmospheric pressure plasma (CAP) is able to cause (i) visible tumor surface effects and (ii) apoptotic cell kill in squamous cell carcinoma and (iii) whether CAP-induced visible tumor surface response occurs as often as CAP-induced apoptotic cell kill. Twelve patients with advanced head and neck cancer and infected ulcerations received locally CAP followed by palliative treatment. Four of them revealed tumor surface response appearing 2 weeks after intervention. The tumor surface response expressed as a flat area with vascular stimulation (type 1) or a contraction of tumor ulceration rims forming recesses covered with scabs, in each case surrounded by tumor tissue in visible progress (type 2). In parallel, 9 patients with the same kind of cancer received CAP before radical tumor resection. Tissue specimens were analyzed for apoptotic cells. Apoptotic cells were detectable and occurred more frequently in tissue areas previously treated with CAP than in untreated areas. Bringing together both findings and placing side by side the frequency of clinical tumor surface response and the frequency of analytically proven apoptotic cell kill, detection of apoptotic cells is as common as clinical tumor surface response. There was no patient showing signs of an enhanced or stimulated tumor growth under influence of CAP. CAP was made applicable by a plasma jet, kINPen(®) MED (neoplas tools GmbH, Greifswald, Germany). Copyright © 2016. Published by Elsevier Ltd.

  1. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  2. PHYSICS

    CERN Document Server

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  3. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  4. The analysis of mass and energy transfer from a surface by means of a physical model conceived as a teaching tool

    International Nuclear Information System (INIS)

    Peressotti, A.; Zerbi, G.; Delle Vedove, G.; Ham, J.H.

    1993-01-01

    A physical model representing an evapotranspirating field on a scale 1:100 is described. The model, having a moderate cost, was devised as a teaching tool for agronomy and agrometeorology classes; it permits the measurement and the continuous monitoring of the parameters involved in mass and energy transfer over an evaporating surface (radiation, turbulence, temperature of the air and of the surface, heat fluxes, vapor pressure gradients). The physical characteristics of the surface can be changed to simulate different situations of a cultivated field. The surface resistance is calculated by the measurement of the Bowen ratio and directly from the measurement of the surface temperature [it

  5. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    Science.gov (United States)

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  6. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    International Nuclear Information System (INIS)

    Wook Jung, Min; Myung, Sung; Woong Kim, Ki; Song, Wooseok; Suk Lee, Sun; Lim, Jongsun; An, Ki-Seok; Jo, You-Young; Park, Chong-Yun

    2014-01-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  7. Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion

    Science.gov (United States)

    Zhou, Zhaoli

    Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram

  8. Control of pyrite surface chemistry in physical coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  9. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  10. Necrotising soft tissue infection following mastectomy

    Directory of Open Access Journals (Sweden)

    Jackson P

    2010-03-01

    Full Text Available Necrotising fasciitis is a rare but rapidly progressive soft tissue disease which can lead to extensive necrosis, systemic sepsis and death. Including this case, only 7 other cases have been reported in the world literature with only 2 others affecting the patient post mastectomy.This 59 year old Caucasian lady presented with severe soft tissue infection soon after mastectomy, which was successfully treated with a combination of debridement, triangulation, VAC© dressing and skin grafting.Necrotising soft tissue infections following mastectomy are rapidly progressive and potentially extremely serious. It is essential that a high index of clinical suspicion is maintained together with prompt aggressive treatment in a multidisciplinary environment to prevent worsening physical and psychological sequelae.

  11. ON SOME DECOMPOSITIONS OF FUZZY SOFT CONTINUITY

    OpenAIRE

    Gain, Pradip Kumar; Mukherjee, Prakash; Chakraborty, Ramkrishna Prasad

    2015-01-01

    – In this article, some open-like fuzzy soft sets such as fuzzy soft semi-open set, fuzzy soft preopen set, fuzzy soft α-open set and corresponding variants of fuzzy soft continuous functions are introduced and discussed. Some other variants of fuzzy soft sets such as fuzzy soft semi-preclosed set, fuzzy soft t-set, fuzzy soft α*-set, fuzzy soft regular open set, fuzzy soft B-set, fuzzy soft C-set and fuzzy soft D(α)-set are defined and some properties of these sets are studied and investigat...

  12. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to

  13. Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents: a randomized controlled trial.

    Science.gov (United States)

    Granacher, Urs; Schellbach, Jörg; Klein, Katja; Prieske, Olaf; Baeyens, Jean-Pierre; Muehlbauer, Thomas

    2014-01-01

    It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the

  14. Effect furfurylation on physical properties and surface quality of two species of Beech and Fir

    Directory of Open Access Journals (Sweden)

    aysona talai

    2016-12-01

    Full Text Available The objective of this study was investigation of furfurylation effect on water absorption, thickness swelling, contact angle and surface roughness in two species such as beech (Fagus orientalis and fir (Abies alba. In this regard, two different values of furfurylation of beech and fir wood specimens in the form of low level and high level were carried out and compared with control specimens. The furfurylation was carried out with impregnation under pressure and polymerization of furfuryl alcohol monomer with heat catalyst. For evaluating the water absorption and thickness swelling, specimens were subjected to long-term water immersion, and their dimension changes were determined at different times. The surface roughness and contact angle testes were also carried out. Results indicated that water absorption and thickness swelling were reduced. Results also indicated that drop contact angles were decreased and surface roughness were increased by increasing of furfurylation level.

  15. Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow.

    Science.gov (United States)

    Bandi, M M; Goldburg, W I; Cressman, J R; Kellay, H

    2006-03-14

    We investigate the fluctuating pattern created by a jet of fluid impingent upon an amphiphile-covered surface. This microscopically thin layer is initially covered with 50 microm floating particles so that the layer can be visualized. A vertical jet of water located below the surface and directed upward drives a hole in this layer. The hole is particle-free and is surrounded by the particle-laden amphiphile region. The jet ruptures the amphiphile layer creating a particle-free region that is surrounded by the particle-covered surface. The aim of the experiment is to understand the (fluctuating) shape of the ramified interface between the particle-laden and particle-free regions.

  16. Physical Retracking of Cryosat-2 Low Resolution Mode data for ocean surface height and gravity field estimation in open ocean

    Science.gov (United States)

    Jain, Maulik; Baltazar Andersen, Ole; Dall, Jorgen; Stenseng, Lars

    2014-05-01

    Cryosat-2 Low Resolution Mode (LRM) altimetric data is processed to determine precise ocean surface heights and gravity fields in open ocean. These ocean surface heights are corrected using various geophysical corrections available. The along track variation of the ocean surface height anomaly is used to determine the gravity field. The quality of this gravity field estimation is dependent on the precision in the ocean surface height anomaly. Thus a three/two parameter based physical model based on an error function is used, and the Cryosat-2 LRM waveforms are fit to this model. The fitting routines which employ the Levenberg Marquadt technique generate estimated values of retracked epochs which are used to compute the ocean surface heights. A two step processing system made up of sequential 3 parameter (amplitude, rise time, retracked epoch) and 2 parameter (amplitude, retracked epoch) fitting models are used to determine precise ocean surface heights. The quality of the processing system is judged by evaluating the standard deviation of the ocean surface height anomaly obtained after all corrections and the mean sea surface/geoid are removed. The lower the value of the standard deviation of the ocean surface height anomaly, the better the quality of processing is. Hence, different processing schemes are considered and evaluated in order to conclude towards the best retracking procedure which would eventually result in high accuracy gravity field estimations. Also, the quality on the precision is judged by analyzing the standard deviation in the gravity field anomaly. The gravity field anomaly is obtained by subtracting the retracked gravity field with the marine gravity field available. A lower value of the standard deviation in the gravity field anomaly indicates a more precise retracking algorithm. Using the two retracker performance evaluation strategies, namely the ocean surface height anomaly and the gravity field anomaly, it was concluded that the three

  17. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  18. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  19. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  20. PHYSICS

    CERN Document Server

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  1. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  2. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  3. On Soft Biometrics

    DEFF Research Database (Denmark)

    Nixon, Mark; Correia, Paulo; Nasrollahi, Kamal

    2015-01-01

    Innovation has formed much of the rich history in biometrics. The field of soft biometrics was originally aimed to augment the recognition process by fusion of metrics that were sufficient to discriminate populations rather than individuals. This was later refined to use measures that could be used...... to discriminate individuals, especially using descriptions that can be perceived using human vision and in surveillance imagery. A further branch of this new field concerns approaches to estimate soft biometrics, either using conventional biometrics approaches or just from images alone. These three strands...... combine to form what is now known as soft biometrics. We survey the achievements that have been made in recognition by and in estimation of these parameters, describing how these approaches can be used and where they might lead to. The approaches lead to a new type of recognition, and one similar...

  4. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    Science.gov (United States)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  5. The electric double layer put to work : thermal physics at electrochemical interfaces

    OpenAIRE

    Janssen, M.A.

    2017-01-01

    Where charged electrode surfaces meet fluids that contain mobile ions, so-called electric double layers (EDLs) form to screen the electric surface charge by a diffuse cloud of counterionic charge in the fluid phase. This double layer has been studied for over a century and is of paramount importance to many processes in physical chemistry and soft matter physics, as well as in electric double layer capacitors (EDLCs) used for energy storage. With the ongoing development of nanomaterials, elec...

  6. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  7. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  8. Effect of Surface Modification by Oleic Acid on Physical Properties of Cellulose Nanofibers

    Directory of Open Access Journals (Sweden)

    Hadi Almasi

    2013-08-01

    Full Text Available Oleic acid was used as a hydrophobic agent to modify cellulose nanofiber (CNF and the reaction time and fatty acid content were tested in relation to the hydrophilic properties of the products as well as the physicochemical properties of CNF. It was found that the degree of substitution (DS increased by extending the reaction time though the fatty acid content had no effect on hydrophobicity of CNF. The success of the esterification reaction was confirmed by Fourier transform infrared spectroscopy. Higher degree of substitution led to increased contact angle of CNF surfaces with water, which indicated the increased surface hydrophobicity of modified CNF. The X-ray diffraction analyses showed a lowering trend in crystallinity index and crystallite size with increases in DS value. Surface modification changed the thermal stability of CNF by lowering the degradation temperature from 290.8°C for unmodified cellulose to 195.4°C for highly esterified cellulose. Scanning electron microscopy micrographs revealed that after esterification of CNF with oleic acid, its filamentous shape was preserved. As a result, although the surface modification of CNF by fatty acid increased its hydrophobicity and its ability to mix with non-polar polymers, but it changed CNF physicochemical characteristics and weakened its functional properties.

  9. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions.

    Science.gov (United States)

    Lestari, Maria L A D; Müller, Rainer H; Möschwitzer, Jan P

    2015-03-01

    The role of a surface modifier is important in the formation of stable nanosuspensions. In this study, a simple and systematic screening method for selecting optimum surface modifiers was performed by utilizing a low-energy wet ball milling method. Nine surface modifiers from different classes with different stabilization mechanisms were applied on six different models of active pharmaceutical ingredients (API). Particle size analysis showed that at concentration five times higher than the critical micelle concentration, SDS and sodium cholate (anionic surfactant) showed the highest percent success to produce stable nanosuspensions with particle size smaller than 250 nm. Similar findings were also shown by poloxamer 188 (nonionic surfactant) and hydroxypropylmethylcellulose E5 (polymeric stabilizer) at concentration 1% (w/v) and 0.8% (w/v), respectively. In addition, combinations of anionic surfactant and nonionic surfactant as well as combinations of anionic surfactant and polymeric stabilizer showed high percent success in the formation of stable nanosuspensions. In general, no correlation can be found between the physicochemical characteristics of the model API (molecular weight, melting point, log P, pKa, and crystallinity) with its feasibility to be nanosized. The concentration and the principle of stabilization of surface modifier determine the formation of stable nanosuspensions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces

    Science.gov (United States)

    Muthusamy, Manoranjan; Tait, Simon; Schellart, Alma; Beg, Md Nazmul Azim; Carvalho, Rita F.; de Lima, João L. M. P.

    2018-02-01

    Among the urban aquatic pollutants, the most common is sediment which also acts as a transport medium for many contaminants. Hence there is an increasing interest in being able to better predict the sediment wash-off from urban surfaces. The exponential wash-off model is the most widely used method to predict the sediment wash-off. Although a number of studies proposed various modifications to the original exponential wash-off equation, these studies mostly looked into one parameter in isolation thereby ignoring the interactions between the parameters corresponding to rainfall, catchment and sediment characteristics. Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface slope and initial load on wash-off load in an integrated and systematic way and (b) to subsequently improve the exponential wash-off equation focusing on the effect of the aforementioned three parameters. A series of laboratory experiments were carried out in a full-scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 50 to 200 g/m2 were selected based on values obtained from the literature. Fine sediment with a size range of 300-600 μm was used for all of the tests. Each test was carried out for one hour with at least 9 wash-off samples per test collected. Mass balance checks were carried out for all the tests as a quality control measure to make sure that there is no significant loss of sand during the tests. Results show that the washed off sediment load at any given time is proportional to initial load for a given combination of rainfall intensity and surface slope. This indicates the importance of dedicated modelling of build-up so as to subsequently predict wash-off load. It was also observed that the maximum fraction that is washed off from the surface increases

  11. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  12. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Exploring Flatland with Cold Atoms

    Science.gov (United States)

    Dalibard, Jean

    2012-06-01

    A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose-Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii-Kosterlitz-Thouless mechanism. Secondly, a weakly interacting Bose fluid in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will present recent experimental progress in the investigation of 2D atomic gases, which provide a nice illustration of the main features of low dimensional many-body physics.

  13. The physics and chemistry of Earth's dynamic surface (Ralph Alger Bagnold Medal Lecture)

    Science.gov (United States)

    Kirchner, James W.

    2013-04-01

    Ralph Alger Bagnold became a Fellow of the Royal Society and one of the founders of modern geomorphology despite having no formal academic affiliation, no cadre of students or postdocs under his command, no steady financial support, and no scientific training beyond a second-class honors degree in engineering. What he did have, and used to great effect, were a deep curiosity about natural phenomena, a powerful physical intellect, a talent for clever experimentation, extensive opportunities to observe geomorphic processes at work in the field, and - perhaps most important of all - the time and freedom to focus his energies on significant scientific challenges. A hallmark of Bagnold's work is the artful compromise between the goal of simple, general, physical laws describing natural phenomena, and the practical necessity for observational empiricisms to account for the real-world complexities that cannot be incorporated explicitly into such simple laws. Efforts to find these sorts of artful compromises continue to the present day. Typically, both in Bagnold's work and in present-day geomorphology, one seeks mathematical process laws whose form embodies the "pure physics" of the problem, and whose coefficients subsume the inevitable observational empiricisms. Present-day geomorphologists have an array of new tools that open our eyes to temporal and spatial scales that were invisible to Bagnold and his contemporaries. These observations, in turn, have yielded new surprises and challenges, sometimes confounding our intuition about how geomorphic systems "should" behave. One surprise has been that decadal-scale erosion rates, as reflected in stream sediment loads and reservoir sedimentation rates, often differ from longer-term erosion rates by large multiples. In some agricultural landscapes, modern-day erosion rates greatly exceed the long-term background rate, as one might intuitively expect. In other landscapes, however, contemporary erosion rates can be a small

  14. Correlative Evaluation of Mental and Physical Workload of Laparoscopic Surgeons Based on Surface Electromyography and Eye-tracking Signals.

    Science.gov (United States)

    Zhang, Jian-Yang; Liu, Sheng-Lin; Feng, Qing-Min; Gao, Jia-Qi; Zhang, Qiang

    2017-09-11

    Surgeons' mental and physical workloads are major focuses of operating room (OR) ergonomics, and studies on this topic have generally focused on either mental workload or physical workload, ignoring the interaction between them. Previous studies have shown that physically demanding work may affect mental performance and may be accompanied by impaired mental processing and decreased performance. In this study, 14 participants were recruited to perform laparoscopic cholecystectomy (LC) procedures in a virtual simulator. Surface electromyography (sEMG) signals of the bilateral trapezius, bicipital, brachioradialis and flexor carpi ulnaris (FCU) muscles and eye-tracking signals were acquired during the experiment. The results showed that the least square means of muscle activity during the LC phases of surgery in an all-participants mixed effects model were 0.79, 0.81, and 0.98, respectively. The observed muscle activities in the different phases exhibited some similarity, while marked differences were found between the forearm bilateral muscles. Regarding mental workload, significant differences were observed in pupil dilation between the three phases of laparoscopic surgery. The mental and physical workloads of laparoscopic surgeons do not appear to be generally correlated, although a few significant negative correlations were found. This result further indicates that mental fatigue does markedly interfere with surgeons' operating movements.

  15. PHYSICS

    CERN Document Server

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  16. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  17. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  18. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  19. Some Properties of Fuzzy Soft Proximity Spaces

    Science.gov (United States)

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  20. EB surface sterilization of food material

    International Nuclear Information System (INIS)

    Kaneko, H.; Mizutani, A.; Kato, K.; Nishikimi, T.; Taniguchi, S.

    2001-01-01

    In this paper, we introduce a food irradiation with low energetic, lower than 300keV, electrons (so-called SOFT ELECTRON) as a rather new method of food sterilization. It is also a physical sterilization method, and free from the problems mentioned above. Low energetic electrons have small penetration power (50-200micron) through raw materials, and by selecting a proper energy of electrons we can sterilize only the surfaces or skins of target materials

  1. Soft actuators and soft actuating devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  2. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  3. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma

    2011-09-01

    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  4. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Soft Tissue Extramedullary Plasmacytoma

    Directory of Open Access Journals (Sweden)

    Fernando Ruiz Santiago

    2010-01-01

    Full Text Available We present the uncommon case of a subcutaneous fascia-based extramedullary plasmacytoma in the leg, which was confirmed by the pathology report and followed up until its remission. We report the differential diagnosis with other more common soft tissue masses. Imaging findings are nonspecific but are important to determine the tumour extension and to plan the biopsy.

  6. Soft tissue mixed tumor

    Directory of Open Access Journals (Sweden)

    Eiichi Hiraishi

    2009-12-01

    Full Text Available Mixed tumors are relatively common in the skin and salivary glands, but extremely rare in soft tissues, often resulting in diagnostic problems. The occurrence of these tumors in the hand is especially limited. In this article we report the clinical, radiological, and histological features of a mixed tumor of the hypothenar region of the right hand.

  7. Soft Matter Characterization

    CERN Document Server

    Borsali, Redouane

    2008-01-01

    Progress in basic soft matter research is driven largely by the experimental techniques available. Much of the work is concerned with understanding them at the microscopic level, especially at the nanometer length scales that give soft matter studies a wide overlap with nanotechnology. This 2 volume reference work, split into 4 parts, presents detailed discussions of many of the major techniques commonly used as well as some of those in current development for studying and manipulating soft matter. The articles are intended to be accessible to the interdisciplinary audience (at the graduate student level and above) that is or will be engaged in soft matter studies or those in other disciplines who wish to view some of the research methods in this fascinating field. Part 1 contains articles with a largely (but, in most cases, not exclusively) theoretical content and/or that cover material relevant to more than one of the techniques covered in subsequent volumes. It includes an introductory chapter on some of t...

  8. Investigating the Physical Basis of Amorphous Precursor Transformation to Calcite Using Patterned Alkanethiol Surfaces

    Science.gov (United States)

    Wang, D.; Wallace, A.; Han, T. Y.; Lee, J. R.; Hailey, P. D.; de Yoreo, J. J.; Dove, P. M.

    2007-12-01

    Increasing evidence from X-ray Absorption Spectroscopy and Environmental Scanning Electron Microscopy (ESEM) studies of biominerals extracted from calcifying organisms show that amorphous calcium carbonate (ACC) plays a key role in the initial formation of carbonate minerals and in shaping them into complex morphologies. Echinoderms and possibly a wide variety of other organisms, use ACC as a precursor phase. The ACC is first formed within spatial and temporally controlled environments such as vesicles, followed by a subsequent onset of mineralization that transforms the precursor into a fully crystalline material. Recent studies on sea urchin embryos have shown that during this transformation, ACC develops short-range order that resembles calcite before fully crystallizing. While this "non-traditional" process is recognized, the mechanisms and factors that govern this transformation remain poorly understood. Of particular interest are the roles of water, and the functional group chemistry of surfaces and macromolecules within mineralization environments. To investigate these questions, we have developed an experimental approach using ESEM that allows us to control impurity concentration, surface functionality and water content through the degree of water condensation. Patterned self-assembled monolayers (SAM) of hydrophilic moieties with domains of approximately 25 microns in diameter are used to form an array of micro-reactors. ACC particles with known composition are then deposited on the patterns. Condensing water in the ESEM initializes the transformation of ACC to calcite. Our results show that in saturated water vapor, ACC swells, but no obvious faceting of the material occurs. It is only in bulk water, via dissolution/crystallization, where the calcite grown on carboxyl-terminated surfaces is found with the often-observed \\{013\\} nucleation face. We use this insight to understand the role of the different chemical moieties on ACC to calcite transformation

  9. MD simulation: determination of the physical properties and surface vaporization analysis of beryllium armours

    International Nuclear Information System (INIS)

    Prinzio, M. Di; Aquaro, D.

    2006-01-01

    The erosion of the divertor and of the first wall determined on the base of the anticipated operating conditions, is a critical issue that could affect the performance and the operating schedule of the nuclear fusion reactor ITER. This paper deals with the analysis of beryllium thermal properties by means of MD simulations, in order to better predict thermal behaviour of beryllium armoured PFCs in fusion devices. The importance of this analysis is clearly connected to thermal response evaluation of PFCs to high heat flux exposure, during off-normal events and Edge Localized Modes. The ensuing strong over-heating, in fact, produces material ablation through vaporization of surface material layers and possible loss of melting material. The overall PFCs erosion has bearings on plasma contamination, due to eroded material transport, and components lifetime, due to armour thickness reduction. An important feature of beryllium is its high vapour pressure. During thermal transients the strong vaporization keeps surface temperature relatively low but eroded thickness results high as well. Small changes in beryllium vapour pressure produce not negligible differences in thermal analyses results. On the basis of available force fields, classical Molecular Dynamics simulations have been carried out in order to better understand surface vaporization in tokamak conditions and to evaluate the effect of beryllium oxides formation. This effect has been successfully modelled by MD simulation, carried out with Moldy code. Morse stretching and bending potential for Be-O bond simulation have been used, and partial charges method, accounting for molecular polarity, has been employed. Since during short thermal transients, such as ELMs, only a few microns of Be armour will be overheated and reach melting threshold, the effective thermal conductivity is very important in determining the temperature evolution of surface layers and the ensuing erosion. Thermal conductivity can be evaluated

  10. Soft matrices on soft multisets in an optimal decision process

    Science.gov (United States)

    Coskun, Arzu Erdem; Aras, Cigdem Gunduz; Cakalli, Huseyin; Sonmez, Ayse

    2016-08-01

    In this paper, we introduce a concept of a soft matrix on a soft multiset, and investigate how to use soft matrices to solve decision making problems. An algorithm for a multiple choose selection problem is also provided. Finally, we demonstrate an illustrative example to show the decision making steps.

  11. Controlling physical and chemical bonding of polypyrrole to boron doped diamond by surface termination

    Czech Academy of Sciences Publication Activity Database

    Ukraintsev, Egor; Kromka, Alexander; Janssen, W.; Haenen, K.; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 1 (2013), s. 17-26 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Grant - others:EU FP7 Marie Curie ITN MATCON(XE) PITN-GA-2009-238201 Institutional support: RVO:68378271 Keywords : electrochemical growth * polypyrrole * boron doped diamond * scanning electron microscopy * Kelvin force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/papers/vol8/80100017.pdf

  12. Fast Transition between High-soft and Low-soft States in GRS 1915 ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    intensity in GRS 1758 − 258. Though transition from low-hard to high-soft states are seen in many Galactic black hole candidate sources, a transition between two different intensity states (high and low) with similar physical parameters of the accretion disk was not observed in GRS 1915 + 105 or in any other black hole ...

  13. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  14. Soft X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  15. The effect of using waste newspaper in surface layers on physical and mechanical properties of three-layer particleboard

    Directory of Open Access Journals (Sweden)

    vahid vaziri

    2017-02-01

    Full Text Available In this study, physical and mechanical properties of particleboard made from recycled newspaper in the surface layers were investigated. Coarse and fine wood chips and recycled newspaper with dimension of 0.5 × 4 cm2 were used. The variable in this research were the ratio of recycled newspaper to wood chips (at five levels; 0:100, 15:85, 30:70, 45:55, 60:40. Urea formaldehyde resin used at 10% content on dry weight basis of the wood particles and newspaper and ammonium chloride was used as a catalyst to 2% of the dry weight of adhesive. Physical and mechanical properties of panels measured according to EN Standard. The results showed that panels containing recycled newspapers at the level of 45% had the highest bending strength and modulus of elasticity. Internal bonding and screw holding strength decreased with increasing of recycled newspaper and control sample had the highest strength. Water absorption and thickness swelling increased with increasing of recycled newspaper portion. On the basis of results of this study can be concluded that particleboard containing recycled newspapers in the surface layers up to the level of 30% can be used for general purpose boards and interior fitments (including furniture for use in dry conditions.

  16. [Soft skills : Somewhat different doping].

    Science.gov (United States)

    Heppner, H J

    2018-02-01

    Doping actually means the taking of illegal substances or the use of forbidden methods to increase or maintain performance. Diseases associated with age and functional decline can lead to constraints in the activities of daily living and this leads to loss of autonomy; therefore, doping in its different variations is used to try to achieve performance, which would not otherwise be possible. A somewhat different method is soft skills, i.e. personal, social and methodological competences, which are adopted to remain fit with the help of selection and compensation. One of the main cornerstones for healthy aging apart from medical interventions is physical activity and to keep training up to old age. An early beginning with sports activities and to continue practicing sport in a variety of forms into old age, plays a decisive role in healthy aging. There are also many recommendations for nutrition, such as changing eating habits and the composition of nourishment to counteract the process of aging. With increasing age the interests and life style also change and therefore early planning is absolutely necessary. Preservation of cognitive capabilities is one of the most important requirements to overcome aging. Not only the cognitive resources must be promoted but also attention must be paid to the resilience to deal with losses. Resilience plays a key role. People with a positive attitude to living with old age show less functional physical impairment and recover from illness more quickly. Humor, optimism and physical activity are crucial for successful aging.

  17. Soft skills and dental education

    OpenAIRE

    Gonzalez, M. A. G.; Abu Kasim, N. H.; Naimie, Z.

    2014-01-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses ...

  18. Hesitant intuitionistic fuzzy soft sets

    Science.gov (United States)

    Nazra, Admi; Syafruddin; Lestari, Riri; Catur Wicaksono, Gandung

    2017-09-01

    This paper aims to extend the hesitant fuzzy soft sets to hesitant intuitionistic fuzzy soft sets by merging the concept of hesitant intuitionistic fuzzy sets and soft sets. The authors define some operations on hesitant intuitionistic fuzzy sets, such as complement, union and intersection, and obtain related properties. The similar operations are defined on hesitant intuitionistic fuzzy soft sets, and also some properties such as assosiative and De Morgan’s laws are obtained.

  19. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Matsui, Hirotoshi; Wagner, Victoria E.; Hill, David B.; Schwab, Ute E.; Rogers, Troy D.; Button, Brian; Taylor, Russell M.; Superfine, Richard; Rubinstein, Michael; Iglewski, Barbara H.; Boucher, Richard C.

    2006-01-01

    A vexing problem in cystic fibrosis (CF) pathogenesis has been to explain the high prevalence of Pseudomonas aeruginosa biofilms in CF airways. We speculated that airway surface liquid (ASL) hyperabsorption generates a concentrated airway mucus that interacts with P. aeruginosa to promote biofilms. To model CF vs. normal airway infections, normal (2.5% solids) and CF-like concentrated (8% solids) mucus were prepared, placed in flat chambers, and infected with an ≈5 × 103 strain PAO1 P. aeruginosa. Although bacteria grew to 1010 cfu/ml in both mucus concentrations, macrocolony formation was detected only in the CF-like (8% solids) mucus. Biophysical and functional measurements revealed that concentrated mucus exhibited properties that restrict bacterial motility and small molecule diffusion, resulting in high local bacterial densities with high autoinducer concentrations. These properties also rendered secondary forms of antimicrobial defense, e.g., lactoferrin, ineffective in preventing biofilm formation in a CF-like mucus environment. These data link airway surface liquid hyperabsorption to the high incidence of P. aeruginosa biofilms in CF via changes in the hydration-dependent physical–chemical properties of mucus and suggest that the thickened mucus gel model will be useful to develop therapies of P. aeruginosa biofilms in CF airways. PMID:17116883

  20. Physical stability assessment and sensory optimization of a dairy-free emulsion using response surface methodology.

    Science.gov (United States)

    Granato, Daniel; de Castro, I Alves; Ellendersen, L Souza Neves; Masson, M Lucia

    2010-04-01

    Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.

  1. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  2. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    Science.gov (United States)

    Cuntz, Matthias; Haverd, Vanessa

    2018-01-01

    The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide-ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE-SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large-scale land surface models and local permafrost observations. CABLE-SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite-derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE-SLI with depth-dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.

  3. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  4. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  5. On Neutrosophic Soft Topological Space

    Directory of Open Access Journals (Sweden)

    Tuhin Bera

    2018-03-01

    Full Text Available In this paper, the concept of connectedness and compactness on neutrosophic soft topological space have been introduced along with the investigation of their several characteristics. Some related theorems have been established also. Then, the notion of neutrosophic soft continuous mapping on a neutrosophic soft topological space and it’s properties are developed here.

  6. Joint and Soft Tissue Injections

    Science.gov (United States)

    ... Injections Joint and Soft Tissue Injections Share Print What is a joint and soft tissue injection? Joint and soft tissue injections are shots ... many injections do I need and how often? What restrictions do I have after an ... tissue injection, treatment April 1, 2004 Copyright © American Academy ...

  7. Physical-property-, lithology- and surface-geometry-based joint inversion using Pareto Multi-Objective Global Optimization

    Science.gov (United States)

    Bijani, Rodrigo; Lelièvre, Peter G.; Ponte-Neto, Cosme F.; Farquharson, Colin G.

    2017-05-01

    This paper is concerned with the applicability of Pareto Multi-Objective Global Optimization (PMOGO) algorithms for solving different types of geophysical inverse problems. The standard deterministic approach is to combine the multiple objective functions (i.e. data misfit, regularization and joint coupling terms) in a weighted-sum aggregate objective function and minimize using local (decent-based) smooth optimization methods. This approach has some disadvantages: (1) appropriate weights must be determined for the aggregate, (2) the objective functions must be differentiable and (3) local minima entrapment may occur. PMOGO algorithms can overcome these drawbacks but introduce increased computational effort. Previous work has demonstrated how PMOGO algorithms can overcome the first issue for single data set geophysical inversion, that is, the trade-off between data misfit and model regularization. However, joint inversion, which can involve many weights in the aggregate, has seen little study. The advantage of PMOGO algorithms for the other two issues has yet to be addressed in the context of geophysical inversion. In this paper, we implement a PMOGO genetic algorithm and apply it to physical-property-, lithology- and surface-geometry-based inverse problems to demonstrate the advantages of using a global optimization strategy. Lithological inversions work on a mesh but use integer model parameters representing rock unit identifiers instead of continuous physical properties. Surface geometry inversions change the geometry of wireframe surfaces that represent the contacts between discrete rock units. Despite the potentially high computational requirements of global optimization algorithms (compared to local), their application to realistically sized 2-D geophysical inverse problems is within reach of current capacity of standard computers. Furthermore, they open the door to geophysical inverse problems that could not otherwise be considered through traditional

  8. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  9. Clinical management of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Pinedo, H.M.; Verweij, J.

    1986-01-01

    This book is concerned with the clinical management of soft tissue sarcomas. Topics covered include: Radiotherapy; Pathology of soft tissue sarcomas; Surgical treatment of soft tissue sarcomas; and Chemotherapy in advanced soft tissue sarcomas

  10. Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations

    Science.gov (United States)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, V.; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina L.; Quiñones, John

    2018-03-01

    We present reflectance and polarization phase curve measurements of highly reflective planetary regolith analogues having physical characteristics expected on atmosphereless solar system bodies (ASSBs) such as a eucritic asteroids or icy satellites. We used a goniometric photopolarimeter (GPP) of novel design to study thirteen well-sorted particle size fractions of aluminum oxide (Al2O3). The sample suite included particle sizes larger than, approximately equal to, and smaller than the wavelength of the incident monochromatic radiation (λ = 635 nm). The observed phase angle, α, was 0.056 o ∼95%). The incident radiation has a very high probability of being multiply scattered before being backscattered toward the incident direction or ultimately absorbed. The five smallest particle sizes exhibited extremely high void space (> ∼95%). The reflectance phase curves for all particle size fractions show a pronounced non-linear reflectance increase with decreasing phase angle at α∼ ∼1 we detect no polarization. This polarization behavior is distinct from that observed in low albedo solar system objects such as the Moon and asteroids and for absorbing materials in the laboratory. We suggest this behavior arises because photons that are backscattered have a high probability of having interacted with two or more particles, thus giving rise to the CB process. These results may explain the unusual negative polarization behavior observed near small phase angles reported for several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina and the Galilean satellites Io, Europa and Ganymede. Our results suggest these ASSB regoliths scatter electromagnetic radiation as if they were extremely fine grained with void space > ∼95%, and grain sizes of the order field of terrestrial geo-engineering, particularly to suggestions that earth's radiation balance can be modified by injecting Al2O3 particulates into the stratosphere thereby offsetting the effect

  11. Soft matter approaches to structured foods: from "cook-and-look" to rational food design?

    Science.gov (United States)

    Ubbink, Job

    2012-01-01

    Developments in soft matter physics are discussed within the context of food structuring. An overview is given of soft matter-based approaches used in food, and a relation is established between soft matter approaches and food technology, food creation, product development and nutrition. Advances in food complexity and food sustainability are discussed from a physical perspective, and the potential for future developments is highlighted.

  12. Soft Expert Sets

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. Many researchers have studied this theory, and they created some models to solve problems in decision making and medical diagnosis, but most of these models deal only with one expert. This causes a problem with the user, especially with those who use questionnaires in their work and studies. In our model, the user can know the opinion of all experts in one model. So, in this paper, we introduce the concept of a soft expert set, which will more effective and useful. We also define its basic operations, namely, complement, union intersection AND, and OR. Finally, we show an application of this concept in decision-making problem.

  13. Soft, Embodied, Situated & Connected

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    to material detail; an eye for fit and comfort on bodies with diverse shapes and movement capabilities; openness to a diversity of meanings that may be generated; as well as consideration of wearers’ intimate relations with technology. Soft wearables allow for greater scope within these requirements....... In this article, we discuss the opportunities and challenges of designing soft wearables, applying notions of situatedness and personal meaning-making to understand and posit values in relation to outcomes. We present three design cases that focus on body, material, and context; and reflect on how the different......; diverse capabilities and meanings of the body; as well as the qualities and capabilities afforded by smart and programmable elements. Textiles behave in particular ways. They are part of culture. No matter a person’s views on fashion, dress, their own or others’ body, they will have an intimate...

  14. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus...... the understanding of relations and the coherence of processes of influence/power/governance, the article introduces a communications model of decision-making processes as processes of influence....

  15. Soft-sediment mullions

    Science.gov (United States)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  16. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  17. Natural soft leptogenesis

    International Nuclear Information System (INIS)

    Grossman, Yuval; Kitano, Ryuichiro; Murayama, Hitoshi

    2005-01-01

    Successful soft leptogenesis requires small B-terms for the right-handed sneutrinos and a large CP violating phase between the A- and B-terms. We show that this situation is realized naturally within the framework of gauge mediated supersymmetry breaking. The A-term is dominated by contribution from gauge mediation, while supergravity effects are more important for the B-term. The different origins naturally explain simultaneously the smallness of the B-term and the large CP violating phase. The most stringent bounds on the model come from the cosmological gravitino problem. We find a viable parameter region with very light gravitino m 3/2 ∼< 16 eV, providing a consistent framework for supersymmetry phenomenology, soft leptogenesis and cosmology

  18. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  19. Physics at 13 TeV: ALICE - scratching under the surface

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    ALICE’s wonderland materialises where the lead-lead ultrarelativistic collisions happen in the LHC. With a jump of over one order of magnitude in collision energy from the Relativistic Heavy Ion Collider (RHIC) and using state-of-the-art detectors, the experiment studies the quark-gluon plasma, a state of matter that existed during the Universe’s infancy.   The hugely hot medium was observed to behave almost like an ideal fluid, which, although absorbing their energy, leaves single propagating quarks and gluons almost undeflected, enhances the production of strange quarks, suppresses the production of particles made of quarks and antiquarks, and seems to be emitting light in the early stages of its expansion. “The data from the first LHC run have already challenged some of the notions that had emerged from the previous RHIC programme,” says Federico Antinori, ALICE Physics Coordinator. “The abundance of hard probes, that is, high-energy partic...

  20. Physical metallurgy of laser surface melted plastic mould steels: a case study

    Directory of Open Access Journals (Sweden)

    Colaço, R.

    1998-04-01

    Full Text Available The purpose of this paper is to illustrate the potential of laser surface melting to improve the surface characteristics of plastic mould steels, using a typical plastic mould steel (DIN X43Cr12 as a case study. After laser surface melting the microstructure of this steel is formed by fine dendrites of austenite partially transformed into martensite. Although the equilibrium solidification phase is 8- ferrite, the formation of primary austenite is kinetically favored and this phase tends to predominate at the high solidification speeds used in laser processing. It was observed that the volume fraction of retained austenite depends critically on the laser processing parameters, so that the microstructure can change from almost completely martensitic to almost completely austenitic by changing the laser processing parameters. Laser melted tool steels show remarkable secondary hardening after tempering at suitable temperatures. In DIN X42Cr13 the secondary hardening peak temperature after LSM (600°C is 100°C higher than after conventional heat treatment (500°C, due to the presence of large amounts of retained austenite. It was observed that this phase only destabilizes above 600°C, due to the precipitation of M7C3 and stress relieving. After destabilization, retained austenite transforms into martensite during cooling. Secondary hardening is due to the transformation of retained austenite into martensite and to the precipitation of M7C3 and M23C6 carbides.

    El objetivo del presente trabajo es ilustrar el potencial de la fusión superficial mediante láser para la mejora de las características estructurales de los moldes de acero para plásticos, centrándolo en el caso concreto del acero DIN X42Cr13. Tras el tratamiento de fusión superficial mediante láser, la microestructura del material está formada por dendritas finas de austenita parcialmente transformadas en

  1. Towards Soft Computing Agents

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Krušina, Pavel; Petrová, Zuzana

    2000-01-01

    Roč. 10, č. 5 (2000), s. 859-868 ISSN 1210-0552. [SOFSEM 2000 Works hop on Soft Computing. Milovy, 27.11.2000-28.11.2000] R&D Projects: GA ČR GA201/00/1489; GA ČR GA201/99/P057 Institutional research plan: AV0Z1030915 Keywords : hybrid systems * intelligent agents Subject RIV: BA - General Mathematics

  2. Evaluation of surface physical properties of acrylic resins for provisional prosthesis

    Directory of Open Access Journals (Sweden)

    Sérgio Paulo Hilgenberg

    2008-09-01

    Full Text Available Acrylic resins used for provisional prostheses should have satisfactory superficial characteristics in order to ensure gingival health and low bacterial attachment. The purpose of the present study was to evaluate the superficial roughness and contact angle after two types of polishing and the Vickers hardness of three acrylic resins (Duralay - G1, Dencrilay - G2, and Dencor - G3, all shade 66, indicated for provisional fixed prostheses. Five 20 x 3 ± 1 mm diameter discoid specimens were obtained for each group. One side of the specimens was subjected to standard polishing (pumice and whiting slurry, and the opposite side was polished with special tips. The mean roughness and contact angles of the materials were measured. The specimens were subjected to the Vickers microhardness test, which indicated that standard polishing produced a surface roughness equivalent to that of the special tips. The contact angles obtained with the standard polishing were equivalent to those observed in the special tips group. The microhardness of G1 and G3 resins showed statistical differences.

  3. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  4. Soft solids a primer to the theoretical mechanics of materials

    CERN Document Server

    Freed, Alan D

    2014-01-01

    This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics, or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics, and other fields where the mechanical response of soft solids is relevant.   Soft Solids: A Primer to the Theoretical Mechanics of Materials is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunit...

  5. Measuring information transfer in a soft robotic arm.

    Science.gov (United States)

    Nakajima, K; Schmidt, N; Pfeifer, R

    2015-05-13

    Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.

  6. An attempt to correlate surface physics with chemical properties: molecular beam and Kelvin probe investigations of Ce1-xZrxO2 thin films.

    Science.gov (United States)

    Kolekar, Sadhu K; Dubey, Anjani; Date, Kalyani S; Datar, Suwarna; Gopinath, Chinnakonda S

    2016-10-05

    What is the correlation between physical properties of the surfaces (such as surface potential, electronic nature of the surface), and chemical and catalysis properties (such as chemisorption, sticking probability of surface)? An attempt has been made to explore any correlation that might exist between the physical and chemical properties of thin film surfaces. Kelvin probe microscopy (KPM) and the molecular beam (MB) methods were employed to carry out the surface potential, and oxygen adsorption and oxygen storage capacity (OSC) measurements on Ce 1-x Zr x O 2 thin films. A sol-gel synthesis procedure and spin-coating deposition method have been applied to make continuous nanocrystalline Ce 1-x Zr x O 2 (x = 0-1) (CZ) thin films with uniform thickness (35-50 nm); however, surface roughness and porosity inherently changes with CZ composition. MB studies of O 2 adsorption on CZ reveal high OSC for Ce 0.9 Zr 0.1 O 2 , which also exhibits highly porous and significantly rough surface characteristics. The surface potential observed from KPM studies varied between 30 and 80 mV, with Ce-rich compositions exhibiting the highest surface potential. Surface potential shows large changes after reduction or oxidation of the CZ film demonstrating the influence of Ce 3+ /Ce 4+ on surface potential, which is also a key to catalytic activity for ceria-based catalysts. The surface potential measured from KPM and the OSC measured from MB vary linearly and they depend on the Ce 3+ /Ce 4+ ratio. More and detailed studies are suggested to arrive at a correlation between the physical and chemical properties of the surfaces.

  7. Some Results on Fuzzy Soft Topological Spaces

    Directory of Open Access Journals (Sweden)

    Cigdem Gunduz (Aras

    2013-01-01

    Full Text Available We introduce some important properties of fuzzy soft topological spaces. Furthermore, fuzzy soft continuous mapping, fuzzy soft open and fuzzy soft closed mappings, and fuzzy soft homeomorphism for fuzzy soft topological spaces are given and structural characteristics are discussed and studied.

  8. Soft Sensors - Modern Chemical Engineering Tool

    Directory of Open Access Journals (Sweden)

    N. Bolf

    2011-04-01

    Full Text Available Control systems and optimization procedures require regular and reliable measurements at the appropriate frequency. At the same time, legal regulations dictate strict product quality specifications and refinery emissions. As a result, a greater number of process variables need to be measured and new expensive process analyzers need to be installed to achieve efficient process control. This involves synergy between plant experts, system analysts and process operators. One of the common problems in industrial plants is the inability of the real time and continuous measurement of key process variables.Absence of key value measurement in a timely manner aggravates control, but it does not mean that it is always an impossible step. As an alternative, the use of soft sensors as a substitute for process analyzers and laboratory testing is suggested. With the soft sensors, the objective is to develop an inferential model to estimate infrequently measured variables and laboratory assays using the frequently measured variables. By development of soft sensors based on measurement of continuous variables (such as flow, temperature, pressure it is possible to estimate the difficult- -to-measure variables as well as product quality and emissions usually carried by laboratory assays.Software sensors, as part of virtual instrumentation, are focused on assessing the system state variables and quality products by applying the model, thus replacing the physical measurement and laboratory analysis. Multiple linear/nonlinear regression methods and artificial intelligence methods (such as neural network, fuzzy logic and genetic algorithms are usually applied in the design of soft sensor models for identification of nonlinear processes.Review of published research and industrial application in the field of soft sensors is given with the methods of soft sensor development and nonlinear dynamic model identification. Based on soft sensors, it is possible to estimate

  9. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-02-05

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    Science.gov (United States)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  11. Simulation of Soft Inclusive Events at Hadron Colliders

    OpenAIRE

    Röhr, Christian

    2014-01-01

    Soft high-energy hadron collisions are driven by nonperturbative physics. This thesis investigates nonperturbative colour reconnections in a Monte Carlo event generator. This model allows for an improved simulation of soft inclusive events and the underlying event. To account for diffraction in simulated inclusive event samples, a unitarization model for diffractive cross sections, based on a two-channel eikonal formalism and enhanced pomeron diagrams, is analytically developed and studied.

  12. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  13. A study of the surfacing bubbles speed in a physical model representing a layer of liquid coal pitch

    Energy Technology Data Exchange (ETDEWEB)

    Begunov, A.I.; Yakovleva, A.A. [Irkutsk State Technical Univ. (Russian Federation)

    1996-10-01

    The authors investigated the motion characteristics of the gas bubbles originating in the baked part of Soderberg anodes and barbotating through the liquid layer of the anodic paste. This study was conducted sing a physical model with paraffin representing the column of anodic paste. The column height of the model liquid was changed from 0.2 to 0.5 m, which corresponds to the liquid layer heights in a real anode. The dependence of the vertical gas bubble speed on the liquid layer height above the level on which the bubble was formed was studied and an empirical equation was found to describe this dependence in terms of mathematical powers. The numerical values of the hydrodynamic resistance coefficients for surfacing bubbles were determined, which vary from 1 {center_dot} 10{sup {minus}5} to 6 {center_dot} 10{sup {minus}5}.

  14. Structure and Transport Anomalies in Soft Colloids

    KAUST Repository

    Srivastava, Samanvaya

    2013-04-01

    Anomalous trends in nanoparticle correlation and motion are reported in soft nanoparticle suspensions using static and dynamic x-ray scattering measurements. Contrary to normal expectations, we find that particle-particle correlations decrease and particle dynamics become faster as volume fraction rises above a critical particle loading associated with overlap. Our observations bear many similarities to the cascade of structural and transport anomalies reported for complex, network forming molecular fluids such as water, and are argued to share similar physical origins. © 2013 American Physical Society.

  15. Influence of process parameters on physical dimensions of AA6063 aluminium alloy coating on mild steel in friction surfacing

    Directory of Open Access Journals (Sweden)

    B. Vijaya Kumar

    2015-09-01

    Full Text Available An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force (F – table traverse speed (Vx and spindle speed (N – table traverse speed (Vx produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics.

  16. Modulation of immunogenicity of poly(sarcosine) displayed on various nanoparticle surfaces due to different physical properties.

    Science.gov (United States)

    Kim, Cheol Joo; Hara, Eri; Watabe, Naoki; Hara, Isao; Kimura, Shunsaku

    2017-12-01

    Poly(sarcosine) displayed on polymeric micelle is reported to trigger a T cell-independent type2 reaction with B1a cells in the mice to produce IgM and IgG3 antibodies. In addition to polymeric micelle, three kinds of vesicles displaying poly(sarcosine) on surface were prepared here to evaluate the amounts and avidities of IgM and IgG3, which were produced in mice, to correlate them with physical properties of the molecular assemblies. The largest amount of IgM was produced after twice administrations of a polymeric micelle of 35 nm diameter (G1). On the other hand, the production amount of IgG3 became the largest after twice administrations of G3 (vesicle of 229 nm diameter) or G4 (vesicle of 85 nm diameter). The augmented avidity of IgG3 after the twice administrations compared with that at the single administration was the highest with G3. These differences in immune responses are discussed in terms of surface density of poly(sarcosine) chains, nanoparticle size, hydrophobic component of poly(L-lactic acid) or (Leu- or Val-Aib) n , and membrane elasticity of the nanoparticles. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  17. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  18. Topological Structure of Vague Soft Sets

    Directory of Open Access Journals (Sweden)

    Chang Wang

    2014-01-01

    Full Text Available We introduce vague soft topological spaces which are defined over an initial universe with a fixed set of parameters. The notions of vague soft open sets, vague soft closed sets, vague soft interior, vague soft closure, and vague soft boundary are introduced and their basic properties and relations are investigated. Furthermore, with the help of examples they established that some properties of topological spaces and soft topological spaces do not hold in vague soft topological spaces. Vague soft connectedness and vague soft compactness are also studied.

  19. Remarks on soft omega-closed sets in soft topological spaces

    Directory of Open Access Journals (Sweden)

    Nirmala Rebecca Paul

    2015-05-01

    Full Text Available The paper introduces soft omega-closed sets in soft topological spaces and establishes the relationship between other existing generlised closed sets in soft topological spaces. It derives the basic properties of soft omega-closed sets. As an application it proves that a soft omega-closed set in a soft compact space is soft compact.

  20. Casimir stress in materials: Hard divergency at soft walls

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-11-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.

  1. Necrotizing Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Sahil Aggarwal, BS

    2018-04-01

    Full Text Available History of present illness: A 71-year-old woman with a history of metastatic ovarian cancer presented with sudden onset, rapidly progressing painful rash in the genital region and lower abdominal wall. She was febrile to 103°F, heart rate was 114 beats per minute, and respiratory rate was 24 per minute. Her exam was notable for a toxic-appearing female with extensive areas of erythema, tenderness, and induration to her lower abdomen, intertriginous areas, and perineum with intermittent segments of crepitus without hemorrhagic bullae or skin breakdown. Significant findings: Computed tomography (CT of the abdominal and pelvis with intravenous (IV contrast revealed inflammatory changes, including gas and fluid collections within the ventral abdominal wall extending to the vulva, consistent with a necrotizing soft tissue infection. Discussion: Necrotizing fasciitis is a serious infection of the skin and soft tissues that requires an early diagnosis to reduce morbidity and mortality. Classified into several subtypes based on the type of microbial infection, necrotizing fasciitis can rapidly progress to septic shock or death if left untreated.1 Diagnosing necrotizing fasciitis requires a high index of suspicion based on patient risk factors, presentation, and exam findings. Definitive treatment involves prompt surgical exploration and debridement coupled with IV antibiotics.2,3 Clinical characteristics such as swelling, disproportionate pain, erythema, crepitus, and necrotic tissue should be a guide to further diagnostic tests.4 Unfortunately, lab values such as white blood cell count and lactate imaging studies have high sensitivity but low specificity, making the diagnosis of necrotizing fasciitis still largely a clinical one.4,5 CT is a reliable method to exclude the diagnosis of necrotizing soft tissue infections (sensitivity of 100%, but is only moderately reliable in correctly identifying such infections (specificity of 81%.5 Given the emergent

  2. Soft skills and dental education.

    Science.gov (United States)

    Gonzalez, M A G; Abu Kasim, N H; Naimie, Z

    2013-05-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses the different soft skills, how they are taught and assessed and the issues that need to be addressed in their teaching and assessment. The use of the module by the Faculty of Dentistry, University of Malaya for development of soft skills for institutions of higher learning introduced by the Ministry of Higher Education, Malaysia. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  3. Fundamentals of soft robot locomotion.

    Science.gov (United States)

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  4. Physical chemistry of foods

    NARCIS (Netherlands)

    Walstra, P.

    2003-01-01

    Exploring the structure and physical and chemical properties of solutions, dispersions, soft solids, fats, and cellular systems, this text describes the physicochemical principles essential to the comprehension and prediction of reactions and conversions that occur during the manufacture, handling,

  5. Cosmic x ray physics

    Science.gov (United States)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  6. Capillary pressure and contact line force on a soft solid

    NARCIS (Netherlands)

    Marchand, A.; Das, S.; Snoeijer, Jacobus Hendrikus; Andreotti, B.

    2012-01-01

    The surface free energy, or surface tension, of a liquid interface gives rise to a pressure jump when the interface is curved. Here we show that a similar capillary pressure arises at the interface of soft solids. We present experimental evidence that immersion of a thin elastomeric wire into a

  7. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  8. The Countabilities of Soft Topological Spaces

    OpenAIRE

    Weijian Rong

    2012-01-01

    Soft topological spaces are considered as mathematical tools for dealing with uncertainties, and a fuzzy topological space is a special case of the soft topological space. The purpose of this paper is to study soft topological spaces. We introduce some new concepts in soft topological spaces such as soft first-countable spaces, soft second-countable spaces and soft separable spaces, and some basic properties of these concepts are explored.

  9. Soft-Tissue Grafting Techniques Associated With Immediate Implant Placement.

    Science.gov (United States)

    Bishara, Mark; Kurtzman, Gregori M; Khan, Waji; Choukroun, Joseph; Miron, Richard J

    2018-02-01

    Immediate implant placement often presents challenges in terms of predictably obtaining soft-tissue coverage over the implant site. While delayed implant placement offers the ability for soft tissues to grow and invade the extraction socket making their attachment around implants more predictable, immediate implant placement poses a significant risk of bacterial invasion towards the implant surface as a result of insignificant soft-tissue volume. Soft-tissue grafting techniques have often been proposed for use during immediate implant placement to augment soft-tissue deficiencies, including the use of either palatal connective tissue grafts (CTGs) or collagen-derived scaffolds. However, both of these approaches have significant drawbacks in that CTGs are harvested with high patient morbidity and collagen scaffolds remain avascular and acelluar posing a risk of infection/implant contamination. More recently, platelet-rich fibrin (PRF) has been proposed as an economical and biological means to speed soft-tissue wound healing. In combination with immediate implant placement, PRF offers an easily procurable low-cost regenerative modality that offers an efficient way to improve soft-tissue attachment around implants. Furthermore, the supra-physiological concentration of defense-fighting leukocytes in PRF, combined with a dense fibrin meshwork, is known to prevent early bacterial contamination of implant surfaces, and the biological concentrations of autologous growth factors in PRF is known to increase tissue regeneration. This article discusses soft-tissue grafting techniques associated with immediate implant placement, presents several cases demonstrating the use of PRF in routine immediate implant placement, and further discusses the biological and economic advantages of PRF for the management of soft-tissue grafting during immediate implant placement.

  10. Soft Robotic Actuators

    Science.gov (United States)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  11. Modeling Soft Matter

    Science.gov (United States)

    Kremer, Kurt

    Soft matter science or soft materials science is a relatively new term for the science of a huge class of rather different materials such as colloids, polymers (of synthetic or biological origin), membranes, complex molecular assemblies, complex fluids, etc. and combinations thereof. While many of these systems are contained in or are even the essential part of everyday products ("simple" plastics such as yoghurt cups, plastic bags, CDs, many car parts; gels and networks such as rubber, many low fat foods, "gummi" bears; colloidal systems such as milk, mayonnaise, paints, almost all cosmetics or body care products, the border lines between the different applications and systems are of course not sharp) or as biological molecules or assemblies (DNA, proteins, membranes and cytoskeleton, etc.) are central to our existence, others are basic ingredients of current and future high tech products (polymers with specific optical or electronic properties, conducting macromolecules, functional materials). Though the motivation is different in life science rather than in materials science biomolecular simulations, the basic structure of the problems faced in the two fields is very similar.

  12. Soft skills and Moodle

    Directory of Open Access Journals (Sweden)

    Ivanova Veronica

    2017-01-01

    Full Text Available At present, technical university graduates are expected to acquire a set of not only hard skills but soft ones as well, which are in the first instance communication skills that can be developed through active and interactive methods during in-class learning. The issue related to communicative skills development is being discussed in different countries throughout the world. This problem is faced by university graduates from Europe, the US and Russia, and in the East. The learning process exploits a variety of electronic platforms, which, on the one hand, significantly increase the pool of students, but, on the other hand, hinder the development of communicative skills. This poses the question about blended learning which combines active and interactive teaching methods with e-learning. Consider a good example of these two types of combined student activity obtained using interactive methods in the Moodle course “Professional training in English” designed for the Bachelor's Degree Programs, Tomsk Polytechnic University (Tomsk, Russia. This paper considers the main types of tasks used in the e-course. It is shown that the teacher’s first aim is to be not a scientific knowledge translator, but to foster a creative educational environment by selecting an optimal teaching strategy through modern educational technology; an e-course is a good teaching aid to build hard and soft skills.

  13. Deployable Soft Composite Structures

    Science.gov (United States)

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  14. Silo outflow of soft frictionless spheres

    Science.gov (United States)

    Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf

    2017-12-01

    Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.

  15. Nanostructured Soft Matter Experiment, Theory, Simulation and Perspectives

    CERN Document Server

    Zvelindovsky, Andrei V

    2007-01-01

    This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles. The book considers several fundamental questions, including: how self-assembly of various soft materials with internal structure at the nanoscale can be understood, controlled and in future used in the newly emerging field of soft nanotechnology. The book offers readers a view on the subject from different perspectives, combining modern experimental approaches from physical chemistry and physics with various theoretical techniques from physics, mathematics and the most advanced computer modelling. It is the first book of this sort in the field. All chapters are written by leading international experts, bringing together experience from Canada, Germany, Great Britain, Japan, the Netherlands, Russ...

  16. Investigation of physical properties and surface morphology of Cu nanolayer deposited on glass and (Al, Fe) thin films by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, P.A. [Islamic Azad Univ., North Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Islamic Azad Univ., Tabriz (Iran, Islamic Republic of). Dept. of Science-Applied Chemistry; Laheghi, S.N.; Ghoranneviss, M. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Plasma Research Center; Moradi, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Aberumand, P. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Laboratory Complex

    2008-07-01

    The applications for copper (Cu) thin films with micro or nanostructural dimensions range from catalysis to microelectronic devices. This paper reported on a study in which DC magnetron sputtering was used to coat iron (Fe), copper (Cu) and aluminum (Al) on glass substrate under a particular voltage, time and optimized deposition pressure. The samples were then coated with Cu using the same technique in preparation of different multilayers. Physical properties such as transmission and reflection per cent, magnetic and electrical properties, size and surface morphology were analyzed using data from AFM, XRD, SEM, Four point probe, and magneto resistive spectrophotometers. The study showed that the size, surface morphology and some physical properties of Cu nanolayer depend on substrate materials, surface morphology and physical properties below the nanolayer. Future work will focus on chemical properties such as catalytic and electrochemical properties. Copper nanoparticles will also be synthesized on other materials such as ZnO. 14 refs., 1 tab., 3 figs.

  17. The effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material.

    Science.gov (United States)

    Yodmongkol, Sirasa; Chantarachindawong, Rojcharin; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Amornsakchai, Taweechai; Srikhirin, Toemsak

    2014-12-01

    Polysiloxane has been used as a coupling material in restorative dental materials for several decades. However, few studies are available on the application of polysiloxane in other dental prosthesis functions. The purpose of this study was to investigate the effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base materials. Specimens were separated into 2 groups, uncoated and coated. They were coated with a film by using the dip-coating method. Specimens were incubated with Candida albicans 10(7) cells/mL for 1 hour, and the adherent cells were counted under an optical microscope. The following surface properties were measured: surface chemical composition with Fourier-transform infrared spectrometry, surface roughness with a surface profiler, surface energy with the sessile drop method, and surface hardness with a microhardness tester. The physical properties, including water sorption, water solubility, ultimate flexural strength, and flexural modulus, were evaluated according to International Organization for Standardization 20795-1 requirements. The adhesion of Candida albicans and the surface properties of the specimens were investigated after cleaning with effervescent tablets and brushing. An MTT assay was used to evaluate the coated specimens. The results were statistically analyzed with the Mann-Whitney U test (α=.05). A significant reduction in Candida albicans adhesion (P=.002) was observed before cleaning. In addition, the surface energy was comparable (P=.100), the surface hardness increased significantly (P=.008), and the surface roughness remained unchanged (P=.310). After cleaning with effervescent tablets, a significant decrease in Candida albicans adhesion (P=.002) and in surface roughness (P=.008) was observed; however, similar surface energies were measured (P=.100). After cleaning with a toothbrush, the adhesion of Candida albicans was significantly higher on

  18. Buckling of paramagnetic chains in soft gels.

    Science.gov (United States)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M; Auernhammer, Günter K

    2016-01-07

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  19. Physical State and Distribution of Materials at the Surface of Pluto from New Horizons LEISA Imaging Spectrometer

    Science.gov (United States)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Cote, R.; Quirico, E.; Protopappa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; hide

    2016-01-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that

  20. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer

    Science.gov (United States)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm.; Singer, K. N.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; New Horizons Science Team

    2017-05-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that

  1. Three-dimensional soft tissue prediction using finite elements. Part I: Implementation of a new procedure.

    Science.gov (United States)

    Holberg, Christof; Schwenzer, Katja; Rudzki-Janson, Ingrid

    2005-03-01

    The prediction of soft tissue esthetics is important for achieving an optimal esthetic outcome in orthodontic treatment planning. Applicable procedures have so far been restricted to two-dimensional profile predictions that have not proven to be very reliable. The goal of this investigation was therefore to develop a novel finite element-based procedure that allows a three-dimensional, easily visualized, quantitative analysis and prediction of soft tissue behavior for the clinician. The procedure to be developed should be easy to handle and not entail any additional radiation exposure for the patient. Using a three-dimensional scanner, the facial surfaces of 20 probands were digitalized and individual FEM models were generated. After reduction of data redundancy via several conversion steps, a patient-specific simulation model was prepared consisting of 20,000 to 40,000 individual elements to which specific physical properties could be assigned. The average time required for generating a virtual model was 50 minutes. Problems occurring during model generation were rare (mainly shadowing phenomena and movement artifacts). The procedure outlined herein makes the reliable generation of patient-specific simulation models possible for facial soft tissue prediction in orthodontics.

  2. Full-scale magnetic, microstructural, and physical properties of bilayered CoSiB/FeSiB ribbons

    Czech Academy of Sciences Publication Activity Database

    Životský, O.; Titov, A.; Jirásková, Yvonna; Buršík, Jiří; Kalbáčová, J.; Janičkovič, D.; Švec, P.

    2013-01-01

    Roč. 581, DEC (2013), s. 685-692 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Keywords : Bilayered ribbons * Soft magnetic materials * Microstructure * Surface and bulk magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2013

  3. Some Results on Soft Multi Topology

    Directory of Open Access Journals (Sweden)

    Deniz Tokat

    2013-06-01

    Full Text Available In this article, at first we recall the concept of soft multiset. Then some results which we obtained on soft multisets were given. Moreover, in this paper, the notion of soft multi topology was introduced and some results on soft multi topology and the concept of the soft multi base were presented.

  4. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    The value of engaging sensory motor skills in the design and use of smart systems is increasingly recognized. Yet robust and reliable methods for development, reporting and transfer are not fully understood. This workshop investigates the role of embodied design research techniques in the context...... of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... or approach. Then small groups will create mash-ups of techniques, exploring ways that the new approaches might be coherently reported. By applying such methods to the problem of their reporting, we hope to deepen understanding of how to move towards nuanced and repeatable methods for embodied design...

  5. Soft Costs Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  6. Soft-collinear supersymmetry

    Science.gov (United States)

    Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.

    2017-03-01

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with super-symmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is cconstructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence be-tween SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in "collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.

  7. Soft-collinear supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Elor, Gilly [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Larkoski, Andrew J. [Physics Department, Reed College,Portland, OR 97202 (United States); Center for Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2017-03-03

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is constructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in “collinear superspace', a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.

  8. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  9. Free Vibration Analyses of FGM Thin Plates by Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral Surface

    Directory of Open Access Journals (Sweden)

    Shuohui Yin

    2013-01-01

    Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.

  10. Understanding Regolith Physical Properties of Atmosphereless Solar System Bodies Based on Remote Sensing Photopolarimetric Observations: Evidence for Europa's Porous Surface

    Science.gov (United States)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Psarev, V.; Vandervoort, K.; Kroner, D. O.; Nebedum, A.; Vides, C.; Quinones, J.

    2017-12-01

    We studied the polarization and reflective properties of a suite of planetary regolith analogues with physical characteristics that might be expected to be found on a high albedo atmosphereless solar system body (ASSB). The angular scattering properties of thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) were measured in the laboratory with a goniometric photopolarimeter (GPP) of unique design. Our results provide insight in support of efforts to understand the unusual reflectance and negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space > 95%, and grain sizes of the order effects of anthropogenic greenhouse gas emissions such as carbon dioxide(Teller et al., 1997). This work partially supported by the Cassini Saturn Orbiter Progrem Harris et al., 1989 . Icarus 81, 365-374. Mishchenko et al., 2006 Applied Optics, 45, 4459-4463. Rosenbush et al, 1997, Astrophys. J. 487, 402-414. Teller et al., 1997. UCRL-JC-128715.

  11. A thermo-elastic model for soft rocks considering structure

    International Nuclear Information System (INIS)

    He, Z.; Zhang, S.; Teng, J.; Xiong, Y.

    2017-01-01

    In the fields of nuclear waste geological deposit, geothermal energy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the super-loading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the super-loading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase. (authors)

  12. A thermo-elastoplastic model for soft rocks considering structure

    Science.gov (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  13. Monte Carlo simulation of nematic liquid crystal in porous media : The topological constraint and surface anchoring effect(Knots and soft-matter physics: Topology of polymers and related topics in physics, mathematics and biology)

    OpenAIRE

    荒木, 武昭; Takeaki, Araki; Marco, Buscaglia; Tommaso, Bellini; Hajime, Tanaka; Department of Physics, Kyoto University:Institute of Industrial Science, University of Tokyo; Department of Chemistry, Biochemistry and Biotecnology, University of Milano; Department of Chemistry, Biochemistry and Biotecnology, University of Milano; Department of Physics, Kyoto University

    2009-01-01

    多孔質に閉じ込められた系や不純物を含む凝縮系では、純粋な系に比べて様々な相転移現象が抑制されることが知られている。液晶における等方-ネマティック転移においても、多孔質中では不連続な一時転移を起こさなくなることが分かっている。しかしながら、液晶相は弾性的であり空間束縛を受けることにより弾性エネルギーが増大し配向欠陥が形成されるため、一般的な議論が用いることができない。例えば、この系では、外場によって平均的な配向方向を制御することができ、外場を除いた後もそれが保持されることが報告されている。これまで、不純物という形で閉じ込め効果を扱った研究した例はいくつかあったが、多孔質の構造そのものに注目したものはなく、どのように配向欠陥が束縛を受けるかなど明らかになっていない点も多く残っている。我々は様々な構造を持つ多孔質を用意し、それと配向欠陥のトポロジカルな構造との関係に着目し、メモリー効果を中心にそめ振舞いを調べた。相分離モデルを用いて双連結構造を用意し、その片方の相にLebwohl-Lasherポテンシャルで相互作用するスピンを導入し、モンテカルロシミュレーションを行った。また、図1は、...

  14. Soft Micro-Channels for Cell Culturing and Migration Studies

    Science.gov (United States)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  15. Soft α-Open Sets and Soft α-Continuous Functions

    Directory of Open Access Journals (Sweden)

    Metin Akdag

    2014-01-01

    Full Text Available We introduce soft α-sets on soft topological spaces and study some of their properties. We also investigate the concepts of soft α-continuous and soft α-open functions and discuss their relationships with soft continuous and other weaker forms of soft continuous functions. Also counterexamples are given to show the noncoincidence of these functions.

  16. Soft Biometrics; Human Identification Using Comparative Descriptions.

    Science.gov (United States)

    Reid, Daniel A; Nixon, Mark S; Stevenage, Sarah V

    2014-06-01

    Soft biometrics are a new form of biometric identification which use physical or behavioral traits that can be naturally described by humans. Unlike other biometric approaches, this allows identification based solely on verbal descriptions, bridging the semantic gap between biometrics and human description. To permit soft biometric identification the description must be accurate, yet conventional human descriptions comprising of absolute labels and estimations are often unreliable. A novel method of obtaining human descriptions will be introduced which utilizes comparative categorical labels to describe differences between subjects. This innovative approach has been shown to address many problems associated with absolute categorical labels-most critically, the descriptions contain more objective information and have increased discriminatory capabilities. Relative measurements of the subjects' traits can be inferred from comparative human descriptions using the Elo rating system. The resulting soft biometric signatures have been demonstrated to be robust and allow accurate recognition of subjects. Relative measurements can also be obtained from other forms of human representation. This is demonstrated using a support vector machine to determine relative measurements from gait biometric signatures-allowing retrieval of subjects from video footage by using human comparisons, bridging the semantic gap.

  17. Lipid protrusions membrane softness, and enzymatic activity

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Høyrup, P.; Callisen, T.H.

    2004-01-01

    The activity of phospholipase A(2) on lipid bilayers displays a characteristic lag burst behavior that has previously been shown to reflect the physical properties of the substrate. It has remained unclear which underlying molecular mechanism is responsible for this phenomenon. We propose here...... protrusion modes and mechanical softness of phospholipid bilayers and on the other side the activity of enzymes acting on lipid bilayers composed of different unsaturated lipids. Specifically, our experiments show a correlation between the bilayer bending rigidity and the apparent Arrhenius activation energy...

  18. A new prescription for soft gluon resummation

    International Nuclear Information System (INIS)

    Abbate, Riccardo; Forte, Stefano; Ridolfi, Giovanni

    2007-01-01

    We present a new prescription for the resummation of the divergent series of perturbative corrections, due to soft gluon emission, to hard processes near threshold in perturbative QCD (threshold resummation). This prescription is based on Borel resummation, and contrary to the commonly used minimal prescription, it does not introduce a dependence of resummed physical observables on the kinematically unaccessible x→0 region of parton distributions. We compare results for resummed deep-inelastic scattering obtained using the Borel prescription and the minimal prescription and exploit the comparison to discuss the ambiguities related to the resummation procedure

  19. Joint Annual Meeting of the Swiss Physical Society and the Austrian Physical Society

    International Nuclear Information System (INIS)

    2017-01-01

    The meeting was organised - as every two years - as a joint meeting with the Austrian Physical Society ((ÖPG) and the Swiss Society for Astrophysics and Astronomy (SSAA). The Swiss Institute of Particle Physics (CHIPP) participated additionally to their usual 2-year rhythm. We also welcomed for the first time the NCCR MARVEL (Computational Design and Discovery of Novel Materials). They all together guarantee an exciting conference covering physics at its best. This meeting was hosted by CERN, Genève. The plenary sessions gave an overview of the present status of research in molecular spintronics, biophotonic micro manipulation of cells, gravitational waves, spectroscopy of trapped antihydrogen atoms, reflective optical systems for astronomical applications, trapped-ion interfaces for quantum networks and quantum photonics. The topical sessions were dedicated to: Applied Physics and Plasma Physics; Astronomy and Astrophysics; Atomic Physics and Quantum Optics; Biophysics, Medical Physics and Soft Matter; Condensed Matter Physics; Correlated-Electron Physics in Transition-Metal Oxides; Earth, Atmosphere and Environmental Physics; Emergent phenomena in novel low-dimensional materials; History of Physics; Magnetism and Spintronics at the Nanoscale; Nuclear, Particle- and Astrophysics; Physics in Startups; Scientific Opportunities with SwissFEL; Surfaces, Interfaces and Thin Films; Theoretical Physics. Those contributions which are in the INIS subject scope are indexed individually.

  20. Magnetic imaging with polarized soft x-rays

    Science.gov (United States)

    Fischer, Peter

    2017-08-01

    Properties, behavior, and functionalities of magnetic materials are largely determined by microscopic spin textures, particularly their formation into domains, their coupling mechanisms and their dynamic behavior. Advanced characterization tools are prerequisite to fundamentally understand magnetic materials and control spins for novel magnetic applications. Magnetic microscopies allow us to image directly the static and dynamic features of the relevant microscopic magnetization structures in advanced magnetic materials and thus provide detailed and direct insight into underlying physical phenomena. A large variety of magnetic imaging techniques has become available with particular strengths but also certain limitations. Essential features of magnetic microscopies are a high spatial resolution down into the nanometer regime, as this is the fundamental length scale of magnetic exchange interaction and the ultimate length scale in advanced magnetic technologies; magnetic and elemental sensitivity with quantitative capabilities, as the properties of advanced magnetic materials can be tailored by combining various magnetic elements and their magnetic moments; high temporal resolution from the ns to the fs regime to understand the associated spin dynamic processes and the functionality in magnetic devices; tomographic capabilities with nm resolution as new directions in nanoscience and technologies are moving into 3 dim arrangements of spin structures; and interfacial sensitivity as novel ways to control spins harness either the coupling across interfaces in multilayered structures or utilize non-collinear spin arrangements, which often occur from symmetry breaking at surfaces and interfaces. The unique properties of polarized soft x-rays, their abundancy and specific interaction with magnetic materials in form of dichroism effects have triggered the development of various magnetic x-ray imaging techniques. This review will provide an overview of the current state

  1. Soft Decision Analyzer

    Science.gov (United States)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  2. Patterned Taping: A High-Efficiency Soft Lithographic Method for Universal Thin Film Patterning.

    Science.gov (United States)

    Oh, Sangyoon; Park, Sang Kyu; Kim, Jin Hong; Cho, Illhun; Kim, Hyeong-Ju; Park, Soo Young

    2016-03-22

    As a universal lithographic technique for microscale/nanoscale film patterns, we develop a strategy for the use of soft lithographically patterned pressure-sensitive tape (patterned tape) as a pattern-transporting stamp material. Patterning was successfully implemented through the selective detachment and/or attachment of various thin films, including organic and metallic layers demanding no subsequent physical, thermal, or chemical treatment, as this incurs the risk of the deformation of the thin film and the deterioration of its functionalities. Its features of universal adhesion and flexibility enable pressure-sensitive tapes to form patterns on a variety of surfaces: organic, polymeric, and inorganic surfaces as well as flat, curved, uneven, and flexible substrates. Moreover, the proposed technique boasts the unique and distinct advantages of short operation time, supreme patterning yield, and multilayer stacking capability, which suggest considerable potential for their application to advanced optoelectronic device fabrication.

  3. Soft landing of bare nanoparticles with controlled size, composition, and morphology

    Science.gov (United States)

    Johnson, Grant E.; Colby, Robert; Laskin, Julia

    2015-02-01

    Physical synthesis employing magnetron sputtering and gas aggregation in a modified commercial source has been coupled with size-selection and ion soft landing to prepare bare nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of nanoparticles on flat and stepped surfaces may be controlled using a quadrupole mass filter and the length of deposition, respectively. AFM shows that nanoparticles bind randomly to flat surfaces when soft landed at relatively low coverage (4 × 104 ions μm-2). On stepped surfaces at intermediate coverage (4 × 105 ions μm-2) nanoparticles bind along step edges forming extended linear chains. At the highest coverage (2 × 106 ions μm-2) nanoparticles form a continuous film on flat surfaces. On one surface with sizable defects, the presence of localized imperfections results in agglomeration of nanoparticles onto these features and formation of neighboring zones devoid of particles. Employing high resolution scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) the customized magnetron sputtering/gas aggregation source is demonstrated to produce bare single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with defined core-shell structures of that are of interest to catalysis.Physical synthesis employing magnetron sputtering and gas aggregation in a modified commercial source has been coupled with size-selection and ion soft landing to prepare bare nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of nanoparticles on flat and stepped surfaces may be controlled using a quadrupole mass filter and the length of deposition, respectively. AFM shows

  4. Treatment of foods with 'soft-electrons' (low-energy electrons)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan); Todoriki, Setsuko [National Food Research Institute (NFRI), Tsukuba, Ibaraki (Japan)

    2003-02-01

    Electrons with energies of 300 keV or lower were defined as soft-electrons'. Soft-electrons can eradicate microorganisms residing on the surface of grains, pulses, spices, dehydrated vegetables, tea leaves and seeds, and reduce their microbial loads to levels lower than 10 CFU/g with little quality deterioration. Soft-electrons can inactivate insect pests infesting grains and pulses and inhibit sprouting of potatoes. (author)

  5. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34

    Energy Technology Data Exchange (ETDEWEB)

    Desaunay, Aurélien; Martins, Jean M.F., E-mail: jean.martins@ujf-grenoble.fr

    2014-05-01

    Highlights: • Subcellular distribution of cadmium in Cupriavidus metallidurans CH34 cells. • Comparison of a chemical (EDTA washing) and a physical method (physical disruption). • EDTA washings strongly overestimated membrane-bound Cd concentrations. • The physical method revealed surprisingly over 80% of Cd internalization in the cells. • Metal biosorption by bacteria cannot be considered as a surface complexation process. - Abstract: Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria.

  6. Combination of interval set and soft set

    Directory of Open Access Journals (Sweden)

    Keyun Qin

    2013-04-01

    Full Text Available Soft set theory and interval set theory are all mathematical tools for dealing with uncertainties. This paper is devoted to the discussion of soft interval set and its application. The notion of soft interval sets is introduced by combining soft set and interval set. Several operations on soft interval sets are presented in a manner parallel to that used in defining operations on soft sets and the lattice structures of soft interval sets are established. In addition, a soft interval set based decision making problem is analyzed.

  7. Soft Neutrosophic Loops and Their Generalization

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-06-01

    Full Text Available Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. In this paper we introduced soft neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the discuission of some of their characteristics. We also introduced a new type of soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure neutrosophic character. This notion also found in all the other corresponding notions of soft neutrosophic thoery. We also given some of their properties of this newly born soft structure related to the strong part of neutrosophic theory.

  8. Soft tissue angiosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, P.H.; Lindberg, R.D.; Barkley, H.T.

    1981-12-01

    From 1949 to 1979, 12 patients with soft tissue angiosarcoma received radiotherapy (alone or in combination with other modalities of treatment) with curative intent at The University of Texas M.D. Anderson Hospital and Tumor Institute. The primary site was the head and neck in six patients (scalp, four; maxillary antrum, one; and oral tongue, one), the breast in four patients, and the thigh in two patients. All four patients with angiosarcoma of the scalp had advanced multifocal tumors, and two of them had clinically positive neck nodes. None of these tumors were controlled locally, and local recurrences occurred within and/or at a distance from the generous fields of irradiation. The remaining two patients with head and neck lesions had their disease controlled by surgery and postoperative irradiation. Three of the four angiosarcomas of the breast were primary cases which were treated by a combination of surgery (excisional biopsy, simple mastectomy, radical mastectomy) and postoperative irradiation. One patient also received adjuvant chemotherapy. The fourth patient was treated for scar recurrence after radical mastectomy. All four patients had their disease locally controlled, and two of them have survived over 5 years. The two patients with angiosarcoma of the thigh were treated by conservative surgical excision and postoperative irradiation. One patient had her disease controlled; the other had a local recurrence requiring hip disarticulation and subsequent hemipelvectomy for salvage.

  9. Softly Massive Gravity

    CERN Document Server

    Gabadadze, Gregory T

    2004-01-01

    Large-distance modification of gravity may be the mechanism for solving the cosmological constant problem. A simple model of the large-distance modification -- four-dimensional (4D) gravity with the hard mass term-- is problematic from the theoretical standpoint. Here we discuss a different model, the brane-induced gravity, that effectively introduces a soft graviton mass. We study the issues of unitarity, analyticity and causality in this model in more than five dimensions. We show that a consistent prescription for the poles of the Green's function can be specified so that 4D unitarity is preserved. However, in certain instances 4D analyticity cannot be maintained when theory becomes higher dimensional. As a result, one has to sacrifice 4D causality at distances of the order of the present-day Hubble scale. This is a welcome feature for solving the cosmological constant problem, as was recently argued in the literature. We also show that, unlike the 4D massive gravity, the model has no strong-coupling probl...

  10. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  11. Hard evidence on soft skills.

    Science.gov (United States)

    Heckman, James J; Kautz, Tim

    2012-08-01

    This paper summarizes recent evidence on what achievement tests measure; how achievement tests relate to other measures of "cognitive ability" like IQ and grades; the important skills that achievement tests miss or mismeasure, and how much these skills matter in life. Achievement tests miss, or perhaps more accurately, do not adequately capture, soft skills -personality traits, goals, motivations, and preferences that are valued in the labor market, in school, and in many other domains. The larger message of this paper is that soft skills predict success in life, that they causally produce that success, and that programs that enhance soft skills have an important place in an effective portfolio of public policies.

  12. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  13. Some Local Properties of Soft Semi-Open Sets

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2013-01-01

    Full Text Available We introduce some local properties by soft semi-open sets. For example, soft semi-neighborhoods of the soft point, soft semi-first-countable spaces and soft semi-pu-continuous at the soft point are given. Furthermore, we define soft semi-connectedness and prove that a soft topological space is soft semiconnected if and only if both soft semi-open and soft semi-closed sets are only ∅ and X~.

  14. Frictional Compliant Haptic Contact and Deformation of Soft Objects

    Directory of Open Access Journals (Sweden)

    Naci Zafer

    2016-05-01

    Full Text Available This paper is concerned with compliant haptic contact and deformation of soft objects. A human soft fingertip model is considered to act as the haptic interface and is brought into contact with and deforms a discrete surface. A nonlinear constitutive law is developed in predicting normal forces and, for the haptic display of surface texture, motions along the surface are also resisted at various rates by accounting for dynamic Lund-Grenoble (LuGre frictional forces. For the soft fingertip to apply forces over an area larger than a point, normal and frictional forces are distributed around the soft fingertip contact location on the deforming surface. The distribution is realized based on a kernel smoothing function and by a nonlinear spring-damper net around the contact point. Experiments conducted demonstrate the accuracy and effectiveness of our approach in real-time haptic rendering of a kidney surface. The resistive (interaction forces are applied at the user fingertip bone edge. A 3-DoF parallel robotic manipulator equipped with a constraint based controller is used for the implementation. By rendering forces both in lateral and normal directions, the designed haptic interface system allows the user to realistically feel both the geometrical and mechanical (nonlinear properties of the deforming kidney.

  15. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  16. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  17. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood.

    Science.gov (United States)

    Gündüz, Gökhan; Korkut, Süleyman; Korkut, Derya Sevim

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood were examined. Samples obtained from Yenice-Zonguldak Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for varying durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. The mechanical properties of heat-treated and control samples were tested, and compression strength, and Janka-hardness were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p=0.05) between physical and technological properties, and surface roughness parameters (Ra, Rz, Ry, Rq) for three temperatures and three durations of heat treatment. Based on the findings in this study, the results showed that density, swelling, compression strength, Janka-hardness and surface roughness values decreased with increasing treatment temperature and treatment times. Increase in temperature and duration further diminished technological strength values of the wood specimens. Camiyani Black Pine wood could be utilized by using proper heat treatment techniques without any losses in strength values in areas where working, stability, and surface smoothness, such as in window frames, are important factors.

  18. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.

    Science.gov (United States)

    Cao, Y Y; Ouyang, G; Wang, C X; Yang, G W

    2013-02-13

    As a promising and typical semiconductor heterostructure at the nanoscale, the radial Ge/Si NW heterostructure, that is, the Ge-core/Si-shell NW structure, has been widely investigated and used in various nanodevices such as solar cells, lasers, and sensors because of the strong changes in the band structure and increased charge carrier mobility. Therefore, to attain high quality radial semiconductor NW heterostructures, controllable and stable epitaxial growth of core-shell NW structures has become a major challenge for both experimental and theoretical evaluation. Surface roughening is usually undesirable for the epitaxial growth of high quality radial semiconductor NW heterostructures, because it would destroy the core-shell NW structures. For example, the surface of the Ge-core/Si-shell NWs always exhibits a periodic modulation with island-like morphologies, that is, surface roughening, during epitaxial growth. Therefore, the physical understanding of the surface roughening behavior during the epitaxial growth of core-shell NW structures is essential and urgent for theoretical design and experimentally controlling the growth of high quality radial semiconductor NW heterostructures. Here, we proposed a quantitative thermodynamic theory to address the physical process of epitaxial growth of core-shell NW structures and surface roughening. We showed that the transformation from the Frank-van der Merwe mode to the Stranski-Krastanow mode during the epitaxial growth of radial semiconductor NW heterostructures is the physical origin of surface roughening. We deduced the thermodynamic criterion for the formation of the surface roughening and the phase diagram of growth and showed that the radius of the NWs and the thickness of the shell layer can not only determine the formation of the surface roughening in a core-shell NW structure, but also control the periodicity and amplitude of the surface roughness. The agreement between the theoretical results and the

  19. Interfacial structure of soft matter probed by SFG spectroscopy.

    Science.gov (United States)

    Ye, Shen; Tong, Yujin; Ge, Aimin; Qiao, Lin; Davies, Paul B

    2014-10-01

    Sum frequency generation (SFG) vibrational spectroscopy, an interface-specific technique in contrast to, for example, attenuated total reflectance spectroscopy, which is only interface sensitive, has been employed to investigate the surface and interface structure of soft matter on a molecular scale. The experimental arrangement required to carry out SFG spectroscopy, with particular reference to soft matter, and the analytical methods developed to interpret the spectra are described. The elucidation of the interfacial structure of soft matter systems is an essential prerequisite in order to understand and eventually control the surface properties of these important functional materials. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Earthquake statistics and plastic events in soft-glassy materials

    NARCIS (Netherlands)

    Benzi, Roberto; Kumar, Pinaki; Toschi, Federico; Trampert, Jeannot

    2016-01-01

    We propose a new approach for generating synthetic earthquakes based on the physics of soft glasses. The continuum approach produces yield-stress materials based on Lattice–Boltzmann simulations. We show that if the material is stimulated below yield stress, plastic events occur, which have strong